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Mpemba effect for a Brownian particle trapped in a single well potential
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The Mpemba effect refers to the counterintuitive phenomenon of a hotter system equilibrating faster than
a colder system when both are quenched to the same low temperature. For a Brownian particle trapped in a
piecewise linear single well potential that is devoid of any other metastable minima, we show the existence of
the Mpemba effect for a wide range of parameters through an exact solution. This result challenges the prevalent
explanation of the Mpemba effect that requires the energy landscape to be rugged with multiple minima. We also
demonstrate the existence of inverse and strong Mpemba effects.
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I. INTRODUCTION

The Mpemba effect describes an anomalous relaxation
phenomenon wherein a system that is initially hotter equi-
librates faster than a system that is initially cooler, when
both systems are quenched to the same low temperature [1].
Recently, there has been considerable experimental and the-
oretical interest in the Mpemba effect. The effect was first
observed in the freezing of water [1–9], though its existence
in water is still debated [10]. However, it has now been exper-
imentally observed in a wide range of physical systems such
as magnetic alloys [11], polylactides [12], clathrate hydrates
[13], colloidal systems [14–17], etc. Theoretical studies, fo-
cusing on model systems, have shown the existence of the
Mpemba effect in spin systems [18–23], Markovian systems
with few states [24,25], particles diffusing in a potential
[26–30], active systems [31], spin glasses [32], molecular
gases in contact with a thermal reservoir [33–36], quantum
systems [37–39], systems with phase transitions [21,40–42],
and granular systems [43–50]. A recent theoretical investiga-
tion employing a geometric approach to understanding such
an anomalous relaxation is presented in Ref. [51].

Several system-specific reasons have been proposed to ex-
plain the Mpemba effect. For example, the different reasons
proposed for the Mpemba effect in water include evapora-
tion [2], convection [3], dissolved gases [4], supercooling [5],
hydrogen bonding [6–8], and nonequipartition of energy [9].
For clathrate hydrates [13], the interplay between evaporation
and the properties of hydrogen bonds has been suggested,
while the Mpemba effect in magnetic alloys [11] has been
attributed to the kinetic arrest of nonequilibrium phase during
the relaxation. However, a general understanding of the origin
of the Mpemba effect is lacking. Recently, insights obtained
from theoretical studies, in particular analytically tractable
models with only a few degrees of freedom, suggest that
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the main driver of the Mpemba effect is the ruggedness or
the presence of multiple minima in the energy landscape.
In particular, it has been suggested that a metastable min-
imum, in addition to the global minimum, tends to trap a
system at lower temperature more effectively than a system
at higher temperature, resulting in a faster relaxation of the
hotter system [18,19,24,26,31,52]. This viewpoint was further
supported in a recent experiment on a single Brownian particle
diffusing in an asymmetric double well harmonic potential
with linear slopes near the boundaries of the domain, where
the Mpemba effect was clearly demonstrated [14]. However,
the necessity of a metastable minimum for the Mpemba effect
has been questioned in recent works [26,52]. For a particular
choice of a piecewise constant potential, it was shown that
the Mpemba effect is observed when the metastable state
has neutral equilibrium [26], while its existence was shown
for the particular case of a double well potential when the
metastability is just lifted [52].

In this paper, we solve exactly for the relaxation dy-
namics of a Brownian particle in a piecewise linear single
well potential. By obtaining the phase diagram for differ-
ent combinations of the parameters defining the potential,
we show that the Mpemba effect is observable for a wide
choice of potentials, conclusively showing that the origin of
the Mpemba effect does not require the energy landscape to
have metastable minima, in addition to the global minimum.
We also demonstrate the existence of the inverse Mpemba ef-
fect for systems that are heated, as well as the strong Mpemba
effect when a colder system cools exponentially faster. In
addition, we show numerically the presence of the Mpemba
effect for an overdamped particle in a single well asymmetric
harmonic potential that can be realized in an experimental
setup similar to that of Ref. [14].

II. MODEL AND FORMALISM

We consider a Brownian particle in one dimension
trapped in a single well potential Ũ (x̃) that is infinite out-
side a domain of length L. The thermal environment is
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FIG. 1. Schematic diagram of the piecewise linear single well
potential. The parameters k1 and k2 refer to the slopes, α denotes
the ratio of width of the right domain to the left domain, and U� and
Ur are the values of the potential at the boundaries.

characterized by noise η that has the characteristics 〈η(t̃ )〉 = 0
and 〈η(t̃ )η(t̃ ′)〉 = 2γ kBT̃bδ(t̃ − t̃ ′), where γ is the damping
coefficient, t̃ is time, T̃b is the temperature of the thermal bath,
and kB is Boltzmann’s constant. The motion of the particle is
described by the Langevin equation

γ
dx̃

dt̃
= −dŨ

dx̃
+ η(t̃ ). (1)

We consider dimensionless variables x = (2π/L)x̃, T =
T̃ /T̃b, U = Ũ/(kBT̃b), and t = (4π2kBT̃b/γ L2)t̃ . The corre-
sponding Fokker-Planck (FP) equation for the evolution of
the probability density p(x, t ) in the nondimensionalized vari-
ables is given by [53,54]

∂ p(x, t )

∂t
= ∂

∂x

[
dU (x)

dx
p(x, t )

]
+ ∂2 p(x, t )

∂x2
= LFP p(x, t ),

(2)
where LFP is the FP operator:

LFP = ∂xU
′ + ∂2

x . (3)

The corresponding probability current/flux in Eq. (2) is
given by

J (x) = −
[

dU

dx
+ ∂

∂x

]
p = −e−U (x) d

dx
[eU (x) p]. (4)

With the aim to demonstrate and characterize the Mpemba
effect in the absence of metastable states, we consider a single
well potential that is piecewise linear, as shown in Fig. 1, and
is given by

U (x) =
{

U� + k1(x − xmin), xmin < x < 0,

k2x, 0 < x < xmax,
(5)

where xmin = −2π/(1 + α) and xmax = 2πα/(1 + α) are the
positions of the boundaries, k1, k2 are the slopes, and U�,Ur

are the values of the potential at the boundaries. The minimum
of the potential, set equal to zero, is fixed at x = 0. The
parameter α is the ratio of the length of the right domain to
that to the left domain. The motivation for the choice of xmin

and xmax in the current form is to ensure that the introduction
of asymmetry in the left and right domain lengths does not
change the total length of the potential domain, which is
kept fixed at 2π in the dimensionless variable. It simplifies
the analysis by not taking into account an extra parameter
(in the form of the total length of the potential domain) in
the study of the Mpemba effect. The parameters U�, Ur , and
α are the sole parameters that characterize the configuration
of the potential. The piecewise linearity makes the problem
analytically tractable.

To solve the FP equation in Eq. (2), we closely follow the
known methods in Refs. [53,54] and the solution in Ref. [52].
We first transform the associated FP operator LFP to a self-
adjoint operator L:

L = eU (x)/2LFPe−U (x)/2 = ∂2

∂x2
− 1

4

(
dU

dx

)2

+ 1

2

d2U

dx2
. (6)

The problem then reduces to solving the eigenvalue
equation

Lψn = −|λn|ψn, (7)

where ψn are the eigenfunctions of the operator L corre-
sponding to the eigenvalue λn. Note that both the operators
L and LFP have the same eigenvalue λn, but their respective
eigenfunctions ψn(x) and φn(x) are related by

ψn(x) = e
U (x)

2 φn(x). (8)

Given the initial probability condition p(x′, 0), the proba-
bility distribution function p(x, t ) can be obtained as

p(x, t ) =
∫

W (x, t |x′, 0)p(x′, 0)dx′, (9)

where the transition probability or the propagator W (x, t |x′, 0)
of the Fokker-Planck equation can be written in terms of the
eigenfunctions and eigenvalues (see [53]),

W (x, t |x′, 0) = eLFPt δ(x − x′)

= e− U (x)
2 + U (x′ )

2

∑
n

eλntψn(x)ψ∗
n (x′). (10)

Substituting the transition probability into Eq. (9), one finds

p(x, t ) =
∫

dx′e− U (x)
2 + U (x′ )

2

∑
n

eλntψn(x)ψ∗
n (x′)p(x′, 0).

(11)

Since λ1 = 0, we can rewrite Eq. (11) as follows:

p(x, t ) = e−U (x)

Z (1)
+

∑
n�2

ane
−U (x)

2 ψn(x)e−|λn|t , (12)

where the coefficients an are fixed by the initial distribution

p(x′, 0): an = ∫
dx′ p(x′, 0) e

U (x′ )
2 ψ∗

n (x′). The first term on the
right-hand side of Eq. (12) corresponds to the eigenvalue
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λ1 = 0 and describes the final equilibrium Boltzmann distri-
bution with partition function Z (1) = ∫

e−U (x)dx at the bath
temperature Tb = 1. The eigenvalues λn of the FP operator
follow the order λ1 = 0 > λ2 > λ3 · · · . The nondegener-
acy of the eigenvalues is guaranteed as the FP operator
with its boundary conditions (as discussed in Sec. II A)
forms a one-dimensional regular Sturm-Liouville problem
[55]. As a result, we can approximate for p(x, t ) at large
times as

p(x, t ) � e−U (x)

Z (1)
+ a2e

−U (x)
2 ψ2(x)e−|λ2|t , t � 1

|λ3| .
(13)

A. Jump conditions

Here, we outline the various jump discontinuities and
boundary conditions that the probability density p(x, t ) should
satisfy for the piecewise linear potential that is considered in
this paper. The potential in Eq. (5) is not differentiable at
x = 0, and it diverges at the boundaries x = xmin and xmax.
Let x− and x+ denote the points just to the left and right of
the boundary of a linear segment. For the choice of potential,
U (x+) = U (x−) while U ′(x+) �= U ′(x−). Across a boundary,
both probability currents are equal, i.e., J (x+, t ) = J (x−, t ),
and the probabilities are equal. Thus, from Eq. (4), we obtain

−U ′(x+)p(x+, t ) − ∂ p(x+, t )

∂x

= −U ′(x−)p(x−, t ) − ∂ p(x−, t )

∂x
, (14)

p(x+, t ) = p(x−, t ). (15)

The jump conditions in Eqs. (14) and (15) are satisfied by each
of the eigenfunctions, and hence, using Eq. (11), as

ψ ′
n(x+) + U ′(x+)ψn(x+)

2
= ψ ′

n(x−) + U ′(x−)ψn(x−)

2
, (16)

ψn(x+) = ψn(x−). (17)

At the boundaries, the potential diverges. This implies that
the probability current must vanish and it leads to the follow-
ing condition in terms of the eigenfunctions:

ψ ′
n(x) + U ′(x)

2
ψn(x) = 0 at x = xmin, xmax. (18)

The jump conditions [Eqs. (17), (16), and (18)] are utilized to
solve the eigenspectrum of the Fokker-Planck operator L [see
Eq. (7)] as discussed in Sec. II B.

B. Eigenspectrum analysis

Now having known the necessary jump discontinuities and
boundary conditions, we need to solve the following eigen-
value problem for the Fokker-Planck operator:

Lψn = −|λn|ψn, (19)

where ψn are the eigenfunctions of the self-adjoint Fokker-
Planck operator L [see Eq. (6)] corresponding to the
eigenvalue λn. We solve separately in each of the two domains

of the potential U (x), characterized by slopes k1 and k2. This
will lead to four constants of integration that will be deter-
mined by the jump conditions at the boundaries of the regions,
leading to a transcendental equation for the eigenvalue. In the
following, we solve for the eigenfunctions separately for the
left and right domains.

1. Region I: xmin < x < 0

Here, U ′(x) = k1. Then, Eq. (19) takes the form

d2ψ I
n

dx2
+

(
λn − k2

1

4

)
ψ I

n = 0, (20)

which has the solution

ψ I
n (x) = An sin(m1nx) + Bn cos(m1nx), (21)

where An, Bn are constants, and

m1n =
√

λn − k2
1

4
. (22)

The solution for the eigenfunction in the other regime is
similar, but with different constants.

2. Region II: 0 < x < xmax

Here, U ′(x) = k2, and Eq. (19) takes the form

ψ II
n (x) = Cn sin(m2nx) + Dn cos(m2nx), (23)

where

m2n =
√

λn − k2
2

4
. (24)

C. Matching and boundary conditions

We now determine the different constants using the match-
ing and boundary conditions. First, we employ the boundary
conditions [see Eq. (18)] where the divergence of the poten-
tial at the boundaries leads to vanishing probability current.
Next, we use the matching conditions [see Eqs. (16) and (17)]
at x = 0, the boundary between the left and right domains,
arising from the continuity of the probability current.

1. Boundary condition at xmin

Since there is an infinite jump in potential at x = xmin, the
boundary condition in terms of eigenfunctions ψn is given by

ψ I ′
n (xmin) + U ′

1(xmin)

2
ψ I

n (xmin) = 0. (25)

Substituting for ψ I
n from Eq. (21), we obtain

An = −ν1nBn, (26)

ν1n =
k1
2 cos(m1nxmin) − m1n sin(m1nxmin)
k1
2 sin(m1nxmin) + m1n cos(m1nxmin)

. (27)

Thus,

ψ I
n (x) = Bn[cos(m4nx) − ν1n sin(m4nx)]. (28)
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2. Boundary condition at xmax

Since there is an infinite jump in potential at x = xmax,
the boundary condition in terms of eigenfunctions ψn is
given by

ψ II′
n (xmax) + U ′

2(xmax)

2
ψ II

n (xmax) = 0. (29)

Substituting for ψ II
n from Eq. (23), we obtain

Cn = −ν2nDn, (30)

ν2n =
k2
2 cos(m2nxmax) − m2n sin(m2nxmax)
k2
2 sin(m2nxmax) + m2n cos(m2nxmax)

. (31)

Thus,

ψ II
n (x) = Cn[cos(m2nx) − ν2n sin(m2nx)]. (32)

3. Matching condition at x = 0

Here, we use the jump conditions obtained from the con-
tinuity of the probability current [see Eqs. (16) and (17)] at
x = 0. Upon simplifying, we obtain

Bn = Dn. (33)

m1nAn + k1

2
Dn = m2nCn + k2

2
Dn. (34)

Using Eqs. (30), (26), and (33) in Eq. (34) leads to the
following transcendental equation:

m1nν1n − k1

2
= m2nν2n − k2

2
(35)

in λn as m1n and m2n can be expressed in terms of λn [see
Eqs. (22) and (24)]. Thus, solving for the eigenvalues λn in
turn helps to find the constants An, Bn, Cn, and Dn.

III. MPEMBA EFFECT

We will now use Eq. (13), which describes the relaxation
dynamics at late times, to quantitatively define the Mpemba
effect for this system. Consider two systems P and Q ini-
tially in equilibrium at temperatures Th and Tc, respectively,
where Th > Tc. Let π (T ) denote the corresponding equilib-
rium probability distribution at temperature T . Both systems
are then simultaneously quenched to a common bath tempera-
ture Tb = 1 where Th > Tc > 1. If P equilibrates faster than
Q, the Mpemba effect is said to exist. Faster equilibration
is quantified in terms of a distance from equilibrium func-
tion D[p(t ), π (1)] which measures the distance between the
instantaneous distribution p(x, t ) from the final equilibrium
Boltzmann distribution, π (1). It has been argued [24] that the
existence of the Mpemba effect is independent of the choice
of D[p(t ), π (1)] provided that the distance measure obeys
certain properties. These are as follows: (i) If Th > Tc > 1,
then the distance function should satisfy D[π (Th), π (1)] >

D[π (Tc), π (1)], i.e., the higher the temperature, the larger the
distance; (ii) D[p(t ), π (1)] should be a nonincreasing function
of time; and (iii) D[p(t ), π (1)] should be a convex function of
p(t ).

FIG. 2. Illustration of the Mpemba effect and the inverse
Mpemba effect for particular choices of the potential U (x). (a) Two
choices of the potential corresponding to U� = 4.0 (solid red) and
U� = 6.0 (dashed blue), keeping Ur = 10.0, α = 1.0 fixed. (b) For
U (x) in (a) with a smaller (larger) value of U�, |a2(T )| is nonmono-
tonic (monotonic) for T > 1, demonstrating the presence (absence)
of the Mpemba effect. (c) Two choices of the potential corresponding
to U� = 0.2 (solid red) and U� = 2.0 (dashed blue) keeping Ur = 8.0,
α = 1.0 fixed. (d) For U (x) in (c) with a smaller (larger) value of U�,
|a2(T )| is nonmonotonic (monotonic) for T < 1, demonstrating the
presence (absence) of the inverse Mpemba effect.

A convenient choice of such a distance measure is the
total variation distance defined as D[p(t ), π (1)] ≡ L1(t ) =∫

dx|p(x, t ) − π (x, 1)|. When t = 0, since Th > Tc, initially
Lh

1 > Lc
1. For the Mpemba effect to exist, we require that

Lh
1 < Lc

1 at late times. In Eq. (13), since λ2 is independent
of the initial condition, the above condition for the Mpemba
effect reduces to |ac

2| > |ah
2| [19,24]. Equivalently, if |a2(T )|

is nonmonotonic with temperature, then we would always be
able to make a choice of Th and Tc such that |ac

2| > |ah
2|. In

Sec. IV, by considering one other distance measure, namely
Kullback-Leibler divergence along with the L1 norm, we will
illustrate through an example that the Mpemba effect is inde-
pendent of the choice of distance measures.

The methodology we employ is as follows. Given a poten-
tial, we solve for the eigenspectrum, which in turn allows us
to compute the time evolution of the probability distribution
of the particle during equilibration using Eq. (12). We then
determine |a2(T )| for T > 1 and check for nonmonotonicity.
A similar analysis can be done for the inverse Mpemba effect
in which the systems are quenched to a temperature that is
higher than the initial temperatures. To check for the presence
of the inverse Mpemba effect, we check whether |a2(T )| for
T < 1 is nonmonotonic.

We first show the existence of the Mpemba effect and the
inverse Mpemba effect for a single well potential in order to
demonstrate that the origin of the effect does not require more
than one energy minima. For this purpose, we make specific
choices of the single well potential, as shown in Fig. 2. For the
two instances of U (x), shown in Fig. 2(a), |a2(T )| for T > 1 is
nonmonotonic for one and monotonic for the other, showing
the presence and absence of the Mpemba effect depending on
the choice of potential. A similar construction is possible for
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FIG. 3. Illustration of the Mpemba effect in terms of the distance
measures: (a) total variation measure (L1) and (b) Kullback-Leibler
(KL) divergence measure. The configuration of the potential is de-
termined by the choice of the parameters: α = 1.0, U� = 4.0, and
Ur = 10.0 as considered in Fig. 2(a). The temperatures of the initially
hot and cold systems are Th = 50 (solid red) and Tc = 6 (dashed
blue), respectively. Since the curves cross each other, the Mpemba
effect exists.

the inverse Mpemba effect. For the two instances of U (x),
shown in Fig. 2(b), |a2(T )| for T < 1 is nonmonotonic for
one and monotonic for the other, showing the presence and
absence of the inverse Mpemba effect depending on the choice
of potential. Beyond showing its existence, we will not discuss
the inverse Mpemba effect further.

IV. ROLE OF DISTANCE MEASURES
IN THE MPEMBA EFFECT

We now illustrate an example that demonstrates that the
existence of the Mpemba effect does not depend on the
choice of the distance measures. We consider the poten-
tial with parameters as in Fig. 2(a), for which the Mpemba
effect, in terms of the criterion based on |a2|, is shown
to exist for a wide range of initial temperatures. To show
that the Mpemba effect is not dependent on the choice of
the criterion, we check whether the effect exists for two
choices of distance from steady state: total variation measure,
L1(t ) = ∫

dx|p(x, t ) − π (x, Tb)|, and Kullback-Leibler diver-
gence, KL(t ) = ∫

dxp(x, t ) ln (p(x, t )/π (x, Tb)). In Fig. 3,
we show the variation of these distance measures with time
for two different initial conditions relaxing to the same steady
state. We note that for these choices of initial conditions,
the Mpemba effect exists in terms of |a2|. For both distance
measures, we observe a crossing showing that the Mpemba
effect exists. The crossing time depends on the choice of the
distance measure. This illustrates, through an example, that

FIG. 4. The U�-Ur phase diagram showing regions where the
Mpemba effect is present (shaded green) and absent (white) for
(a) α = 1.0, (b) α = 1.2, and (c) α = 1.4. (d) The U�-Ur phase
diagram showing regions where a strong Mpemba effect is present
(shaded yellow) and absent (white) for α = 1.2.

the Mpemba effect is independent of the choice of distance
measures.

V. PHASE DIAGRAMS

To get an insight into what potentials allow for the Mpemba
effect, we now construct phase diagrams demarcating regions
that show the Mpemba effect from regions that do not. Note
that the potential U (x) is characterized by three parameters:
U�, Ur , and α. Asymmetry in the potential can be introduced
through U� �= Ur and/or α �= 1. The fully symmetric potential
is not expected to show the Mpemba effect [26,30]. To explore
the effect of all three parameters, we determine the phase
diagram in the U�-Ur plane for fixed α. The phase diagrams
for α = 1.0, 1.2, and 1.4 are shown in Figs. 4(a)–4(c). First,
we observe that, for all three values of α, the fraction of
the parameter space that shows the Mpemba effect is not
negligible. This implies that, for the single well potential, the
Mpemba effect can be observed for generic choices of poten-
tials. Second, we observe that when U� = Ur , the Mpemba
effect does not exist even if asymmetry is introduced through
α �= 1. Thus asymmetry through only different domain widths
is not sufficient. Third, when α is increased, thereby increas-
ing asymmetry in the potential, the area of the region showing
the Mpemba effect decreases. This is contrary to expecta-
tion based on the experiment on colloids [14], where it was
observed that asymmetry in domain widths in double well
potentials enhanced the Mpemba effect. To further demon-
strate that increasing α may not be beneficial, we analyzed
the particular case of U� = 2.0 and Ur = 8.0, and we found
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FIG. 5. Numerical results for the illustration of the Mpemba ef-
fect for a single well harmonic potential. (a) Shape of the potential
with a harmonic well (solid red region) and linear slopes near the
boundaries (dashed blue regions). The parameters of the potential
are chosen as α = 1.0, −xmin = xmax = π , k = 1.5, U� = 4.0, Ur =
10.0, and β = 0.2. (b) The variation of |a2(T )| with temperature
T , obtained by a numerical solution, is nonmonotonic, showing the
presence of the Mpemba effect.

that the Mpemba effect is present for α only in the domain
that is approximately (0.3, 1.1).

We now discuss the existence of a strong Mpemba effect
for single well potentials. A strong Mpemba effect refers to
the case when the hotter system cools exponentially faster
than the colder system. In terms of Eq. (13), this can be
achieved only if the coefficient a2(T ) is zero. When a2 = 0,
the slowest relaxation mode does not contribute. For α = 1.2,
we identify those potentials for which a2 is zero for some
temperature. Then, if we choose Tc to be the same tempera-
ture, we would observe a strong Mpemba effect. Figure 4(d)
shows the phase-space region in the U�-Ur plane where a
strong Mpemba effect is present/absent for α = 1.2. Thus,
even for the existence of a strong Mpemba effect, a rugged
energy landscape is not necessary.

VI. A MORE REALISTIC SETUP

Finally, we discuss the connection to experiments. In the
experiment of Kumar and Bechhoefer [14], the Mpemba ef-
fect was demonstrated for a colloidal particle trapped in an
asymmetric double well harmonic potential with linear be-
havior near the edges. We now show that the piecewise linear
single well potential considered in this paper, when modified
to have a harmonic minimum and linear behavior near the
edges, continues to exhibit the Mpemba effect. Consider the
particular realization of the single well potential, shown in
Fig. 5(a), which has a harmonic minimum. The harmonic part
is chosen to extend up to βxmin and βxmax. Beyond these
cutoffs, U (x) is linear until they meet the boundaries. The
potential is described quantitatively as

U (x) =

⎧⎪⎪⎨
⎪⎪⎩

U� + (U�−k(βxmin )2

xmin(1−β )

)
(x − xmin), xmin < x < βxmin,

kx2, βxmin < x < βxmax,

k(βxmax)2 + Ur−k(βxmax )2

(1−β )xmax
(x − βxmax), βxmax < x < xmax,

(36)

where β ∈ (0, 1), and k characterizes the stiffness of the har-
monic part of the potential. However, for such potentials, it is
no longer possible to analytically solve for the eigenspectrum.
Instead, we can solve the eigenspectrum numerically, and thus
obtain the coefficient a2. For the particular choice of potential,
|a2(T )| is clearly nonmonotonic [see Fig. 5(b)], showing the
existence of the Mpemba effect in single well harmonic po-
tentials. Thus, we expect that if the experiment in Ref. [14] is
repeated with a single well potential, the Mpemba effect will
be observed.

VII. CONCLUSION

In summary, we solved exactly the relaxation dynamics of
a Brownian particle in an asymmetric single well potential that
is piecewise linear. By identifying the regions in parameter

space that exhibit the Mpemba effect, we not only show that
the presence of the Mpemba effect does not require the energy
landscape to have multiple minima, but also that the Mpemba
effect can be realized for generic choices of potentials. We
also demonstrated that both the inverse and strong Mpemba
effects can also be realized for single well potentials. We also
showed numerically that single well harmonic potentials, as
opposed to piecewise linear single well potentials, continue
to exhibit the Mpemba effect, opening up the possibility of
experimental realization along the lines of the experiment in
Ref. [14].
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