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Understanding the swap Monte Carlo algorithm in a size-polydisperse model glassformer
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The dynamics of a polydisperse model glassformer are investigated by augmenting molecular dynamics (MD)
simulation with swap Monte Carlo (SMC). Three variants of the SMC algorithm are analyzed with regard to
convergence and performance. We elucidate the microscopic mechanism responsible for the drastic speed-up of
structural relaxation at low temperature. It manifests in a stepwise increase of the mean-squared displacement
when the timescale between the application of swap sweeps is significantly larger than a characteristic micro-
scopic timescale. Compared to Newtonian dynamics, with the hybrid MD-SMC dynamics the glass transition
shifts to a lower temperature and a different temperature dependence of the localization length is found.
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I. INTRODUCTION

The swap Monte Carlo (SMC) algorithm [1–3] has been
proven successful to efficiently equilibrate glassforming liq-
uids with a size polydispersity [4–15]. SMC introduces trial
moves attempting to exchange the diameters between par-
ticles. In combination with conventional canonical Monte
Carlo (MC) or molecular dynamics (MD) simulation, a
dynamics is realized where the positional changes of the
particles are accompanied by the fluctuations of their diam-
eters. Ninarello et al. [5] optimized a model toward such
a hybrid MC-SMC or MD-SMC dynamics to obtain ultra-
stable amorphous solid states. These states are comparable
to those realized in experiments of structural glassformers
and are far out of reach for any conventional MC or MD
simulation.

Apart from the issue of generating well-equilibrated sam-
ples, the investigation of hybrid MC-/MD-SMC dynamics
has been used to discuss fundamental aspects of the glass
transition. SMC provides a proper sampling of the canonical
ensemble on a frozen configuration (see also below) and thus
its use does not affect thermodynamic properties of liquid
and amorphous solid states in equilibrium. Based on this fact,
Wyart and Cates [16] argued that the observed acceleration
of the dynamics via SMC is not consistent with theories that
explain the glass transition in terms of a growing static length
scale. Via the analysis of the Hessian of soft- and hard-sphere
systems, Brito et al. [8] associated the speed-up due to SMC
with the appearance of soft-elastic modes. They also demon-
strated that the jamming transition is strongly altered by SMC.
An interesting simulation study of a two-dimensional polydis-
perse soft-sphere system by Gopinath et al. [14] introduced a
swap model where only a selected fraction of particles can
swap locally with neighboring particles. The authors inter-
preted the resulting “defect diffusion” in terms of a kinetically
constrained lattice model. For such a lattice system, the kinet-
ically constrained East model, Gutiérrez et al. [17] showed
that swap moves lead to the suppression of dynamic hetero-
geneities, as also seen in polydisperse structural glassformers
(see, e.g., Ref. [15]).

The SMC dynamics has also been investigated in the
framework of dynamic theories that predict a transition from
a liquid to a nonergodic amorphous solid, varying a control
parameter such as temperature T or packing density η. In this
manner, Szamel [18,19] added a swap term to the mode cou-
pling theory (MCT) [20] equations for a binary hard-sphere
system. Here MCT predicts a liquid-solid transition at a crit-
ical packing fraction ηc that depends on the size ratio of the
hard-sphere species. While ηc is around 0.515 without swaps,
it increases up to about 0.535 with swaps. Note that a similar
shift of the glass transition was found in the framework of
a replica liquid theory by Ikeda et al. [21,22]. The dynamic
MCT transition is intimately related to the cage effect, i.e.,
each particle is localized in a cage formed by the neighboring
particles. According to MCT, in the nonergodic solid state, the
particles are trapped in their cages. However, on decreasing
the packing density toward ηc (or increasing the temperature
toward a critical Tc), the length l that quantifies the localiza-
tion of the particles in their cages increases toward a critical
value lc at which the amorphous solid becomes unstable and
transforms to a liquid state. In this sense, lc can be interpreted
in terms of a Lindemann criterion for amorphous solids [20].
Remarkably, Szamel’s MCT as well as the replica approach
by Ikeda et al. indicate that with swaps the value of lc is
significantly smaller than without swaps.

The latter theoretical approaches predict that swaps lead
to a modification of the cage dynamics and a shift of the
kinetic glass transition. However, these works do not provide
a microscopic picture on how swaps change the structural
relaxation of particles without affecting static equilibrium
properties of the system. In the present work, we use hybrid
MD-SMC simulations of a polydisperse model glassformer to
address this issue and thus elucidate why swaps accelerate the
dynamics so drastically.

A central idea of our work is to disentangle the effects of
diameter fluctuations from the Newtonian dynamics of the
particles. To this end, we first consider the application of
swap moves on a given equilibrated configuration, keeping
the positions of the particles fixed. We discuss different SMC
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algorithms, specified by the proposal probability with which
the particle pairs for a diameter exchange are selected. Here,
in particular, we find that a size-bias SMC scheme (or swap-
sector scheme in Ref. [23]), selecting only particle pairs that
have a similar diameter, is more efficient than the standard
SMC where one randomly chooses a pair of particles. With
a diameter correlation function, we estimate the number of
swap sweeps, srel, required to thermalize the diameter config-
uration on a fixed set of particle positions (here one sweep
corresponds to N trial swaps, where N is the number of par-
ticles). At low temperatures, we find srel ≈ 3 for the size-bias
SMC and srel ≈ 13 for the standard SMC. This information
is used in a second step where we consider the full hybrid
MD-SMC dynamics. First, we show that MD-SMC can be
used to properly adjust the temperature of the system without
the need for another thermostat. Then, to study the struc-
tural relaxation, we vary the time tMD between swap sweeps.
We identify the “physically” (however, not computationally)
most efficient MD-SMC scheme, for which srel sweeps are
performed every integration time step �t , i.e., tMD = �t .
Choosing a sufficiently large tMD at low temperatures allows
to infer the effect of the swap moves. After srel sweeps, the
diameter permutation instantaneously imposes a new cage
geometry around each particle. Then, during the subsequent
MD part, the particles shift to new mean positions on a mi-
croscopic timescale. In this sense, this mechanism explains
the drastic speed-up of the dynamics. It is reflected, e.g.,
in plateau steps of the mean-squared displacement (MSD).
The steplike behavior turns into a continuous increase of the
MSD when tMD = �t is chosen. In the latter case we find, in
agreement with the MCT prediction, that the glass transition
shifts to a lower temperature in comparison to the pure Newto-
nian dynamics, accompanied by a smaller critical localization
length lc.

Section II is on the glassformer model and the simulation
details. Section III presents the theory of SMC, assuming a
fixed set of particle coordinates. Furthermore, we introduce
three different SMC schemes with regard to the selection of
particle pairs for the swap trial moves. In Sec. IV, we study the
relaxation dynamics of particle diameters using SMC on fixed
particle configurations. The full hybrid MD-SMC dynamics is
analyzed in Sec. V. Finally, we draw conclusions in Sec. VI.

II. MODEL AND SIMULATION DETAILS

A. Model

1. Interaction model

The model of the polydisperse glassforming system that
we use in this work was proposed by Ninarello et al. [5].
It has exceptional glassforming abilities, hindering crystal-
lization and demixing down to temperatures far below the
mode coupling temperature. Due to the continuous particle-
size polydispersity (see below), this model is very well suited
for the application of SMC. Here, compared to conventional
MD or MC simulation, SMC provides a speed-up in equilibra-
tion time by many orders of magnitude. Thereby, samples can
be obtained from the simulation that are similar to those of
experiments of glassforming liquids at very low temperature.

We consider N particles with varying diameters σ =
σ1, . . . , σN and identical masses m in a cubic box of volume
V = L3, using periodic boundary conditions. As specified
below, the diameters are chosen according to a probabil-
ity density f . In the following, positions and momenta of
the particles are respectively denoted by the vectors ri and
pi, i = 1, . . . , N . The velocity vi of particle i is given by
vi = pi/m. The particles move according to Hamilton’s equa-
tions of motion with a Hamilton function H = K + U . Here
K = ∑N

i=1 p2
i /m is the kinetic energy and the total potential

energy U can be written as

U =
N−1∑
i=1

N∑
j>i

u(ri j/σi j ) , (1)

u(x) = u0(x−12 + c0 + c2x2 + c4x4) �(xc − x), (2)

where the function u describes the interaction between a
particle pair (i, j), separated by the distance ri j = |ri − r j |.
The argument of u is scaled by the “interaction diameter” σi j

that is related to the diameters σi and σ j , as specified below.
With the Heaviside step function � a dimensionless cutoff
xc = 1.25 is introduced. The unit of energy is defined by u0.
The constants c0 = −28/x12

c , c2 = 48/x14
c , and c4 = −21/x16

c
ensure continuity of u at xc up to the second derivative.

The interaction diameter σi j introduces a nonadditivity of
the particle diameters,

σi j = σi + σ j

2
(1 − 0.2|σi − σ j |), (3)

which is a significant ingredient to the model to suppress
crystallization and demixing [5]. This is especially important
when swap Monte Carlo is used, since this algorithm provides
the equilibration of samples at very low temperatures, where
models with additive diameters become increasingly prone to
crystallization.

2. Polydispersity

The target distribution f of the diameters is defined via the
probability density,

f (s) =
{

As−3, σm � s � σM,

0, otherwise.
(4)

Here a minimum σm and maximum diameter σM are intro-
duced. The normalization condition

∫
f (s) ds = 1 sets A =

2/(σ−2
m − σ−2

M ). The unit of length is defined as the expec-
tation value of the diameter, σ̄ = ∫

σ f (σ ) dσ . This implies
σM = σm/(2σm − 1). The distribution f has one degree of
freedom left, which is fixed by the choice σm = 0.725. Then
the upper bound is given by σM = 29/18 = 1.61 and the
amplitude by A = 29/22 = 1.318. In our work, the ratio
σM/σm = 20/9 = 2.2 deviates by less than 0.24% from the
value 2.219 reported in Ref. [5]. The degree of polydisper-
sity δ can be defined via δ2 = ∫

(s − σ̄ )2 f (s) ds/σ̄ 2 so that
δ ≈ 22.93%. A study by Berthier et al. [9] compared the
effect of functional forms of the diameter distribution on the
particle dynamics, considering f (s) ∼ 1, ∼ s−3, and ∼ s−4.
They found that the degree of polydispersity, δ, “is the most
relevant parameter”: At a fixed δ the functional form f (s)
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does not significantly affect the pure MC nor the fast hybrid
MC-SMC dynamics.

3. Deterministic diameter choice

In Ref. [5], the diameters σ were chosen randomly and in-
dependently from the density f . Different from this stochastic
approach, we use a deterministic method that we extensively
compared to the stochastic approach in Ref. [15]. The deter-
ministic method has the following advantages: (i) It leads to
smaller finite-size effects, as the “most representative sample”
[24] is used for any system size N . Statistical outliers are
prevented in this way. This is especially important for glass-
forming liquids at low temperatures, which are very sensitive
to density fluctuations. (ii) The histogram of the diameters
converges to f faster than for the stochastic approach. (iii) A
quenched disorder in the diameters is excluded, which would
otherwise be present and superimpose sample-to-sample fluc-
tuations. The latter point is not crucial to our analysis though,
since we do not investigate sample-to-sample fluctuations
here.

For the deterministic method the N diameters are
constructed as follows. In the first step, we introduce
N + 1 equidistant nodes hi = i/N , i = 0, . . . , N , along the
codomain [0,1] of the cumulative distribution function F (s) =∫ s
−∞ f (σ ) dσ . The preimages si = F−1(hi ) are well-defined,

since F is strictly monotonic and thus bijective when re-
stricted to [σm, σM]. Finally, the diameters σi are defined via
σ 3

i = N
∫ si

si−1
σ 3 f (σ ) dσ . This scheme provides the same set

of diameters for each sample. More details can be found in
Ref. [15].

B. Simulation details

1. Simulation methods

In all simulated samples, the number density is fixed to
N/V = 1. The temperature T is used as a control parameter.
For the parts that include MD simulations, we numerically
integrate the equations of motion via the velocity form of
the Verlet algorithm with a time step �t = 0.01 t0. Here
t0 = σ̄

√
m/u0 defines the unit of time. Eventually, for the

hybrid scheme (MD-SMC) combining MD with SMC as in-
troduced in Ref. [10], we apply N × s elementary SMC trials
after every tMD simulation time of MD dynamics. Here N
trials define one sweep so that s defines an SMC density in
a system-size-independent way. One elementary SMC trial
refers to an attempt to exchange the diameters of a single
pair of particles according to the Metropolis criterion. Which
of the N (N − 1)/2 pairs are chosen depends on the proposal
probability (also called a priori probability), defining the spe-
cific SMC variant. Three different variants will be discussed in
Sec. III. Unless noted otherwise, we apply the standard SMC
variant for which a random particle pair is chosen.

2. Equilibration protocol

To equilibrate the samples, we use the hybrid MD-SMC
scheme with tMD = 0.25 and s = 1. Only during equilibration
do we couple the system to the Lowe-Andersen thermostat
[25] for identical masses m with a frequency �T = 4 and a
cutoff RT = xc. We consider different system sizes, specified

by the number of particles, N = 256, 500, 2048, and 8000.
For each system size, we initialize 60 samples and each of
these samples is equilibrated at many different temperatures
T . Thus, we prepare a total number of N × 60 × T samples.
The equilibration of each of these samples is done according
to the following protocol.

We start with the assignment of N diameters as described
in the previous subsection. The particles are placed on a face-
centered-cubic lattice in the cubic box of length L, eventually
with cavities in the case that N �= 4n3 for all natural numbers
n. The velocities vi are initialized with a constant absolute
value as v2

i = 3T/m at the very high temperature T = 5, but
each with a random orientation. We subtract the mean momen-
tum

∑N
i=1 pi/N from each pi to set the total momentum vector

to zero. Then the initial crystal is melted for a simulation time
of t = 2 × 103 with a short time step �t = 10−3 while the
hybrid MD-SMC scheme and the Lowe-Andersen thermostat
(both their temperature parameters are set to T = 5) are ap-
plied. After that, we cool to T = 0.3 for the same duration.
“Cooling” to this (still high) temperature T = 0.3 allows us to
use a larger time step, �t = 0.01, in the following. Here (and
below), the process of “cooling” (or heating) to a temperature
T is done by choosing T as a temperature parameter in the
Lowe-Andersen thermostat as well as in the SMC algorithm.
This procedure leads to a quick change of the temperature,
controlled by the thermostat frequency �T = 4. As T = 0.3
is far above the glass-transition temperature of our simulation
(as discussed below), the samples are fully equilibrated. Then
each of these samples is quenched to different target temper-
atures T at which a long run over a time span of t = 105 is
performed. After that, we switch off the SMC algorithm and
continue each simulation for another t = 0.8 × 105. Switch-
ing off SMC ensures that the mean total energy H̄ remains
constant independent of temperature T (either the samples
are already in equilibrium, or they are far below the glass-
transition temperature of MD without SMC). During this run,
the average H̄ and standard deviation of the energy H , std(H),
are calculated from a time series (for each run separately).
Then we simulate for t = 0.2 × 105. Here, as soon as the
condition |H − H̄ | < 0.01 × std(H ) is satisfied, we switch off
the thermostat to ensure that the energy H is constant (except
for the error resulting from the numerical integration scheme)
for the remaining time. This last part of our equilibration
protocol reduces energy fluctuations. The final configurations
that we obtain are the starting point of all simulations below
and are considered as “equilibrated.”

For temperatures T � 0.06 ≡ T SMC
g , the prepared samples

are fully equilibrated. Here T SMC
g is the glass-transition tem-

perature for the standard MD-SMC with tMD = 0.25 and s =
1, which was identified in Ref. [15] via a pronounced drop in
the specific heat. We do not observe any signs for ordering
processes above T SMC

g , consistent with Ref. [5]. Note that the
value of T SMC

g generally depends on the parameters tMD and s
and the chosen SMC variant. For numerically efficient choices
(see below), we expect T SMC

g ≈ 0.06 to be less sensitive on the
exact choices. As a reference point, for pure MD simulations
in the microcanonical ensemble (NV E ), the glass-transition
temperature is at T = T NVE

g ≈ 0.11 (also identified via a drop
in the specific heat) [15].
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FIG. 1. Illustration of three SMC algorithms: standard (left), local (mid), and size-bias SMC (right panel). For a given blue particle, the
green particles represent all of its allowed transposition candidates. One of the possible swap attempts is indicated by a red arrow. The gray
particles are not allowed to be exchanged with the blue one. For the standard SMC, transpositions between all particle pairs are considered.
For the local SMC, only neighbors of the blue particle are allowed candidates, as indicated by the open blue circle. For the size-bias SMC,
only particles with a similar diameter are considered.

We draw pseudorandom numbers with the Mersenne
Twister algorithm [26]. A different seed for each sample is
used to ensure independent sequences of these random num-
bers. The latter are used, e.g., for the random velocities in
the sample initialization, for the thermostat, and for SMC.
Thus, the 60 equilibrated samples at a given T and N can be
considered as independent.

III. THEORY OF SMC ON A FROZEN CONFIGURATION

In this section, we give an explicit mathematical descrip-
tion of SMC when applied to a fixed set of coordinates. By
exchanging particle coordinates, SMC samples from a con-
strained phase space, the space of all particle permutations of
a given configuration. Note that it is completely equivalent,
as we will show below, to exchange the diameters of the
particles while their coordinates are fixed instead. Mathemat-
ically, SMC represents a discrete-time Markov chain, created
via the Metropolis-Hastings algorithm [27] with the canonical
distribution as a target distribution. We analyze three different
SMC variants that only differ with respect to the proposal
probability, i.e., the selection of particle pairs, see Fig. 1:
(i) the standard SMC in Sec. III B, which allows transposi-
tions between all particles; (ii) a local SMC, for which only
neighboring particles are exchanged in Sec. III C; and (iii)
a size-bias SMC, which only selects particles with similar
diameters in Sec. III D. We discuss under which conditions
each SMC variant converges.

A. Mathematical description

1. Notation

We denote phase-space coordinates as a matrix x ∈ R6×N .
Here the nth column of x contains all coordinates of particle
n, i.e., x:,n = (rx

n, ry
n, rz

n, px
n, py

n, pz
n)T , where rk

n and pk
n are

components of the vectors rn and pn, respectively. Similarly,
the diameters of the particles are given by σ = (σ1, . . . , σN ) ∈
R1×N . In the following, we consider an arbitrary initial con-
figuration x0.

2. Transpositions τi j

Starting from x0, each SMC algorithm below subsequently
performs transpositions. A transposition τi j of particles i �= j
is defined as

(τi j (x)):,n =

⎧⎪⎨
⎪⎩

x:,i if n = j,
x:, j if n = i,
x:,n otherwise.

(5)

This corresponds to an exchange of columns i and j in a
configuration x. Trivially, a transposition conserves the total
momentum.

3. Permutations π

From an algebraic perspective, a composition of transpo-
sitions is a permutation π . The reverse is also true: Each
permutation can be written as the composition of transposi-
tions, such that the set P of all permutations is given by

P =
{

K∏
k=1

τik jk | K ∈ N, ik �= jk ∈ {1, . . . , N}
}

, (6)

with
K∏

k=1

τik jk = τiK jK ◦ · · · ◦ τi1 j1 . (7)

P defines a group where the group operation is the composi-
tion, ◦. The number of elements in P is |P| = N!.

4. Symmetry

A permutation of the coordinates x is equivalent to the
inverse of the same permutation of the diameters σ . This
symmetry can be formulated in terms of the Hamilton function
H as

H ( π (x) | σ ) = H ( x | π−1(σ )), ∀π ∈ P . (8)

This identity can be verified as follows: Applying a permu-
tation π simultaneously to the coordinates x as well as the
diameters σ is just a relabeling of the particles. Thus, we have
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H (π (x)|π (σ )) = H (x|σ ), from which Eq. (8) follows. Note
that here we assume identical particle masses in the model
definition. Otherwise one had to incorporate the different
masses into a generalized parameter matrix σ ∈ R2×N . Equa-
tion (8) implies that in simulations computationally efficient
diameter exchanges can be used [right-hand side of Eq. (8)],
but we can interpret their effect in terms of a sampling from a
phase space at a fixed σ [left-hand side of Eq. (8)].

5. Phase space �x0

By sequentially applying swap moves, we sample from a
discrete phase space �x0 and eventually visit the set of all N!
possible permutations π of the configuration x0,

�x0 = {π (x0), π ∈ P}. (9)

Note that �x0 has exactly the same number of elements as P ,
since ri �= r j for i �= j is guaranteed by the pair interaction
potential u. We emphasize that �x0 is only a subset of the total
phase space of the hybrid MD-SMC dynamics.

6. Target distribution W

The Metropolis-Hastings algorithm involves a target dis-
tribution W . We impose the canonical distribution with a
temperature parameter TSMC on the phase space �x0 , i.e.,

W (x) = Z−1
x0

e−H (x|σ )/(kBTSMC ), x ∈ �x0 , (10)

Zx0 =
∑
π∈P

e−H (π (x0 )|σ )/(kBTSMC ). (11)

Here Zx0 is the partition sum with respect to the frozen con-
figuration x0. Note that for the sake of readability we leave
out the index x0 from the target distribution W and other
expressions below.

7. Metropolis-Hastings algorithm

SMC uses the Metropolis-Hastings algorithm [27] to
construct a Markov chain (x0, x1, x2, . . . ). In each of the fol-
lowing SMC schemes, the same target distribution W (defined
above) is used, starting from the configuration x0. Assume a
configuration xn−1 at “time” step n − 1. To obtain the next
configuration xn, one first generates a trial configuration x∗
from a proposal probability q(. |xn−1). The choice of q(. |.)
defines the different SMC variants, discussed below. The trial
configuration x∗ is accepted with a probability α(xn−1, x∗). If
it is accepted, then xn := x∗; otherwise, it is rejected, setting
xn := xn−1. Here the acceptance probability is defined as

α(x, y) = min

(
1,

W (y)q(x|y)

W (x)q(y|x)

)
. (12)

We will show that the proposal probability q for each of the
SMC schemes considered below is symmetric, i.e., q(x|y) =
q(y|x), so that the acceptance probability α simplifies to the
special case of the Metropolis criterion,

α(x, y) = min(1, e−[H (y|σ )−H (x|σ )]/(kBTSMC )). (13)

8. Convergence

Now we discuss the conditions under which the SMC al-
gorithm converges to the target distribution W . The transition

probability P(y|x) to migrate from a state x to a state y is a
conditional probability,

P(y|x) = α(x, y)q(y|x). (14)

Since the state space �x0 is finite, |�x0 | = N! < ∞, P(y|x)
can be identified with a finite-dimensional transition matrix
P. The matrix notation demands that we count the state space
and uniquely identify each state with one of these numbers.
Similarly, let us denote the n-step transition probability to
migrate from state x to y after n steps by P(n)(y|x). Here the
Kolmogorov-Chapman equation [28] hold for all n, m � 0,

P(n+m)(y|x) =
∑
z∈�x0

P(m)(y|z)P(n)(z|x). (15)

They can be used to express P(n)(y|x) by the associated entry
of the matrix Pn. By construction, the Metropolis-Hastings
method satisfies the detailed-balance condition

W (x)P(y|x) = W (y)P(x|y), (16)

which is also called reversibility of the chain. It guarantees
that W is a stationary distribution of the Markov chain, in the
sense that ∑

x∈�x0

W (x)P(y|x) = W (y). (17)

In general, the existence of a stationary distribution itself is
not sufficient to imply convergence. Before we state a the-
orem of convergence, we first need to define the properties
aperiodicity and irreducibility.

9. Aperiodicity

If a return to state x can only occur in a multiple of k steps,
then x is said to have a period of k. The period k of a state x is
formally defined as

k(x) = gcd{n � 1 | P(n)(x|x) > 0}, (18)

where gcd denotes the greatest common divisor. The Markov
chain is said to be aperiodic if at least one state x is aperiodic
in the sense that k(x) = 1.

The Metropolis-Hastings algorithm with (i) a canonical
distribution W [cf. Eqs. (10) and (11)] as a target distribu-
tion and with (ii) a symmetric proposal probability q is also
called Metropolis algorithm. In this case, the Markov chain
is aperiodic under a very weak physical condition: Consider
that any state x ∈ �x0 exists from which a state x∗(x) with
a higher energy can be proposed. Formally, this means that
we assume q(x∗(x)|x) > 0 and H (x|σ ) < H (x∗(x)|σ ). Then
there is a finite probability to reject x∗, cf. Eq. (13), since
α(x, x∗) < 1. Therefore, P(1)(x|x) � (1 − α(x, x∗))q(x∗|x) >

0 and thus k(x) = 1.

10. Irreducibility

A state y is said to be accessible from another state x if the
probability to transition from x to y in a finite number of steps
is finite, i.e., if an integer k(x, y) � 0 exists with P(k)(y|x) >

0. If x is accessible from y and y from x, then both states are
said to communicate. Communication defines an equivalence
relation, whereby the maximal sets of communicating states
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represent equivalence classes. A Markov chain is said to be
irreducible if each state communicates with each of the other
states, i.e., the whole state space is one communicating class.

11. Ergodic theorem [28]

Assume that a Markov chain is irreducible and aperiodic
and that a stationary distribution W exists. Then W is the only
stationary distribution and the Markov chain converges to W ,
in the sense that

lim
n→∞ P(n)(y|x) = W (y). (19)

This type of weak convergence states that, no matter in which
state x we currently are, after a sufficient number of steps we
reach any state y with probability W (y).

In the following, three SMC schemes are discussed.
For each variant, we introduce the algorithm, calculate its
corresponding proposal probability q, and show that q is sym-
metric. The question of convergence comes down to whether
the Markov chain is irreducible, since the Metropolis method
ensures that (i) the target distribution W is a stationary dis-
tribution and (ii) aperiodicity is guaranteed except for trivial
configurations x0.

B. Standard SMC

The standard SMC, to be introduced below, was first ap-
plied to binary mixtures [1,2,29,30]. An illustration of this
swap variant can be found in the left panel of Fig. 1. In the case
of a polydisperse system, one randomly chooses a particle
pair (i, j) from a given configuration x ∈ �x0 and attempts
a transposition to obtain the trial configuration x∗ = τi j (x).
Since each transposition is attempted with the same proba-
bility, the proposal probability q(.|x) is a uniform distribution
on the space of transpositions of x,

q(y|x) =
{

2
N (N−1) , if i �= j exist : y ≡ τi j (x),

0, otherwise.
(20)

The symmetry q(y|x) = q(x|y) holds since τi j[τi j (x)] = x.
In the following we show that the Markov chain of the

standard SMC converges to the target distribution W . First,
we note that the Markov chain is aperiodic (except for trivial
energetically degenerated configurations x0, as discussed be-
fore) and that W is a stationary distribution. Both statements
hold since SMC is a Metropolis algorithm. As a next step,
irreducibility will be shown; then all three conditions of the
ergodic theorem above are satisfied, so that convergence to-
ward W is established in the sense of Eq. (19).

Let x, y ∈ �x0 be any configurations from the phase space
of particle permutations, as introduced above. Since y =
π1(x0) and x = π2(x0) for some π1, π2 ∈ P , we can write y =
π (x) with π = π1 ◦ π−1

2 . According to group theory, every
permutation can be written as a composition of transpositions.
This means π = ∏K

k=1 τik jk for a K ∈ N and transpositions
τik jk . Let us now recursively define zk := τik jk (zk−1) with z0 :=
x. This implies zK ≡ y. From the Kolmogorov-Chapman
Eq. (15), the inequality P(K )(y|x) � ∏K

k=1 P(zk|zk−1) follows,
which describes that the probability to transition from x to
y in K steps along any path is greater than (or equal to) the
probability to transition along the unique path specified by the

K transpositions. Now, by definition (14), we express the one-
step transition probability P(zk|zk−1) = α(zk−1|zk )q(zk|zk−1)
via the acceptance probability (13) and proposal distribution
(20). Both probabilities are finite; it is q(zk|zk−1) > 0 because
zk = τik jk (zk−1) is a transposition of zk−1. Therefore, we have
P(K )(y|x) > 0, i.e., the state y is accessible from x. Since the
states x and y are arbitrary, the Markov chain is irreducible by
definition.

C. Local SMC

The local SMC was introduced by Fernandez et al. [3]. The
idea of this method is to only exchange particles for which
the distance ri j ≡ |ri − r j | is smaller than a parameter �r > 0
(cf. the mid panel of Fig. 1). Given a configuration x ∈ �x0 ,
let N (x) denote the list of all particles which have at least one
neighbor,

N (x) = { i = 1, . . . , N | ∃ j �= i : ri j < �r }. (21)

For �r � 1 and dense liquid samples with number den-
sity N/V = 1 considered in our work, we have N (x) =
{1, . . . , N} for all typical configurations. Analogously, let
Ni(x) be the list of all the neighbors of a particle i,

Ni(x) = { j = 1, . . . , N | j �= i, ri j < �r }. (22)

In the trivial case where no neighboring particles at all exist,
|N (x)| = 0, we propose x∗ = x such that q(x|x) = 1. In the
nontrivial case, the local SMC algorithm first randomly picks
a particle i ∈ N (x), subsequently chooses a random neighbor
j ∈ Ni(x), and then proposes the transposition x∗ = τi j (x).
The corresponding proposal probability is

q(y|x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
|N (x)|

[
1

|Ni (x)| + 1
|N j (x)|

]
, if ∃ i ∈ N (x)

∧∃ j ∈ Ni(x) :

y ≡ τi j (x),

0, otherwise.

(23)

The sum in the first row accounts for the two possibilities
by which a transposition τi j (x) can be proposed with the
algorithm: One option is to first choose the particle i and then
to pick j ∈ Ni(x). The second option is to first choose j and
then select i ∈ N j (x).

One can show the symmetry q(y|x) = q(x|y) as follows:
The neighbors of particle i in configuration x are the same as
the neighbors of particle j in configuration y = τi j (x), since
j now occupies the former coordinates of i. This means that
N j (y) = Ni(x). Similarly, the particles with neighbors remain
the same, i.e., N (x) = N (y).

Regarding the question of convergence, in the most general
case, irreducibility of the SMC Markov chain depends on the
relation between the swap range �r and the frozen configu-
ration x0 (and thus the density and the temperature at which
x0 was prepared). In the case that �r is too small (smaller
than the typical distance between neighboring particles),
there might exist distinct communicating classes (separated
clusters of particles), between which particles cannot be
exchanged.

A sufficient condition for the convergence of the local
SMC, which should be satisfied in typical configurations of
dense liquids, can be obtained as follows. We assume that for
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any two particles (i, j) we can find a path from i to j along a
chain of neighboring particles. Formally, this means that par-
ticle indices ik exist such that ri − r j = ∑K

k=1 rik − rik+1 is a
telescoping sum with |rik − rik+1 | < �r for all k = 1, . . . , K .
Note that i1 ≡ i and iK+1 ≡ j. Then the transposition τi j

can be obtained by a sequence of swaps between neigh-
boring particles, τi j = (

∏K−1
k=1 τiK−k iK−k+1 ) ◦ (

∏K
k=1 τik ik+1 ). This

expression means that we first sequentially swap particle i
until we reach j and then reversely swap j along the same
path to the former position of i. Now that we can realize
any transposition with a finite sequence of the local SMC,
also any permutation can be obtained, cf. Eq. (6). Thus we
can transition from any state to any other in a finite number
of steps with a finite probability (for more mathematical de-
tails, see the proof of irreducibility for the standard SMC).
Hence the Markov chain is irreducible by definition and it
converges according to the ergodic theorem above in the sense
of Eq. (19).

From the local SMC, the standard SMC can be recovered
in the limit �r → ∞. In our simulations the algorithms are
identical if �r � L

√
3/2.

In the introduction of the local SMC algorithm in Ref. [3],
an erroneous assumption about the proposal probability q was
made. Here the authors did not take into account the second
summand in the first row of Eq. (23), and thus the proposal
probability q that they assumed was not symmetric. With this
q, an incorrect expression for the acceptance probability was
obtained.

The local SMC might be well suited as a potential candi-
date for a parallelized implementation of SMC.

D. Size-bias SMC

The size-bias SMC was introduced in a work by
Brumer and Reichman [23] who referred to this method
as “swap-sector Monte Carlo.” The idea of this variant
is to avoid attempts of transpositions which are rejected
with a high probability due to a large difference between
the diameters (see right panel of Fig. 1). The anatomy
of the size-bias SMC is similar to the local SMC, ex-
cept that the metric to identify “neighboring” particles is
applied within the diameter space with a cutoff �σ > 0.
Formally, we adopt exactly the same algorithm and definitions
as in Sec. III C, but we replace ri j by |σi − σ j | and �r by �σ .
Note that here we do not take into account the nonadditivity
of the diameters.

While the convergence of the local SMC generally de-
pends on the configuration x0, the convergence of the size-bias
Markov chain toward the target distribution W can always be
ensured by the choice of a sufficiently large system size N :
Again, the question of convergence boils down to whether all
states communicate with each other (irreducibility). To this
end, we have to show that we can realize any permutation
with the size-bias SMC. Here the argumentation is as follows.
As before, we only need to show that any transposition τi j

between any two particles (i, j) can be realized, because each
permutation can be written as a composition of transpositions,
see Eq. (6). The apparent problem for the size-bias SMC is,
however, that only transpositions between similar diameters
are allowed. To this end, let us first assume, without loss of
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standard SMC

size-bias SMC (Δσ = 0.1)

local SMC (Δr = 1.5)

FIG. 2. Probability Paccept of accepting a trial diameter exchange
as a function of temperature T for three SMC schemes.

generality, that the diameters σk are sorted in any order. For
any given �σ > 0, we can choose a sufficiently large system
size N such that |σk+1 − σk| < �σ for all k = 1, . . . , N − 1.
This means that each particle has a smaller and a larger
”neighbor” within the cutoff �σ , except for the boundary
particles. Note that this assumes a deterministic method [15]
to choose the diameters in the polydisperse model, as well
as a compact domain of the diameter distribution density f ,
cf. Sec. II A. Then each transposition τi j can be obtained by
swapping sequentially only between particles with a similar
diameter: τi j = [

∏ j−i−1
k=1 τ( j−k) j] ◦ (

∏ j
k=i+1 τik ).

An efficient implementation of the proposal part of the
size-bias SMC with pseudo code reads:

This short code snippet illustrates the simplicity of the
algorithm: In comparison to the standard SMC, we only add
the calculation of |σi − σ j | alias “dij” in line 4 and a float
comparison “dij < DS” in line 5.

For our model, the size-bias SMC outperforms the local as
well as the standard SMC, as we will show in Sec. IV.

IV. NUMERICAL RESULTS FOR SMC
ON A FROZEN CONFIGURATION

In this section, we consider SMC on a frozen configuration
x0 and evaluate the performance of the three SMC schemes in-
troduced above. To this end, we determine the acceptance rate
Paccept, a diameter correlation function Cσ , and a relaxation
time srel. For an initial configuration x0 that was equilibrated
at a specific temperature T before, cf. Sec. II B, we now apply
SMC at the same temperature, i.e., TSMC = T in Eq. (13). In
this sense, the numerical results of this section can be trans-
ferred to the equilibrium simulations with hybrid MD-SMC in
Sec. V.

A. Acceptance rate Paccept

In Fig. 2, we show the acceptance rate Paccept of trial swaps
as a function of temperature T . Here Paccept is calculated
by dividing the number of accepted attempts x∗ by the total
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number of attempts of a Markov chain of length 103 × N ,
averaged over 60 initial configurations x0 with N particles
each. Under equilibrium conditions, i.e., for temperatures T >

T SMC
g ≈ 0.06, the acceptance rates are above 8.4% for all

three specified SMC methods.
In the work of Fernandez et al. [3], local SMC for a binary

system is proposed, resulting in a larger acceptance rate Paccept

than for the standard SMC. In contrast, for our polydisperse
model, the local SMC with �r = 1.5 has a slightly smaller
Paccept than the standard scheme. This qualitatively different
behavior presumably results from a different chemical order-
ing in a binary and a polydisperse system.

We emphasize that Paccept is not a suitable measure to
compare the performance of SMC algorithms. This will be-
come clear for the size-bias SMC below: While decreasing
�σ always leads to higher acceptance rates, the SMC moves
between too similar diameters are inefficient. Instead, we
will now propose a diameter relaxation function as a rea-
sonable performance measure. From this correlation function,
we shall infer that the local SMC is inferior to the standard
SMC for any �r (for our model system at a low temperature
T = 0.065).

1. Diameter autocorrelation function Cσ

An appropriate quantity to compare the performance of
the different SMC methods is a diameter (auto-)correlation
function Cσ (s). Here we swap (permute) the diameters of
the particles while their phase-space coordinates x0 are fixed
instead, cf. Eq. (8). In order to measure the elapsed “time”
s in a system-size independent way, we use the number of
swap sweeps; here one sweep is defined as N elementary SMC
trials. The function Cσ (s) quantifies the time correlation of a
diameter fluctuation σi(s) − σav around the average diameter
σav = 1

N

∑N
i=1 σi ≈ σ̄ . It is defined by

Cσ (s) = E
[∑N

i=1(σi(s) − σav)(σi(0) − σav)
]

E
[∑N

i=1[σi(0) − σav]2
] . (24)

Here E[.] denotes an expectation value with respect to the
Markov chain as well as the distribution of initial config-
uration x0. In practice, we use only one realization of the
Markov chain at a given x0 and then average over the ensemble
of 60 independent samples x0. In Fig. 3(a), we show Cσ (s)
for different temperatures T . One observes that in the long-
time limit the correlation function decays onto a well-defined
temperature-dependent plateau,

C∞
σ := lim

s→∞Cσ (s) > 0. (25)

A finite value means that the system keeps some memory
of its initial diameter configuration forever. From a numerical
perspective, large values Cσ (s) > 0.75, even at a very high
temperature T = 1, imply that the “allowed” diameter fluctu-
ations within a frozen configuration are rather small.

Figure 3(b) shows Cσ (s) at a fixed temperature T = 0.065
for the three SMC variants. For the size-bias SMC (red line,
�σ = 0.1), the function Cσ (s) decays much faster than for the
standard SMC (dashed black line), which in turn outperforms
the whole set of local SMC algorithms (blueish lines). On
increasing �r for the local SMC, Cσ (s) continuously ap-
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FIG. 3. Correlation function Cσ as a function of time s (corre-
sponding to the number of swap sweeps) in frozen configurations,
obtained by averaging over 60 samples with N = 2048 particles
each. (a) Standard SMC for different temperatures T = 1, 0.5, 0.3,
0.25, 0.2, 0.15, 0.12, 0.11, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04,
0.03, 0.02, 0.01. Color changes with decreasing temperature from
red (lower curve) to blue (upper curve). (b) At the fixed temperature
T = 0.065 for the standard SMC (dashed black line), the size-bias
SMC with �σ = 0.1 (red line), and the local SMC for �r = 1, 1.25,
1.5, 1.75, 2, 3, 4 (with increasing �r the color of the curves changes
from turquoise over blue to purple).

proaches that of the standard SMC. Already for �r = 3 the
curves of the local and standard SMC are very close. This
finding is relevant with respect to a possible parallelization of
SMC using the local SMC. Independent of the SMC variant,
the function Cσ (s) seems to approach the same plateau value
C∞

σ as s → ∞; this numerical result is an implication of our
analytical result from Sec. III that each SMC scheme con-
verges to the same target distribution W (under the conditions
elaborated in Sec. III).

Figure 4 shows the plateau height C∞
σ as a function of

temperature T . The function C∞
σ (T ) is monotonically de-

creasing, which means that the lower T is, the smaller is
the “accessible” diameter space of each particle. This finding
represents an analogy to the cage effect, where an increasing
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FIG. 4. Plateau C∞
σ ≡ lims→∞ Cσ (s) as a function of T .

localization of the particles on decreasing T can be observed
(see below).

2. Relaxation time srel

To quantify how fast SMC “thermalizes” the diameters, we
first measure the decay of Cσ (s) onto the plateau C∞

σ with
a normalized correlation function C̃σ (s) and then define a
relaxation time srel. To this end, we introduce

C̃σ (s) = Cσ (s) − C∞
σ

Cσ (0) − C∞
σ

. (26)

In Fig. 5, we display C̃σ as a function of s for the standard
SMC at the same temperatures T as in Fig. 3(a). We define a
relaxation time srel via

C̃σ (srel ) = e−1. (27)

If we ignore the lowest five temperatures T < T SMC
g cor-

responding to glassy nonequilibrium states, then we find a
relaxation time srel ≈ 10, almost independent of the temper-
ature T .

Figure 6 shows the relaxation time srel as a function of the
parameter �σ of the size-bias SMC for the temperatures T =
0.065, 0.1, and 0.3. We observe that srel(�σ ) has a minimum,
�σmin(T ). For the specified temperature range we have 0.1 �
�σmin � 0.2. Since we are interested in optimizing SMC
at low temperatures close to the numerical glass-transition
temperature T SMC

g ≈ 0.06, we propose �σmin = 0.1 as the
optimized value for this model system. The existence of a
minimum for the size-bias SMC is intuitively clear: While too
large �σ lead to “unnecessary” SMC trials which are rejected
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C̃
σ

FIG. 5. Correlation function C̃σ (s), see Eq. (26), as a function of
SMC sweeps s in frozen coordinates. Temperatures T increase from
blue to red; see the caption of Fig. 3(a).
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FIG. 6. Relaxation time srel as a function of the parameter �σ of
the size-bias SMC for the three different temperatures T = 0.3 (red
triangles), T = 0.10 (brown circles), and T = 0.065 (blue squares).
The dashed horizontal lines denote the relaxation times of the stan-
dard SMC. The black arrow marks σM − σm, the difference between
the maximum and minimum diameter.

most of the times, too small values are also inefficient since
then only very similar diameters are exchanged such that the
swap moves have essentially no effect.

3. Computational efficiency

Above, we have quantified the “physical” performance of
the different SMC schemes in terms of the diameter corre-
lation function Cσ (s). However, this does not fully account
for the computational efficiency, for which the computational
load has to be considered as well. We find that the three
considered SMC variants can be implemented efficiently, as
we demonstrated with the code snippet in Sec. III D. Their
computational load is similar, as we will see below in Fig. 11
in Sec. V.

V. HYBRID MD-SMC DYNAMICS

A. Definition and parameters

In this section, we analyze the hybrid MD-SMC dynamics,
introduced in Ref. [10]. This dynamics consists of micro-
canonical (NV E ) MD simulation where, periodically after a
time interval tMD, s consecutive swap sweeps are inserted.
Here one sweep is defined by N subsequent elementary SMC
attempts to exchange the diameters of particle pairs while
the coordinates are frozen, as defined in Sec. III. The nu-
merical results presented below refer to the standard SMC
scheme; however, similar results are expected for the other
two variants. Their efficiency is different but with the choice
of appropriate parameters they sample from the same target
distribution.

Following Ref. [10], we define the SMC frequency

fSMC = s

tMD
(28)

to fully characterize MD-SMC by these three parameters,
among which only two are independent. In the following, we
will refer to MD-SMC with a specific choice of tMD and s as
SMC(tMD, s). By a comprehensive analysis of SMC(tMD, s)
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with varying tMD and s, we give insight into the mechanism of
the drastically accelerated structural relaxation. Before that,
we demonstrate that the system is properly thermostatted
when coupled to SMC. Unless noted otherwise, we use tMD =
0.01 ≡ �t as a default value in the following.

B. MD-SMC as a thermostat

The sole addition of SMC to microcanonical MD can be
used to adjust the temperature T of the system. Thus, it
is not necessary to couple MD to a thermostat such as the
Nosé-Hoover or the Berendsen thermostat [31] or the Lowe-
Andersen thermostat applied in our equilibration protocol, cf.
Sec. II B. To see this, we perform the following protocol: We
start from equilibrated configurations at the initial tempera-
ture T0 = 0.30, followed by MD-SMC simulation at a target
temperature TSMC that enters the Metropolis criterion of the
swap moves, cf. Eq. (13). We determine the instantaneous
temperature T := 〈 2K

3N 〉, averaged over 60 simulations, via the
kinetic energy K of a sample with N particles. Figure 7(a)
shows the instantaneous temperature T as a function of time
t for the target temperatures TSMC = 0.07 (dashed lines) and
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FIG. 7. (a) Instantaneous temperature T as a function of time t
with MD-SMC dynamics (tMD = 0.01). The initial temperature is
T0 = 0.30 for each curve. Two different target temperatures TSMC

are imposed [cf. Metropolis criterion of swap trial moves, Eq. (13)];
results for TSMC = 0.07 are shown as dashed lines and TSMC = 0.50
as solid lines. The frequency fSMC is varied for both TSMC, as in-
dicated. For the computationally demanding value fSMC = 105, we
only simulate up to t = 20. (b) Relaxation time τT , see Eq. (29), as a
function of frequency fSMC for the two target temperatures TSMC used
in (a). The dashed black line indicates a proportionality τT ∝ f −1

SMC.
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FIG. 8. Velocity correlation function Cv (t ) for N = 8000 parti-
cles and the two temperatures T = 0.06 and T = 0.30, computed for
pure NV E dynamics (solid lines) and for NV E dynamics subjected
to a singular distortion at t = 0 (circles). The distortion is defined
as a full thermalization of diameters by performing 103 × N swap
attempts.

TSMC = 0.50 (solid lines), i.e., a very low and a relatively
high temperature (see below). For the frequencies fSMC ∈
{10−1, 1, 102}, both target temperatures are approached on
a timescale that decreases with increasing frequency fSMC.
A nonmonotonic behavior occurs for fSMC = 105, where the
timescale increases again.

For a quantitative analysis, let us introduce the relaxation
time τT of the temperature, defined by

T (τT ) − TSMC

T0 − TSMC
= e−1. (29)

Figure 7(b) shows τT as a function of fSMC for TSMC = 0.07
and TSMC = 0.50. The quantitative behavior is very similar
in both cases. For fSMC � 10, we observe τT ∝ f −1

SMC. Then,
on increasing fSMC, the relaxation time τT reaches a shallow
minimum at a value τmin

T ≈ 2 around f min
SMC ≈ 102. For larger

fSMC, τT increases mildly and then saturates at the values
τT ≈ 6 for TSMC = 0.07 and τT ≈ 4 for TSMC = 0.50. The
saturation of τT can be understood from our findings for SMC
on a frozen configuration in Sec. IV. Here we saw that about
srel ≈ 10 swap sweeps are required for the decay of the diam-
eter correlation function onto a plateau. By performing more
than srel swap sweeps per microscopic timescale tmic ≈ 0.2 (to
be defined shortly), we expect a saturation of the MD-SMC
dynamics with respect to the speed with which the target
temperature is approached. The swap frequency at which this
saturation threshold is approached can be estimated as f ∗

SMC =
srel/tmic ≈ 50 which roughly corresponds to the “onset” of the
shallow minimum in τT . The reason for the increase from
f min
SMC to the final saturation above f min

SMC is, however, not clear
to us.

A microscopic timescale tmic can be estimated via the first
zero-crossing of the velocity autocorrelation function,

Cv (t ) = 〈v(t )v(0)〉/〈v2(0)〉. (30)

Thus, the microscopic timescale is given by tmic =
min{t |Cv (t ) = 0}. As we shall see below, a similar estimate
of tmic is the location of the maximum of the derivative of the
mean-squared displacement. As can be inferred from Fig. 8
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FIG. 9. Instantaneous temperature T as a function of time t at
TSMC = T0 = 0.30. For NV E dynamics (brown curve), MD-SMC
with the default time step �t = 0.01 (green curve), and MD-SMC
with �t = 0.002 (blue curve). For the MD-SMC dynamics, fSMC =
1000 with tMD = 0.01 is chosen. Curves are averaged over 60 sam-
ples (each with N = 2048 particles).

for the two temperatures T = 0.06 and T = 0.30, the mi-
croscopic timescale is tmic ≈ 0.2. Note that the temperature
dependence of tmic is very weak for T ∈ [0.06, 0.30], as ex-
pected.

1. Temperature shift?

As already reported in Ref. [10], there can be a problem
with a slight temperature shift if one chooses tMD = 0.01,
which coincides with the time step �t = 0.01. Here we
show that this is not a principal problem of the choice of
a very small time tMD. Instead, it is a numerical problem
with regard to the integration of the equations of motion
and can be simply solved by choosing a smaller time step.
This is demonstrated in Fig. 9, plotting the instantaneous
(but sample-averaged) temperature T as a function of time
t for the example TSMC = T0 = 0.3, choosing fSMC = 1000
with tMD = 0.01 and the two integration time steps �t = 0.01
(green curve) and �t = 0.002 (blue curve). For the pure NV E
dynamics (brown curve), the time step �t = 0.01 is suffi-
ciently small to maintain the correct temperature. In contrast,
for the MD-SMC dynamics with the same time step, a relative
temperature shift |T − T0|/T0 ≈ 0.7% occurs. With a smaller
time step �t = 0.002, one avoids this shift within the accu-
racy of our measurement. We have checked that the small
shift for �t = 0.01 has a negligible effect on the properties
reported below; especially at temperatures T0 < 0.3 this effect
tends to be even smaller. Thus, we keep using the time step
�t = 0.01 in the following.

2. Microscopic equilibrium

We have seen that MD-SMC guarantees a correct ther-
mostatting of the system, provided that the time step for the
integration of the equations of motion is sufficiently small.
Now we show that, after the application of swap moves in
frozen coordinates, the particle velocities remain in equilib-
rium (during the subsequent MD time; remember that SMC
itself does not affect the velocity distribution at all). To
this end, we reconsider the velocity autocorrelation func-
tion in Fig. 8. Here the solid lines refer to standard NV E

dynamics, while the circles correspond to NV E dynamics
with an imposed singular distortion of the system at time t = 0
by performing 103 × N swap trials. That the circles are on
top of the solid lines indicates that the Maxwell-Boltzmann
velocity distribution is stationary during MD-SMC simula-
tion. In this sense, MD-SMC seems to preserve microscopic
equilibrium.

C. Structural relaxation

In this section we investigate the structural relaxation
with MD-SMC and aim at elucidating the mechanisms how
MD-SMC affects dynamic processes. The starting point for
all simulations discussed below are configurations that were
equilibrated via MD-SMC (see Sec. II B; for T � 0.06 sam-
ples were fully equilibrated, as identified via a drop in the
specific heat). For the analysis of the dynamics, we consider
the MSD,

MSD(t ) = 〈(r(t ) − r(0))2〉, (31)

and the self-part of the overlap function,

Q(t ) = 〈�(a − |r(t ) − r(0)|)〉. (32)

In these definitions, the angular brackets 〈.〉 indicate the par-
ticle as well as ensemble average, r(t ) is the particle position
vector at time t , � the Heaviside-step function, and a = 0.3 a
microscopic length scale. We use the overlap function Q(t ) to
define a relaxation time τ via

Q(τ ) ≡ e−1. (33)

For the results below, we have chosen tMD = �t ≡ 0.01 and
thus we vary fSMC via the parameter s, cf. Eq. (28). In
Fig. 10(a), we show the time dependence of the overlap
function Q at a low temperature T = 0.07. For pure NV E dy-
namics ( fSMC = 0), we observe that Q(t ) falls onto a plateau
the value of which is close to 1. Thus the system behaves
like an amorphous solid on the considered timescales. In
fact, the glass-transition temperature of NV E dynamics is
T NVE

g ≈ 0.11 if one considers timescales up to about 105

[15]. On increasing the swap frequency fSMC, the timescale
on which Q(t ) decays first rapidly decreases and eventually
saturates for fSMC � 103.

In Fig. 10(b), the relaxation time τ , as extracted from Q(t ),
is displayed as a function of inverse temperature 1/T for
different values of fSMC. Note that a similar plot is shown in
Ref. [10]. As pointed out in this work, even at very small fre-
quencies (the smallest one here is fSMC = 0.0125, red curve)
the gap in τ between NV E and SMC, �τ := τNVE/τSMC, cov-
ers several orders of magnitude at low T . This gap increases
on decreasing T . On increasing fSMC � 103 (corresponding
to s � 10 here), there is the aforementioned saturation of τ .
For the most efficient parameters, we have �τ ≈ 0.5 × 104

at T = 0.09. If one extrapolates τ for NV E dynamics below
T = 0.09, as done in Ref. [10], then the gap �τ covers many
more orders of magnitude. In this sense, the gap between sim-
ulations and experiments of glassforming liquids is eventually
closed.
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FIG. 10. (a) Overlap function Q as a function of time t at the
temperature T = 0.07 for different values of fSMC. (b) Relaxation
time τ as a function of inverse temperature 1/T for the same values
of fSMC as in (a). The upper x axis is inverted, showing the values T =
1/(1/T ). Systems with N = 8000 particles are chosen for fSMC = 0,
0.0125, and 0.1, with N = 500 particles for fSMC = 1 and 10, and
with N = 256 particles for fSMC = 102, 103, and 105. The large black
circles show results for fSMC = 10 with the time step �t = 0.002
(otherwise the time step �t = 0.01 is used).

1. Asymptotic SMC∞

As observed in Fig. 10, variation of the number of sweeps
s ∝ fSMC, cf. Eq. (28), interpolates between two limiting cases
of MD-SMC dynamics: (i) for s = 0 (or fSMC = 0), pure NV E
dynamics is recovered and (ii) for s → ∞ ( fSMC → ∞), MD-
SMC is “physically most efficient” in the sense of a minimum
relaxation time τ . Formally, we define

SMC∞ := SMC(tMD → 0, s → ∞) (34)

≈ SMC(tMD = 0.01, s = 103). (35)

Of course, the value tMD = 0.01 ≡ �t is the smallest possible
value for MD simulations with a time step �t (with the caveat
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FIG. 11. Normalized CPU time tCPU/tNVE
CPU of MD-SMC as a func-

tion of fSMC for the temperature T = 0.07 and N = 2048 particles.

that there might be a small temperature shift if �t is too large,
see Fig. 9).

The observation that the asymptotic behavior occurs at
s � 10 ≈ srel is perfectly reasonable with regard to Sec. IV,
where we saw that for the standard SMC the diameter autocor-
relation function decays onto a plateau after a relaxation time
srel ≈ 10, almost independently of the temperature T . Thus
for s � srel we expect a “full thermalization” of the diameters
and asymptotic behavior of MD-SMC.

Note that the SMC∞ is by far not the computationally most
efficient parameter setting.

2. Computationally most efficient SMC

To find the frequency f ∗
SMC for the computationally most

efficient SMC, one has to take into account the required CPU
time tCPU of MD-SMC simulations. In Fig. 11, inspired by
Ref. [10], we show tCPU, normalized by that of the pure NV E
dynamics, as a function of fSMC. Obviously, the additional
computational load of the size-bias SMC compared to the
standard SMC is negligible. To estimate f ∗

SMC, a reasonable
approach is to minimize the product of CPU time tCPU with
relaxation time τ . This method was proposed in Ref. [10] and
the authors found f ∗

SMC ∈ [20, 100]. In the latter interval, the
SMC part requires between 50% and 240% of the CPU time
of the MD part. We can understand this range of values for
f ∗
SMC a priori from the discussion in Sec. IV, from which

we expect f ∗
SMC := srel/tmic ≈ 50. A similar estimate can be

obtained by f ∗
SMC := srel/tvib, where tvib is the microscopic

timescale on which a particle rattles inside its cage in an amor-
phous solid state. The latter timescale can be estimated via
tvib := l/vthm, with l (T ) a temperature-dependent localization
length and vthm(T ) the average thermal velocity of a particle
at temperature T . The localization length l can be calculated
from the MSD, see Eq. (36) below. For an amorphous solid
at T = 0.07, we obtain l (T ) ≈ 0.063, vthm(T ) ≈ √

kBT/m ≈
0.26 and thus f ∗

SMC = srelvthm/l ≈ 40.

3. Variation of tMD

Now we analyze how the MD-SMC dynamics changes un-
der the variation of tMD, keeping the number of swap sweeps
fixed to large value s = 103. As we shall see below, the choice
tMD � tmic ≈ 0.2 enables us to disentangle the Newtonian
dynamics of MD from the effect of swapping with SMC.

Figure 12 shows the relaxation time τ as a function of
tMD for different temperatures T . For all considered temper-
atures, the relaxation time increases on increasing tMD, as
the diameters are thermalized less frequently, reducing the
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FIG. 12. Relaxation time τ as a function of tMD for different
temperatures T (decreasing from bottom to top, as indicated). A fixed
value s = 103 and N = 2048 particles are used. The dashed lines
indicate a proportionality τ ∝ tMD, while the dotted black line shows
τ = tMD.

effect of SMC on the dynamics. On increasing tMD beyond
the microcanonical (NV E ) relaxation time τNVE, the chrono-
logically first full thermalization of the diameters at t = tMD

has no influence on the calculation of the relaxation time τ ,
see Eq. (33). Thus we have τSMC ≡ τNVE for tMD � τNVE. The
equality can numerically only be observed for the two higher
temperatures, as for the other T the NV E relaxation times are
beyond the viable simulation time.

Now let us analyze the other limit: On decreasing tMD

and approaching a microscopic timescale, tMD ≈ tmic ≈ 0.2, a
saturation sets in. For tMD = 0.01 ≡ �t the curves have con-
verged within numerical precision. In the previous subsection
we showed that, for any given T , SMC(tMD = 0.01, s) has
numerically converged with respect to s if s � 103. Now we
see that SMC(tMD, s = 103) has also numerically converged
with respect to the parameter tMD when close to 0.01. We can
conclude that SMC(tMD = 0.01, s = 103) in fact resembles
the converged SMC∞ dynamics up to a decent numerical
precision, confirming Eq. (35).

A remarkable observation in Fig. 12 is that a linear regime
develops for T below the microcanonical glass-transition tem-
perature T NVE

g ≈ 0.11. It seems that τ ∝ tMD when tmic <

tMD < τNVE. To understand this observation, we analyze the
MSD at a low temperature T = 0.07 in the next subsection.

D. The relaxation mechanism of MD-SMC
in an amorphous solid

1. Stepwise increase of MSD

We saw that hybrid MD-SMC is particularly efficient at
low temperatures, i.e., at temperatures T far below the glass-
transition temperature T NVE

g ≈ 0.11 of a conventional MD
simulation. This is possible since MD-SMC opens a new
relaxation channel, the origin of which shall be revealed in
the following. For this purpose we consider the temperature
T = 0.07, which was characterized as an amorphous solid
state of pure MD before: In Fig. 10(a), we showed that the
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FIG. 13. (a) MSD as a function of time t for different values of
tMD, as indicated by the colored numbers. Blue dotted lines act as a
guide to the eye. (b) The derivative dMSD/dt as a function of t − tMD

for finite values of tMD and as a function of t for tMD = ∞ (black
dashed line). The vertical dotted line marks the microscopic time
tmic = 0.2. In both panels, number of swap sweeps s = 103 and N =
8000 particles.

overlap function Q(t ) has a pronounced plateaulike region up
to a timescale t ≈ 104.

In Fig. 13(a), we show the MSD as a function of time t
for relatively short times, t < 102. For NV E dynamics (black
dashed curve, tMD = ∞), the MSD exhibits a plateau, which
quantifies the localization of each particle inside its cage. The
colored curves and numbers represent the hybrid MD-SMC
dynamics for varying tMD. After every tMD, we perform a full
thermalization of the diameters, i.e., 103 × N swap moves are
attempted. An intriguing feature of the MSDs in Fig. 13(a)
is that, after every tMD, there is a jump of the plateau value
to a higher level (for tMD � 5). Here the MSD at time t ∈
[ntMD, (n + 1)tMD] only depends on n ∈ N, the number of
jumps or diameter thermalizations, as indicated by the blue
horizontal lines. This explains the linear regime τ ∝ tMD ob-
served in Fig. 12 and Ref. [10]. The timescale tjmp of the
jumps, i.e., the relaxation time from one plateau to the next, is
short but finite.

In Fig. 13(b), we quantify the timescale tjmp of the jumps
by plotting the derivative dMSD/dt as a function of t − tMD

for different values of tMD. For tMD = ∞ (black dashed line),
we show t on the x axis instead. We can infer from the
figure that the timescale tjmp coincides with the microscopic
timescale tmic ≈ 0.2 (vertical blue line) on which a particle
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relaxes within its cage as a consequence of collisions with its
neighbors during MD.

For tMD � 1, the timescale tMD starts to interfere with the
microscopic timescale tmic ≈ 0.2. Here tMD is too short to
allow a complete relaxation onto a new plateau before just
another thermalization of the diameters is imposed by SMC.
Thus, in Fig. 13(a), the phenomenology of a stepwise relax-
ation vanishes for tMD � 1.

2. Relaxation mechanism

The stepwise increase of the MSD reveals the origin of
the very efficient structural relaxation at low temperatures
via the MD-SMC dynamics. The occurrence of a plateau in
the MSD indicates a “frozen” structure where each particle
is localized in a cage formed by surrounding neighboring
particles. A step in the MSD after a thermalization with
swap moves is associated with a rearrangement of the cage
structure: As shown in Sec. III, the application of SMC on
a configuration with fixed particle coordinates assigns a new
(equilibrium) permutation of diameters and thereby a new
cage geometry around each particle is imposed. After SMC,
during MD over the time tMD, each particle continues to
perform vibrations in a cage, however, and this is the crucial
point, now within a differently shaped cage. Here the particle
can explore a (slightly) different region in coordinate space.
The relaxation toward a new mean position, as manifested
by a jump in the MSD, occurs on a microscopic timescale
tmic, cf. Fig. 13. The proposed mechanism clarifies the drastic
speed-up of the dynamics: While the diameters are exchanged
instantaneously during the SMC part, the subsequent re-
laxation within a new cage occurs on a short microscopic
timescale.

To reveal this relaxation mechanism, we disentangled the
SMC from the MD part by choosing a relatively large (com-
putationally inefficient) value tMD > tmic ≈ 0.2. The stepwise
increase of the MSD turns into a continuous increase for
small values of tMD, cf. Fig. 13(a). Here MD-SMC is most
efficient.

Figure 14 schematically illustrates the MD-SMC relax-
ation mechanism. Before SMC, each particle is trapped inside
a cage with a specific geometry [Fig. 14(a)]. We show each
particle at its assumed time-averaged position. After the di-
ameters were swapped via SMC, the cage geometry around
each particle has changed [Fig. 14(b)]. Thus, during the sub-
sequent MD part, each particle will fluctuate around a new
mean position. The corresponding shifts of the mean positions
are indicated by black arrows. As an example, for the red
sphere labeled by 0, the green sphere shows its new average
position after SMC. In the illustration, we purposely did not
change the diameter of particle 0. Thereby we want to em-
phasize that the altered cage environment of a tagged particle
is the essential ingredient to the relaxation mechanism.
In this sense, the mechanism is consistent with the find-
ing in Ref. [5] that the displacement of a tagged par-
ticle via SMC is not always linked to a change of its
own diameter.

Above, we identified the timescale tjmp = tmic ≈ 0.2 on
which the jumps in the MSD occur. To quantify the distri-
bution of jump lengths, we measure shifts �x̄ of subsequent
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FIG. 14. Schematic illustration of the proposed relaxation mech-
anism of the MD-SMC dynamics. A sketch of a two-dimensional
system is shown (a) just before SMC and (b) immediately after SMC;
the particle positions are exactly the same in (a) and (b). Before SMC,
each particle is shown at its assumed time-averaged position. After
SMC, each particle finds itself in a new cage geometry, and thus each
mean position has changed. The corresponding shifts are indicated
by black arrows. As an example, for the red sphere labeled by 0, its
new mean position is indicated by the green sphere.

mean positions x̄n, which are triggered by the application of
SMC. Here �x̄ = x̄n+1 − x̄n, where x̄n = t−1

MD

∫ (n+1)tMD

ntMD
x(t ) dt

is calculated by averaging the x coordinate of a particle over
the nth MD block of time span tMD. These definitions are
robust when tmic � tMD � τNVE.

In Fig. 15, we show the distribution of �x̄ (blue), consid-
ering many particles and MD blocks. As a reference, we show
a zero-centered normal distribution (black dashed line) with a
variance calculated from the data.

We want to compare �x̄ with the fluctuations of the par-
ticles inside their cage during the MD part. To this end,
we introduce ξ (t ) = x(t ) − x̄n on the interval t ∈ [ntMD, (n +
1)tMD]. The distribution of ξ over many particles and MD
blocks is shown in Fig. 15 (red). Also here we plot a zero-
centered normal distribution (black solid line) with a variance
calculated from the data. We find that the distribution of
the mean-position shifts �x̄ is comparable to, but slightly
narrower than, the fluctuations ξ of the particles inside their
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FIG. 15. Probability distributions of �x̄ = x̄n+1 − x̄n (blue) and
of ξ (t ) = x(t ) − x̄n (red). For both quantities, a fit of a normal distri-
bution is shown (black lines). Results are calculated from a sample
with N = 8000 particles, considering 10 MD time blocks, each of
length tMD = 100.
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FIG. 16. Mean-squared displacement MSD as a function of time
t for NV E (solid lines) and SMC∞ dynamics (dashed lines) for
different temperatures T , respectively. In (a) equilibrium data (higher
T ), while in (b) nonequilibrium curves (lower T ) are shown. For
T = 0.04 and SMC∞, we fit a solid black curve according to a von
Schweidler law, cf. Eq. (36). The fitting interval is indicated by dotted
vertical lines.

cage. Note that the variance of ξ (with 〈ξ 〉 = 0) is related
to the MSD via 〈ξ 2〉 = 1

6 MSD = l2. Here we introduced
a localization length l , which is in the focus of the next
section.

E. Glass transition: NV E vs. SMC∞

We saw that the stepwise increase of the MSD is associ-
ated with a sequence of rearrangements of the cage structure
around each particle. In each of these steps, the particles shift
to new mean positions. However, this dynamic process cannot
be described as a random walk, since the new configuration
after the rearrangement of cages is still strongly correlated
with the previous one. This correlation manifests in a shoulder
of the MSD on intermediate timescales—even when the phys-
ically most efficient SMC [SMC∞, see Eq. (34)] is used. At
sufficiently low T , we can identify a plateau in the MSD also
for SMC∞ dynamics. In this section, we extract the associated
length scale with a von Schweidler law and compare it with
that of NV E dynamics.

Note that now we include temperatures T < T SMC
g ≈ 0.06

below the glass-transition temperature. Here our preparation
protocol no longer provides fully equilibrated configurations.

In Fig. 16, we show the MSD as a function of time t
for NV E (solid lines) and SMC∞ dynamics (dashed lines).
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FIG. 17. Localization length l as a function of temperature T for
NV E and SMC∞ dynamics. The plateau height l is calculated from
the MSDs via a von Schweidler fit; see Fig. 16. The vertical lines
indicate the critical temperatures Tc.

We cover a wide range of temperatures: In Fig. 16(a), re-
sults for four higher temperatures T are displayed, for which
the initial configurations were fully equilibrated with MD-
SMC. In Fig. 16(b), the dynamics for lower temperatures
are shown, where the initial configurations could not be
fully equilibrated. We observe the typical phenomenology of
glassforming liquids, i.e., the MSDs develop shoulders and
plateaus on decreasing the temperature T . These plateaus
reflect the localization of the particles in a cage. Their height
describes a characteristic squared length scale which is sig-
nificantly smaller than the squared nearest-neighbor distance
between particles.

Interestingly, in Fig. 16(b) it seems that the overshoots
in the MSDs around a time t ≈ 1 for NV E dynamics are
absent for SMC∞. Since the overshoot is associated with
particle vibrations, its absence in MD-SMC seems plausible
in consideration of the proposed relaxation mechanism, which
qualitatively changes the cage dynamics.

MCT [20] predicts the asymptotic behavior of the MSD
around the plateau region. According to this theory, the initial
increase from the plateau toward the diffusive regime is given
by a von Schweidler law. This is a power law that can be seen
as a fingerprint of glassy dynamics. It reads

MSD(t ) = 6l2 + ctb, (36)

where the exponent b is predicted to be universal for a given
system and c > 0 is a critical amplitude. We use fits to
Eq. (36) to estimate the temperature dependence of the lo-
calization length l from the MSDs. We choose b = 0.7 and a
time interval t ∈ [3, 30]. Then the parameters l2 and c appear
linear in Eq. (36) and thus they can be calculated via a linear
regression model. An example of such a fit for the temperature
T = 0.04 and SMC∞ dynamics is shown in Fig. 16(b).

Figure 17 shows the localization length l as a function of
temperature T for NV E dynamics (blue circles) and SMC∞
(red squares). The vertical lines show the respective critical
MCT temperatures Tc, identified by the maximal T beyond
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which the fitting procedure (subjectively) fails. MCT predicts
that coming from temperatures T < Tc the localization length
reaches a critical value lc at Tc that marks the stability limit of
the amorphous solid state and thus above Tc the system is in a
liquid state.

In experiments and simulations of glassforming liquids, an
ideal glass transition, as predicted by MCT, does not exist.
In real systems, the temperature Tc can be interpreted as
a crossover temperature between a liquidlike dynamics for
T > Tc and a solidlike dynamics for T < Tc. We use the von
Schweidler law (36) with the aim to determine the localization
length l . While at low temperatures the estimated values for l
are very robust, the fitting procedure becomes more problem-
atic at higher temperatures where a plateau or even a shoulder
in the MSD can hardly be identified. However, this behavior
of the MSD manifests the gradual crossover from a solid-
to a liquidlike dynamics with increasing temperature. In the
real system, when the temperature is increased from below
Tc, the stability limit is associated with a vanishing lifetime
of the amorphous solid state and thus the plateau in the MSD
gradually disappears when Tc is approached [13].

In correspondence with MCT, we observe a saturation of
the localization length at the critical values lSMC

c ≈ 0.067
for SMC∞ and lNVE

c ≈ 0.081 for NV E dynamics. That
the critical localization length lc is significantly smaller
for the SMC∞ than for the NV E dynamics is in agreement
with the theoretical prediction of Szamel [19] in the frame-
work of an MCT model.

We find lSMC > lNVE (for T < T SMC
c , where the compar-

ison is meaningful). This result can be understood with a
simple geometric picture: Let us pin all coordinates of all
particles except for one tagged particle. When the diameters
of the particles which form a cage around the tagged one fluc-
tuate, the tagged particle can explore a slightly larger region
in its cage than without SMC.

We can also infer from Fig. 17 that toward low tempera-
tures the localization lengths of SMC∞ and NV E dynamics
tend to approach each other. In fact, this is expected from
the geometric picture above and our finding in Fig. 4 that the
plateau value of Cσ approaches 1 for T → 0. This explains
that the thermalization of diameters has a diminishing effect
on the localization length l with decreasing temperature.

VI. CONCLUSIONS

In this work, we have investigated a polydisperse model
glassformer by augmenting MD simulations with SMC. Our
aim has been to reveal the mechanisms by which MD-SMC
allows to obtain equilibrated states at very low temperatures
that are far below the glass-transition temperature of any
viable pure MD. In fact, ultrastable states can be generated

that are comparable to those realized in typical experiments
of glassforming systems. As we have shown in this work,
this is possible because the MD-SMC dynamics qualitatively
changes the caging of each particle in a dynamic manner while
it provides a proper equilibrium sampling. As a consequence,
the glass transition as identified via the critical MCT tempera-
ture Tc shifts to a much lower temperature when compared to
pure Newtonian dynamics and the critical localization length
at Tc is significantly lower, lSMC

c ≈ 0.067 < lNVE
c ≈ 0.081.

A central idea of our study has been to disentangle the
effect of swap moves from the exploration of coordinate space
via Newtonian dynamics. To this end, we first studied SMC on
a frozen configuration. Here we worked out a full mathemat-
ical description of SMC as a Metropolis-Hastings algorithm
on a confined phase space of particle permutations. Three
different SMC variants (standard, size-bias, and local) were
introduced and characterized by symmetric proposal proba-
bilities. For each variant, we discussed the conditions under
which the Markov chain converges to the target distribution.
Numerically, we compared the performance of each SMC
variant with a diameter correlation function and its relaxation
time srel. For the standard SMC, we found that srel ≈ 10 swap
sweeps are required to “thermalize” the diameters on a frozen
configuration. For the size-bias SMC, we found the optimized
parameter �σ ≈ 0.1. At a low temperature, this optimized
size-bias SMC only requires about 1/4 of the swap trials of
the standard SMC. The local SMC scheme tends to have the
worst performance for the considered polydisperse system,
but if one chooses �r � 3 for the range of the local SMC,
it is as efficient as the standard SMC. The local SMC is
particularly interesting as a possible candidate for a parallel
implementation of SMC for large systems, with the option
to optimize the efficiency by combining it with the size-bias
SMC.

For the hybrid MD-SMC dynamics, we have shown that it
is not necessary to use an additional thermostat (provided that
the time step �t is sufficiently small); MD-SMC itself guaran-
tees a proper thermostatting of the system. To implement the
physically most efficient MD-SMC, denoted by SMC∞ above,
the time tMD between swap sweeps is as small as possible
(i.e., tMD = �t) and in each swap round at least srel sweeps
are performed.

We have shown how SMC qualitatively changes the dy-
namics at low temperatures by choosing tMD such that it is
significantly larger than the microscopic timescale tmic ≈ 0.2.
Then the MSD shows a stepwise increase with MD-SMC
(instead of a single plateau for pure MD dynamics). At each
of these steps, a new diameter permutation is instantaneously
imposed with SMC, changing the cage geometry around each
particle. Then, during MD, a shift of the mean position of
each particle occurs on the microscopic timescale tmic. It is this
mechanism that explains the drastic speed-up of the dynamics.
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