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Random walks on modular chains: Detecting structure through statistics
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We study kinetic transport through one-dimensional modular networks consisting of alternating domains using
both analytical and numerical methods. We demonstrate that the mean velocity is insensitive to the local structure
of the network, and it depends only on global, structural-averaged properties. However, by examining high-order
cumulants characterizing the kinetics, we reveal information on the degree of inhomogeneity of blocks and
the size of repeating units in the network. Specifically, in unbiased diffusion, the kurtosis is the first transport
coefficient that exposes structural information, whereas in biased chains, the diffusion coefficient already reveals
structural motifs. Nevertheless, this latter dependence is weak, and it disappears at both low and high biasing.
Our study demonstrates that high-order moments of the population distribution over sites provide information
about the network structure that is not captured by the first moment (mean velocity) alone. These results are
useful towards deciphering mechanisms and determining architectures underlying long-range charge transport
in biomolecules and biological and chemical reaction networks.
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I. INTRODUCTION

Rolf Landauer’s famous saying that “the noise is the
signal” [1] was originally stated in the context of noise mea-
surements in electronic conductors, which can be used to
reveal underlying many-electron interactions in the device.
However, whether concerned with electronic, chemical, or
biological kinetics, this statement captures a profound ob-
servation: That fluctuations of a signal can be used to probe
the system—and more fundamentally so than the mean signal
alone [2]. Considering, for example, charge transport in con-
ductors: The probably distribution function (PDF) to transfer
n electrons within a certain time encapsulates the full infor-
mation on the charge current and its moments [3,4]. Similarly,
the PDF for first passage processes, e.g., in the context of
protein folding or transport through ion channels, contains
rich information beyond what is conveyed by the averaged
measure of the mean first-passage time [5].

Chemical and biological reactions can be coarse-grained
and modeled as network systems, and general principles can
be understood by studying such systems in the context of
stochastic thermodynamics [6-9]. The structure and topology
of these networks can, for instance, be detected from the PDF
of first-passage processes [10—13]. In particular, in chemical
kinetics, details on reaction mechanisms can be inferred from
the statistics of the kinetics. It was shown in Ref. [14] that
fluctuations in the time to complete an enzymatic cycle can
be used to bound the number of intermediate steps. Recent
studies continued and interrogated higher-order moments of
the PDF of the cycle completion time, beyond the mean and
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the variance. They found that the skewness and kurtosis of
this PDF reveal, e.g., whether the enzymatic network was
unicyclic or multicyclic, information that was not reflected in
the second moment of the PDF [15,16]. Investigations into
the statistics of observable currents at steady state in systems
described by kinetic networks have also revealed bounds on
the relative fluctuations of the current determined explicitly
by network structure [17,18].

In a different context, shot noise measurements of meso-
scale, nanoscale, and atomic conductors provide informa-
tion on quantum transport that cannot be resolved from the
electrical conductance itself [19]. As such, shot noise experi-
ments were used to characterize, e.g., the fractional quantum
Hall effect [20], electron transport in the Kondo regime [21],
electron-phonon interaction effects in molecular junctions
[22,23], and structural and energetic asymmetry of atomic-
scale conductors [24]. Beyond shot noise, which corresponds
to the second moment of carriers flow, it was recently shown
that the skewness and kurtosis of the PDF of charge transport
reveal information on the violation of the thermodynamic un-
certainty relation (TUR) [25,26] and the impact of many-body
effects in transport [27].

The objective of this study is to identify what new, de-
tailed information on the structure of a kinetic network can
be revealed from successive high moments of the distribution
of population, beyond its mean. We focus on random walks
on one-dimensional chains, which are either homogeneous or
modular, and relate these chains to finite unicyclic networks.
We note that in doing so, we do not address the question
of how unicyclic vs multicyclic network structure may be
distinguished through transport statistics.

An example of a modular system is depicted in Fig. 1; the
configurational space map of the model is presented in Fig. 2.

©2023 American Physical Society
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FIG. 1. Diagram of a modular chain on which an infinite random walk plays out. The unions of segments labeled “A” and “B” make up
regions A and B, respectively, where forward and reverse rates are given by Eqgs. (1) and (2). For the example shown here the number of sites

in each segment is my = mp = 2.

It was previously shown, through numerical simulations of
quantum dissipative transport, that the average electron cur-
rent through modular junctions depends only on the average
resistance of the chain, and it is insensitive to the local struc-
ture [28]. These results were demonstrated numerically using
two approaches, Biittiker probes simulations [29] and quan-
tum rate equations of the Lindblad form. One of the goals of
the present study is to derive an analogous result analytically,
which we do using classical kinetics for modular networks
with unit block size. More generally, our aim here is to reveal
with analytical and numerical work information about the
local structure of a network (e.g., inhomogeneity of blocks
and size of repeating units) from cumulants of the distribution
(mean, diffusion coefficient, skewness, and kurtosis).

We discover that in an unbiased random walk on a modular
network, the kurtosis is the first camulant that expresses local
structural information. In contrast, in biased random walks,
the diffusion coefficient can reveal structural information, but
this dependence is rather weak. The sensitivity to the local
structure amplifies only in the skewness and more so in the
kurtosis.

The paper is organized as follows. We present the ran-
dom walk models, in real space and configuration space, in
Sec. II. We study the statistics of carriers transport in Sec. III.
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FIG. 2. The modular chain of Fig. 1 can be mapped into a a
finite cyclic network of states. This cyclic network is created by
recognizing the periodicity in the structure of the modular infinite
chain. The clockwise direction around the cycle corresponds to the
forward direction of the random walk. Full counting statistics tracks
the net number of times the system completes the 0 — 1 transition,
as indicated by the dashed arrows and counting field. This number is
then scaled up by mp = 4 to count the number of steps “away” from
the initial site at steady state.

Analytic results for the first four cumulants of the population
distribution for modular chains with a block size one are pre-
sented in Secs. IIT A and III B. Complementing this analysis,
numerical simulations are included in Sec. III C. Real-space
simulations of the random walk are presented in Sec. IV,
revealing the rich structure of the PDF in modular models.
We discuss our results and conclude in Sec. V.

II. MODELS

We study random walks in structured networks corre-
sponding to two setups: (1) An infinite one-dimensional
modular lattice with repeating segments (Fig. 1) and (2) a
finite unicyclic network (Fig. 2) representing reaction kinetics.
Alternatively, the cyclic model corresponds to the configura-
tional space of the infinite chain model (1). These models help
to highlight the effects of underlying periodic and nontriv-
ial structure, which have been investigated in numerous past
works for random walks as well as diffusion in continuous
space explored using Langevin or Fokker-Planck simulations
[30-38].

A. Modular and homogeneous chains

We consider a continuous-time random walk on an infinite
modular chain; see Fig. 1. In our model transition rates alter-
nate between different values for segments some number of
sites long. Most generally, segments associated with the two
sets of transition rates are my, and mp sites long, where m,4 and
mp may or may not be equal. The total period for this alterna-
tion of transition rates is then mp = my + mp. The blocks are
made distinct by using different hoping rates between sites
within segment A and within segment B.

This network can represent a polymer with alternating
units, stiff and flexible. Such modular structures may be
used to model long-range charge transport in polymers and
biomolecules [39-41]. One such example pertains to the
nearest-neighbor hopping model for charge transport in DNA,
wherein an alternating structure for the hopping rates can be
established via the sequence of base pairs [42].

The object of our calculation is the PDF to find the system
n sites away from its starting point, within some time. We refer
to the first four cumulants of this PDF, scaled by time, as the
mean velocity, diffusion coefficient, skewness, and kurtosis.

The forward transition rate from site i to site i 4 1 is
given by

ka=Z, (imodmp) < my
kiv1i= Zi , ()]
L. (imodmp) = myu.

B=VR’
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Here we apply the modulo (mod) operation. We note here that
we start the site-counting at zero, which is an A-type site, and
that there is a site for every i € Z. t is a constant which gives
rise to an overall scale for the rates. The rates differ due to the
difference in the values of y4 and yg, which serve a function
analogous to resistance.

Note that in the corresponding quantum transport model
[28], blocks A and B were made distinct by setting differ-
ent local decoherence rates for electrons, being high or low
relative to the tunneling energies t. A segment with high
(Iow) decoherence corresponds to a flexible (rigid) region in a
polymer [43,44].

Assuming local detailed balance, given the forward transi-
tion rates, the reverse rates are given by

kiiir = e Phiyi, 2)

where b represents a uniform bias. In the context of a charged
particle hopping under an external electric field, the bias
is b= Ap/(kgT), with Ap the local potential bias, T the
temperature, and kg the Boltzmann constant. Each individual
transition is symmetric in the case that b = 0, and the walk is
biased in the forward direction for b > 0. In what follows we
assume the bias is equal between every pair of neighboring
sites.

To contrast the modular chain, we build a corresponding
homogeneous chain whose forward transition rate at all sites
is given by k* = t2/y*, with y* = (myys + mgys)/mp (the
average of y4 and yp weighted by their respective segment
lengths). The reverse rate is uniformly given by this rate scaled
by e, in analogy to the above.

We will focus primarily on the case that the segment
lengths are equal, m4 = mp = m such that mp = 2m. Accord-
ingly, k* is calculated simply using the arithmetic mean value,
yr=7=0a+ys)/2: Kk =1%/7.

B. Bipartite finite cycle

In addition to the infinite modular chain and its associ-
ated homogeneous counterpart, we consider a closely related
finite network consisting of a single cycle with mp sites; see
Fig. 2. This cyclic kinetic network can be viewed as a reaction
network with a total of mp internal states: The first my steps
are slow, and they are followed by my fast steps. At the end
of each kinetic cycle, a product specie is generated, and thus
the completion of a cycle can be monitored. The probability
distribution for the diffusion process along the chain now
describes the statistics of the number of product molecules
formed.

Furthermore, the finite cycle can be constructed from the
infinite chain discussed in Sec. Il A by connecting the right-
most site of a “B” segment back to the leftmost site of the
previous “A” segment. The transition rates on this cyclic net-
work can be defined in accord using Eqs. (1) and (2), but
replacing each index i with (i mod mp), such that neither ever
exceeds mp — 1, but instead cycles back to 0. For example,
if m =2 (mp = 4), the unicyclic network we associate with
the random walk consists of four states (labeled i = 0, 1, 2, 3,
as shown in Fig. 2), with ko = kp.1 = k4, k32 = ko3 = kg,
and reverse rates equal to these forward rates scaled by e~.
ki j = 0 for any |i — j| > 2, with the exception of the last-to-

first transition closing the loop. For comparison, we also study
the associated homogeneous cycle by setting all forward rates
to k*.

We build the random walk on the cyclic network using
exactly the same transition rates as one on the infinite modular
chain. As a result, the statistics of the net number of steps
taken in the clockwise direction follows the exact same statis-
tics as the net number of steps taken on the corresponding
infinite chain. We use the variable n to represent both of these
quantities.

The main objective of this work is to investigate how signa-
tures of modular structure, in comparison to the homogeneous
structure, manifest in the statistics of random walks on these
chains, at steady state. Useful information on the structure that
we would like to reveal is (1) the degree of inhomogeneity,
Ay = yx — yp and (2) the block size.

III. FULL COUNTING STATISTICS FOR FORWARD STEPS

We are interested in the scaled cumulants for the distribu-
tion over n in the long-time limit,
k
¢, = lim SON 3)
t—00 t
where n(t) is the stochastic variable representing the site of
the walker at time ¢, such that ((n*(¢))) is the kth cumulant of
the distribution over this quantity. We may suppose n(0) = 0,
though for large enough ¢ the initial conditions have no impact
on the scaled cumulants.

Our implementation of full counting statistics is based on
the equivalence between the statistics of n for both the infi-
nite modular chain and the finite cycle introduced in Sec. II.
This equivalence arises from the periodicity of the modular
structure. Whether we are ultimately interested in the infinite
chain or the finite cycle, we carry out full counting statistics
by writing down the mp X mp rate matrix, £, for the mp-state
unicyclic network. The off-diagonal elements £;; are the tran-
sition rates k; ; and the diagonal elements are set such that the
columns sum to zero [2].

Knowledge of the matrix elements of £ allows us write the
rate of change of the probability P;(N;t) for the system to be
found at site 7, given that it has completed exactly N rounds
around the cycle. We choose to register trips around the cycle
at the 0 <> 1 transition, such that [45]

d
E,PO(N;I) = — PoN 1) (k1,0 + kimp—1,0)

+ Pop— 1t (N5 )ko mp—1
+ Pi(N + Lit)ko 1,

d
57’1(/\/%) =—PiWN;5t) (ko1 + ka,1)

+ Po(./\/ — l;l)klw()
+ Pr(N5 1)k 2,

d
d—tpj(/\/;t) =—PiN;t)kjer1,; +kjer,j)

+ Pict N5k jor
+ Piot N5k jor, 4
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where the last equation applies to the case where j # 0, 1,
and @ and © represent addition and subtraction modulo mp,
respectively.

We then introduce a counting field y and Fourier transform
these quantities with respect to V, leading to the mp-element
characteristic function Z(x;t), whose elements are given by

Zian =Y PiN:ne™Nx, (5)
N=—00

We include a factor of mp in the exponent so that the counting
effectively tracks the number, n, of forward steps, rather than
the number, A/, of complete cycles. At sufficiently long times,
n ~ mp/N'. Getting a x -dressed (or “tilted”) rate matrix, £(x ),
to time evolve Z(x;t) directly, amounts to multiplying the
transition rate k; o as it appears in £ by a factor exp(impy ),
and multiplying ko ; by the reciprocal, exp(—imp ) [3]. Note
that an alternative approach towards obtaining £(x ) would be
to multiply every clockwise transition rate in £ by a factor of
justexp(iy ) and every anticlockwise transition rate by a factor
of exp(—iy); for full counting statistics of n in the transient
regime this would give greater detail, but it is equivalent at
steady state.
The scaled cumulant generating function is given by [45]

1
GO0 = lim —In y " Z;(x;0). (©6)
J

This is equivalent to the “dominant” eigenvalue of £(x): That
whose real part approaches zero in the limit that x approaches
zero. This function may be used to derive all of the scaled
cumulants at steady state via the relation [3],

k
7
PTG (N

J

Cv =

=0

As such, the method outlined above is sufficient to fully char-
acterize the steady-state probability distribution for walkers
through systems modeled by the type of modular random walk
we have introduced.

A. Analytic results for mp = 2

We focus here on the special case of the modular chain
where m = 1 (i.e., all segments are one site long and the total
spatial period is mp = 2). The differing rates for the two re-
gions are based on differing values of y4 and yg. Without any
significant loss of generality, we may suppose y4 = yg. We
want to investigate the statistics of this random walk at steady
state, with particular focus on how the values of the scaled
cumulants depend on Ay = y4 — yp. The limit Ay — 0 rep-
resents the case where the modular chain becomes identical to
its homogeneous counterpart.

The counting field-dependent rate matrix for the cyclic
network associated with this modular random walk is

e P2k + kg
. L®
—e kA — kB

—ky — e‘ka
L(x) = A
(X) (ezlx kA + €_bk3

Note that setting m = 1 gives rise to the special case where
two consecutive forward steps of the random walk correspond
to two transitions between the same pair of states in the finite
network. Accordingly, the elements of £ contain sums of two
transition rates.

Following the method outlined in Sec. III, we obtain the
scaled CGF,

2 Jcoshz (3 +ix) — &

(SIS

2

Gy =2—¢"
14

We remind the readeir that the ranc}om walk is defined in terms
of the rates ky = ;—A and kg = ;—B with the structural asym-
metry Ay = y4 — yp, further defining the averaged measure

for resistance y = WT}’”, and the corresponding rate constant,

=T
=

1. Mean velocity

Taking the first derivative of G(x) and setting x = 0, we
obtain an expression for the first cumulant, the mean velocity,
at steady state,

2 b b
¢ =25 ¢ % sinh <-> — 2¢~ % sinh (—)k*. (10)
y 2 2

Upon inspection, we note immediately that this quantity is
completely independent of the difference Ay and is therefore
the same for a random walk on the modular chain as it is for
the homogeneous chain with the appropriately defined rate k*.
In fact, using the results of Ref. [31], this form of the mean

A7)? sinh(ix ) sinh(b + ix ) — cosh (%)

(€))
=)

(

velocity can be derived for the modular random walks con-
sidered in this work, independent of the spatial period mp, as
long as my = mp. We stress that an experimental investigation
of a system modeled by such a random walk cannot detect
the underlying modular structure in any way if it takes into
consideration only the first cumulant.

Checking the limits of high and low b, we see expected
behavior. Namely, for small bias b, a linear response behavior
shows, C; — k*b, which goes strictly to zero when b = 0. For
large b, reverse transitions are suppressed and C; — k*, which
is the forward rate for the homogeneous chain. These trends
are displayed in Fig. 3 for modular chains of varying periods
mp > 2 based on numerical simulations.

2. Diffusion coefficient

Following the same procedure but taking the second order
derivative, we get an expression for the second cumulant, or
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FIG. 3. The first cumulant of the random walk process, corre-
sponding to the mean velocity, presented as a function of the bias b
for varying segment lengths, with m, = mg = m such that mp = 2m.
The dashed curve represents the expression given in Eq. (10). 7 =
y=Ay =1.

the diffusion coefficient,

2 el b\ 1 . b\ [ Ay \>
C, = 2 (%) |:cosh2 ( ) + 7 sinh? (5) <7> :|
(11)

Unlike the mean, this quantity depends on Ay and could be
used as a probe of modular structure. We note, in particular,
that a modular chain always exhibits a diffusion coefficient
greater than or equal to that of its homoegeneous counterpart.
However, this dependence appears in a term proportional to
e"/2sinh(b/2) tanh(b/2), thus its impact is most prominent
for heavily biased walks and diminishes in the limit b — 0.
Expanding the full expression in powers of b, we would see
Ay dependence only in terms of order-b> and higher. For
an unbiased random walk, b = 0, this dependence disappears
completely, and we have the familiar result that C, = 2k*.
This may be compared to the large b limit, where

<zfi§[1+1<Ay)}H (12)
4\ y

Here varying Ay between zero and its maximum possible
value of 2y can lead C, to vary by a factor of 2.

To probe the behavior of C, with varying bias in greater
detail, we return to the exact expression given in Eq. (11)

and note that at low b, & < 0. However, on the condition

that Ay /7 > 2//3, there exists a value of b at which this
derivative becomes positive. This leads C, to increase with
increasing b at sufficiently high values of b. This behavior,
which is counter to the conventional understanding of the ef-
fect of bias, could serve as experimentally accessible evidence
of underlying modular structure.

Our analytical results for mp = 2 reveal that (1) the diffu-
sion coefficient monotnonically grows with Ay, and (2) for
modular systems, it may display a nonmonotonic behavior
with bias. These trends, as well as the enhancement of the
diffusion coefficient with the lattice period mp, are presented
in Fig. 4 using numerical simulations.
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FIG. 4. Diffusion coefficient as a function of Ay for varying
segment lengths, my = mp = m. Dashed black curves represent the
analytic result for mp = 2. Plots are shown for (a) low and (b) high
bias. The inset of panel (a) depicts the same quantity on a log-log
plot, with the Ay = 0 contribution subtracted off, demonstrating that
the diffusion coefficient scales quadratically with Ay for varying m.
The inset of panel (b) shows C, as a function of b for Ay = 1.5,
demonstrating its nonmonotinicity with increasing b at sufficiently
high Ay /y. Dotted lines in panel (b) represent the limits of C, at
high bias for the two extreme values of Ay. These limits are based
on the expressions of Sec. [IIA. t =y = 1.

3. Skewness and kurtosis

Taking the third-order derivative of the CGF with respect
to x we obtain the skewness, which is given by

2 ¢=% sinh (2 b\ 3 /Ay\?
¢ :2;%[60@2 (3)+3(%)
7 cosh®(3) 2 4\ ¥y

3. o (b\(Ar)

Like the first cumulant, this quantity vanishes completely in
the absence of bias. However, Ay dependence is present in
contributions that are first order in b. Therefore, at low but
finite bias [Fig. 5(a)], the skewness may be said to express
the modular structure of the chain more substantially than the
diffusion coefficient does.
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FIG. 5. Scaled skewness as a function of Ay for varying segment
lengths, my = mp = m. Dashed black curves represent the analytic
result for mp = 2. Inset of panel (a): Log-log plot of the skewness
with its value at Ay = 0 subtracted off, showing that it scales quar-
tically with Ay for varying m. Dotted lines in panel (b) represent
the high-bias limits of C; at the two extreme values of Ay for
my = mp = 1. Parameter values are the same as in Fig. 4.

In the opposite limit that b — oo, the skewness saturates
to the finite value,

4
c; =% [1 + i(ﬂ) ]k*; (14)
16\ y

see Fig. 5(b). This value exhibits fourth-order dependence on
Ay, in comparison to the second-order dependence of the
diffusion coefficient on Ay in this regime. For very small
Ay /7y, we expect the skewness to be less sensitive to the
modular structure than the diffusion coefficient is.

Therefore, whether the diffusion coefficient or skewness
better expresses underlying modular structure is dependent on
the situation—if bias is high and the properties of the two
regions are believed to differ only slightly, measurements of
C, are likely the more expressive option. If the bias is weak,
the skewness is more sensitive to changes in Ay and will
likely convey more about the structure. The skewness in the
present model is positive for positive bias; it is interesting to

devise related models that display skewness with the opposite
sign to the bias [46].

The kurtosis is given by the fourth-order derivative of G(x)
evaluated at x = 0,

2 et b Ay 2
=2————|cosh*( = by =
G 7 cosh? (%)[COS (2) 1A )( 7 )

Ay\* 15 b\ [(Ay\°

where  f(b) = Z(e7 —36e7" + 118 — 36¢” + ¢*) and
g(b) = %(8’% — 12e7? 422 — 12¢" + &2). Continuing the
pattern that has emerged, we see more complex dependence
on Ay, now up to order Ay®.

Specifically, even at zero bias, the kurtosis exhibits Ay
dependence, taking the form

. Ay \?
c, =% 2[1 + 5(—’/) }k*. (16)
4\ y

This makes the kurtosis the lowest-order cumulant to be
nonvanishing and express information about the modular
structure even in the completely unbiased case.

In the infinite bias limit, the kurtosis goes to

oo L/AY\Y 9 [Ay\* 15/Ay\®
C4b—> 1+—Ty ——Ty +—Ty k*.
4\ 7 16\ y 64\ y
)

In sum, this analytical work and numerical simulations show
that (1) the kurtosis grows with the degree of modularity Ay
even at zero bias [Fig. 6(a)] and that (2) unlike the homoge-
nous case, in modular chains it can become negative [Fig. 6(b)
and 6(c)].

We have shown that for the case where m = 1, varying
amounts of information about the probability distribution over
the quantity n(z)/t at steady state are needed to discern un-
derlying modular structure of the chain. The first cumulant, or
mean velocity, is always identical to that for the analogous ho-
mogeneous chain. Therefore, at the very least, measurements
of the second cumulant are needed to establish whether or not
the transition rate alternates between two values, and, if so, the
degree to which the values y, and yp differ. However, depend-
ing on the specific features of the random walk in question
(i.e., if the bias is too low, or Ay /¥ is large), measurements
of the skewness or kurtosis may be more effective.

B. Ratios of cumulants and the TUR

We note further that these expressions lend themselves to
being studied in the context of their ratios. One such ratio
is the Fano factor (relative fluctuations or “noise-to-signal”
ratio). This quantity is known to be bounded in a manner
dependent on the kinetic network structure [17]. Furthermore,
it is significant to studies of the TUR, a cost-precision trade-
off which bounds it in terms of the entropy production rate
[47-49], as well as the kinetic uncertainty relation, which
bounds it in relation to the dynamical activity [50-52]. Eval-
uating the Fano factor for the modular random walk with
mp = 2, we note that prefactors on the expressions for the
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FIG. 6. Numerically determined scaled kurtosis as a function of Ay for varying my = mg = m at (a) zero, (b) low, and (c) high bias. The
black dashed curve represents the analytic expression determined for the m, = mp = 1 case. Inset of panel (a): Log-log plot of the kurtosis
with its value at Ay = 0 subtracted off, showing uniform scaling between different m values. Dotted lines in panel (c) represent the high-bias
limits of C, at low and high Ay, as determined for mp = 2 in Sec. IIT A. Parameter values are the same as in Fig. 4.

cumulants cancel out, leaving

C
2 coth

oan(t)fom ()3

(18)

If we suppose the random walk to represent a physical sys-
tem, with nonequilibrium conditions giving rise to the bias
b, then it is consistent to suppose that the entropy produc-
tion rate is given by (o) = C;b. As such, this quantity itself
expresses no more information about the network structure
than does the mean velocity, C;, which we know exhibits
no Ay dependence. This is in contrast to studies that have
identified intimate links between entropy production rate
and network structure when microscopic details are hid-
den, provided that a broad class of networks is considered
[53,54].

We can, however, get an exact expression for the TUR
ratio, (U)Cz/clz, which is required to be greater than or

equal to 2,
C2 Cz b 1 b A]/ 2
— =b— =bcoth | = —btanh | = | — ) .
13 = o, =veon () + gram (3)(5

19)

This expression does indeed take on values greater than or
equal to 2 for all values of b, going to exactly 2 strictly in
the limit b — 0. In addition, we note that the second term
represents a nonnegative contribution present only in the case
of a modular chain with nonzero bias. As such, a random
walk on a modular chain never comes as close to saturating
the TUR as its homogeneous counterpart in the presence
of bias.

Turning to the higher-order cumulants, we note that the
ratio C4/Cs exhibits the exact same behavior in the absence
of modular structure. However, it exhibits a more complicated
dependence on Ay. For instance, if we focus on the regime
where Ay is small compared to y, C4/C5 is given to good
approximation by its expansion to second order in Ay /y.

Accordingly,

T L (f®) 3\ (A
G coth <§) |:1 + cosh? (%) (cosh (%) 4)( Y > }

()]

Unlike in the case of the relative fluctuations, the contribution
from Ay /y takes on negative values at low, finite b. This
means that modularity may suppress the ratio C4/Cz below the
values it would take on in the homogeneous case, and even
below 2/b, distinguishing the behavior of this quantity from
that of the standard TUR ratio.

In addition to the TUR, results derived in Ref. [27] pertain-
ing to the statistics of the winding number (number of trips
the system makes around a unicyclic network of states) place
bounds on the ratios C3/C; and C4/C;. The model considered
here is a Markov jump process around a unicyclic network,
thus satisfying the assumptions required for these results to
hold.

(20)

C. Simulations

Simulations allow us to supplement our analytic results and
go beyond the m = 1 case. We now elaborate on these results.
We calculate the scaled cumulants for chains with greater
segment lengths by implementing full counting statistics nu-
merically.

In agreement with Ref. [31], simulations indicate that, for
my = mp, the expression derived analytically for the mean
velocity, Eq. (10), holds independently of the segment length
and Ay. This is demonstrated in Fig. 3, where the markers
indicating the numerically obtained values of the first cumu-
lant line up with the analytic curve for all segment lengths
throughout the range of bias values, with nonzero Ay.

Beyond the mean, higher-order scaled cumulants do
exhibit Ay dependence, even for the m = 1 case, as demon-
strated in Sec. III A. Thus, we focus on plotting these
quantities as a function of Ay to investigate how sensitively
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they express information about the structure of the chain, and
how variation in the segment length impacts this behavior.

In general, simulations show that segment length has a
substantial impact on the values and behavior of cumulants
with Ay, at low and intermediate bias. However, at high bias
the cumulants no longer reflect a segment-size dependence,
and they behave as they would in the case that segments
were one-site long, but still differently from the analogous
homogeneous random walk (Ay = 0 point on the graph).

In particular, this is demonstrated for the diffusion coeffi-
cient in Fig. 4, where greater sensitivity to Ay is observed as
the segment length increases, but only at low bias. Note that at
zero bias (not depicted), simulations have shown that the dif-
fusion coefficient goes to 2k* for all my = mp, as we showed
analytically for my = mp = 1, exhibiting no Ay dependence
at any segment length.

The inset of Fig. 4(b) demonstrates the nonmonotonicity
of C, with increasing bias, discussed in Sec. IIl A. As shown,
sufficiently high Ay /j leads the sign of dC,/9b to change
at a certain value of b. Interestingly, for the larger values of
m probed only in simulations, the behavior is the reverse of
that for m = 1, with C, increasing at first, and then beginning
to decrease with growing b at sufficiently high b. All curves
converge in the high-b limit, as is consistent with the main
plot.

The skewness, shown in Fig. 5, behaves similarly to the
diffusion coefficient, taking on values that grow even more
rapidly with increasing Ay . Once again, the zero-bias case is
not depicted, as the skewness is an odd-order cumulant and
always vanishes in this regime.

Finally, the Ay dependence of the kurtosis is demonstrated
in Fig. 6, including at zero bias. Away from the high-bias limit,
variations in the segment length lead to substantial variations
in the value of the kurtosis, including a strong nonmonotonic
behavior of the kurtosis with Ay at intermediate bias.

While the higher-order cumulants take on different values
for different segment lengths at low bias, we have demon-
strated additionally that the nature of the scaling is consistent
between different values of m. For instance, as we showed in
Sec. IIT A, the diffusion coefficient for the m = 1 case scales
quadratically with Ay. Our simulations show that this scaling
is quadratic for larger m as well, despite the form of the diffu-
sion coefficient not matching exactly. This is demonstrated on
the log-log plot in the inset of Fig. 4(a). Analogous findings
for the skewness and kurtosis are shown in Figs. 5 and 6,
respectively.

IV. REAL-SPACE SIMULATIONS
OF THE MASTER EQUATION

Modular junctions under bias display rich, even nonmono-
tonic trends as a function of bias and Ay, which we now
aim to explain through direct simulations of the probability
distribution functions. We obtain the PDF of the random walk
by numerically solving the master equation for site popula-
tions at different times. As an initial condition, we assume a
probability of 1 to be at site n = 0 and O elsewhere. We per-
form such simulations for long but finite chains (2 160 sites)
with absorbing boundary conditions. The simulation time is
chosen long enough to observe a behavior corresponding to

the steady-state limit of the associated finite cycle. That is, we
reach the situation of only the smallest-magnitude eigenvalue
in the Liouvillian substantially contributing to the dynamics.
From the other end, simulation time is limited to ensure that
boundary effects do not come into play.

We present the PDF for the random walk in Figs. 7 and 8
for the cases of low and high bias, respectively. In each case,
we study the PDF at different times, and for four different
values of the segment size m: 1, 2, 4, and 8.

As shown in Fig. 7, at low bias, while the mean of the
distribution remains in the same position as that for the asso-
ciated homogeneous chain, there are additional features that
grow more dramatic with increasing segment length m. These
features amount to a series of local maxima and minima aris-
ing as a result of the modular structure, and are understood to
account for the exotic behavior of the higher-order cumulants.

In particular, population builds up in the leftmost sites of
the “A” segments, characterized by slower rates. Due to these
sites’ positioning on the modular chain, population exits to
the right at rate k4, while it enters from the left at the faster
rate kp. In addition, the rate to exit to the left is suppressed
by the factor e~”. As such, population is generally fast to
enter the A sites and slow to exit, accounting for the buildup
of population at these sites observed in Fig. 7. Conversely,
at the leftmost sites of “B” segments, we see a depletion of
population due to the opposite effect. The transition rates into
this state from A are relatively slow while the rate to exit to
the left (towards A sites) is fast. A few examples of these
population maxima and minima are labeled in Fig. 7(c) with
the letters “A” and “B,” respectively. Overall, we observe a
probability distribution that deviates from the smooth curve
exhibited by the homogeneous random walk. This deviation
is more dramatic with longer segment lengths.

The limit of high bias is exemplified in Fig. 8, where we see
similar buildup of population in the less rigid “A” segments
and reduced population in the “B” segments due to the faster
transitions out of these sites. The letters “A” and “B” label a
few examples of this behavior in Fig. 8(c). However, some of
the very complex structure observed in the lower bias case is
absent, due to the fact that reverse transitions are effectively
eliminated. A trajectory to reach site n is understood as sim-
ply a sequence of n steps forward, approximately half with
waiting times characterized by the rate k4 and the other half
by kg. The order at which these steps occur is determined by
the value of m, but this no longer impacts the higher-order
cumulants of the distribution, explaining the indifference to
m that the diffusion coefficient, skewness, and kurtosis were
shown to exhibit at high bias in Sec. III C. The probability
distribution for two different segment lengths values line up at
values of n that are common multiples of the segment lengths.

In the Appendix, we calculate the cumulants from the real-
space simulations of the PDF as a function of time. Finite time
effects are rich [55,56]; in the steady state we show that the
scaled cumulants agree with results from Sec. I11.

V. SUMMARY

We have investigated the question of how the statistics
of a random walk can be used to gain information about
its underlying structure. Namely, we have examined random
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FIG. 7. Probability distribution functions at low bias obtained directly from the master equation for a 161-site chain. Each panel shows
snapshots of the PDF at three different times for a given segment length, n. The black curves are the analogous probability distributions for the

associated homogeneous random walk. y = Ay =1t =1,b=0.2.

walks on one-dimensional modular chains, with repeating fast
and slow segments, by determining how the cumulants of
the population distributions over their sites, scaled by time,
behave in comparison to those for analogous homogeneous
random walks. We have found that the first cumulant, or
mean velocity, always takes a form in the long-time limit that

B = 10
0.15 1t =35
t =80
A 0.1
0.05 \ /\
0 D
100
0.2
015
A
s 0.1 ,[B A
0.05} /B
0

100

matches the form for the homogeneous walk. Thus, measure-
ments taking into account only the mean velocity at steady
state are not sufficient to distinguish modular random walks
from their homogeneous counterparts.

Studying the statistics in greater detail can, however, be
an effective way to elucidate this very structure, with each

0.2
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FIG. 8. Probability distribution functions at high bias obtained directly from the master equation for a 321-site chain (with most of the
negative-n region not shown). Each panel shows snapshots of the PDF at three different times for a given segment length, n. The black curves
are the analogous probability distributions for the associated homogeneous random walk. b = §, representing the high-bias regime. Parameter

values are otherwise the same as in Fig. 7.
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of the higher-order cumulants discussed here reflecting the
underlying modularity. This work probes cumulants as high
as the kurtosis, which we found to be more expressive of
modular structure than the diffusion coefficient and skewness;
the kurtosis is nonzero, and it differs in value from that of
its homogeneous counterpart even in the zero-bias case. In
the presence of bias, however, all cumulants beyond the mean
velocity can be used to gain information about the underlying
structure.

Population distributions themselves can also elucidate the
impact that modular structure has on the behavior of random
walks. They exhibit deviations from the Gaussian form ex-
pected for homogeneous random walks, with local maxima
and minima occurring with the same periodicity along the
chain as the variations in transition rates. These are due to
local buildup and depletion of population due to the differing
transition rates within one period of the chain’s structure.

The present work considered classical transport—it is
interesting to generalize these observations to quantum dis-
sipative transport, e.g., by using the formalism of quantum
master equations with full counting statistics analysis [57,58].
In this regard it is intriguing to understand the role of quantum
coherences in the behavior of noise going beyond the homo-
geneous case [59] and beyond the second moment. This task
can be tackled by, e.g., the unified quantum master equation,
[60-62], which was recently proved to be thermodynamically
consistent in the steady-state regime [63,64].

Another avenue for further research would be to probe how
the results derived here may extend to Langevin descriptions
of particle diffusion in real space. Modular structure may then
be reflected in the potential, for instance, with varying barrier
heights between potential wells corresponding to the varying
transition rates in our model.

Furthermore, the underlying structure of a random walk
may not always be characterized by perfectly periodic vari-
ations in transition rates. Instead, one may consider a random
walk on a disordered chain, with site-to-site transitions rates
whose spatial variation is random. The analogous problem
has been studied for Brownian motion in continuous space,
with disorder having notable impacts on the diffusion coef-
ficient [65,66]. Future work may investigate how this kind
of underlying structure might be reflected in the higher-order
cumulants of the population distribution for random walks.

In addition, it would be interesting to study how higher-
order cumulants may reflect structure that is associated not
just with transition rates, but also with the geometry of the
network of states on which the random walk plays out. For in-
stance, one may investigate how the presence of side chains or
branches in the underlying network may be inferred through
measurements of the statistics at steady state.

ACKNOWLEDGMENTS

D.S. acknowledges the NSERC discovery grant and the
Canada Research Chairs Program. M.G. acknowledges sup-
port from the Ontario Graduate Scholarship and the NSERC
Canada Graduate Scholarship-Doctoral. The authors ac-
knowledge Anton Zilman for fruitful discussions on kinetic
networks.

0 i — — —Homogeneous
S 0.2 1 m=1
-=—=-m=2
041 | m=4
06} |- m=
0 50 100

FIG. 9. The first four scaled cumulants as a function of time,
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of each cumulant for the associated homogeneous chain. b = 0.2,
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APPENDIX: CALCULATION OF THE CUMULANTS
FROM REAL-SPACE SIMULATIONS

We use the numerical solutions of Sec. IV to calculate
the scaled cumulants as a function of time. In particular, we
calculate the moments of the distribution over n(t), which are
represented by single angle brackets,

(n(1)) = anP,l(r)

The summation is done over the many sites included in the
simulation. We then derive the scaled cumulants which are
given by Eq. (3) in the long-time limit, but in the transient
regime are time derivatives of functions of the moments:

(AL)

d
Ci(t) = EM(I»’

d
77 () = (n())),

Co(t) =
d
Cy(r) = - (In(t) — (),
Cit) = Eu[n(r) — (n()1*) = 3([n() — (n@)1H*]. (A2)

Calculation of these quantities involves taking time deriva-
tives of the moments, given by

—(nt (1)) = Zn —P () (A3)

Note that the scaled cumulants here are time-dependent quan-
tities that depend on the choice of initial state. In the long-time
limit, they converge to the steady-state values calculated by
the method outlined in Sec. III.

The scaled cumulants as calculated in this manner are
shown in Figs. 9 and 10 for low bias (b = 0.2) and high bias
(b = 8), respectively. The parameter values match those of
Figs. 7 and 8 exactly. The probability distributions P, for the
161- and 321-site chains do not exhibit a significant amount
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FIG. 10. The first four scaled cumulants as a function of time,
for various segment lengths, calculated directly from the solution
of the master equation for a 321-site chain. The black dashed lines
represent the steady-state value of each cumulant for the associated
homogeneous chain. This reference line is hidden in the plot of C,
due to the large amplitude of its pre-steady-state oscillations setting
the vertical axis scale. b = 8, representing the high-bias regime.
Parameter values are otherwise the same as in Fig. 9.

of population near the boundaries within the time frame of the
simulation. As such, boundary effects may be ignored, and
the simulations may be understood to approximate infinite
random walks. However, these systems can be observed to
reach a quasi-steady state as each of the scaled cumulants,

Ck, approaches its asymptotic value. The timescale for this to
occur is the timescale for the analogous bipartite finite chain to
reach its steady state, given by the largest nonzero eigenvalue
of the rate matrix for this system, as discussed in Secs. 1I
and III. This timescale is observed to grow substantially with
the segment length m; in the context of the finite cycle, this
is intuitive as a greater number of steps are needed for the
population to spread out over all the states.

In addition, before reaching the quasi-steady state, we ob-
serve oscillations about the steady-state value of each scaled
cumulant of second order and higher. These oscillations grow
in magnitude with both bias and segment length. We attribute
this behavior to the effects of population reaching different
regions of the chain. Particularly in the high-bias case, the
walker must traverse the initial, slower, “A” segment before
reaching a faster, “B” segment. Thus, the diffusion coefficient
peaks once a significant amount of population has reached
the first “B” segment and had a chance to spread out more
rapidly. Later, the diffusion coefficient decreases in value as
population once again builds up in a slower “A” regions, etc.
These oscillations die off once the population has spread out
over enough of the spatial periods that each of these effects
is effectively happening simultaneously. This takes longer to
occur for longer segments.

The asymptotic values of the scaled cumulants line up
with the steady-state values shown in Figs. 4-6 at Ay =1,
with visible deviations from the value predicted for the homo-
geneous chain. Before reaching steady state, however, these
quantities vary quite dramatically, particularly for larger m.
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