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Geometric properties of the complete-graph Ising model in the loop representation

Zhiyi Li ,1 Zongzheng Zhou ,2 Sheng Fang,3,4,* and Youjin Deng 1,3,4,†

1Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
2ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics,

Monash University, Clayton, Victoria 3800, Australia
3Hefei National Research Center for Physical Sciences at the Microscale,

University of Science and Technology of China, Hefei 230026, China
4MinJiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering,

Minjiang University, Fuzhou 350108, China

(Received 2 March 2023; accepted 12 June 2023; published 15 August 2023)

The exact solution of the Ising model on the complete graph (CG) provides an important, though mean-field,
insight for the theory of continuous phase transitions. Besides the original spin, the Ising model can be formulated
in the Fortuin-Kasteleyn random cluster and the loop representation, in which many geometric quantities have
no correspondence in the spin representations. Using a lifted-worm irreversible algorithm, we study the CG-
Ising model in the loop representation and, based on theoretical and numerical analyses, obtain a number of
exact results including volume fractal dimensions and scaling forms. Moreover, by combining with the loop-
cluster algorithm, we demonstrate how the loop representation can provide an intuitive understanding to the
recently observed rich geometric phenomena in the random-cluster representation, including the emergence of
two configuration sectors, two length scales, and two scaling windows.
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I. INTRODUCTION

The Ising model [1] is one of the most prototypical models
in statistical physics and plays an important role in the study of
phase transitions and critical phenomena. It has wide applica-
tions in many fields, including material science, neuroscience,
and biology, etc. Given a graph (or lattice) G = (V, E ) with
the vertex set V and edge set E , the Hamiltonian of the zero-
field ferromagnetic Ising model reads

H(s) = −J
∑
i j∈E

sis j, (1)

where J > 0 is the interaction strength. The probability of a
spin configuration s ∈ {−1, 1}V is given by the Gibbs mea-
sure π (s) ∝ e−βH (s), where β is the inverse temperature. Let
K := βJ be the reduced coupling strength, and one can set
J = 1 for convenience. On lattices Zd , it has been rigorously
established that the Ising model goes through a continuous
phase transition for d � 2 [2–4].

In addition to its spin representation in Eq. (1), the Ising
model can be formulated in two other geometric representa-
tions, the loop representation and the Fortuin-Kasteleyn (FK)
bond representation. Here, we provide a brief overview of
these two representations for clarity. In 1941, van der Waerden
proposed a high-temperature expansion trick [5] for the Ising
model, where the statistical weight for each interaction term
is rewritten as exp(Ksis j ) = cosh K (1 + sis j tanh K ). Further,
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an auxiliary variable fi j = 0, 1 is introduced such that the
second term, sis j tanh K , is geometrically represented by an
occupied bond fi j = 1, and the first term corresponds to
an empty bond fi j = 0. Then, the spin degrees of freedom
can be integrated out by calculating the partition function
Zspin = ∑

s e−βH(s), leading to the summation of geometric
configurations of bond variables f . Due to the Z2 symmetry of
the Ising spins, nonzero contributions to the partition function
come only from those configurations F , in which any vertex
is incident to an even number of occupied bonds. Such a
configuration is composed of loops (also called currents or
flows). In graph theory, such a loop configuration is referred
to as an Eulerian graph or an even graph. Let even(G) be the
set of loop configurations on G. Then, the loop Ising model is
defined by giving any F the probability measure

π (F ) ∝ w|F |δF∈even(G), (2)

where |F | represents the total number of occupied bonds,
the bond weight is w = tanh K , and δF∈even(G) is an indicator
function that ensures that any graph F descried by the flow
variables is an even graph. Apart from the Eulerian require-
ment, the probability measure (2) would describe the standard
bond percolation and, thus, the loop representation of the
Ising model can be regarded as the Eulerian bond percola-
tion model. Other names for this representation include the
random-current model [6], random even graph [7], and the
flow representation of the Ising model.

The Q-state Potts model [8], in which the value of spins can
take σ ∈ {0, 1, · · · , Q − 1}, is a generalization of the Ising
model and has the latter as a special case of Q = 2. In 1969,
Fortuin and Kasteleyn established an exact mapping between
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FIG. 1. Three representations of the Ising model. The random-
cluster representation is depicted with lines of different colors
indicating different clusters. The Edwards-Sokal joint model couples
the spin and random-cluster representations, while the loop-cluster
joint model couples the loop and random-cluster representations.

the Potts model and a geometric model, called the random-
cluster (RC) model [9,10]. Similar to loop configuration,
for each edge i j, a binary variable bi j ∈ {0, 1} is defined to
represent whether the edge is occupied by a bond (bi j = 1)
or empty (bi j = 0), but no Eulerian constraint is required in
the FK configurations. The Q-state RC model is defined by
choosing a spanning subgraph A ⊆ G with the probability

π (A) ∝ Qk(A) p|A|(1 − p)|E|−|A|, (3)

where p is the bond occupation probability and k(A) is the
number of connected components (or clusters) on A. The case
Q = 2 with p = 1 − e−2K corresponds to the Ising model,
also known as the FK Ising model, where K is the reduced
coupling strength mentioned before.

These three representations are illustrated in Fig. 1. In
comparison to the spin representation, geometric representa-
tions enable the definition of a broader range of geometric
observables, many of which have no corresponding analogs
in the spin representation, leading to a wealth of phenomena.
For example, while the upper critical dimension of the spin
Ising model has been known to be dc = 4 since the 1970s,
recent studies argued that the FK-Ising model simultaneously
has two upper critical dimensions, namely, dc = 4 and dp = 6
[11,12], where the dimension dp = 6 cannot be observed in
the spin representation. Moreover, the geometric representa-
tions also serve as a versatile platform for conformal field
theory [13] and stochastic Loewner evolution [14,15], leading
to many exact results in two dimensions. In mathematical
physics, the geometric representations play a crucial role in
the rigorous study of phase transitions for the Ising model
in dimensions d � 3 [3,4] and the triviality of criticality for
d = 4 [16].

Advanced Monte Carlo methods have also benefited from
geometric representations. A notable example is the highly
efficient Swendsen-Wang cluster algorithm [17], passing back
and forth between the FK and the spin configurations. The
Edwards-Sokal joint model [18], in which the spin and FK-
bond variables are coupled together, establishes a connection

between the FK and the spin representations and offers a
concise understanding to the Swendsen-Wang algorithm.

Another example is the loop-cluster (LC) algorithm, which
passes back and forth between the FK and loop representa-
tions via the LC joint model [19]. A configuration of the LC
joint model can be interpreted as a superposition of a FK and a
loop configuration, where each edge is associated with both a
FK bond and a flow variable. For the Ising model (Q = 2), the
probability measure of an LC joint configuration is defined as
follows:

π (A,F ) ∝
( p

2

)|F |( p

2

)|A|−|F |
(1 − p)|E|−|A|δF∈even(G). (4)

More specifically, there are four edge states in the LC joint
model:

L1 : bi j = 0, fi j = 0,

L2 : bi j = 1, fi j = 0,

L3 : bi j = 1, fi j = 1,

L4 : bi j = 0, fi j = 1. (5)

The edge state L4, i.e., with an empty FK bond and an occu-
pied loop bond, is forbidden. From Eq. (4), the probabilities
of other edge states read

P(L1) = 1 − p; P(L2) = p

2
; P(L3) = p

2
. (6)

From a given loop configuration { f }, the LC algorithm gen-
erates a stochastic FK bond configuration {b} by a local
bond-placing process. To be specific, for each nonzero flow
fi j = 1, one sets bi j = 1; for each empty flow fi j = 0, one
independently sets bi j = 1 with probability

w′ =
p
2

p
2 + (1 − p)

= tanh K, (7)

which equals w or bi j = 0 otherwise. In other words, the
process from the loop to the FK representation is basically to
add occupied bonds to those edges of empty flow via a process
of standard bond percolation with probability w.

In statistical mechanics, it is of particular interest to study
models on the complete graph (CG) because it is usually more
tractable and provides important insights to understand critical
behaviors on high-dimensional tori. On the CG, each vertex
is connected to all others, and thus, to obtain an extensive
system, the coupling strength K must be rescaled by its vol-
ume V . For the FK-Ising model on the CG, it was proven
that [20], within a scaling window of width O(V −1/2) around
the critical point pc = 1 − e−2/V , the sizes of the largest
and second-largest clusters scale asymptotically as C1 ∼ V 3/4

and C2 ∼ √
V ln V , respectively. That is, unlike the common

self-similarity observed in many other critical systems, here
C1 dominates over C2, which indicates the system has two
length (size) scales [21]. Furthermore, the authors also proved
that C1,C2 ∼ V 2/3 in a wider scaling window of width δp ≡
pc − p = O(V −1/3) in the subcritical side (δp < 0), sharing
the same scaling behavior as the CG-percolation model. Thus,
the FK-Ising model on the CG has two scaling windows.
Additionally, the authors in Ref. [22] numerically studied the
FK-Ising model on the CG and observed more interesting
critical phenomena. At criticality, the cluster-number density
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of the FK-Ising clusters, excluding the largest one, obeys the
same scaling form as that for the bond percolation on the CG.
Moreover, a percolation sector was observed in the whole
configuration space, which asymptotically vanishes with the
rate of V −1/12. Conditioned on being in the percolation sector,
all clusters, including the largest one, have the same scaling
behavior as those for the critical percolation on the CG.

In this paper, we study the CG-Ising model in the loop
representation by a lifted worm update algorithm [23]. The
motivation is twofold. First, we aim to examine the critical
scaling behaviors of the geometric clusters in the loop repre-
sentation. Second, given that the process in the LC algorithm
from the loop to the FK bond configurations is much like
the conventional percolation process, we hope to gain a vivid
understanding of the observed rich geometric properties for
the CG-Ising model in the FK representation.

At criticality, we first study the number of occupied loop
bonds (i.e., nonzero flows) B. Based on the exact solution of
the spin Ising model on the CG, we derive the mean scales
as B := 〈B〉 � √

3�(3/4)
�(1/4)

√
V [24], and the probability density

function (PDF) of XB ≡ B/
√

V is

fXB (x) � 3−1/4

2
�−1(5/4)x−1/2 exp

(
−1

3
x2

)
, (8)

which is also verified by our numerics. It means that, in con-
trast to the FK-Ising model, the number of bonds in the loop
Ising model is not extensive and has a power-law distribution
till O(

√
V ). Meanwhile, through the results of our simula-

tions, we conjecture that the total number of flow clusters
increases logarithmically as 1

4 ln V , and each flow cluster is
basically unicyclic. In other words, a typical loop configu-
ration consists of an extremely dilute soup of cycles. The
cluster-number density n(s,V ) of flow clusters, including the
largest one, obeys the scaling form as

n(s,V ) � 1

2V
s−1ñ(s/

√
V ), with ñ(x → 0) = 1. (9)

The sizes of the largest and second-largest flow clusters both
scale as F1, F2 ∼ √

V , and, accordingly, we conjecture that the
volume fractal dimension [25] df1 = df2 = 1/2 holds exactly
true. Unlike in the FK representation, the size distribution of
the largest flow cluster displays a power-law behavior until
the cutoff size O(

√
V ), and its scaling form in the rescaled

variable X1 ≡ F1/
√

V reads

fX1 (x) � x−1/2 f̃ (x), (10)

where function f̃ (x → 0) = 1/2 and f̃ drops quickly for
x 
 1. Near the criticality with δp, B can be demonstrated
to follow the conventional finite size scaling (FSS) ansatz as
B = √

V B̃(δp
√

V ) with B̃(·) the scaling function, and only a
single scaling window of width O(1/

√
V ) appears.

Therefore, in the loop representation, no apparent
symptoms are observed for the appearance of the two
length scales, of two configuration sectors, and of two
scaling windows, which occur in the FK representation of the
CG-Ising model. However, the loop representation provides a
starting point for us to understand these rich phenomena with
the LC algorithm. The density of bonds B/V scales as 1/

√
V ,

which suggests that the loop configurations are very dilute

and become vacant as V → ∞. Further, in the LC process,
the probability of adding bonds to the loop configuration on
the CG is wc = tanh(1/V ) ≈ 1/V , which is equal to that for
the bond percolation process at criticality. Overall, the LC
process can be roughly viewed as the critical bond percolation
process on the CG.

More specifically, using the LC algorithm, we numerically
find that the fraction of the loop bonds in the largest FK cluster
tends to 1, which means all the loop bonds belong to the
largest FK cluster in the thermodynamic limit. In other words,
all the other FK clusters are indeed generated by the critical
percolation process in the LC algorithm. As a consequence,
the emergence of two length scales in the critical FK configu-
rations can be understood straightforwardly. Almost all loops
are merged together by the newly added FK bonds, leading to
a giant cluster with the volume fractal dimension Df1 = 3/4.
The remaining clusters are effectively generated by adding
bonds on the vacant space, and thus, they behave like those
percolation clusters on the CGs.

It can be calculated from Eq. (8) that the probability of
the vacant configuration in the loop representation scales as
V −1/4—it follows that there must exist a percolation sector
decaying slowly as or more slowly than the order V −1/4 in
the FK representation. Since the volume fractal dimension of
the cycle (bridge free) in the CG percolation model is 1/3
[26] at the critical point, we conjecture that if the size of
the largest loop cluster F1 is no bigger than O(V 1/3), the
corresponding FK configurations belong to the percolation
sector SP. We derive that P(SP) decays as V −1/12, providing an
explanation to the previous numerical observation [22] in the
FK representation. We then measure the scaling of the largest
FK cluster CP′

1 conditioned on the original loop configuration
with F1 � O(V 1/3). Our data show that CP′

1 scales as V 2/3,
which is the same as the CG percolation. Moreover, from
the scaling behavior of B near the critical point, we find that
if δp = O(V −1/3), then B scales the same as the number of
bridge-free bonds in the percolation model. Thus, it explains
the two-scaling-window behavior of the FK representation.

Recall that the rich phenomena observed in Ref. [22] shows
that there are strong percolation effects in the FK Ising model
on the CG. These percolation effects now can be well under-
stood from the perspective of the LC joint model. It further
reveals that configurations of the FK-Ising model excluding
the largest cluster are effectively equivalent to the ones of
percolation at the critical point on the CG. Meanwhile, the
emergence of the percolation scaling windows in the FK
representation suggests that when the temperature becomes
higher, even the scaling behavior of the largest cluster is also
described by percolation.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the simulation details and the sampled
quantities. Section III presents our theoretical analysis. Sec-
tion IV contains our main numerical results. A discussion is
given in Sec. V.

II. SIMULATION AND OBSERVABLE

A. Algorithm

The worm algorithm [27] is used to simulate the Ising
model in the loop representation. The main idea of the worm
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algorithm is to enlarge the configuration space from a close
loop space to the space of the graph allowing two open ends
by introducing two defects, i.e., vertices with odd degree.
Configurations are updated as defects do random walks. If a
defect proposes to move through a flow/loop bond, then with
probability 1 the proposal is accepted and the bond is erased.
If a defect is crossing an empty edge, then with probability
w the move is accepted and the empty edge is occupied by
a bond. When two defects meet, a new loop configuration is
obtained.

In Ref. [23], the authors presented an irreversible version
of the worm algorithm by using the lifting technique, which
leads to a critical speeding-up for observables in the sim-
ulation on the CG, with a negative dynamic exponent z =
−1/2. In other words, between two subsequent effectively
independent samplings in the Markov chain, the number of
elementary updating steps is of order O(

√
V ) in the lifted

worm algorithm. This is vanishingly small in comparison with
a sweep of updates, O(V ), which is a standard unit in studying
the efficiency of Monte Carlo methods. The existence of this
critical speeding up, which makes the lifted worm algorithm
thus far most efficient for the CG Ising, is understandable
since the number of loop bonds is also O(

√
V ). Therefore,

we use the irreversible worm algorithm to update loop con-
figuration here. Specifically, a lifted parameter λ ∈ {+,−} is
introduced to double the configuration space of worm update,
as λ = +(−) stands for the choice to add (delete) a bond in
each step of random walk of the defect. It indicates that every
time the defect moves to the next vertex, λ determines whether
the movement leads to an increase or decrease of bond on
the graph, as well as the choice of the next vertex. Then we
accept the update with a certain probability depending on λ

and the number of occupied bonds incident to the two defects,
which is presented in Ref. [23] in detail. Whenever the update
is rejected, the lifted parameter λ changes.

In addition, we implement a transformation from the loop
representation to the RC representation via the LC algorithm
[19] after we generate a loop configuration. The main idea
of the transformation is performing a conditional probability
distribution of the joint model (4). Recall that edge state L4

in Eq. (5) is forbidden, so a loop bond must also be an FK
bond in the joint model. Therefore, the basic step is that,
for each edge, if it has not been occupied by a bond in the
loop representation, we place a bond on it with a probability
w = tanh (K/V ) ≈ K/V . Otherwise, if it has been occupied,
keep it occupied. We carry out this adding bond process by an
efficient cumulative method [28].

B. Sample quantities

We sample the following observables in our simulations:
(1) The sizes of the largest and the second-largest loop

clusters denoted as F1, F2.
(2) The total number of vertices in the loop clusters Nv =∑
i:Fi>1 Fi.
(3) The number of bonds B in loop clusters.
(4) The number of loop clusters N (s) with size s, defined

as the number of loop clusters with size in [s, s + �s] with an
appropriately chosen interval size �s.

(5) The total number of loop clusters Nk.

(6) The indicators Pv, P (α). We set Pv = 1 to record the
event that the configuration is empty with bonds, P (α) = 1 to
record if F1 � αV

1
3 with α is a tunable constant. Here we set

α = 1, 2.
From these observables, we take the ensemble average:
(1) The probability of vacant configuration Pv = 〈Pv〉.
(2) The average sizes of the first- and second-largest loop

clusters F1 = 〈F1〉, F2 = 〈F2〉 and their distribution.
(3) The average number of bonds B = 〈B〉 and its distri-

bution.
(4) The average number of clusters Nk = 〈Nk〉 and the

average number of vertices Nv = 〈Nv〉.
(5) The cluster-number density n(s,V ) = 1

V �s 〈N (s)〉,
which is also called the cluster-size distribution.

(6) The probability of the bond configuration in the region
where the largest loop cluster F1 � αV 1/3: P(F1 � αV

1
3 ) =

〈P (α)〉.
Moreover, we measure the following quantities in the FK

representation:
(1) The sizes of the first- and second-largest FK clusters

C1, C2 and their average C1 = 〈C1〉,C2 = 〈C2〉; the average
size of the largest FK cluster conditioned on the origin loop
configuration where F1 � 2V 1/3, denoted as CP′

1 .
(2) The total size of loop clusters in the first- and second-

largest FK clusters: SC1 = ∑
Fi⊂C1

Fi, SC2 = ∑
Fi⊂C2

Fi, and
the average of them divided by the total loop cluster size Nv

as nf,1 = 〈SC1 〉
〈Nv〉 , nf,2 = 〈SC2 〉

〈Nv〉 .

III. THEORETICAL ANALYSIS

The CG Ising model can be exactly solved in its spin
representation [29]. Hereby, we derive the exact solution of
some properties, especially the average number of bond B, in
the loop representation from the spin representation.

The total energy of the CG-Ising model gives

E = − 1

2V

∑
i �= j

s js j = −1

2
(V m2 − 1), (11)

where m = (
∑V

i=1 si )/V is the magnetization in the spin rep-
resentation. The PDF of the magnetization at the critical point
is [29]

f (m) = exp(− 1
12V m4)∫ ∞

−∞ exp(− 1
12V z4)dz

, (12)

from which we can derive the critical average magnetic den-
sity 〈m2〉 as

〈m2〉 = 2
√

3
�(3/4)

�(1/4)

1√
V

− 12

5

[
�(3/4)

�(1/4)

]2

V −1 + O(V −3/2),

(13)
where �(·) refers to the Gamma function. Thus, the energy at
criticality behaves as

〈E〉 = −
√

3
�(3/4)

�(1/4)

√
V + 6

5

[
�(3/4)

�(1/4)

]2

+ 1

2
+ O(V −1/2).

(14)
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For the loop representation, the partition function can be writ-
ten as

Z = 2V cosh|E|
(

K

V

) ∑
F∈even(G)

tanh|F |
(

K

V

)
. (15)

Here, |F | ≡ B(F ) is the number of bonds on the loop config-
uration F . Then the average energy can be calculated as

〈E〉 = − 1

Z
∂Z
∂K

= − tanh
(

K
V

)
V

[
|E | + 〈B〉 sinh−2

(
K

V

)]
. (16)

At the critical point K = 1, since tanh(1/V ), sinh(1/V ) ≈
1/V , it follows that 〈E〉 = −(〈B〉 + 1

2 − 1
2V ). Combining with

Eq. (16), we can obtain the leading term of the average value
of bond number,

〈B〉 =
√

3
�(3/4)

�(1/4)

√
V + O(1), (17)

where the amplitude
√

3�(3/4)
�(1/4) = 0.585414 · · · .

From Eq. (11) and Eq. (12), we can also obtain the distri-
bution of the energy on the CG-Ising model as

f (E ) = AEV − 1
4 exp

[
− (1 − 2E )2

12V

]√
1

(1 − 2E )
, (18)

with the normalized factor AE = 3−1/4√
2

�−1( 5
4 ). Here, we as-

sume that the probability distribution of the bond number
is also equivalent to the one of the total energy, which is
similar to the relation of the average. By replacing E with
−(B + 1/2) in Eq. (18), we conjecture the distribution of the
bond number is

f (B) = ABV − 1
4 exp

(
−B2

3V

)√
1

B , (19)

where the normalized factor AB = AE/
√

2 = 0.419149 · · · .

IV. NUMERICAL RESULTS

A. Scaling behaviors of geometric quantities

In this section, we study the scaling behaviors of some
geometric quantities such as the number of bonds B and
the number of clusters Nk, and the sizes of the first- and
second-largest clusters F1, F2 in the loop representation. We
perform least-square fits to our data. As a precaution against
correction-to-scaling terms that we missed including in the
fitting ansatz, we impose a lower cutoff V � Vmin on the data
points admitted in the fit and systematically study the effect on
the residuals χ2 value by increasing Vmin. In general, the pre-
ferred fit for any given ansatz corresponds to the smallest Vmin

for which the goodness of the fit is reasonable and for which
subsequent increases in Vmin and do not cause the χ2 value to
drop by vastly more than one unit per degree of freedom. In
practice, by “reasonable”, we mean that χ2/DF ≈ 1, where
DF is the number of degrees of freedom. The systematic error
is estimated by comparing estimates from various sensible
fitting ansatz.

FIG. 2. The log-log plot of the bond number B and total number
of vertices in the loop clusters Nv versus the system volume V . The
inset displays the rescaled terms Nv/

√
V , B/

√
V versus V .

We first consider the number of bonds B. In Fig. 2, we plot
B versus the system volume V in log-log scale, and the dashed
line with slope 1/2 suggests B ∼ √

V . Meanwhile, the inset
plots B/

√
V , showing that its amplitude tends to 0.585. These

results are consistent with our theoretical analysis in Eq. (17).
To extract the scaling behaviors of B, we perform the least-

square fits via the general ansatz:

O = V yO (a0 + b1V
y1 + b2V

y2 ) + c, (20)

where O corresponds to the quantities measured, such as B,
and yO corresponds to the dominant scaling exponent as yB

for B. For B, we first leave all parameters free, which gives
unstable results. We then fix b2 = c = 0 and leave yB, a0, b1,
and y1 free, and it gives reasonable estimate yB = 0.499 8(3)
and y1 = −0.48(3) for Vmin = 211. We then try to fit by fixing
y1 = −1/2, as predicted in Eq. (17), and the fitting gives a
reasonable estimate yB = 0.499 96(8). More trials have been
tried, like fixing b1 = b2 = 0 and leaving yB, a0, and c free,
which gives consistent results. Including the systematic errors
by comparing various reasonable results, we finally obtain the
estimates yB = 0.500 0(8) and a0 = 0.585(6), both of which
are consistent with Eq. (17). The fitting details are summa-
rized in Table I. For a given loop configuration, a loop cluster
is defined as a set of vertices which are connected together
by loop bonds. We next study the geometric properties of
these loop clusters. In the graph theory, we have the Euler
formula Nv − B = Nc − Nk with the number of cycles Nc and
the number of clusters Nk. It inspires us to observe whether
the Eulerian clusters in the loop representation are unicyclic
or multicyclic by evaluating Nv, since for the unicyclic graph,
Nc equals to Nk. Figure 2 presents the FSS behavior of Nv

and Nv/
√

V in the inset. It suggests that the value of Nv is
numerically consistent with B as V is large enough. Therefore,
we can argue that Nc = Nk in the thermodynamic limit, which
means that all the loop clusters are asymptotically unicyclic in
the thermodynamic limit. Besides, we also study the scaling
behavior of the number of loop clusters. As shown in Fig. 3,
our data of Nk collapse onto the dashed line with slope 1/4 in
semilog scale, indicating that Nk ∼ 1

4 ln V . We can fit the data
of Nk to the ansatz:

NO = a ln V + b1V
y1 + b2V

y2 + c. (21)
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TABLE I. The fitting results of the bond number B, the first- and
second-largest clusters F1, F2. We conjecture all of them have the
same scaling behavior F1, F2, B ∼ √

V , which suggests there is no
two-length scaling behavior in the loop representation.

O yO a0 b1 y1 χ 2/DF Vmin

0.499 9(2) 0.586(2) −0.68(7) −0.49(2) 7.1/9 210

0.499 8(3) 0.587(2) −0.65(12) −0.48(3) 7.0/8 211

0.500 1(3) 0.584(2) −1.1(4) −0.55(6) 4.7/7 212

B 0.499 98(6) 0.585 6(5) −0.725(8) −1/2 7.5/10 210

0.499 96(8) 0.585 7(6) −0.728(13) −1/2 7.4/9 211

1/2 0.585 3(1) −0.73(4) −0.501(7) 7.6/10 210

1/2 0.585 4(1) −0.74(6) −0.503(11) 7.4/9 211

0.499 8(2) 0.457(1) 0.44(9) −0.54(4) 7.2/9 210

0.499 8(2) 0.457(2) 0.5(2) −0.55(6) 7.1/8 211

F1 0.500 2(4) 0.455(3) 0.2(1) −0.4(1) 5.4/7 212

0.500 09(7) 0.455 5(3) 0.361(7) −1/2 8.4/10 210

0.500 06(8) 0.455 7(4) 0.356(10) −1/2 7.9/9 211

0.499 6(2) 0.092 5(2) 1.13(7) −0.68(1) 9.1/9 210

0.499 6(2) 0.092 6(3) 1.12(13) −0.68(2) 9.1/8 211

F2 0.499 8(3) 0.092 3(4) 0.9(2) −0.66(3) 8.5/7 212

0.499 81(9) 0.092 3(1) 1.023(8) −2/3 9.7/9 211

0.499 7(1) 0.092 4(1) 1.01(3) −2/3 8.6/8 212

We first leave all parameters free, but there is no stable fit.
Then, by fixing b2 = 0, we obtain stable fits, with details
shown in Table II. We estimate a = 0.249 7(5), which leads
to a conjecture Nk � 1

4 ln V .
We then consider the sizes of the largest cluster F1 and

second-largest cluster F2. As Fig. 4 shows, we plot F1 and F2

in the log-log plot, and the slope 1/2 indicates both of them
have the same scaling behavior F1, F2 ∼ √

V . In other words,
no two-length scaling behavior has been observed, which is
different from the observation of two largest clusters in the
FK Ising model on the CG [20,22].

We also perform the least-square fit via (20) for F1, F2

as yO corresponds to the volume fractal dimensions df1 and
df2, respectively. The fitting results through different trails are
reported in Table I. We obtain the estimates df1 = 0.500 0(9)
and a0 = 0.456(6) for F1 while df2 = 0.499 7(6) and a0 =
0.092 4(8) for F2. We found both df1 and df2 are consistent

FIG. 3. The semilog plot of the cluster number Nk versus V ,
which suggests it scales as Nk ∼ 1

4 ln V .

TABLE II. The fitting result of the cluster number Nk, which
scales as Nk ∼ ln V with the coefficient consistent with 1/4.

O a b1 y1 c χ 2/DF Vmin

0.249 8(4) 1.1(2) −0.49(4) −0.587(6) 4.7/9 210

Nk 0.249 6(4) 1.4(6) −0.53(8) −0.584(7) 4.4/8 211

0.249 7(1) 1.17(3) −1/2 −0.586(2) 4.8/10 210

0.249 8(2) 1.19(4) −1/2 −0.587(2) 4.6/9 211

with 1/2, and the amplitude a0 of F2 is much smaller than that
of F1.

B. Probability distribution of geometric quantities

First, we investigate the probability distribution of the
number of bonds B. Denote f (B,V ) the PDF of B sampled in
our simulations. Since B ∼ √

V , we define XB = B/
√

V and
fXB (x) the PDF of XB. Then it follows that

f (B,V )dB = fXB (x)dx, (22)

where
√

V dx = dB, and thus fXB (x) = √
V f (B,V ). From

Eq. (19), one obtains fXB (x) = AB exp(−x2/3)x−1/2 with
AB = 3−1/4

2 �−1( 5
4 ). Figure 5 presents the distribution of XB,

and the dashed curve displays fXB (x). It is obvious that our
numerical result is consistent with the theoretical analysis.
Besides, we found out the probability of the vacant graph
(no occupied bond) Pv obeys a power-law decay as V −1/4,
as suggested by the log-log plot of Pv versus V in the inset
of Fig. 5 and Eq. (19). We perform a least-squares fit to the
ansatz Eq. (20) and estimate the power-law exponent of Pv

as yO = −0.249(1) and the coefficient a = 1.56(3). Then
we study fF1 (s,V ), the PDF of F1. Since its mean scales as√

V , we first study the distribution of X1 := F1/
√

V . Figure 6
presents the PDF of fX1 (x) versus x in the log-log scale. The
excellent data collapse suggest that fX1 (x) follows a power-
law distribution

fX1 (x) � x−1/2 f̃ (x), (23)

FIG. 4. The log-log plot of the size of the largest cluster F1;
the second-largest cluster F2 versus the system volume V . Our
data suggest F1, F2 ∼ √

V . The inset displays the rescaled terms
F1/

√
V , F2/

√
V versus V .
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FIG. 5. Log-log plot of probability distribution of the number of
bonds B on the CG in the loop representation. Here fXB (x) is the
probability density function of XB = B/

√
V . The solid black line

referring to f0(x) = AB exp(−x2/3)x−1/2 verifies that the numerical
result is consistent to the theoretical analysis based on the spin
representation. The inset shows the probability of vacant graph Pv

versus V with log-log plot, which implies Pv exhibits a power-law
decay as V −1/4.

with f̃ (x → 0) ≈ 1/2 when x is small and f̃ (x) decays
quickly to zero when x is large, as indicated from the inset of
Fig. 6. Meanwhile, we also study the cluster-number density
of the loop representation n(s,V ). Our results of n(s,V ) on
the CG, shown in Fig. 7, indicate that it follows the form
n(s,V ) ∼ s−τ ñ(s/V dF ) with a modified Fisher exponent τ =
1. More specifically, we can conjecture that the distribution
obeys

n(s,V ) � n0s−τV −hñ(s/V dF ), (24)

where h � 0 is the scaling exponent and ñ(x) is a scaling
function which is approximately 1 when x is small. This leads
to the number of loop clusters as the integral of n(s,V ) from
1 to the largest loop cluster:

Nk = V
∫ F1

1
n(s,V )ds. (25)

FIG. 6. Log-log plot of probability distribution of the largest
cluster F1 on the CG in loop representation, where fX1 (x) is the
probability density function of X1 = F1/

√
V . The inset shows the

log-log plot of fX1 (x)x1/2 versus the rescaled variable x.

FIG. 7. Cluster-number density of the loop representation in the
log-log scale. The inset shows the plot of n(s,V )V s versus s/

√
V ,

which implies that the scaling function is consistent with 1/2 when
s/

√
V � 1.

Our previous results suggest F1 ∼ a0

√
V , so it follows that

Nk �
{ n0

2 V 1−h(ln V + ln a0) if τ = 1
n0

1−τ
a1−τ

0 V 1+ 1
2 (1−τ )−h if τ �= 1.

(26)

In the previous section, we know Nk � ln V
4 . Therefore, we

obtain n0 = 1
2 , h = 1, τ = 1. The inset of Fig. 7 confirms our

conjecture, including n0 = 1
2 .

Therefore, in contrast to the FK representation, the scal-
ing behaviors of fF1 (s,V ) and n(s,V ) both show that there
is only one scaling sector and one length scale in the loop
representation.

C. Insights for the anomalous FSS behaviors in the
random-cluster representation

As discovered in above sections, the loop bond density
B
V ∼ 1√

V
, so the loop configuration is vacant in the thermo-

dynamic limit. Moreover, the probability of adding bonds
through the LC algorithm is asymptotically the same as the
critical percolation threshold 1/V , such that the transforma-
tion from the loop representation to the FK representation
is almost the process of critical percolation. In this section,
we will demonstrate how the LC algorithm can provide an
intuitive understanding to the rich critical phenomenon in the
FK representation [11,12].

First, in the FK representation, the largest and second-
largest clusters exhibit distinct scaling behaviors: C1 ∼ V 3/4

and C2 ∼ √
V logV . However, as Fig. 4 shows, the first- and

second-largest clusters in the loop representation both scale
as

√
V . One would wonder what happens in the percolation

process of the LC algorithm. We record the relative mass of
the loop clusters belonging to the first- and second-largest
FK clusters after the representation transformation denoted
as nf,1, nf,2. As shown in Fig. 8(a), the relative loop vertices
in C1 increases to 1 as the system volume becomes larger. In
contrast, Fig. 8(b) shows that the relative loop vertices in C2

and out of C1 exhibit a power-law decay to zero as V increases.
Furthermore, we perform a least-squares fit to Eq. (20) for
1 − nf,1, and we obtain the decaying exponent yD = 0.225(6).
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FIG. 8. (a) plots the relative loop vertices in the largest FK cluster
nf,1 versus V . (b) shows the log-log plot of the relative loop vertices
in the second-largest FK cluster nf,2 and the one out of the largest FK
cluster 1 − nf,1 versus V . It implies that all the loop clusters belong
to the largest FK cluster as V → ∞.

This evidence suggests that in the thermodynamic limit, all
loop clusters belong to the largest FK cluster C1 after the per-
colation process while cycles in other FK clusters are newly
generated in the process of percolation.

Second, two sectors are observed in the configuration space
of the FK representation: the percolation sector SP with its size
of the largest cluster C1 � O(V 2/3) and the Ising sector SI oth-
erwise. The percolation sector vanishes with the rate V −1/12

and the largest cluster in this sector scales as CP
1 ∼ V 2/3. We

are trying to find out what the percolation sector corresponds
to in the loop configuration space.

In graph theory, a bridge is a bond whose deletion would
break a cluster into two. The configuration with all bridges
deleted is called a bridge-free configuration. The clusters
in the loop representation are all bridge-free clusters. From
Ref. [26], we know that the volume fractal dimension of the
bridge-free cluster in the CG-percolation model is dB = 1

3 , so
we conjecture that the corresponding percolation sector in the
loop representation SP

l consists of the configurations whose
F1 � αV

1
3 with some constant α. The probability of SP

l can
be derived from the probability distribution of the largest loop
cluster fF1 (s,V ) (23):

P(SP
l ) = P(F1 � αV 1/3) ≈ 2α

1
2 f̃ (0)V − 1

12 , (27)

which is perfectly consistent with the probability of the per-
colation sector in the FK representation as P(SP) ∼ V −1/12.
The numerical result of P(F1 � αV 1/3) with α = 1, 2 ver-
sus V is shown in Fig. 9. We perform a least-squares fit to
Eq. (20) with our P(SP

l ) data and obtain y= − 0.081(2) for
α = 1, which is consistent with − 1

12 . By fixing yO = − 1
12 , we

estimate the coefficient 2α
1
2 f̃ (0) = 0.986(4) for α = 1 and

2α
1
2 f̃ (0) = 1.388(4) for α = 2. It then follows that f̃ (0) =

0.48(2), which is consistent with our conjecture 1/2. To fur-
ther verify our conjecture, we observe the scaling behavior of
the largest FK cluster generated by performing the percolation
process to the loop configurations where F1 � 2V 1/3, denoted
as CP′

1 . We show the data of CP′
1 and the largest cluster size of

the FK Ising model C1 in Fig. 10; the former scales as V 2/3 and
the latter scales V 3/4. This confirms our conjecture that the

FIG. 9. Log-log plot of the probability that the loop configuration
in the conjectured percolation sector P(F1 � αV 1/3) with α = 1 or
2. The straight dashed black lines with slope −1/12 are to guide the
eye.

percolation sector in the FK Ising model corresponds to the
loop configurations with the largest loop size of order V 1/3.

Third, we consider the case away from the critical
point and define t = (Kc − K )/Kc. When the critical point
is approached from high-temperature side (t > 0), the
magnetic susceptibility χ (t,V ) = V 〈m2〉 = V 2yh−1χ̃ (tV yt )
with renormalization-group exponents (yt = 1/2, yh = 3/4).
Based on the FSS assumption, as x → ∞, the scaling function
χ̃ (x) ∼ x−γ with γ = (2yh − 1)/yt = 1, which recovers the
thermodynamic scaling behavior χ (t ) ∼ t−γ .

Recall in Sec. III, the bond number B = 1
2V 〈m2〉 + O(1) =

1
2χ + O(1). Thus, one would expect

B =
√

V B̃(t
√

V ), (28)

where the scaling function B̃(x) ∼ x−1 as x → ∞. Then,
if one takes t = O(V −1/3), one would obtain B ∼ √

V ·
(V −1/3+1/2)−1 = V 1/3, which is the same as the scaling of
the bridge-free bond number for the CG-percolation model
[26]. At this temperature, the FK clusters obtained by adding

FIG. 10. Log-log plot of the largest cluster size of the FK-Ising
model C1 and the largest cluster size of the configurations generated
from the loop configurations where F1 � 2V 1/3, denoted as CP′

1 ,
versus V . The red dashed line with slope 2/3 and the blue dashed
line with slope 3/4 imply the difference between their volume fractal
dimensions.
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bonds via the LC algorithm are expected to behave the same as
CG-percolation clusters, which explains the existence of per-
colation scaling window in the FK Ising model and the width
is of order O(V −1/3). While the temperature is decreased from
Kc, the bond number increases and no percolation scaling
window is observed.

V. DISCUSSION

In this paper, we study the geometric properties of theCG
Ising model in the loop representation. Theoretically, we de-
rive that the density of bonds decays as V −1/2, which means
the loop configurations are basically vacant in the thermo-
dynamic limit. We numerically find that the volume fractal
dimension for the first- and second-largest loop clusters is 1/2
and the number of clusters scales as 1

4 ln V . We also observe
that the bond number is numerically consistent with the num-
ber of vertices in loop clusters, and this means these loops are
unicyclic, which is similar to the bridge-free configurations of
the CG-percolation model. Based on our numerical results, we
conjecture the exact form of the probability distribution of the
largest loop cluster and the cluster-number density n(s,V ). In
Ref. [30], the authors used the rate equation approach to study
and derive the cycle-length number density of the critical
percolation on the CG, which scales as (2sV )−1 with a cutoff
at O(V 1/3). Thus, it has the same behavior as our n(s,V )
except the different cutoff.

The abundant critical behaviors in the FK representation,
i.e., the emergence of two length scales, two configuration
sectors, and two scaling windows, are not found in the
loop representation. But, via the LC joint model, results
in the loop representation does provide a vivid and

intuitive understanding to these critical behaviors in the
FK representation. Under the LC joint model, the FK
representation can be regarded as playing a percolation game
on top of loop configurations. During the percolation process,
almost all loops are connected together and end up with
forming the largest FK cluster. Other FK clusters are basically
these newly generated percolation clusters.

It is generally believed that the CG is a mean-field approxi-
mation to high-dimensional tori. Recently, the FK Ising model
on lattices above the upper critical dimension dc = 4 was
studied and the similar scaling behaviors (two length scales,
two sectors, and two scaling windows) were again observed
[11,12]. More interestingly, in addition to the well-known
upper critical dimension dc = 4, these anomalous scaling be-
haviors uncover an upper critical dimension dp = 6, which
cannot be observed in the spin representation. Therefore, a
number of questions naturally arise. First, can the LC joint
model provide an understanding of the anomalous behav-
iors of the FK representation on high-dimensional lattices?
Second, can the two-upper-critical-dimensional phenomena
be observed in the loop representation? Third, can the loop
representation provide a straightforward understanding for
the existence of two upper critical dimensions? These open
questions will be investigated in our future work.

ACKNOWLEDGMENTS

This work has been supported by the National Natural
Science Foundation of China (under Grant No. 12275263) and
the National Key R&D Program of China (under Grant No.
2018YFA0306501). We thank P. Hou and T. Xiao for valuable
discussions.

[1] H. Duminil-Copin, arXiv:2208.00864.
[2] L. Onsager, Phys. Rev. 65, 117 (1944).
[3] M. Aizenman and R. Fernández, J. Stat. Phys. 44, 393 (1986).
[4] M. Aizenman, H. Duminil-Copin, and V. Sidoravicius,

Commun. Math. Phys. 334, 719 (2015).
[5] B. L. van der Waerden, Z. Phys. 118, 473 (1941).
[6] H. Duminil-Copin, arXiv:1607.06933.
[7] G. Grimmett and S. Janson, Electron. J. Comb. 16, R46 (2009).
[8] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[9] C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).

[10] G. Grimmett, The Random-Cluster Model (Springer Science &
Business Media, Berlin, 2006), Vol. 333.

[11] S. Fang, Z. Zhou, and Y. Deng, Chin. Phys. Lett. 39, 080502
(2022).

[12] S. Fang, Z. Zhou, and Y. Deng, Phys. Rev. E 107, 044103
(2023).

[13] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field
Theory (Springer Science & Business Media, New York, 2012).

[14] W. Kager and B. Nienhuis, J. Stat. Phys. 115, 1149 (2004).
[15] J. Cardy, Ann. Phys. 318, 81 (2005).
[16] M. Aizenman and H. Duminil-Copin, Ann. Math. 194, 163

(2021).
[17] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86

(1987).
[18] R. G. Edwards and A. D. Sokal, Phys. Rev. D 38, 2009

(1988).

[19] L. Zhang, M. Michel, E. M. Elçi, and Y. Deng, Phys. Rev. Lett.
125, 200603 (2020).

[20] M. Luczak and T. Łuczak, Random Struct. Algorithms 28, 215
(2006).

[21] Spatial length is not defined on the complete graph. Here
the two length (size) scales mean that, compared with the
self-similarity property commonly observed in many critical
systems, the largest cluster in the FK Ising model is much larger
than other clusters.

[22] S. Fang, Z. Zhou, and Y. Deng, Phys. Rev. E 103, 012102
(2021).

[23] E. M. Elçi, J. Grimm, L. Ding, A. Nasrawi, T. M. Garoni, and
Y. Deng, Phys. Rev. E 97, 042126 (2018).

[24] In this paper, AV � BV means that limV →∞
AV
BV

= 1 while AV ∼
BV means their ratio converges to some positive constant.

[25] The volume fractal dimension is to characterize how cluster
sizes scale with respect to the system volume.

[26] W. Huang, P. Hou, J. Wang, R. M. Ziff, and Y. Deng, Phys. Rev.
E 97, 022107 (2018).

[27] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87, 160601
(2001).

[28] H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).
[29] E. Luijten, Interaction Range, Universality and the Upper Crit-

ical Dimension (Delft University Press, Delft, 1997).
[30] E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 71, 026129

(2005).

024129-9

http://arxiv.org/abs/arXiv:2208.00864
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1007/BF01011304
https://doi.org/10.1007/s00220-014-2093-y
https://doi.org/10.1007/BF01342928
http://arxiv.org/abs/arXiv:1607.06933
https://doi.org/10.37236/135
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1088/0256-307X/39/8/080502
https://doi.org/10.1103/PhysRevE.107.044103
https://doi.org/10.1023/B:JOSS.0000028058.87266.be
https://doi.org/10.1016/j.aop.2005.04.001
https://doi.org/10.4007/annals.2021.194.1.3
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevD.38.2009
https://doi.org/10.1103/PhysRevLett.125.200603
https://doi.org/10.1002/rsa.20088
https://doi.org/10.1103/PhysRevE.103.012102
https://doi.org/10.1103/PhysRevE.97.042126
https://doi.org/10.1103/PhysRevE.97.022107
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevE.71.026129

