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Predicting the Mpemba effect using machine learning

Felipe Amorim,* Joey Wisely,† Nathan Buckley,‡ Christiana DiNardo,§ and Daniel Sadasivan ‖
Ave Maria University, Ave Maria, Florida 34142, USA

(Received 4 October 2022; revised 18 April 2023; accepted 1 August 2023; published 24 August 2023)

The Mpemba effect can be studied with Markovian dynamics in a nonequilibrium thermodynamics frame-
work. The Markovian Mpemba effect can be observed in a variety of systems including the Ising model. We
demonstrate that the Markovian Mpemba effect can be predicted in the Ising model with several machine learning
methods: the decision tree algorithm, neural networks, linear regression, and nonlinear regression with the least
absolute shrinkage and selection operator (LASSO) method. The positive and negative accuracy of these methods
are compared. Additionally, we find that machine learning methods can be used to accurately extrapolate to data
outside the range in which they were trained. Neural networks can even predict the existence of the Mpemba
effect when they are trained only on data in which the Mpemba effect does not occur. This indicates that
information about which coefficients result in the Mpemba effect is contained in coefficients where the results
does not occur. Furthermore, neural networks can predict that the Mpemba effect does not occur for positive J ,
corresponding to the ferromagnetic Ising model even when they are only trained on negative J , corresponding to
the antiferromagnetic Ising model. All of these results demonstrate that the Mpemba effect can be predicted in
complex, computationally expensive systems, without explicit calculations of the eigenvectors.
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I. INTRODUCTION

A. Mpemba effect

The Mpemba effect is best known for the claim that hot
water can freeze faster than cool water in the same envi-
ronment. This was named after Erasto Mpemba, who most
famously brought it to the attention of the scientific com-
munity [1] although it had been debated for thousands of
years [2–4]. However, the Mpemba effect applies to a large
number of situations beyond freezing water. We quote the
definition given in Ref. [5], “The Mpemba effect is a coun-
terintuitive relaxation phenomenon, where a system prepared
at a hot temperature cools down faster than an identical system
initiated at a cold temperature when both are quenched to
an even colder bath.” Several recent theoretical explanations
of the effect have been demonstrated. One shows that the
Mpemba effect can be predicted from statistical mechanics
[6–10]. Another explanation in Refs. [5,11] makes use of
the framework developed in Ref. [11], which considers the
Markovian dynamics as a cooling process in the framework
of nonequilibrium thermodynamics. We refer to this process
as the Markovian Mpemba effect (MME). The MME is further
studied in Refs. [12,13]. Reference [11] studies the MME to
an antiferromagnetic nearest-neighbor interacting Ising spin
chain, generalizing the Mpemba effect to other systems. The
one-dimensional Ising spin chain will be the main model used
in this paper, enabling us to use machine learning methods to
predict the effect, as described in Sec. II.
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The Mpemba effect traditionally describes systems relax-
ing towards an equilibrium temperature that is lower than their
initial temperature. However, a reverse effect occurs when two
systems relax towards equilibrium at a higher temperature.
Sometimes the former is referred to as the Mpemba effect
and the latter is referred to as the inverse Mpemba effect, but
both cases meet the definition of the Mpemba effect used in
this paper, namely, that the system that is initially farther from
equilibrium becomes closer after a finite time. Unless other-
wise specified, we refer to the inverse Markovian Mpemba
effect simply as the Mpemba effect.

This paper is organized as follows. Section I B discusses
recent works with results that can be related to our results.
Section II describes the formalism (laid out in Refs. [5,11])
used to determine whether the Mpemba effect occurs in the
Ising model. Section III describes the data generated for ma-
chine learning and the methods used to generate this data.
Section IV summarizes the various machine learning methods
that are employed. The main results of this work are presented
and discussed in Sec. V. We conclude in Sec. VI.

B. Applications and impact

The Mpemba effect has been observed in a number of
systems. In addition to water [14,15], it has been predicted
in magnetoresistance alloys [16], numerically predicted in
colloids [17], analytically and numerically predicted in gasses
[18,19], predicted in particles bounded by anharmonic po-
tentials [20], observed in computational simulations and
experiments in gas hydrates [21], and in computational sim-
ulations of carbon nanotube resonators [22]. It has been
demonstrated to have application for faster heating with pre-
cooling [23], in which the effect happens for temperatures
dependent on the maximum work that can be extracted from
the system [24], and where the Mpemba effect can lead to
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quantum heat engines with greater power output and stability
[25]. Furthermore, the Mpemba effect is closely linked to the
Kovacs memory effect, by which systems out of equilibrium
cannot merely be described by macroscopic thermodynamic
variables. Knowledge of the Mpemba effect can be applied
when studying memory effects in Refs. [26–30]. Notably, it
has been demonstrated that the phenomenon of eigenvalue
crossing, closely linked to the Mpemba effect, can be under-
stood as a first order phase transition [31].

These works demonstrate the potential applications of the
effect and motivate a better statistical understanding. The
work presented in this paper uses machine learning methods
to predict the Mpemba effect (ME) in the Ising model. The
comparison of methods done in this analysis could be applied
to the prediction of the ME in other systems.

Machine learning has previously been applied to the Ising
model in a number of ways other than the Mpemba effect: to
extract the region between phases using auto-encoding neural
networks [32], to predict probability distributions with neural
networks [33], and to compare various classification methods
such as random forests, decision trees, k nearest neighbors,
and artificial neural networks for the prediction of magnetiza-
tion [34].

These works find several interesting results that can be
compared to the work in this paper. First, Ref. [33] found
that only the number of nodes in the first layer of the deep
neural network could improve the accuracy of the prediction.
Second, Ref. [34] found that the decision tree method was
the most accurate predictor. Even though these results predict
different things, it is interesting to see whether these results
(namely, that the decision tree algorithm is the most accurate
predictor and that deep learning improves prediction) also
apply to predicting the Mpemba effect in the Ising model.

II. THE MARKOVIAN MPEMBA EFFECT FORMALISM

This work uses the formalism developed in Refs. [5,11] for
the Mpemba effect in the Ising model. We summarize the key
equations in the following.

The one-dimensional Ising model consists of a chain of N
spins, si with values of 1 or −1. The energy for a given set of
spins is defined to be

E = −J
N∑

k=0

sksk+1 − h
N∑

k=1

sk, (1)

where J and h are parameters, respectively, giving the field
of interaction between neighboring spins and the strength of
the external field. There are multiple ways to handle the end
points, s1 and sN , of the Ising chain. One possibility is to con-
sider both end points to be connected to fixed spins as shown
in Fig. 1 or Fig. 3 of Ref. [11]. This choice of endpoints means
that for odd N , the ground state energy level is nondegenerate,
whereas for even N , the ground state energy is degenerate.
This can be seen in Fig. 1.

Another possibility is to have the two endpoints connected
such that the Ising chain forms a ring. Figure 1 of Ref. [35]
shows such a ring.

A probability distribution �p(t ) that represents the prob-
ability of finding the system in one of the 2N microstates

(a)

(b)

(c)

FIG. 1. Ising chains of green arrows in blue shaded circles with
fixed endpoints shown as red arrows in unshaded circles. For the
antiferromagnetic Ising model, there is a nondegenerate ground state
at zero temperature where each spin is antialigned with its neighbors.
This is shown for N = 5 in the upper row (a). However, for even
N = 6, it is not possible for each spin to be antialigned, as shown in
lower rows (b) and (c).

is defined, for the case of a finite number of states, by the
equation

d �p(t )

dt
= R(Tb) �p(t ), (2)

where Tb is the bath temperature. Matrix multiplication is as-
sumed. One approach is to use heat bath dynamics (employed
in Refs. [5,11]). In this case, the transition rate matrix from a
state j to state i, Ri j (Tb), is defined as

Ri j =
⎧⎨
⎩

�e− 1
2 βb(Ei−Ej ) if i and j differ by one spin flip

0 if i and j differ by >1 spin flip
−∑

k �= j Rk j, i = j.
(3)

While this rate matrix can provide an exact description
of the system’s evolution over time starting from any initial
probability distribution, the computational costs for larger N
are prohibitive. The method of coarse graining can reduce the
computational cost. In this method, microstates of the same
energy are grouped together. This method is employed in
Refs. [35–37]. If coarse graining is used, the rate matrix is
given by Ref. [35] (in the limit where the system is weakly
coupled to the external environment) as

Rweak
i j = Gi j

� j

1

1 + eβb(Ei−Ej )
, (4)

where � j is the number of microstates with energy Ei and Gi j

is the number of transitions between microstates of energy
Ei and Ej . The coarse-graining approach can considerably
reduce the size of the rate matrix. Instead of 2N states, there
are now 2 + (N/2)2 states. This allows calculation for larger
N . This work makes the calculation for both methods. The
former method with fixed endpoints is used in Secs. V A–V C,
and the latter method with the endpoints forming a ring is used
in Sec. V D.

At a given temperature, a system will have an equilibrium
state,

�π (T ) = e−Ei/kBT∑
i e−Ei/kBT

. (5)
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Because the eigenvalues form a complete basis, any state
can be expressed as

�p = �π (T ) +
∑
i>1

ai�vi, (6)

where T is the temperature, vi are the eigenvectors of the rate
transition matrix, and ai are the coefficients corresponding
to the vectors vi. �π is the eigenvector corresponding to an
eigenvalue of 0. This eigenvector can be determined by the
Boltzmann probability distribution.

The general solution to Eq. (2) is given by

�p(T ; t ) = eRt �π (T ) = �π (Tb) +
∑
i>1

ai(T )eλitvi, (7)

where λi are the eigenvalues of the transition rate matrix and
Tb is the bath temperature.

The distance from the equilibrium function, D[ �p(t ); Tb], is
given by

D[ �p(t ); Tb] =
∑

i

(
Ei

(
pi − πb

i

)
Tb

+ pi ln pi − πb
i ln πb

i

)
. (8)

Multiple possible distance functions can be used. We use
the distance function employed in Ref. [11]; however, others
are possible such as the Kullback-Leibler divergence used in
Ref. [31]. The Mpemba effect occurs for any two probability
distributions, �pH and �pC , if D[ �pH (0); Tb] > D[ �pC (0); Tb] but
D[ �pH (t ′)Tb] < D[ �pC (t ′); Tb] for some time t ′. Reference [11]
shows that this will occur if |aH

2 | < |aC
2 |. The H in �pH refers

to hot and the C in �pC refers to cold. However, in the case
of the inverse Mpemba effect in which the initial probability
relaxes to a hotter bath temperature, the probability vector
corresponding to the hotter initial system will have a smaller
distance function than the vector corresponding to the colder
system.

Additionally, Ref. [5] defines the strong Mpemba effect.
This occurs when a2 in Eq. (7) is 0. This means that for large
t , the time evolution is governed by a3. A system with an
initial �p such that a2 = 0 will approach equilibrium expo-
nentially slower than a state with a2 �= 0. In contrast, cases
where the Mpemba effect occurs when the hotter system has
initial �p with a2 �= 0 is known as the weak Mpemba effect.
The Mpemba effect can be further divided into the direct
Mpemba effect in which the bath temperature is lower than
the temperature of the initial states and the inverse Mpemba
effect in which the bath temperature is lower. In this work, we
primarily classify the weak inverse Mpemba effect; however,
we discuss classification of the strong inverse Mpemba effect
in Sec. V C.

III. DATA GENERATION

The data used for the various machine learning methods
are generated in the following way. The matrix Ri j , given in
Eq. (3), is calculated for a given J , h, Tb, and N . Sparse matrix
methods are used to improve the speed of the computation.
The Arnoldi method [38] is used to calculate the second
greatest (least negative) eigenvalue and the corresponding
eigenvector. These correspond to λ2 and v2 from Eq. (7) and

can be used to calculate a2 using the method described in
Sec. II in Ref. [5].

When we use smaller N , we use values between 5 and 15.
We also make predictions for data with larger N in Sec. V D.
The values of h are between −10 and 10, the values of J are
between −10 and 0, and the values of T are between 1 and 30.

For the data set with smaller N , we work only with odd-
numbered spins. As discussed, the ground state with fixed
endpoints for even N is degenerate, whereas it is nondegen-
erate for odd N . We find that the difference between the
dynamics in the case of odd and even spins is large enough
that none of the Machine learning (ML) methods were able
to accurately predict even N in the case of small N with fixed
endpoints. We thus exclude even-valued N . This should be
understood as a distinct limitation of the method. It should be
noted that Monte Carlo methods for numerically determining
the Mpemba effect used in Ref. [23] do not suffer from this
limitation. However, for larger N in the weak coupling limit
using Glauber dynamics, we are able to make accurate predic-
tions for even N , even if the data are only trained on odd N .

For each data set, we work with a bath temperature of
Tb = 30. The bath temperature is a physical property of the
system and could be varied for these methods. However, we
work with a single bath temperature so that the temperature
of the initially hotter system, Th, and the temperature of the
initially colder system, Tc, are selected from the same range. It
is worth noting that as far as the Mpemba effect is concerned,
our results that do not vary βB but do vary J can be mapped
to results that vary βB but not J . This is because the time
evolution of a probability distribution [with an initial value
given by Eq. (5)] depends on the rate matrix given by Eq. (3)
which depends on the energy given in Eq. (1). The following
mapping would leave �π (T ) and Ri j unchanged:

J → αJ, h → αh, Tc → αTc, Th → αTh, βb → βb/α.

(9)

If α is chosen to be α = 1/|J|, then J = −1 for each data
point and the new bath temperature becomes βb|J|. Thus, such
a mapping would allow results in this paper to be related to
other results which vary βb but not J .

IV. MACHINE LEARNING METHODS

We use four different machine learning methods to predict
the occurrence of the Mpemba effect in an Ising chain. All of
the employed methods have certain free parameters called fit
parameters and a loss function which measures the distance
of the prediction from the data. The methods use various
algorithms to fit the data or match the model to the data.

A. Decision tree algorithm (DT)

For the decision tree, the classification of data is divided
into two classes: for each set of initial conditions, the system
can either undergo the Inverse Markovian Mpemba Effect
(IMME) or not undergo it. We use a data set in the format
of

{N, J, h, Tc, Th} =
{

1 if ME occurs
0 if ME does not occur. (10)
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The decision tree is trained using the classification and
regression tree (CART) algorithm [39]. Just like all ML meth-
ods, this method minimizes a loss function. However, the loss
function for this method is different than the loss function
of the other used methods. Therefore, we can compare the
accuracy of this method to the accuracy of other methods, but
cannot compare the loss function of this method to the other
employed methods.

B. Neural network (NN)

Neural networks can be trained to predict the parameters
|a2| when given a set of Mpemba parameters. Prediction of a2

is sufficient to determine whether the Mpemba effect occurs.
The network is trained on four input parameters,

{N, J, h, T } = |a2|. (11)

Because all models rely on fit parameters, multiplying |a2|
by a constant factor will not affect the accuracy. If the fit
parameters of each model are multiplied by the same factor,
the fitting procedure will be mathematically the same as if no
factor had been applied to either. However, certain algorithms
automatically select natural sized starting values. To ensure
that the automatic starting values are optimized, we multiply
|a2| by a factor of 10 000. This leads to the exact same
local minimum, but allows for more efficient training. This
adjustment prevents the need to change the starting parameters
of each algorithm.

We work with a network consisting of three hidden layers
with 50, 20, and 5 nodes, respectively. Our explanation for
this architecture is given in Appendix B. Each layer as well
as the output layer uses the Scaled Exponential Linear Unit
(SELU) activation function. The loss function is the mean
squared logarithmic error (MSLE) [40]. This is given with the
formula

L(y, ŷ) = 1

n

n∑
i=0

[log(yi + 1) − log(ŷ + 1)]2, (12)

where yi are the actual values, n is the number of data points,
and ŷi are the predicted values.

The neural network can also be used to directly predict the
Mpemba effect rather than predicting |a2|. This is done by
training the network with data given by Eq. (10). The network
remains the same, except that the output layer has a sigmoid
activation function and a binary cross-entropy loss function is
used. The case where the Mpemba effect is predicted directly
is referred to as NN2.

C. Linear regression (LR)

Linear regression is used to predict the |a2| coefficients
with the data. We once again minimize the MSLE given in
Eq. (12). The predicted values ŷi are given by

ŷi =
4∑

j=0

c jxi j,

xi0 = 1; xi1 = Ni; xi2 = Ji; xi3 = hi; xi4 = Ti. (13)

The fit parameters are c j .

TABLE I. Upper row: The linear regression fit parameters. The
parameter in column i corresponds to the fit parameters ci in Eq. (13).
The first column is labeled c0. The other columns are labeled with
the parameters that ci is multiplied by. Lower row: The correlation
coefficients between each parameter and a2.

c0 N J h T

Regression coefficients 10.191 84.359 −78.725 −9.889 −36.903
Correlation coefficients −0.005 −0.370 −0.027 −0.601

The MSLE is chosen as the loss function rather than the
sum of least squares because it more accurately captures the
behavior of data with very different orders of magnitude.

Linear regression cannot be used to determine whether the
Mpemba effect occurs because, for the effect to occur, |a2|
must increase as T increases. If |a2| is given by a monotoni-
cally decreasing linear function of T , the T that is farther from
equilibrium will always correspond to a larger value of |a2|.

Nevertheless, linear regression is useful for two reasons.
First, the MSLE can be compared to other methods, giving
information about their accuracy. Second, the values of the fit
parameters c j can be used as a crude approximation of the
importance of each category of data for predicting |a2|.

The fit parameters are given in Table I. We also quote the
correlation coefficients which correspond to an even simpler
model. Note that because the linear regression in the fit was
performed by minimizing the MSLE rather than the least
squares, the regression coefficients are not the same as mul-
tivariate correlation coefficients.

D. Nonlinear regression (NLR) with the LASSO method

Nonlinear models are able to have more fit parameters than
linear models. We use a general expansion of the form

ŷi =
M∑

k1=0

. . .

M∑
k4=0

δM,
∑

i ki
c1 . . .︸︷︷︸

k1 times

...4 . . .︸︷︷︸
k4 times

4∏
j=1

Pkj (xi j ), (14)

where Pkj (xi j ) are the Legendre polynomials mapped to the
range of each data set, M is the order up to which we consider,
δM,

∑
i ki

is the Kronecker delta function, and c1 . . .︸︷︷︸
k1 times

...4 . . .︸︷︷︸
k4 times

are

the fit parameters. In the case when M = 1, this expansion re-
duces to linear regression. The error that is minimized is once
again the MSLE given in Eq. (12). In our notation, coefficients
such as c1144 and c4411 are multiplied by identical Legendre
polynomials. Each coefficient corresponds to an identical term
as each other coefficient with subscripts that are a permutation
of its subscript. We include only one of each set of identical
coefficients.

The Legendre polynomials were chosen rather than simple
polynomials because of their orthonormality. This allows for
a continuous function to be fit with fewer free parameters than
would be necessary with nonorthogonal functions [41].

For large M, the number of fit parameters leads to a pro-
hibitive computational cost of the minimization. Not all fit
parameters at a given order are equally effective at minimiza-
tion. The LASSO method [42–45] is employed in order to
determine which fit parameters are most effective and which
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FIG. 2. The best-fit values of parameters c000 j for j, from 1 to 4,
defined in Eq. (14). The parameters are obtained by minimizing the
loss function given in Eq. (15) for various λ. As λ increases, c00i j

will become small. The order in which the parameters approach zero
gives the order of importance of each parameter in minimizing the
MSLE. Note that the parameter c0001 does not descend to zero in this
plot. If a larger range of λ were chosen, it would.

can be neglected to reduce computational cost. This is done in
the following way. We randomly select 1000 data points and
use them to calculate a modified loss function given by

L(y, ŷ) = 1

n

n∑
i=0

[log(yi + 1) − log(ŷ + 1)]2 + λ
∑

|ci jk	|.

(15)

The term λ is a penalty term that can be varied. The data points
are used to find the fit parameters that lead to local minima
for various values of λ. When λ = 0, all fit parameters are
nonzero. As λ becomes large, all fit parameters approach zero.
A number of fits are performed with all fit parameters up to the
fourth order with a gradually increasing λ. The fit parameters
are ranked according to the value of λ necessary to reach an
absolute value less than 10−6. This list is ordered in terms of
importance for the minimization of the MSLE. A visualization
of the ordering can be found in Fig. 2, which shows the values
of the second order parameters as λ is increased. The lower
the value of λ at which the parameters are close to zero, the
less important they are.

The parameters are then validated by calculating the MSLE
with new data. First the data are validated with a fit involving
all parameters. Next, the same validation is performed while
excluding the parameter determined to be least important. Af-
ter that, the least important two parameters are excluded. This
process continues until all parameters have been excluded.
This process generates a list of validation MSLE with param-
eters excluded in order of importance, from least important to
most important. The validation MSLE is plotted in Fig. 3.

The plot shows a minimum when 22 parameters are ex-
cluded. Thus, 22 parameters are excluded for the nonlinear
regression. This allows for quicker minimization.

When fitting the data, the following procedure is per-
formed. First, we fit the parameters c000i to the data from i,
from 0 to 4, using the Newton method. The other fit param-
eters are kept constant at 0. Next we fit the parameters c00i j

with i and j from 0 to 4. The initial values of c000i are the
best-fit values from the previous minimization. The other fit
parameters are given initial values of zero. All parameters that

0 10 20 30 40 50
0

2

4

6

8

10

M
SL
E

FIG. 3. The validation MSLE varying the number of excluded
parameters. The data were fit to 1000 training points. The parameters
are excluded in order of impact, as described in the text. The mini-
mum corresponds to a number of excluded parameters that neither
overfit nor underfit the 1000 data points.

are not used in the fit are once again set to zero. The same
process is repeated for c0i jk , and finally for ci jk	.

This method of finding minimum parameters is employed
in order to find a stable local minimum. If all parameters
were fitted at once without appropriate starting values, small
changes in the fit, such as changing the number of data points
or increasing the penalty term, would result in drastically
different local minima. However, it causes the fit to rely most
heavily on lower-order parameters.

The best-fit parameters are given in Table VII in the Ap-
pendix. Perhaps because of the fit procedure, far more higher-
order parameters than lower-order parameters are found by
the least absolute shrinkage and selection operator (LASSO)
to be unnecessary. The four fourth-order parameters that are
not excluded are c1114, c3334, and c4441. All three of these
parameters involve the temperature T . This could indicate
that the correlations between the temperature and other input
variables are important. This emphasis on the importance of
T in determining a2 is in agreement with the linear correlation
coefficients given in Table I; however, as described in the next
section, nonlinear regression is not found to be the most accu-
rate method to be employed. Thus, any speculations about the
meaning of fourth-order parameters is highly uncertain.

V. RESULTS AND DISCUSSION

A. Comparison of methods for small N

In this section, as well as Secs. V B and V C, we discuss
the methods used to predict the Mpemba effect for small N
(equal to or less than 15). We use heat-bath dynamics with the
rate matrix given in Eq. (3) with endpoints connected to fixed
up spins. Because both endpoints are connected to fixed spins,
there is a considerable difference between the case when N is
odd and N is even. For odd N , in the lowest-energy state, each
dipole will have the opposite spin of the two dipoles next to it.
This is not possible for even N . We were unable to obtain good
predictions of the Mpemba effect for even N in this section.
This can be contrasted with the case of larger N in a ring, in
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FIG. 4. An example of |a2| as a function of temperature. The
black dots show the actual calculations compared with the predic-
tions for various methods (colored curves). This occurs for N = 7,
J = −0.965, and h = −7.01. The NN gives the most accurate pre-
diction, followed by NLR and then LR. Note that the models are not
fit to this data, but to a large set of data that includes various N , J , h,
and T .

which we were able to obtain good predictions for even N ,
even when the even values were not included in the training
data.

An example of the various methods compared with the
data is shown in Fig. 4. Only the methods that predict |a2|
directly are shown. The black dots give the actual computed
data. At very low temperatures, they increase slightly with
temperature, indicating a very weak Mpemba effect. After
that, they smoothly decrease to equilibrium.

In order to compare the effectiveness of the various meth-
ods, several metrics are used. All of these metrics distinguish
between training data, which are used to fix the free parame-
ters or nodes of the model, and validation data, which are not
used to determine the free parameters but are used to assess
the accuracy.

The validation MSLE can be used to compare the accuracy
of the neural network (NN), linear regression (LR), and non-
linear regression (NLR). The decision tree (DT) and neural
network trained directly on the Mpemba effect (NN2) cannot
be compared because they minimize a different loss function.

The positive and negative validation accuracies are also
computed. These are calculated by predicting whether the
Mpemba effect occurs for randomly selected J , h, N , and two
temperatures. The positive accuracy is the percentage of cases
where the method predicts the Mpemba effect in which the
effect actually occurs. The negative accuracy is the percentage
of times the method correctly predicts that the effect does not
occur. As discussed in Sec. IV C, the accuracy is meaningless
for LR.

For each method, the accuracy increases and the error
decreases as the amount of data increases; however, it even-
tually reaches a point at which additional data do not improve
the predictions. Table II gives the calculations for the four
methods for various numbers of data points.

The negative accuracy listed in the table for all four meth-
ods is much larger than the positive accuracy. This can be

TABLE II. The error, accuracy, and computational cost for sev-
eral machine learning methods for varying numbers of training data
points. The error is calculated with the MSLE on validation data. The
positive (negative) accuracy is the fraction of correct results when the
method predicts that the effect occurs (does not occur). The asterisk
(*) is placed next to numbers which do not beat the baseline RRC
described in the text. The training time gives the time spent training
the data and the computation time gives the time for the machine
learning method to validate a data set or make a prediction. Training
time is not necessarily linear and thus we give the time for various
sizes of training data sets. Computation time is linear so times for
multiple data sets are not necessary.

Training
points DT NN NN2 LR NLR

Error
100 3.14 4.86 2.44
1000 0.57 4.08 1.65
10000 0.05 4.05 1.77
50000 0.03 4.14 1.66
200000 0.03 4.02 1.70

Positive accuracy (%)
100 1 ± 14* 13 ± 9.5 67 ± 18 24 ± 21
1000 30 ± 6 18 ± 17 61 ± 14 15 ± 8.5
10000 46 ± 2.3 62 ± 8.5 79 ± 6.9 17 ± 7.7
50000 64 ± 1.4 77 ± 5.9 79 ± 4.6 20 ± 11
200000 66 ± 2.3 82 ± 7.2 91 ± 5.2 19 ± 00

Negative accuracy (%)
100 98 ± 0.001 92 ± 4.5* 99 ± 0.6 82 ± 13*
1000 99 ± 0.5 99 ± 0.9 99 ± 0.2 89 ± 6.9*
10000 99 ± 0.02 99 ± 0.05 0.99 ± 0.09 90 ± 7.6*
50000 99 ± 0.02 99 ± 0.01 99 ± 0.03 88 ± 4.5*
200000 99 ± 0.01 99 ± 0.01 99 ± 0.05 88 ± 6.6*

Training time (seconds)
100 0.58 0.4 0.8 0.2 10
1000 0.87 2.0 2.8 1.7 69
10000 2.08 9.4 14 38.2 365
50000 9.56 43 61 256 1624

Computation time (seconds)
50000 1.41 1.52 1.48 0.20 1.71

explained by the fact that the Mpemba effect occurs in approx-
imately 2% of cases. Methods are more likely to minimize a
loss function by predicting that the effect does not occur. For
reference, a method that always predicts that the effect does
not occur regardless of training data would have a 0% positive
accuracy and approximately 98% negative accuracy.

This work establishes a baseline accuracy for predicting the
Mpemba effect with various methods which can be used for
future comparison of machine learning predictions. To com-
pare the results in this work, we consider baseline “classifiers”
of binary outcomes used in Refs. [33,46,47] to compare to
predictions in a field that was not previously classified. The
first of these is the zero-rate classifier (ZRC), which classifies
all cases as the more likely of the outcomes. In this case, the
more likely outcome is for the effect not to occur. Thus, the
ZRC would have a total accuracy of 98%. It is less helpful
to use the ZRC to make a prediction of positive or negative
accuracy. No matter what the data are, the ZRC will always
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FIG. 5. A plot of the positive accuracy vs maximum value of N
excluded. The full data are given in Table VI. Best-fit lines are shown
to roughly estimate the relationship between the variables.

give one outcome a 0%. To establish a baseline for positive
and negative accuracy, the random rate classifier (RRC) is
used. The RRC classifies by randomly selecting one of the
binaries with a likelihood proportional to the total fraction of
positive or negative values. In this case, the RRC would guess
that the effect does not occur with a likelihood of 98%. This
corresponds to a total accuracy of 0.982 + 0.022 ≈ 0.96 and a
positive and negative accuracy of 98% and 2%, respectively.
This is the baseline that our results can be compared to.

We find that for large data sets, NN2 is most accurate,
though NN is almost as accurate and has the added benefit
of predicting the values of a2. For very small training sets,
NLR is the most effective method at predicting |a2|, although
it fails to reach a high level of accuracy with larger data sets.

B. Extrapolation

In the previous section, the parameters for the validation
data were different from those of the training data, but they
were generated in the same range. Machine learning can also
be used to extrapolate by validating the model with data in
a different range. This is particularly beneficial if the mod-
els can make accurate predictions on systems that are more
computationally expensive than the systems they are trained
on. Out of the parameters N , J , h, and T , only N determines
the computational complexity of the calculation. The time to
compute |a2| does not depend on J , h, or T .

Figure 5 plots the positive accuracy of various methods
for predicting the Mpemba effect in the case when N = 15,
when it has only been trained on data with N < 15. The full
results are given in Table VI in the Appendix. The lines shown
in Fig. 5 give a rough approximation of how the accuracy
depends on the maximum parameter that is excluded. Uncer-
tainties are given by the standard deviation of five resamples.

When values of N close to 15 are included in the training
data, the neural networks are once again the most accurate
methods; however, the DT is relatively accurate at making pre-
dictions even when only N = 5 is included. In fact, changing
which values of N are included has very little impact on the
accuracy of the predictions, indicating that N has very little ef-
fect on the prediction with this algorithm. These results agree

TABLE III. The predictions for the Mpemba effect when the
neural network is only trained on data where the Mpemba effect is
not present. The neural network is trained on 20 000 data points.

TME ME

Positive accuracy 0.7764 ± 0.064 0.3035 ± 0.134
Negative accuracy 0.8487 ± 0.070 0.9848 ± 0.012

with the crude prediction from the correlation coefficients,
given in Table I.

It is reasonable to assume that the methods that are best
at long-range extrapolation in the ranges that we consider
will also be most effective at long-range extrapolation outside
the range we consider or for different systems than the Ising
model. However, this has not been demonstrated for certain
and merits further investigation.

Long-range extrapolation could be useful due to the high
computational cost for a2 for higher N . The number of states
for a given N is 2N , leading to a 2N × 2N transition matrix.
The computational cost of the eigenvalues for a M × M matrix
is O(M2) [48]. Thus the computational cost for calculating
a2 is 22N . Thus, a calculation with N = 5 is quicker than a
calculation with N = 15 by a factor of 220. Accurate predic-
tion trained on much simpler systems could save considerable
computational cost. It should be noted that ML methods are
not the only numerical methods to avoid computational costs.
The Monte Carlo methods used in Ref. [23] are used to make
calculations that would otherwise be impossible within realis-
tic time constraints. For this method to be of maximum use,
the computational cost recorded in Table II would need to be
lower than equivalent values for Monte Carlo methods.

Notably, the Mpemba effect can be predicted even if it is
trained only with data in which it does not occur. Results for
this extrapolation are given in Table III. The first prediction
of the Mpemba effect (ME) is the same as in the previous
sections. The second method of prediction, referred to as
the total Mpemba effect (TME), measures the accuracy of
predicting whether or not the Mpemba effect occurs for any
temperature for a given J , h, and N . Put another way, neural
networks can identify the nonmonotonic temperature depen-
dence of the coefficient a2 even when they are only trained on
monotonically decreasing a2. This suggests that the Mpemba
effect is encoded in the antiferromagnetic Ising model. This
further confirms the results of Refs. [35,37].

The machine learning methods can also be extrapolated to
J outside of the range the method was trained on. Specifically,
our data set only includes negative J . No Mpemba effect has
been found for positive J . To test whether the neural networks
can identify this, we made predictions on over 106 data points
for various N , and h. For each case, the algorithm correctly
predicts that no Mpemba effect occurs for positive J . This
result would not be as notable if the neural network was iden-
tifying that the effect never occurs for positive J because more
negative J tend to cause the Mpemba effect. Figure 6 shows
the regions where the Mpemba effect occurs on the J − h
plane. The Mpemba effect does occur for negative values of
J close to zero and does not occur for very negative values of
J . This means that the neural network’s identification that the
effect only occurs for negative J is a more subtle inference.
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FIG. 6. The J-h plane. The shaded orange region (lighter-shaded
region) shows the NN2 prediction for the region in which the
Mpemba effect occurs. The red contour (lighter contour) shows the
region generated with a contour from the data. The shaded green
region (darker-shaded region) shows the predicted region for the
strong Mpemba effect and the blue contour (darker contour) shows
the contour generated from the data. We observe good agreement
between the results and the prediction, especially for the ordinary
Mpemba effect.

C. The strong Mpemba effect

In addition to the Mpemba effect, machine learning meth-
ods can be used to predict the strong Mpemba effect, defined
in Ref. [5]. In this situation, the hot system cools exponentially
faster than the cold system.

The strong Mpemba effect occurs when a2 = 0 and T �= Tb.
The neural network is trained on three input variables N , J ,
and h. The output is 1 if the strong Mpemba effect occurs for
any temperature; the output is 0 if the strong Mpemba effect
does not occur. Results are given in Table IV.

The machine learning algorithm can be used to generate
plots of the J-h plane. Figure 6 shows a plot of which values
the Mpemba effect occurs at and which values the strong
Mpemba effect occurs at. This is compared to the predictions
made by the neural network. This diagram is inspired by the
phase diagrams of Ref. [35] (Fig. 2), although it differs in that
it plots the J-h plane rather than the Tb-h plane.

D. Predictions for large N using coarse graining

Much larger values of N can be computed for a given
computational cost using the method of coarse graining. We
generate a data set using the rate matrix given in Eq. (4). This

TABLE IV. The validation accuracy for the strong Mpemba ef-
fect. It is trained with 20 000 data points.

Positive accuracy Negative accuracy

0.4633±0.043 0.995±0.0016

TABLE V. Validation accuracy and error of predictions by NN1
and NN2. Error is for NN1 only. Extrapolations are given above the
double line. In this case, all values of N listed as excluded in addition
to all values of N greater than the predicted value are excluded.
Below the double line, predictions for validation data within the
range of the training data are included.

Excluded Predicted NN1+ NN2+ NN1− NN2− Error

55, 57, 59 59 0.401 0.438 0.972 0.935 14.2
53 53 0.731 0.715 0.981 0.988 3.47
51, 53 53 0.530 0.627 0.932 0.988 5.91
49, 51, 53 53 0.475 0.517 0.986 0.989 8.64
50 50 0.515 0.985 0.974 0.838 3.31

All 0.972 0.946 0.781 0.760 4.12
53 0.991 0.986 0.669 0.799 5.69

data set includes a2 for the weak-coupling limit for spins in a
ring rather than with fixed end points.

To test the methods, we generate a data set with odd
numbered N from 15 to 53, as well as sets with N = 59
and N = 50. This range is comparable to the size of the
Ising chain in Ref. [35]; however, an exact coarse graining
allowed a computation of an Ising chain with 1000 spins
in Ref. [37]. Furthermore, the thermodynamic limit of large
N has been studied through the phenomenon of eigenvalues
crossing (closely linked to the Mpemba effect) [31].

We find that NN1 and NN2 can be used to make accurate
predictions even outside the range that the model is trained on.
Results are shown in Table V.

Notably, predictions can be made for N = 50. As noted, in
the previous sections, predictions could not be made for even
N ; however, with larger N that form a ring, predictions can
be made for even N , even if only odd N are included in the
training data. However, the positive accuracy of each of these
methods noticeably decreases when more values of N are ex-
cluded. This suggests a limitation to long-range extrapolation
for these Ising chains.

VI. CONCLUSION

The Mpemba effect has been shown to occur in many
systems, beyond the freezing of water. These applications
motivate better predictions of the effect. In order to under-
stand this effect, this work applies statistical methods to the
Mpemba effect in the Ising model.

For the case of 5–15 spins in an Ising chain, we demon-
strate that a number of machine learning methods can be
used. Neural networks are the most effective method when
a large enough training data set is used. For very small data
sets, nonlinear regression with the LASSO method may be
more effective at predicting a2. These methods can predict the
Mpemba effect in systems that are much more complex than
those on which they were trained. The decision tree method
may be the most effective method at making predictions far
outside the range it was trained on. Additionally, the Mpemba
effect can be predicted with neural networks when it is trained
only on data where the Mpemba effect does not occur. This
indicates that information about the Mpemba effect exists
in situations in which it does not occur. Furthermore, we
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TABLE VI. Extrapolation accuracy. The data is trained on 50 000 data points.

Excluded values of N DT NN NN2 NLR

Positive accuracy
15 0.5436 ± 0.018 0.6638 ± 0.125 0.8421 ± 0.0724 0.3435 ± 0.03047
13,15 0.5334 ± 0.0184 0.77960 ± 0.0633 0.8040 ± 0.04347 0.25629 ± 0.06267
11,13,15 0.5479 ± 0.0503 0.5922 ± 0.1994 0.6611 ± 0.04952 0.3467 ± 0.05206
9,11,13,15 0.5155 ± 0.04509 0.3826 ± 0.2561 0.6472 ± 0.1640 0.1909 ± 0.01386
7,9,11,13,15 0.5283 ± 0.0356 0.2741 ± 0.08402 0.5222 ± 0.1288 0.2184 ± 0.009012

Negative accuracy
15 0.996207 ± 0.00245 0.99723 ± 0.000954173 0.997952 ± 0.00042289 0.718728 ± 0.0392236
13,15 0.99757 ± 0.001162 0.992953 ± 0.00388419 0.996802 ± 0.00108171 0.83444 ± 0.04182
11,13,15 0.998175 ± 0.000508 0.987025 ± 0.00648745 0.997013 ± 0.000912489 0.890572 ± 0.0353344
9,11,13,15 0.996978 ± 0.001237 0.958839 ± 0.0328791 0.996679 ± 0.00173007 0.837763 ± 0.034161
7,9,11,13,15 0.99767 ± 0.00033 0.960547 ± 0.0529037 0.992296 ± 0.01823 0.93159 ± 0.00735792

demonstrate that the strong Mpemba effect can also be pre-
dicted using machine learning methods. It should be noted
that a limitation to these methods (in comparison to numerical
methods in other works) is that they can only be successfully
applied to chains with an odd number of spins.

In addition, we have studied the effect for a larger number
of spins in the spin chain using coarse graining in the weak-
coupling limit. In this method, neural networks can be used to
make accurate predictions for the Mpemba effect. For these
spin chains, accurate predictions can be made for an even
number of spins, even if the network is only trained with data
from odd-numbered spin chains. However, a limitation of pre-
dicting the Mpemba effect in these systems is that long-range
extrapolation to much larger spin chains than the networks are
trained on is not as accurate.

This work can be extended in several ways. First, future
analysis could vary the bath temperature. Such an investi-
gation could more optimally test the effect by selecting a
single bath temperature and scanning for nonmonoticity. Fur-
thermore, these predictions were performed for the Mpemba
effect in the Ising model; however, the relative accuracy of
each method might hold for the Mpemba effect in other sys-
tems. Determination of the accuracy of various methods in
other systems merits further investigation.
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APPENDIX A: ADDITIONAL DATA

In this section, we give data for reference that is not used in
the main analysis and discussion of the paper. Table VI gives
the extrapolation accuracy of the methods. Positive accuracies
of this table are plotted in Fig. 5 and the format is equivalent
to Table II.

Table VII gives the best-fit parameters for nonlinear re-
gression. Parameters not included in the table are either
mathematically identical to an excluded parameter or shown
by the LASSO method to have less impact. The fit was per-
formed with 50 000 data points and corresponds to the fifth
row of each section of Table II for NLR; however, NLR
for any amount of data points greater than 1000 had similar
minima. Note that the fit was done to data with |a2| multiplied
by a factor of 10 000 as described in the text. To relate these
results to data that have not been prepared in this way, one
should divide each parameter by 10 000.

APPENDIX B: NEURAL NETWORK
ARCHITECTURE TESTS

In this work, we employ a neural network with three hidden
layers with a total of 75 nodes: 50 in the first layer, 20 in the
second, and 5 in the third. In this Appendix, we explain our
choice of architecture.

TABLE VII. LASSO parameters for a fit with 500 000 data points. Fit parameters ck1k2k3k4 are given in Eq. (14). All parameters not present
in this table are either excluded by the LASSO as described in the main text or unnecessary because they are multiplied by a term identical to
that of one of the included parameters.

c0000 12.0493 c0001 56.5418 c0002 −77.7456 c0003 −3.88612 c0004 4.93836
c0011 11.9538 c0012 −389.284 c0013 −12.5517 c0014 −6.88152 c0023 4.51196
c0024 0.37328 c0034 0.780776 c0044 67.0015 c0111 −11.4937 c0112 −77.7841
c0113 −5.35089 c0114 −1.60171 c0221 −308.538 c0222 −11.4937 c0224 87.8123
c0331 −801.778 c0332 67.5452 c0333 458.608 c0334 183.366 c0441 335.435
c0442 −418.124 c0443 37.4534 c0444 −38.2862 c0123 −0.00109161 c0124 16.838
c0134 0.431855 c0234 0.00739725 c1114 0.294404 c3334 −16.9157 c4441 −193.343
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FIG. 7. Plots of the accuracy of the neural network (NN1) vs quantities of the architecture. The left plot varies the relative number of nodes.
In this plot, there are three hidden layers of nodes. The ratios of each layer are held constant as the number of nodes is varied. The relative
number is the number of nodes employed divided by our chosen number of hidden nodes (75). The right plot varies the number of layers. In
this plot, the number of nodes is held constant. They are divided among the number of hidden layers on the horizontal axis. In both plots, the
vertical dashed line indicates the values employed in this work.

There is no one unique best architecture for a neural net-
work. However, if a neural network has too few nodes or too
few layers, it will not be able to achieve a small error. If a
neural network has too many nodes or too many layers, it
can take prohibitively long to train or find weights that are
at a local minimum that is nowhere near the global minimum.
Our approach is to vary both the number of nodes and the
number of layers until we find the smallest possible network
that cannot significantly reduce the error by increasing the
number of nodes or layers.

This variation is shown in Fig. 7. Our process was
to vary the number of layers and number of nodes as
described in the caption. We used the ADAM optimizer
with a training data and a validation data of 50 000

data point. 200 epochs were employed with a batch size
of 200.

Above the chosen values denoted with the dashed line,
there is a slight decrease in the error but it is very small. For
values below the dashed line, there is a very large increase in
the error.

Our choices are not the only possible choices. Slightly
different values could also be chosen and these might lead to
results that are slightly better, but these results give evidence
that a significant improvement in the accuracy will not occur.
On the other hand, if the system had been much smaller either
in nodes or layers, the error and hence the predictions would
be significantly worse. This shows that the chosen architecture
is reasonable.
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