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Local versus translationally invariant slowest operators in quantum Ising spin chains
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In this paper we study one-dimensional quantum Ising spin chains in an external magnetic field close to an
integrable point. We concentrate on the dynamics of the slowest operator that plays a key role at the final period
of thermalization. We introduce two independent definitions of the slowest operator: local and translationally
invariant ones. We construct both operators numerically using tensor networks and extensively compare their
physical properties. We find that the local operator has a significant overlap with energy flux, it does not
correspond to an integral of motion, and, as one goes away from the integrable point, its revivals get suppressed
and the rate of delocalization changes from extremely slow to slower than diffusion. The translationally invariant
operator corresponds to an integral of motion; as the system becomes less integrable, at some point this operator
changes its nature: from no overlap with any magnetization and fast rate of delocalization, to nonzero overlap
with magnetizations σx and σz and slow rate of delocalization.
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I. INTRODUCTION

Thermalization is widely studied in the literature. This
process occurs in closed many-body quantum systems. In such
systems, if we take a finite subsystem, its complement plays
a role of a bath and thermalizes it [1]. This phenomenon has
roots in the theory of open quantum systems, where it was
proven that a system connected to a thermal bath reaches an
equilibrium with a temperature of a bath [2–4]. The primary
known mechanism of thermalization is the Eigenstate Ther-
malization Hypothesis [5–8] (see also the reviews [9,10]). But
there are systems that do not thermalize; the famous examples
are Anderson localization [11], many-body localization (see
the review [12]), and integrable systems, but the last are not a
phase of matter, they rather correspond to the special points in
the space of parameters in a Hamiltonian.

In this work we are interested in the transition from integra-
bility to nonintegrability, as we slowly change the parameters
in a Hamiltonian. Such close-to-integrable systems are known
to have an initial period of prethermalization [13–17], while
at the latest period there is a transport of conserved quantities,
such as energy or magnetization. At the prethermalization
period, the fastest correlations decay, while at this latest period
the slowest operator [18,19] plays a key role.

We consider a one-dimensional quantum Ising spin chain
in external magnetic field, and its Hamiltonian is

H = −
∑

i

σ (i)
z σ (i+1)

z + h
∑

i

σ (i)
z + g

∑
i

σ (i)
x , (1)

where σx,y,z are Pauli matrices, i is a site on the chain, and h, g
are real numbers. We assume periodic boundary conditions,
with the total number of spin sites being L. In some situations
we will take a limit L → ∞.
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This system is known to be integrable for two sets of
parameters: g = 0 and any real h; h = 0 and any real g.

As we are interested in the vicinity of the integrable point,
we consider three cases: g �= 0 fixed and h near 0 (noninte-
grable); h �= 0 fixed and g near 0 (nonintegrable); h = 0 and
various g (integrable). We do not consider a case g = 0 and
various h, since it has a trivial integral of motion σz, which we
would get in all our later calculations.

In this paper we focus on the latest period of thermaliza-
tion and, therefore, on the dynamics of the slowest operator.
We particularly consider two independent definitions of the
slowest operator (local and translationally invariant ones) and
reveal the differences in their physical properties. For doing
so, we construct them numerically using tensor network meth-
ods [20–25].

The structure of this paper is as follows. In Sec. II we
describe periods of thermalization process of a nonintegrable
system close to an integrable point. In Sec. III we narrow
down to the final period of thermalization and introduce two
definitions of the slowest operator. In Sec. IV we describe
how we construct the two operators using tensor networks.
In Sec. V we calculate entanglement entropy and observe that
it is low. Therefore, application of tensor networks is justified.

In Sec. VI we study the dependence of the slowest op-
erators on the parameters g and h. We find that the local
operator does not correspond to an integral of motion and
has a significant overlap with diffusion mode or energy flux.
The translationally invariant operator, on the other hand, cor-
responds to an integral of motion; as one goes away from the
integrable point, at a specific h∗ it changes its nature: from
no overlap with any magnetization, to nonzero overlap with
magnetizations σx and σz.

In Sec. VII we study the delocalization rate of the slowest
operator by calculating the scaling with its support size N on
the chain. As one goes away from the integrable point, the rate
of delocalization of the local slowest operator changes from
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extremely slow to slower than diffusion. The translationally
invariant operator before the transition delocalizes faster than
diffusion, but afterwards slower than diffusion.

In Sec. VIII we study time evolution. In particular, we
calculate the dynamics of the two-point correlation func-
tion and the out-of-time-ordered commutator. We find that,
as one goes away from the integrable point, the revivals of
the local slowest operator get suppressed. We observe the
common features of the time evolution of the two slowest
operators.

In Sec. IX we conclude what we have found and discuss
the remaining questions and possible directions of future re-
search.

II. PERIODS OF THERMALIZATION PROCESS

In this section we consider separately thermalization of
nonintegrable systems and equilibration of integrable systems.
Then combining those two, we describe a picture of ther-
malization of nonintegrable systems close to an integrable
point. We particularly emphasize the resulting two periods of
thermalization.

A. Nonintegrable systems

In such systems thermalization can be defined as follows.
An average of a local operator A during its evolution reaches
thermal average:

〈ψ (t )| A |ψ (t )〉 → Tr(ρthA), (2)

where ρth = 1
Zth

e−βH . β = 1
T , T is fixed by the condition

〈ψ (t )| H |ψ (t )〉 = Tr(ρthH ). Zth is such that Trρth = 1.

B. Integrable systems

In such systems there is an extensive number of integrals of
motion {Qi}, which commute with a Hamiltonian: [Qi, H] =
0 (they also obey [Qi, Qj] = 0; Q0 = H). The system cannot
thermalize, because its dynamics is constrained by these inte-
grals of motion {Qi}. Instead, it equilibrates to the generalized
Gibbs ensemble (GGE) [26,27]:

〈ψ (t )| A |ψ (t )〉 → Tr(ρGGE A), (3)

where ρGGE = 1
ZGGE

e
∑

i μiQi , ZGGE is such that TrρGGE = 1.

C. Nonintegrable systems close to an integrable point

In such systems there is no such set of {Qi}, with [Qi, H] =
0. Instead they become {Oi}, and some of them commute
better with H , some worse. We emphasize O0, which best
commutes with H , and call it the slowest operator (first intro-
duced and named in [18,19]). We define it as a local operator
(with support on N consecutive sites), which minimizes the
nonnegative quantity Tr[H, O0]†[H, O0] = −Tr[H, O0]2.

O0 has an important physical meaning. O0 plays a
role of an integral of motion for all other operators A,
because its dynamics is much slower (Ȯ0 ∼ |[H, O0]|). There-
fore, the thermalization process can be divided into two
periods:

(1) Initial period of prethermalization when all operators
equilibrate to ˜GGE :

〈ψ (t )| A |ψ (t )〉 → Tr(ρ
˜GGE A), (4)

where ρ
˜GGE = e−βH+μO0 .

(2) Period of final thermalization:

Tr(ρ
˜GGE A) → Tr(ρthA). (5)

The slowest operator O0 (as a part of ρ
˜GGE ) plays an

important role during the period of final thermalization.

III. TWO DEFINITIONS OF THE SLOWEST OPERATOR

In the rest of the paper we study the slowest operator. It
is a local operator O0 with support on N consecutive sites
that minimizes the nonnegative quantity Tr[H, O0]†[H, O0] =
−Tr[H, O0]2.

Since we do not consider faster operators O1, O2, . . . , from
now on we will denote the slowest operator as O instead of
O0. We also numerate the spin sites 0 . . . L − 1, as the total
number is equal to L.

Then there are two independent definitions of the slowest
operator O (see Fig. 1).

A. “Local” definition

O is a single operator that has support on N consecutive
sites. We also impose other conditions: TrO = 0 (to exclude
identical operator), O is Hermitian, and TrO2 = 1 (normaliza-
tion).

B. “Translationally invariant” definition

O is a sum of shifted (by one site) identical operators, each
one having support on N consecutive sites: O = ∑L−1

i=0 Oi,
where Oi has support on N consecutive sites from i to i +
N − 1.

If i + N − 1 > L − 1, then Oi after the end of the chain
(site L − 1) continues from the beginning (site 0). We also
impose other conditions:

TrOi = 0 (to exclude identical operator)

Oi is Hermitian

Oi at its first site i is decomposed in a basis {σx, σy, σz}
(without σ0)
(To be discussed later.)

TrO2 = 1 (normalization)

TrHO = 0
If we do not impose this condition, the minimization of
−Tr[H, O]2 will give us O equal to Hamiltonian, since
the latter is exactly a sum of local terms.

IV. FINDING THE SLOWEST OPERATOR
USING TENSOR NETWORKS

The next step is to find the slowest operator O by mini-
mization of −Tr[H, O]2. We describe the procedure for local
and translationally invariant slowest operators separately.
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FIG. 1. (a) Local and (b) translationally invariant definitions of
the slowest operator. Empty circles correspond to identity matrices.

A. Local slowest operator

This optimization problem can be solved by exact diago-
nalization. For doing so, we need to represent −Tr[H, O]2 in
a form 〈O|Heff |O〉. Since O has support on N sites, its dimen-
sions are 2N × 2N . Then the dimension of |O〉 is 4N , and those
of Heff - 4N × 4N . |O〉 can be found by exact diagonalization
of Heff . The problem is that it can be done only for small N up
to ∼8, because, for bigger N , Heff is a large matrix and exact
diagonalization takes too much memory and computational
time. That is why we use tensor networks.

1. Tensor network representation of O

We represent O in a matrix product state (MPS) form. We
use the Pauli matrix basis at every site {I, σx, σy, σz} with real
coefficients to ensure that O is Hermitian (see Fig. 2):

O =
∑

l,m,n,...
k0...kN−1

A(0),k0
l A(1),k1

lm . . . A(N−1),kN−1
n

× σ
(0),i0, j0
k0

⊗ σ
(1),i1, j1
k1

· · · ⊗ σ
(N−1),iN−1, jN−1

kN−1
, (6)

FIG. 2. Tensor network representation of the slowest operator.
The dark red circles correspond to Pauli matrices σ (i), blue ones to
the tensor coefficients A(i) in front of them. Numbers correspond to
dimensions of the edges. See (6).

where (i) follows a site number, i = 0 . . . N − 1. A(i) is a
real tensor at site i. l, m, n, . . . are so-called bond (internal)
indices, and each bond index can take value from 0 to D − 1,
where D is a bond dimension. i0, . . . , iN−1 are up physical
indices, j0, . . . , jN−1 are down physical indices, and every one
of them can be 0 or 1, as spin at each site is up or down.
k0, . . . , kN−1 take values from 0 to 3, as there are four Pauli
matrices.

In practice, we put O in a canonical form to fulfill the
normalization condition TrO2 = 1. Then the bond dimension
near the boundaries (close to site 0 or N − 1) is actually less
than D. From the beginning of the chain bond dimension
increases as 4, 16, 64, . . . until it is cut with fixed D. After that
it is constant for some time (equal to D), until it decreases in
the same manner near the second boundary (near site N − 1).

Tensor network representation is efficient for optimiza-
tion problems, since MPS has a small number of parameters
N × D2 × 4, while a general operator has 4N parameters. On
the other hand, MPS is constructed of local tensors and al-
lows one to do the optimization site by site and, therefore,
reduce a number of optimization parameters even more. On
the downside, MPS ansatz is applicable only for low entan-
glement inside O [20]. The greater the dimension D is, the
higher entanglement one can capture. In the next section, we
specifically check that entanglement entropy is low enough so
that we can apply tensor networks.

2. Tensor network representation of −Tr[H, .]2

To be able to do optimization locally, site by site, we not
only have to represent O in an MPS form, but also −Tr[H, .]2

in a matrix product operator (MPO) form.
Then we first decompose Tr([H, O]†[H, O]) as follows:

Tr([H, O]†[H, O])

= Tr([Hloc, O]†[Hloc, O]) + Tr
([

σ (0)
z , O

]†[
σ (0)

z , O
])

+ Tr
([

σ (N−1)
z , O

]†[
σ (N−1)

z , O
])

, (7)

where Hloc is a part of Hamiltonian (1) having support on
the same N consecutive sites as O does. The last two terms
come from the terms in the Hamiltonian σ−1

z σ 0
z and σ N−1

z σ N
z

respectively.
In the next step, we decompose the latter expression:

Tr([H, O]†[H, O])

= Tr
(
O†H2

locO
) + Tr

(
O†OH2

loc

) − 2Tr(O†HlocOHloc)

+2−2Tr
(
O†σ (0)

z Oσ (0)
z

) + 2−2Tr
(
O†σ (N−1)

z Oσ (N−1)
z

)
.

(8)
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FIG. 3. Transformation of the term Tr(O†H 2
locO) [see (8)]. After

combining the resulting tensor networks for all the terms, the DMRG
algorithm can be applied. Dark red circles correspond to Pauli matri-
ces, blue circles to coefficients A(i) in front of them, yellow squares
to an MPO of Hloc.

We also add a term |TrO|2 with some positive factor into
the optimization problem, to account for the trace condition:
TrO = 0.

Each one of the terms can be represented as a ten-
sor network. We illustrate how to do it for the first term
(see Fig. 3). Then these tensor networks can be combined into
one or calculated separately to reduce computational time.
The overall transformation is sketched in Fig. 4(a).

Hloc can be put in an MPO form with bond dimension 3:

vL = (
0 0 1

)
,

M (i) =

⎛⎜⎝ I (i) 0 0
σ (i)

z 0 0
hσ (i)

z + gσ (i)
x −σ (i)

z I (i)

⎞⎟⎠, vR =
⎛⎝1

0
0

⎞⎠ (9)

FIG. 4. Reduction of the tensor network, corresponding to
−Tr[H, O]2. The DMRG algorithm can be applied to the network on
the right. The violet squares correspond to −Tr[H, .]2 merged with
Pauli matrices of O. Thus, the DMRG algorithm finds coefficients
A(i), from which one can construct O, using (6).

with M (i) a matrix at site i, and vL and vR adjoining left
and right vectors (that can be merged with M (0) and M (N−1)

respectively), such that Hloc = vL × M (0) × · · · × M (N−1) ×
vR.

Everywhere below we effectively calculate −Tr[H, O]2 for
a limit L → ∞, because −Tr[H, O]2 has the same value for
any L � N + 2 [see (7) and (8)].

3. Finding O using DMRG algorithm

After we have obtained a tensor network in a form depicted
in Fig. 4(a) on the right, we can apply the density matrix
renormalization group (DMRG) algorithm [28]. We go site
by site from left to right and back and do optimization of
A(i) at each step. We gradually increase the bond dimension:
8, 16, 32, . . . until 1024. We check the convergence at a fixed
bond dimension by a relative error of 10−7; the program
terminates if a relative difference between the final answers
at a current bond dimension and a previous one is less than
0.5%.

B. Translationally invariant slowest operator

1. Tensor network representation of O

The tensor network representation of a particular Oi of the
sum O = ∑

i Oi is almost the same as (6) (see also Fig. 2).
The difference is that the index k0 takes values 1,2,3 instead
of 0,1,2,3, because, according to the definition, there can only
be {σx, σy, σz} (no σ0) as basis elements at the first site.

We impose this condition for the following reason.
The minimization of −Tr[H,

∑
i Oi]2 with the condition

Tr(
∑

i Oi )2 = 1 is a generalized eigenvalue problem and
much harder to deal with. With the above condition for the
first site, Tr(

∑
i Oi )2 becomes trivial: it is a sum of identical

terms
∑

i TrO2
i (the terms TrOiOj, i �= j die out, because we

take a trace either at the first site of Oi, or at the first site of Oj).
In other words, it is equivalent to the standard normalization
condition TrO2

i = 1, and no generalized eigenvalue problem
arises.

On the other hand, this condition is just a gauge fixing:
in a spin chain with big enough bond dimension D, one can
represent the same operator using different sets of N-site basis
elements, we just choose one of these representations.

2. Tensor network representation of −Tr[H, .]2

For a translationally invariant operator, we need to mini-
mize −Tr[H,

∑
i O(i)]2 with identical operators {Oi}; Oi has

support on consecutive sites i . . . i + N − 1. In this case we
also use tensor networks for finding Oi, but the key difference
is that we envelop the summation into the effective operator
[see Fig. 4(b)]. As obvious from Fig. 4(b), this effective oper-
ator cannot be decomposed into local parts and, therefore, be
represented in an MPO form. It complicates the implementa-
tion of the DMRG algorithm, since it leads to the contraction
of all the tensors of the tensor network at every local step of
the algorithm.

Taking into account the definition of this operator, we in-
clude the conditions |TrHO|2 and |TrOi|2 with some positive
factors into an optimization problem.
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Everywhere below we fix L = 2N + 3 and claim that we
effectively calculate Tr([H,

∑
i O(i)]†[H,

∑
j O( j)]) for L →

∞. The reason is that [H, O(i)] is an operator with support
N + 2. Therefore, only O(i) and O( j) that are close to each
other contribute. All other terms die out.

3. Finding O using the DMRG algorithm

The algorithm is similar to the local operator case but just
takes much more computational time. We gradually increase
bond dimension: 64, 128, . . . until 1024. We check the con-
vergence at a fixed bond dimension by a relative error of 10−4;
the program terminates if a relative difference between the
final answers at a current bond dimension and a previous one
is less than 0.5%.

V. ENTANGLEMENT ENTROPY OF
THE SLOWEST OPERATOR

In this section we justify using tensor network ansatz for
finding the slowest operator. In particular, we prove that even
with not very big bond dimension D, we still find the exact
slowest operator numerically.

It is known in the literature that entanglement entropy S of
a quantum state |ψ〉, represented in a tensor network form, is
bounded by ln D, where D is a bond dimension [20]. In other
words, the greater D one considers, the higher entanglement
entropy one can cover.

The quick explanation is as follows. Suppose |ψ〉 has
support on sites 0 . . . N − 1. One can do a bipartition to
the left (sites 0 . . . i − 1) and right (sites i . . . N − 1) parts.
Then the left or right reduced density matrix is defined
as ρ = TrR(L) |ψ〉 〈ψ |, and entanglement entropy reads S =
−Trρ ln ρ (left and right reduced density matrices give the
same answer for S). Since the edge between sites i − 1 and i
has dimension D, the reduced density matrix ρ (left or right)
has size D × D. Then entanglement entropy S is maximized
by the identity matrix, which is in our case ρ = 1

D I . For such
a matrix, the entropy is S = ln D. The statement is proven.

In our problem we have the slowest operator in a matrix
product state form [see (6) and Fig. 2]. If we prove that as we
increase bond dimension D, entanglement entropy converges
to the small enough value, then we can claim that the slowest
operator corresponds to the exact slowest operator. (Entangle-
ment entropy is used here as a technical tool, no real physical
meaning is implied.)

For doing so, we calculate entanglement entropy for the
final value of D, used in our calculations. We compare it with
the maximum entanglement entropy for a given bipartition.

The dimension of the general vector, having support on N
consecutive sites, is 4N . The bipartition divides it as 4i × 4N−i.
Then the size of the left reduced density matrix is 4i × 4i, and
that of the right one is 4N−i × 4N−i. Therefore, the maximum
entropy is ln min(4i, 4N−i ).

The result is depicted in Fig. 5. We observe that entan-
glement entropy is indeed much smaller than the maximum
value, for both local and translationally invariant definitions
of the slowest operator. Therefore, we claim that the slow-
est operator we find does correspond to the exact slowest
operator.

FIG. 5. Entanglement entropy as a function of bipartition po-
sition for local and translationally invariant slowest operators
(g = 1.05, h = 0.1, N = 12). Entanglement is low and allows one to
use tensor network representation.

We note that entanglement entropy for the translation-
ally invariant slowest operator is not left-right symmetric.
It is a consequence of the “gauge fixing” that allows only
(σ1, σ2, σ3) Pauli matrices as basis elements at the first site,
while at all other sites all four of (I, σ1, σ2, σ3) can have
nonzero contributions.

VI. DEPENDENCE OF THE SLOWEST OPERATOR
ON THE PARAMETERS IN HAMILTONIAN

Here we find how the physical properties of the slowest
operator depend on the parameters g and h in Hamiltonian
[see (1)]. We find the differences between local and transla-
tionally invariant slowest operators.

In this section we calculate the translationally invariant
slowest operator using exact diagonalization of −Tr[H, .]2

[the orange operator in Fig. 4(b)]. (We do not need large
support sizes N and limit ourselves to N = 5, 6. Exact diago-
nalization is suitable for this task.) In all other sections we use
tensor networks and DMRG algorithm.

A. The physical quantities

We calculate the following quantities.

1. −Tr[H, O]2 as a function of g and h

If −Tr[H, O]2 tends to 0, as we approach an integrable
point, then O corresponds to an integral of motion of the
integrable system.

2. Overlap between the slowest operator and probe
operators as a function of g, h

We calculate the quantity Tr(OP), where P is the probe
operator. In this way we find the physical meaning of the
slowest operator.

The probe operators are different for local and translation-
ally invariant slowest operators. All probe operators for the
local slowest operator have support on N consecutive sites.
For translationally invariant ones, the probe operators have
support on the full chain, i.e., have support L.

Those probe operators are the following:
(1) Diffusion mode
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For the local slowest operator: Local terms of Hamiltonian
[see (1)] multiplied by cosine, to form a “bell” shape [18]:

E (0) =
N−2∑
i=0

cos

(
−π

2
+ i + 1

2

N
π

)(−σ (i)
z σ (i+1)

z

)
+

N−1∑
i=0

cos

(
−π

2
+ i

N
π

)(
hσ (i)

z + gσ (i)
x

)
. (10)

For the translationally invariant slowest operator:

L−1∑
i=0

E (i), (11)

where E (i) has support on sites i . . . i + N − 1.
(2) Energy flux
For the local slowest operator: Local Hamiltonian terms

that belong to the interval of N consecutive sites and an extra
boundary term:

N−2∑
i=0

(−σ (i)
z σ (i+1)

z

) +
N−1∑
i=0

(
hσ (i)

z + gσ (i)
x

) + (−σ (N−1)
z σ (0)

z

)
.

(12)

For the translationally invariant slowest operator: Hamilto-
nian [see (1)]

(3) Magnetization
For local slowest operator:

M (0)
x,y,z =

N−1∑
i=0

σ (i)
x,y,z. (13)

For the translationally invariant slowest operator:

L−1∑
i=0

M (i)
x,y,z, (14)

where M (i)
x,y,z has support on sites i . . . i + N − 1.

We often denote magnetization as magnetization 1, magne-
tization 2, or magnetization 3. They correspond to σx, σy, and
σz magnetizations, respectively.

We plot −Tr[H, O]2 as a function of g and h in Fig. 6,
and overlap between the slowest operator and probe opera-
tors as a function of g, h in Fig. 7. The subplots on the left
[Figs. 7(a), 7(c), and 7(e)] correspond to the local slowest
operator, and subplots on the right [Figs. 7(b), 7(d), and 7(f)]
to the translationally invariant one. Figures 7(a) and 7(b) are
concerned with the nonintegrable case of fixed g = 1.05 and
various h, such that h = 0 corresponds to the integrable limit.
Similarly, subplots (c) and (d) correspond to the nonintegrable
case of fixed h = 1.05 and various g, while g = 0 provides
the integrable limit. Figures 7(e) and 7(f) correspond to the
integrable case of h = 0.

B. The results

Here we draw conclusions from Figs. 6 and 7.

1. The translationally invariant slowest operator corresponds
to an integral of motion, but the local slowest operator

does not (as h → 0)

The translationally invariant operator becomes an integral
of motion, as h → 0 or g → 0, since the quantity −Tr[H, O]2

approaches 0 [see Figs. 6(b) and 6(d)].
The local slowest operator, on the other hand, does not

correspond to an integral of motion, as h → 0 [see Fig. 6(a)].
[But it does as g → 0; see Fig. 6(c).]

2. The curve −Tr[H, O]2 as a function of g (h) has a shape
of a deformed bell

The curve −Tr[H, O]2 clearly decreases for big h in
Figs. 6(a) and 6(b). But we expect a similar behavior in
Figs. 6(c)–6(e). The reason is that, as we go to large g or h,
the corresponding term in Hamiltonian (1) dominates over the
others, and σx or σz starts to play a role of the local slowest
operator, and

∑
i σ

(i)
x or

∑
i σ

(i)
z of the translationally invariant

one.

3. The translationally invariant operator changes
its nature at a specific h, when g is fixed

It can be seen in Figs. 6(b) and 7(b). The value of h depends
on the support size N (for N = 6, h∗ ∼ 0.33 in both figures).

Before the transition, the slowest operator does not look
like any probe operator we propose.

4. For an integrable system of h = 0, there are translationally
invariant integrals of motion, but no local ones

There are translationally invariant integrals of motion,
since −Tr[H, O]2 is equal to 0 for any g in Fig. 6(f). But there
are no local ones, since −Tr[H, O]2 is nonzero in Fig. 6(e)
and −Tr[H, O]2 does not approach 0 as h → 0 in Fig. 6(a).

5. The local slowest operator looks very much like
the diffusion mode or energy flux

The overlap with diffusion mode or energy flux is near 1,
as can be seen in Figs. 7(a), 7(c), and 7(e) (orange and blue
curves). We also note a clear correlation between the con-
tribution of magnetization and the corresponding terms in
Hamiltonian. The greater g is, the bigger is the contribution of
magnetization1 (green curve), and the greater h is, the bigger
is the contribution of magnetization 3 (purple curve).

On the other hand, overlap with magnetization 2 is 0, and
it corresponds to the absence of σy in the Hamiltonian.

6. The translationally invariant slowest operator looks
most like magnetization 1 or magnetization 3,

but their contribution is not big

The overlap is shown in Figs. 7(b), 7(d), and 7(f).
We also note that the overlap with diffusion mode or energy

flux is 0, since Tr(HO) = 0 by definition. Because of the
latter, one would expect the “anticorrelation” with respect to
the contributions of g and h into the Hamiltonian. But it is
not the case. This behavior is observed for big h in Fig. 7(b)
and big g in Fig. 7(d), but it is clearly violated for small g in
Fig. 7(d).
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FIG. 6. Scaling of −Tr[H, O]2 with g and h for local and translationally invariant slowest operators (N = 5, 6).

7. The translationally invariant operator is slower
than the local one

This property is clearly seen in Figs. 6(a)–(f), since the
curves for the translationally invariant operator are lower than
those for the local one.

8. There is a translationally invariant integral of motion that looks
like magnetization 1 to a great extent (for h = 0)

This integral of motion can be seen in Fig. 7(f). There are
several translationally invariant integrals of motion, and the
algorithm finds one of them. We observe the one correspond-
ing to some overlap with magnetization1. We clearly see the
special point at g = 1. This point corresponds to the known
phase transition from ordered (g < 1) to disordered (g > 1)
phase [29] (the transition happens when the coefficient in front
of −ZZ becomes the same as the coefficient in gX ).

VII. DEPENDENCE OF THE SLOWEST OPERATOR
ON SUPPORT SIZE N

The quantity −Tr[H, O]2 defines the rate of dynamics of
the slowest operator O. But, if we wish to estimate how the
operator O expands over the chain, we need to calculate the
dependence of −Tr[H, O]2 on the support size N of the oper-
ator O. To understand this, one has to decompose TrO(t )O(0)
around t = 0:

TrO(t )O(0) = 1 − (−Tr([H, O]2))
t2

2
+ · · · . (15)

We see that −Tr[H, O]2 plays a role of τ−2, where τ is
the characteristic timescale of the expansion of O over the
chain (at least for early times). Therefore, one can estimate the
rate of expansion by calculating the dependence: −Tr[H, O]2
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FIG. 7. Overlap Tr(OP) of the slowest operator O and a probe operator P as a function of parameters g and h. We take P as diffusion mode,
energy flux, magnetization 1, 2, and 3 (all operators are defined in the text). N = 6.

∼ 1
Nk . The bigger k is, the bigger is the timescale τ of the

expansion of O over the chain, i.e., the slower is the expansion.
In particular, we aim to find if the rate of expansion corre-

sponds to diffusion, or it is ballistic, or other.

A. The physical quantities

We calculate the following quantities.

1. ln −Tr[H, O]2 as a function of ln N

The slope of this graph is equal to −k. The less the value
(−k) is, the slower is the expansion of O over the chain.

In Fig. 8 we show ln −Tr([H, O]2 as a function of ln N .
The instant slope of this graph (for two nearby values N and
N + 1) is depicted in the inset, as a function of N . Thus, we
can see how the rate of expansion changes with the support
size N of the slowest operator.

In the case of the local slowest operator, we also plot
the function ln −Tr([H, Ẽ (0)]2 for diffusion mode Ẽ (0). It is
defined as before, but with coefficients {ai, bi, ci}:

E (0) =
N−2∑
i=0

cos

(
−π

2
+ i + 1

2

N
π

)(−aiσ
(i)
z σ (i+1)

z

)
+

N−1∑
i=0

cos

(
−π

2
+ i

N
π

)(
bihσ (i)

z + cigσ
(i)
x

)
. (16)

We optimize the coefficients {ai, bi, ci}, so that
−Tr([H, Ẽ (0)]2 is minimal, provided the normalization is
fixed: Tr(E (0) )2 = 1. We compare the slowest operator with
the diffusion mode, because they have a big overlap (see
above). We calculate their rate of expansion.
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FIG. 8. Scaling of ln(−Tr[H, O]2) with ln N for local and translationally invariant slowest operators for various g and h. Inset: “instant”
slope of this graph (calculated from two nearby points) as a function of N . For the local slowest operator, we compare the value of −Tr[H, O]2

with that of the diffusion mode (dark triangular points). (f) −Tr[H, O]2 as a function of N , which shows that, for h = 0, −Tr[H, O]2 is near 0
for all g and all N .

We do not plot the diffusion mode in the case of a trans-
lationally invariant operator, because they have a different
nature: the translationally invariant slowest operator is orthog-
onal to the Hamiltonian by definition (TrHO = 0).

2. Overlap between O and probe operators as a function of N

Here the probe operators are the same as in the previous
section. We focus on the overlap of O with the diffusion mode.
If this overlap is significant, then the rate of expansion is close
to that of diffusion.

B. The results

Here we discuss Figs. 8 and 9.

1. The local diffusion mode has scaling −Tr[H, O]2 ∼ 1
N2

This behavior of the local diffusion mode can be seen in
Figs. 8(a), 8(c), and 8(e). The diffusion mode is depicted
with the dark points; they approach the value −2 in the inset.
(This agrees with theoretical arguments; see [18].)

2. For the integrable case of h = 0, the local slowest
operator expands much slower than in the nonintegrable

system. The slowest operator does not correspond
to the ballistic transport of quasiparticles

As one can see in Figs. 8(a) and 8(e), for the integrable
case of h = 0 and any value of g, the scaling of −Tr[H, O]2
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FIG. 9. Overlap Tr(OP) of the slowest operator O and a probe operator P as a function of support size N of the slowest operator. We take
P as diffusion mode, energy flux, and magnetization 1, 2, and 3 (all operators are defined in the text).

approaches approximately 1
N4 . It corresponds to the rate of

expansion much slower than diffusion ( 1
N2 ). Therefore, the

slowest operator cannot correspond to the known ballistic
transport of quasiparticles [30–32].

We also see in Figs. 9(m), 9(n), 9(o), and 9(a) that the
overlap with diffusion mode decreases as we increase N .
The rate of expansion stops being diffusive (and becomes
slower).

3. For the nonintegrable case, the expansion of the local
slowest operator is slower than diffusion, but faster

than in the integrable case

This difference in the rate of expansion can be seen in
Figs. 8(a) and 8(c). The final slope (for big values of N)
for all h > 0 is less than −2, but greater than −4 (as in the
integrable case). In Fig. 8(a), for small h, such as 0.05 − 0.2,
the maximum N = 20 is not enough to see this. But, clearly,

for all h > 0 the slope curve goes up and then goes down, to
the value less than −2 (this value is first found in [18]).

On the other hand, Figs. 9(b), 9(c), 9(h), and 9(i) show that,
as one increases N , the slowest operator increases its overlap
with diffusion mode.

4. As one increases h, there is an intermediate behavior of the
local slowest operator between integrable and nonintegrable ones

As one can see in Fig. 8(a), when one increases h, the curve
ln(−Tr[H, O]2) gradually changes: it does not reach −4, but
instead goes up and then goes down to the value <−2. This
process goes faster for bigger values of h, i.e., farther away
from the integrable point.

The similar behavior is observed in Fig. 9(b). The overlap
with diffusion mode decreases, as it does in the integrable case
[Fig. 9(a)], but then increases, as it does in highly noninte-
grable case [Fig. 9(c)].
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5. The translationally invariant slowest operator has overlap
with magnetization 1 and magnetization 3, but with no other

probe operators, for any value of N

See Figs. 9(d), 9(e), 9(f), 9(j), 9(k), 9(l), 9(p), 9(q), and 9(r)
for this overlap feature.

6. For a translationally invariant slowest operator, for every h,
there is a threshold value N∗, such that for N > N∗, the operator

has no zero overlap with magnetization 1 and magnetization 3

This threshold value characteristic can be seen in
Figs. 9(d), 9(e), and 9(f) [recall Figs. 6(b) and 7(b)].

7. For a translationally invariant slowest operator, the rate
of expansion before the transition is faster than diffusion,

but after the transition slower than diffusion

As can be seen in Fig. 8(b), for h = 0.05, 0.1, 0.2, the
slope is approximately equal to −1. On the other hand, for
h = 0.4, 0.7, the slope is less than −2. Figure 8(d) also shows
that, for h = 1.05 after the transition, the slope is less than −2.

8. In the integrable case, the translationally invariant slowest
operator corresponds to an integral of motion for any value of N

As is obvious from Fig. 8(f), the translationally invariant
operator O obeys [H, O] = 0. Therefore, it is an integral of
motion.

VIII. TIME EVOLUTION

In this section we calculate the time evolution of the slow-
est operator O. In particular, we observe how the slowest
operator expands over the chain and how it thermalizes.

A. The physical quantities

We calculate the following physical quantities.

1. Two-point correlation function TrO(t )O(0)

As described in Sec. II, in the period of final thermal-
ization, the average of the slowest operator changes from
Tr[ρ

˜GGE O(t )] to Tr[ρthO(t )]. Tr[ρ
˜GGE O(t )] can be trans-

formed as follows:

Tr[e−βH+μO(0)O(t )] ∼ Tr[eμO(0)O(t )] ∼ Tr[O(t )O(0)]. (17)

So that we suppose very high temperature (T = 1
β

→ ∞),
and claim that the two-point correlation function
Tr[O(t )O(0)] essentially describes the late-time dynamics
of O.

The average of O is expected to reach Tr[ρthO(t )] in
the late-time limit. The latter is equal to Tr[e−βH O(t )] ∼
TrO(t ) = TrO(0) = 0. Therefore, we believe that
Tr[O(t )O(0)] aims at 0 at late times.

Tr[O(t )O(0)] can be calculated using exact diagonalization
of the Hamiltonian. One can find a complete set of eigen-
vectors of Hamiltonian {|Ei〉}: H |Ei〉 = Ei |Ei〉; then replace
the trace with

∑
i 〈Ei| . . . |Ei〉 and insert the identity operator

∑
j |Ej〉 〈Ej |:
1

2L
TrO(t )O(0) = 1

2L

∑
i j

ei(Ei−Ej )t | 〈Ei| O(0) |Ej〉 |2. (18)

But exact diagonalization can be implemented only for a small
dimension of the Hilbert space (= 2L): up to L ∼ 11 for a
reasonable time.

Therefore, instead, we use a random vector approxima-
tion [33–36]. We substitute the trace as 1

2L

∑
i 〈Ei| . . . |Ei〉 →

1
K

∑K
k=1 〈ψk| . . . |ψk〉,where |ψk〉 is a vector with real and

imaginary parts given by Gaussian random variables with zero
mean and unit variance and normalized as 〈ψk|ψk〉 = 1; in the
following, we take K = 50. Then TrO(t )O(0) reads

1

2L
TrO(t )O(0) = 1

2L
Tr[O(0)e−iHt O(0)eiHt ]

∼ 1

K

K∑
k=1

〈ψk| O(0)e−iHt O(0)eiHt |ψk〉

= 1

K

K∑
k=1

〈φk (−t )| O(0) |χk (−t )〉 , (19)

where |χk (−t )〉 ≡ eiHt |ψk〉 and |φk (−t )〉 ≡ eiHt O(0) |ψk〉.
Time evolution of any vector |ψ〉 (|χk〉 or |φk〉) can be

calculated using the expansion in Chebyshev polynomials
[37–39]:

|ψ (t )〉 = e−iHt |ψ〉

= J0(2Ēt ) |ψ〉 + 2
∞∑

n=1

(−i)nJn(2Ēt )Tn

(
H̄

2

)
|ψ〉 ,

(20)

where Tn are Chebyshev polynomials of the first kind, Jn

are Bessel functions of the first kind, and H̄ = H
Ē , where Ē

is chosen such that eigenvalues of H̄ get inside the interval
[−1, 1] (we take Ē = 1000).

This row quickly converges [39]. For a fixed t , we calculate
the terms in (20) one by one and put them inside |ψreduced〉
until | 〈ψreduced|ψreduced〉 − 1| < 10−13. We use the resulting
|ψreduced〉 as a final answer for this time t .

We do not use standard tensor network method, time-
evolution block-decimation (TEBD) [40], because it allows
only for calculation for small time t (one needs to divide a
time evolution into very small intervals dt). Here we do not
have such limitation and, thus, can reach later times t .

To conclude, we calculate |χk (−t )〉 and |φk (−t )〉 according
to the described procedure, and then obtain TrO(t )O(0) from
(19).

Below we calculate TrO(t )O(0): (1) for a different full size
of the system L and (2) for various parameters g and h.

2. Out-of-time-ordered commutator (OTOC)

We calculate the following quantity, out-of-time-ordered
commutator (OTOC) [41–44]:

Tr
([

O(t ), σ (i)
x,y,z(0)

]†[
O(t ), σ (i)

x,y,z(0)
])=−Tr

[
O(t ), σ (i)

x,y,z(0)
]2

,

(21)
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where i is the site on the chain (i = 0 . . . L − 1), where σ (i)
x,y,z

is located. (The same Pauli matrix is in both places.)
We calculate it to observe how the slowest operator delo-

calizes over the chain (see [45] for details). Initially, it has
nonzero OTOC only with those Pauli matrices which are
located inside the support of the slowest operator. But, as it
expands over the chain, it starts to have nonzero OTOC with
Pauli matrices at other locations. Finally, we expect OTOC to
be equal for any location of the Pauli matrix.

One can estimate the contributions of {σx, σy, σz} to the
slowest operator O by the final value of OTOC: it is smaller
for that of {σx, σy, σz}, which has a bigger contribution to O
(it best commutes with O).

Here we do not use random vector approximation be-
cause we have O(t ) twice in the expression (21). One would
need two random vectors to calculate it. Therefore, the error
of this approximation would significantly increase. Instead,
we use an exact diagonalization of Hamiltonian [see (18)].
Equation (21) is further transformed as

2 − 2Tr
[
O(t )σ (i)

x,y,z(0)O(t )σ (i)
x,y,z(0)

]
= 2 −

∑
i jmn

ei(Ei−Ej+Em−En )tWi jS jmWmnSni, (22)

where Wi j = 〈Ei|O(0)|Ej〉, S jm = 〈Ej |σ (i)
x,y,z(0)|Em〉. We plot

OTOC in Fig. 12 below.
On the left, we calculate OTOC for the local slowest op-

erator. The location i of σ (i)
x,y,z(0) is “center,” “center +1,” etc.

By “center” we mean the central site of the slowest operator.
For instance, if it has support 5 and is located at sites 0 . . . 4,
then there is one such site 2. Then “center+1” is sites 1 and
3, “center+2” is sites 0 and 4. “center+3” is not inside the
support of O, and it corresponds to sites −1 and 5, etc. For
the considered in Fig. 12 case of N = 6 (O has support at sites
0 . . . 5), there are two central sites, 2 and 3, and “center+1”
corresponds to sites 1 and 4, etc.

The first three graphs for each set of (g, h) correspond to
OTOC with σx, σy, σz, respectively. Each graph compares
OTOC for different locations of the Pauli matrix. In the fourth
graph, we fix the position of the Pauli matrix at the “center”
and compare OTOCs with σx, σy, and σz.

For the translationally invariant operator (O = ∑L−1
k=0 Ok),

there is no difference where to put a Pauli matrix. Therefore,
we fix its location at i = 0 and plot only the fourth graph
[Figs. 12(b), 12(d), and 12(f)].

B. The results

Here we outline the main results of the calculation of
TrO(t )O(0) as a function of the full size of the system L (see
Fig. 10), TrO(t )O(0) as a function of g and h (see Fig. 11),
and the out-of-time-ordered commutator (OTOC) [see (21)]
(see Fig. 12).

1. In the integrable case h = 0, there are revivals of the local
slowest operator, and no dynamics of the translationally

invariant slowest operator

For the local slowest operator, one can see that there
are revivals [46–48] in the function TrO(t )O(0) [Fig. 10(c);
Fig. 11(e)]. They occur when the slowest operator has ex-

plored the full chain and passed through the boundaries
(periodic boundary conditions). As we increase L, the opera-
tor takes more time to explore the chain, and the revival shows
up later. After each revival the evolution repeats itself. The
same behavior is observed in Fig. 12(e). There is no thermal-
ization, and OTOC for Pauli matrices located at different sites
does not get equal in the long-time limit, only for some limited
period of time.

We also see the revivals of half the amplitude. As is clear
from Fig. 12(e), they come from σ1 (probably because of the
high g component in Hamiltonian and in the slowest operator).

On the other hand, the translationally invariant operator
experiences no dynamics [Figs. 10(c), 11(f), and 12(f)]. It is a
consequence of the fact that in the integrable case it is one of
the integrals of motion [see Figs. 6(f) and 8(f)].

2. As one goes away from the integrable point h = 0, the revivals
of the local slowest operator get suppressed

As one can see in Fig. 11(a), when one increases h, the re-
vivals get smaller until they are gone. The same phenomenon
is visible if one compares Figs. 10(c) and 10(a) and Figs. 12(e)
and 12(a).

This behavior reflects the fact that the system becomes less
integrable and more thermalizing.

3. During thermalization, the local slowest operator experiences
fluctuations, while the translationally invariant slowest

operator does not

See Fig. 10(a) and compare Figs. 11(a) and 11(b) for these
thermalization features. The fluctuations of the local slowest
operator come from the revivals of the integrable system.
The fluctuations do not appear for the translationally invariant
slowest operator, because it has no dynamics in the integrable
case (→ no revivals).

4. In the nonintegrable case, there are three distinct periods of
dynamics of the slowest operator: the initial dependence on one

parameter −Tr[H, O]2, then approaching the boundaries
and final thermalization

One can observe these periods in Fig. 10(a).
Initially, the dynamics is well fitted with the function

e−λt2/2, where λ = −Tr[H, O]2. The reason is that e−λt2/2 and
TrO(t )O(0) have identical small t behavior [see (15)]. In other
words, the early-time dynamics depends on one parameter
λ = −Tr[H, O]2.

Then the slowest operator expands over the chain, and
it does not feel any boundaries (the curves coincide). But,
after some time, it has explored the full chain and reached
the boundaries: it is expressed via separation of curves for
different L (recall that we have periodic boundary conditions).

After this, the slowest operator ultimately thermalizes, and
during this process TrO(t )O(0) reaches the final value. As
discussed above, we believe this value to be 0. In Fig. 10(b)
the dynamics has the same pattern, but the process runs slower
(see below).

We note that there is no initial common dynamics for
different h (or g) in Fig. 11. For every pair (h, g), there is
a unique value of −Tr[H, O]2 (see Fig. 6) that governs the
dynamics at early times.
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FIG. 10. Time evolution as a function of the full size of the system L. N = 6; λ is defined as −Tr[H, O]2.
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FIG. 11. Time evolution as a function of parameters g and h (N = 6, L = 12).

In the integrable case [Fig. 10(c)], we see the first two
periods of dynamics, but no thermalization in the end.

5. The dynamics of the slowest operator (of any kind) depends
on −Tr[H, O]2. In particular, as one increases g or h,

the dynamics becomes faster

As one increases g or h, the quantity −Tr[H, O]2 increases
(see Fig. 6), and the dynamics becomes faster. We observe this
in Figs. 11(a), 11(b), 11(c), 11(d), and 11(e): the curves move
to the left. In Fig. 11(e), aside from that, the revivals become
more narrow.

One can also compare the dynamics of the local slowest op-
erator for the parameters g = 1.05, h = 0.1, and g = 0.4, h =
1.05. In the latter case, −Tr[H, O]2 is much smaller [see
Figs. 6(a) and 6(c)]. As a consequence, the dynamics is much
slower [compare Figs. 10(b) and 10(a)]. The delocalization
is also slower: in Fig. 12(c) the OTOCs with Pauli matrices

at different locations quickly become equal, but in Fig. 12(c)
this process runs much slower.

We note that for near-zero h or g, the dynamics is extremely
slow (almost none) for the translationally invariant operator,
as it becomes an integral of motion (−Tr[H, O]2 → 0). See
Figs. 6(b), 6(d), and 6(f); Figs. 11(b), 11(d), and 11(f); and
Figs. 10(b) and 10(c).

6. Delocalization of the slowest operator is expressed as follows:
for the local slowest operator, OTOCs for different locations of the
Pauli matrix become equal, while, for the translationally invariant

slowest operator, OTOC rapidly increases at early times

See Fig. 12(a) for the local slowest operator. Initially,
OTOC is equal to 0 for σx,y,z located at sites “center+3,”
“center+4,” and “center+5,” because the slowest operator is
not there just yet and commutes with those Pauli matrices.
But it has nonzero OTOC with σx,y,z located at “center,”
“center+1,” and “center+2.” OTOC has the biggest value for
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FIG. 12. OTOC of the slowest operator with the Pauli matrix at a particular site: Tr[−[O(t ), σi(0)]2] (L = 11, N = 6).
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“center,” a smaller value for “center+1,” etc. We conclude that
the slowest operator is gradually vanishing to its boundaries.
As it expands over the chain, OTOC becomes equal for differ-
ent locations i of σ (i)

x,y,z. In Fig. 12(b) the dynamics is similar,
but much slower.

For the translationally invariant operator O = ∑
k Ok , we

see a period of growth at early times [see Fig. 12(b)]. The
reason is that, initially, the Pauli matrix fixed at some site
has a nonzero commutator only with nearby Oi, but then each
Ok delocalizes and starts to contribute to OTOC. As a result,
OTOC quickly grows. For g = 0.4, h = 1.05, the dynamics
is much slower, and the initial growth is hardly visible [see
Fig. 12(d)]. [Compare also the rate of dynamics in Figs. 10(b)
and 10(a).]

In the integrable case, there is no delocalization and, there-
fore, no initial period of rapid growth [Fig. 12(f)].

7. For the local slowest operator, the OTOCs for σx, σy, σz reflect
the contributions of different magnetizations into the slowest
operator. In nonintegrable case, these OTOCs become equal

in the long-time limit

As one can see in the fourth subplot of Figs. 12(a), 12(c),
and 12(e), OTOC is smaller for that Pauli matrix, which cor-
responds to magnetization with the greatest contribution [see
Figs. 7(a), 7(c), and 7(e)]. More generally, the hierarchy of
OTOCs follows that of magnetizations. For instance, for g =
1.05, h = 0.1, magnetization 1 has biggest contribution, then
it follows magnetization 3, and there is no contribution from
magnetization 2 [Fig. 7(a)], and the values of corresponding
OTOCs increase [fourth subplot of Fig. 12(a)].

In the nonintegrable case, OTOCs for σx, σy, σz become
equal in the long-time limit [fourth subplot of Figs. 12(a)
and 12(b)]. But this does not happen in the integrable case
[Fig. 12(c)].

For the translationally invariant operator (O = ∑
k Ok),

there is no connection between OTOCs and magnetizations.
Probably, the reason is the interplay between different Ok in
the OTOC.

IX. DISCUSSION AND CONCLUSION

In this work we considered the quantum Ising model in
an external magnetic field [see (1)] close to an integrable
point. We studied the slowest operator, as it plays an important
role in the final period of dynamics. We introduced local and
translationally invariant definitions of the slowest operator.
We showed that both operators have low entanglement, and,
therefore, we were able to construct them using tensor net-
works.

Throughout the paper we extensively compared their prop-
erties. Here we emphasize their main characteristic features.

The local slowest operator is not an integral of motion of
the integrable system (h = 0). As one increases h, there is
a transition from integrable to thermalizing behavior. In the

integrable system, there are revivals (of full and half ampli-
tude). As one increases h, the revivals get suppressed, but the
fluctuations remain. The rate of delocalization changes from
extremely slow to slower than diffusion. The operator has a
significant overlap with diffusion mode or energy flux.

The translationally invariant slowest operator corresponds
to an integral of motion of an integrable system (h = 0). It
changes its nature at a specific value h∗: before the transition
(h < h∗) it does not have an overlap with any magnetization
and expands over the chain faster than diffusion; after the
transition (h > h∗) it has nonzero overlap with magnetization1
and magnetization 3 and expands slower than diffusion. The
time evolution shows no fluctuations.

The two definitions have common features in the dynamics
(consider nonintegrable system): the initial period of depen-
dence on one parameter −Tr[H, O]2, then delocalization and
approaching the boundaries and final thermalization.

We found the distinct features of the local and translation-
ally invariant slowest operators. But several questions remain,
regarding their dynamics and overall thermalization.

To start with, the integrable Ising model is known to have
the ballistic transport of quasiparticles in the final period of
its dynamics. But we obtain the local slowest operator with
extremely slow dynamics, which has a significant overlap
with energy flux. It is important to understand what role this
operator plays in the ballistic transport picture.

One of the findings of this paper is that, as one goes away
from the integrable point, the dynamics of the local slowest
operator changes from extremely slow to slower than diffu-
sion. But the concrete processes in the spin chain, leading to
this behavior, are not understood.

From more technical side, we find that the parameter h
plays a special part in the dynamics of the local slowest
operator: it suppresses the revivals. But g regulates only the
rate of dynamics. On the other hand, h and g both regulate
the rate of dynamics of the translationally invariant slowest
operator. Thus, one needs to better understand the scopes of
action of h and g in the final period of dynamics and in the
thermalization process as a whole.

Finally, there are several quantities describing the rate
of dynamics. The first one is −Tr[H, O]2. But there are
also others describing the rate of delocalization: the scaling
−Tr[H, O]2 ∼ 1

Nk and the out-of-time-ordered commutator
(OTOC). One needs to understand which one plays a decisive
role in delocalization and what is the meaning of the residual
dynamics, not leading to delocalization.

ACKNOWLEDGMENTS

The author thanks Anatoly Dymarsky for introduction to
this topic, formulation of the problem, and useful discussions.
She also appreciates valuable suggestions of Boris Fine during
the preparation of the manuscript.

[1] A. Dymarsky, N. Lashkari, and H. Liu, Subsystem eigen-
state thermalization hypothesis, Phys. Rev. E 97, 012140
(2018).

[2] F. Benatti and R. Floreanini, Open quantum dynamics: Com-
plete positivity and entanglement, Int. J. Mod. Phys. B 19, 3063
(2005).

024138-16

https://doi.org/10.1103/PhysRevE.97.012140
https://doi.org/10.1142/S0217979205032097


LOCAL VERSUS TRANSLATIONALLY INVARIANT … PHYSICAL REVIEW E 108, 024138 (2023)

[3] A. Andrianov, M. Ioffe, E. Izotova, and O. Novikov, A
perturbation algorithm for the pointers of Franke–Gorini–
Kossakowski–Lindblad–Sudarshan equation, Eur. Phys. J. Plus
135, 531 (2020).

[4] A. A. Andrianov, M. V. Ioffe, E. A. Izotova, and O. O. Novikov,
The Franke–Gorini–Kossakowski–Lindblad–Sudarshan
(FGKLS) equation for two-dimensional systems, Symmetry
14, 754 (2022).

[5] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E
50, 888 (1994).

[6] J. M. Deutsch, Quantum statistical mechanics in a closed sys-
tem, Phys. Rev. A 43, 2046 (1991).

[7] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
and its mechanism for generic isolated quantum systems,
Nature (London) 452, 854 (2008).

[8] N. Lashkari, A. Dymarsky, and H. Liu, Eigenstate thermaliza-
tion hypothesis in conformal field theory, J. Stat. Mech. (2018)
033101.

[9] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[10] C. Gogolin and J. Eisert, Equilibration, thermalisation, and the
emergence of statistical mechanics in closed quantum systems,
Rep. Prog. Phys. 79, 056001 (2016).

[11] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[12] F. Alet and N. Laflorencie, Many-body localization: An intro-
duction and selected topics, C. R. Phys. 19, 498 (2018).

[13] C.-J. Lin and O. I. Motrunich, Explicit construction of
quasiconserved local operator of translationally invariant non-
integrable quantum spin chain in prethermalization, Phys. Rev.
B 96, 214301 (2017).

[14] J. Berges, S. Borsányi, and C. Wetterich, Prethermalization,
Phys. Rev. Lett. 93, 142002 (2004).

[15] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Thermal-
ization and prethermalization in isolated quantum systems: A
theoretical overview, J. Phys. B: At. Mol. Opt. Phys. 51, 112001
(2018).

[16] P. Reimann and L. Dabelow, Typicality of Prethermalization,
Phys. Rev. Lett. 122, 080603 (2019).

[17] C.-J. Lin, Surviving quantum chaos: Weak thermalization,
prethermalization and quantum many-body scar states, Ph.D.
thesis, California Institute of Technology (2019).

[18] H. Kim, M. C. Banuls, J. I. Cirac, M. B. Hastings, and
D. A. Huse, Slowest local operators in quantum spin chains,
Phys. Rev. E 92, 012128 (2015).

[19] N. Pancotti, M. Knap, D. A. Huse, J. I. Cirac, and M. C. Banuls,
Almost conserved operators in nearly many-body localized sys-
tems, Phys. Rev. B 97, 094206 (2018).

[20] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349, 117 (2014).

[21] J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive
dance: An introductory course on tensor networks, J. Phys. A:
Math. Theor. 50, 223001 (2017).

[22] J. Biamonte and V. Bergholm, Tensor networks in a nutshell,
arXiv:1708.00006.

[23] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y.
Zou, J. Hidary, G. Vidal, and S. Leichenauer, Tensornetwork: A
library for physics and machine learning, arXiv:1905.01330.

[24] tensornetwork.org.
[25] G. Evenbly, tensors.net.
[26] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation

in a Completely Integrable Many-Body Quantum System: An
Ab Initio Study of the Dynamics of the Highly Excited States
of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98, 050405
(2007).

[27] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in inte-
grable lattice models, J. Stat. Mech. (2016) 064007.

[28] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[29] B. K. Chakrabarti, A. Dutta, and P. Sen, Quantum Ising Phases
and Transitions in Transverse Ising Models, Lecture Notes
in Physics Monographs Vol. 41 (Springer, Berlin, Heidelberg,
2008).

[30] L. Banchi, Ballistic quantum state transfer in spin chains: Gen-
eral theory for quasi-free models and arbitrary initial states,
Eur. Phys. J. Plus 128, 137 (2013).

[31] A. Bastianello, U. Borla, and S. Moroz, Fragmentation and
Emergent Integrable Transport in the Weakly Tilted Ising
Chain, Phys. Rev. Lett. 128, 196601 (2022).

[32] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Emergent
Hydrodynamics in Integrable Quantum Systems Out of Equi-
librium, Phys. Rev. X 6, 041065 (2016).

[33] T. Iitaka and T. Ebisuzaki, Random phase vector for calcu-
lating the trace of a large matrix, Phys. Rev. E 69, 057701
(2004).

[34] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì,
Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006).

[35] A. Dymarsky and H. Liu, Canonical universality, Phys. Rev. E
99, 010102 (2019).

[36] T. A. Elsayed and B. V. Fine, Regression Relation for Pure
Quantum States and Its Implications for Efficient Computing,
Phys. Rev. Lett. 110, 070404 (2013).

[37] P. Tchebychev, Théorie des mécanismes connus sous le nom
de parallélogrammes (Imprimerie de l’Académie impériale des
sciences, Paris, 1853).

[38] H. Fehske, R. Schneider, and A. Weiße, Computational Many-
Particle Physics, Lecture Notes in Physics Vol. 739 (Springer,
Berlin, Heidelberg, 2007).

[39] S. Khlebnikov and M. Kruczenski, Thermalization of isolated
quantum systems, arXiv:1312.4612.

[40] M. Suzuki, Generalized Trotter’s formula and systematic ap-
proximants of exponential operators and inner derivations with
applications to many-body problems, Commun. Math. Phys. 51,
183 (1976).

[41] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Lya-
punov Exponent and Out-of-Time-Ordered Correlator’s Growth
Rate in a Chaotic System, Phys. Rev. Lett. 118, 086801
(2017).

[42] C.-J. Lin and O. I. Motrunich, Out-of-time-ordered correlators
in a quantum Ising chain, Phys. Rev. B 97, 144304 (2018).

[43] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[44] B. V. Fine, T. A. Elsayed, C. M. Kropf, and A. S. de Wijn,
Absence of exponential sensitivity to small perturbations in
nonintegrable systems of spins 1/2, Phys. Rev. E 89, 012923
(2014).

[45] B. Swingle, Quantum information scrambling: Boulder lec-
tures, delivered at the Quantum Information Boulder Summer

024138-17

https://doi.org/10.1140/epjp/s13360-020-00540-3
https://doi.org/10.3390/sym14040754
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1038/nature06838
https://doi.org/10.1088/1742-5468/aab020
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1016/j.crhy.2018.03.003
https://doi.org/10.1103/PhysRevB.96.214301
https://doi.org/10.1103/PhysRevLett.93.142002
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1103/PhysRevLett.122.080603
https://doi.org/10.1103/PhysRevE.92.012128
https://doi.org/10.1103/PhysRevB.97.094206
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1088/1751-8121/aa6dc3
http://arxiv.org/abs/arXiv:1708.00006
http://arxiv.org/abs/arXiv:1905.01330
http://tensornetwork.org
http://tensors.net
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1140/epjp/i2013-13137-6
https://doi.org/10.1103/PhysRevLett.128.196601
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevE.69.057701
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1103/PhysRevE.99.010102
https://doi.org/10.1103/PhysRevLett.110.070404
http://arxiv.org/abs/arXiv:1312.4612
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevLett.118.086801
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1103/PhysRevE.89.012923


EKATERINA IZOTOVA PHYSICAL REVIEW E 108, 024138 (2023)

School, Boulder, Colorado (2018), https://boulderschool.yale.
edu/sites/default/files/files/qi_boulder.pdf.

[46] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and
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