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Ensemble dependence of the critical behavior of a system with long-range interaction
and quenched randomness
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We propose a hybrid model governed by the Blume-Emery-Griffiths (BEG) Hamiltonian with a mean-field-
like interaction, where the spins are randomly quenched such that some of them are “pure” Ising and the others
admit the BEG set of states. It is found, by varying the concentration of the Ising spins, that the model displays
different phase portraits in concentration-temperature parameter space, within the canonical and the microcanon-
ical ensembles. Phenomenological indications that these portraits are rich and rather unusual are provided.
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I. INTRODUCTION

Systems with long range interaction (LRI) [1–10] are usu-
ally associated with a pairwise potential of the form U (r) ∼
r−α , where r is the distance between two interacting particles
in a d-dimensional space and 0 � α � d [11]. Suppose, for
simplicity, a system of particles, homogeneously distributed in
a hypersphere of radius R and interacting via a LRI potential.
In the large R limit, the energy per particle of the system is
dominated by the integral

∫ R rd−α−1dr, associated with the
total interaction between a particle located in the center of
the hypersphere and the other particles. Since the integral
diverges, the total energy of the system is nonextensive, that
is, it does not scale with the volume V ∼ Rd [12]. While
the nonextensiveness property can be corrected by properly
scaling the interaction [13], a system with LRI may still suf-
fer from nonadditivity of the energy. In other words, such a
system with (rescaled) energy E , cannot be divided into two
subsystems with energies E1, E2, where E = E1 + E2 + o(V ).

A system is expected to have equivalent thermodynamics
within the canonical and the microcanonical ensembles, pro-
vided that its energy is additive. Conversely, non-additivity of
the energy may result in peculiar microcanonical phenomena
(that are not observed in the canonical ensemble) such as neg-
ative specific heat [11] or the presence of microstates that are
inaccessible to the system, leading to breaking of ergodicity
[14].

The Blume-Emery-Griffiths (BEG) model [15–20] has
been proposed to explain phase separation in a mixture of
He3-He4 atoms. The model can be naively thought of as de-
scribing a classical “spin-one” system, where the spins can
take the usual Ising states and additional state where they
are equal to zero. However, the states {0, 1} practically dis-
tinguish between the two types of atoms, while the role of
the state {−1}, additionally assigned to the He4 atoms, is to
conceptualize the usual magnetic order parameter. The model
Hamiltonian, depending on the spins configurations, {σ }, may
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take the general from H ({σ }) = HI ({σ }) + �
∑

i σ
2
i , where

HI ({σ }) describes the inter spin coupling and the other term,
where � is the crystal field (CF), distinguishes between Ising
and zero states. Typically, for different CF values, the ground
state of the model can have either zero or nonzero energy.
Suppose the parameters of HI ({σ }) are chosen such that in
the absence of the CF, the ground state is negative. Then,
there is a special value, �s, where for � < �s the ground state
has a complete magnetic ordering and negative energy, while
for � > �s the ground state is totally nonmagnetic with zero
energy. For � = �s the ground state has zero energy and it is
threefold degenerate. Thus, �s makes the zero-energy ground
state borderline. It has been shown [17] that the model dis-
plays first and second order transitions when � is varied and
that there is no phase transition for � > �s. The associated
first and second order critical lines meet at a tricritical point
[15]. For reasons that will become clear later, we define a
tricritical point, more generally, to be a point where the type
of the transition is changed.

The BEG model may also be a simple example of a model
with LRI. In [21] the authors considered a BEG model where
HI ({σ }) describes a mean-field-like interaction. The authors
solved the model in the microcanonical ensemble. They have
found, employing the canonical solution [15], that the model
displays a different critical portrait in CF-temperature plane,
within the two ensembles. In particular, the canonical and the
microcanonical tricritical points, do not coincide. Analyses of
the BEG model with mean-field-like interaction where the CF
is a quenched random variable [22,23], or where an exter-
nal magnetic field is applied [24], have been recently made.
Specifically, in [24], a different canonical and microcanonical
critical behavior has been observed.

The main aim of the present paper is to demonstrate
inequivalence of the two ensembles in a rather general fash-
ion, without interfering with the interaction content of the
model. To be more specific, we consider a hybrid system
subject to the mean-field-like BEG Hamiltonian, where a
random concentration of the spins take only the “up-down”
Ising states. For those spins, the CF term becomes redun-
dant. The other spins can additionally occupy the zero state.
Exact canonical and microcanonical solutions to the model,
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keeping the parameters of the Hamiltonian fixed, give rise
to different tricritical points in concentration-temperature
space.

The rest of the paper is organized as follows. In Sec. II we
introduce our model in more detail and present its solution
in the two ensembles. In Sec. III we carefully analyze the
phase portraits of the model together with some related critical
properties. Concluding remarks are given in Sec. IV.

II. MODEL

Consider a system of N interacting spins governed by the
Hamiltonian

H ({σ }) = − J

2N

(∑
i

σi

)2

+ �
∑

i

σ 2
i , (1)

where J > 0 (we take henceforth J = 1 for simplicity) is the
ferromagnetic coupling constant and the normalization factor
N−1 assures that the total energy is extensive [13]. The spins
σi, i = 1, 2, ..., N are not homogeneously populated across
the lattice. Strictly speaking, Ising spins σi ∈ {−1, 1} are cho-
sen with probability p and BEG spins having σi ∈ {−1, 0, 1}
are chosen with probability 1 − p. We distinguish between
strong sites that host Ising spins and weak sites with BEG
spins. It should be noted that in the case where p = 0 (ho-
mogeneous BEG model), the Hamiltonian (1) has �s = 1

2 . In
the following, we solve the model in the canonical and the
microcanonical ensembles.

A. Canonical solution

We employ the standard Gaussian integral representation
of the partition function, Z , to write

Z =
√

Nβ

2π

∫ ∞

−∞
dxe− 1

2 Nβx2
Tr{σ }eβx

∑
i σi−β�

∑
i σ

2
i , (2)

where β is the inverse temperature, T (in units where
Boltzmann’s constant, kB, is equal to one). It is shown in
Appendix A that, applying the saddle point approximation
to (2) and properly averaging over the strong sites, the free
energy density β f = −N−1 ln Z can be written [up to terms
o(1)]

β f = min
x

h(x), (3)

where

h(x) = 1
2βx2 − p ln(2e−β� cosh βx)

− (1 − p) ln(1 + 2e−β� cosh βx). (4)

The minimizer of (4), x0, is the order parameter satisfying

x0 = p tanh(βx0) + (1 − p)
2 sinh(βx0)

eβ� + 2 cosh(βx0)
. (5)

The critical behavior of the model can be detected by
expanding (4) in small x, yielding

f − f0 = min
x

(Ax2 + Bx4 + O(x6)), (6)

where f0 is the high temperature free energy density and

A = 1 − βp

2
− β(1 − p)

eβ� + 2
, (7)

B = β3

12

(
p − (1 − p)(eβ� − 4)

(eβ� + 2)2

)
. (8)

In order for a second order transition to take place, A must
change sign at the critical temperature while B must be pos-
itive. These imply that the critical line, for a fixed �, is
obtained by setting A = 0 to give

2(β − 1) = (1 − βp)eβ�. (9)

The determination of the canonical tricritical point
(CTP) requires the simultaneous vanishing of A and B,
giving

eβ� = 3β − 5. (10)

CTPs are limited to a finite interval of CFs. To see this,
we first recall that the p = 0 homogeneous model has a CTP
in CF-temperature plane, (�0, β0), where for � < �0 the
transition is of second order [15]. The presence of “Ising
intruders” (p > 0) should not change the transition nature.
Second, there is a marginal CF, �r , where for � > �r (10)
has no solution. At �r , (10) has a unique solution, determined
by equating the derivatives with respect to β of both sides of
(10), that is, �r must solve eβ� = 3/�. This, together with
(10), yields �r � 0.489. For a fixed CF, taken henceforth
to be � = 0.48, the solution to (9) and (10) gives the CTP
(p∗, β∗) � (0.0168, 3.2624).

It should be noted that substituting p = 0 in (9) recovers
the second order line of the pure BEG model, satisfying β =
1
2 eβ� + 1 [21]. Furthermore, in the pure model, the concurrent
solution to (9),(10) for �,β produces the CTP (�0, β0) =
( 1

3 ln 4, 3) [21].

B. Microcanonical solution

Let k and n be the number of strong and weak spins, respec-
tively, such that k + n = N . Denoted by k−, k+, the number
of strong spins taking the values −1, 1 and by n−, n0, n+, the
number of weak spins taking the values −1, 0, 1, respectively.
The total energy (1) can be written

E = − 1

2N
(k+ − k− + n+ − n−)2

+�(k+ + k− + n+ + n−), (11)

and the number of states with energy E reads

� =
(

k

k−, k+

)(
n

n−, n0, n+

)
. (12)

Let ξ−, ξ+ and η−, η0, η+ be the fractions of spins in the
strong and in the weak sites, taking the values −1, 1 and
−1, 0, 1, respectively, satisfying

ξ− + ξ+ = 1,

η− + η0 + η+ = 1. (13)
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We then express the spin numbers in terms of the fractions and
write, to leading order in N ,

k− = pNξ−, k+ = pNξ+,

n− = (1 − p)Nη−, n+ = (1 − p)Nη+, (14)

n0 = (1 − p)Nη0.

Normalizing (11), i.e., taking ε = E /N , yields

ε = − 1
2 m2 + �q, (15)

where m = 1
N

∑
i σi and q = 1

N

∑
i σ

2
i are the magnetization

and quadrupole moment per site, respectively, which, with the
aid of (14), take the form

m = p(ξ+ − ξ−) + (1 − p)(η+ − η−),

q = p + (1 − p)(η+ + η−). (16)

It is shown in Appendix B that

k+
k − k+

= n+
n − n0 − n+

, (17)

stating that the entropy has a maximum when the proportion
of up and down spins within the strong and the weak regions,
is preserved. Now, plugging (14) into (17) leads to

ξ+/ξ− = η+/η−. (18)

Equations (13), (15), (16), and (18) enable us to express the
fractions in terms of m, p,�, ε. This gives

ξ+ = 2ε + m2 + 2�m

2(2ε + m2)
,

ξ− = 2ε + m2 − 2�m

2(2ε + m2)
,

η+ = (2ε + m2 + 2�m)(2ε + m2 − 2�p)

4�(1 − p)(2ε + m2)
, (19)

η− = (2ε + m2 − 2�m)(2ε + m2 − 2�p)

4�(1 − p)(2ε + m2)
,

η0 = 2� − 2ε − m2

2�(1 − p)
.

The entropy density, applying the thermodynamic limit to
N−1 ln � with the aid of (12) and (14), reads

s = −
∑

i∈{±,0}
(pξi ln ξi + (1 − p)ηi ln ηi ), (20)

where the term ξ0 ln ξ0 is replaced with zero so that the sum is
well defined.

To find the second order critical line we insert (19) into
(20) and expand s in small m,

s = s0 + am2 + bm4 + O(m6), (21)

where (taking ε̃ = ε/�)

s0 = (ε̃ − 1) ln

(
1 − ε̃

1 − p

)
+ (p − ε̃) ln

(
ε̃ − p

1 − p

)
+ ε̃ ln 2

(22)

is the zero magnetization entropy, and

a = − 1

2ε̃
+ 1

2�
ln

(
2 − 2ε̃

ε̃ − p

)
, (23)

b = − 1

8�2

(
1

ε̃ − p
+ 1

1 − ε̃

)
− 1

12ε̃3
+ 1

4�ε̃2
. (24)

Next, we need to make a and b temperature (instead of energy)
dependent. Since, in the high temperature phase and at (sec-
ond order) criticality, the entropy is maximized by m = 0; the
two coefficients must be nonpositive, and the microcanonical
definition of the temperature β = ∂s/∂ε should be applied to
(22), giving

ε̃ = peβ� + 2

eβ� + 2
. (25)

Finally, (25) is plugged into (23) and (24), and a is set to zero.
The last step recovers (9). The (second order) critical energy
εc and the critical temperature can be related by combining (9)
and (25) together at βc. This gives

εc = �

βc
. (26)

Similar to the canonical solution, where the the CTP has
been determined from the simultaneous elimination of the
quadratic and quartic coefficients in the free energy expansion,
the coefficients a and b are set to zero, leading to

eβ� = − 4
3β�(β� − 3)(β − 1) − 2, (27)

and the simultaneous solution to (9) and (27) (with � =
0.48) determines the microcanonical tricritical point (MTP)
( p̃∗, β̃∗) � (0.0170, 3.2905) which is different to the canoni-
cal one.

To obtain the microcanonical CF, �̃r , above which MTPs
do not exist, we apply to (27) procedures similar to those
employed in finding the marginal canonical CF, producing
�̃r � 0.482. As in the canonical ensemble, the simultaneous
solution to (9), (27) for β,� in the homogeneous p = 0 case,
recovers previously known results [21].

III. CRITICAL PORTRAIT AND MAGNETIZATION

In this section we discuss some of the implications of
our findings from Sec. II on some critical properties of the
model. Figure 1 displays the phase diagram of the model
with � = 0.48 in the canonical ensemble. The ferromagnetic
and paramagnetic phases are separated by the critical portrait,
where the second order branch admits the solution to (9)
and the first order branch obeys the simultaneous solution
to f (xc) = f (0), f ′(xc) = 0, where xc is the nonzero critical
magnetization. Apparently, from the inset of the figure, (9)
generates a multivalued curve in the vicinity of the CTP.
For large enough values of �, however, the temperature is
a (continuously differentiable) function of the concentration.
In order to find the marginal CF, �m, separating between
multivalued curves and functions, it is useful to rewrite (9)
as

p(T ) = T − 2(1 − T )e−�/T , (28)

and simultaneously solve p′(T ) = 0, p′′(T ) = 0 for �m and
the associated temperature, giving �m � 0.655.
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FIG. 1. Canonical phase diagram in concentration-temperature
plane for � = 0.48. The solid graph corresponds to the second order
critical line and the dashed dotted graph represents the first order line.
The CTP (0.0168,0.3065) is indicated by a black filled symbol (up
triangle). A magnified portion of the diagram, in the vicinity of the
CTP, is displayed in the inset. The red filled symbol (down triangle)
denotes the MTP (0.0170,0.3039).

Figure 2 shows a few curves obeying (9). In particular,
representatives from the family of multivalued curves are
displayed. At the homogeneous BEG CF 1

3 ln 4 (and, as turns

FIG. 2. Curves obeying (9), in concentration-temperature plane,
for different values of �. Graphs from left to right correspond to
CFs from top to bottom. Note the small concentrations domain char-
acterizes the interval ICTP = ( 1

3 ln 4, �r ) with �r � 0.489, where
canonical tricritical points survive. Indeed, � = 0.48 from Fig. 1
belongs to ICTP. Inset: Blow up of the regions around the tricritical
points (denoted by empty symbols), where the solid, dashed dotted,
and dotted lines correspond to the CFs 0.465, �l � 0.475, 0.485,
respectively.

FIG. 3. Variation of the canonical order parameter satisfying (5)
with temperature for � = 0.48 and different concentrations. Graphs
from right to left correspond to concentrations from top to bottom.
Note the continuous (discontinuous) behavior at the critical temper-
ature for concentrations above (below) p∗ � 0.0168. In particular,
the jump of the first order magnetization (green) is manifested by a
composition of a lower thick straight line and an upper line.

out, also for � � 1
3 ln 4), the multivalued curve is made of

two branches that are disconnected. These branches originate
from a temperature gap, where p(T ) < 0, that opens up. As
the inset of Fig. 2 tells, the position of each CTP on its
associated curve, indicates that the second order line looses
continuity at the CTP when the latter is a local maximum
of p(T ). This happens at �l � 0.475 which is part of the
simultaneous solution to (9), (10) and 2β� − 3 = 0, where
the last equation expresses the condition p′(T ) = 0, in terms
of β.

In summary, a CTP exists for CFs in the interval ICTP =
( 1

4 ln 3,�r ). Otherwise, for larger values of �, the critical
portrait is composed solely from a second order line. The
interval ICTP can be decomposed into two subintervals. In the
first one, ( 1

3 ln 4,�l ), the mixed critical portrait is continuous.
It becomes discontinuous in the second one, (�l ,�r ). Outside
ICTP, for �r < � < �m, the discontinuity of the critical por-
trait is expected to survive, even though, the critical portrait
becomes single (second order) typed. These discontinuities
may result in a second order azeotropy, namely, the simulta-
neous exhibition of multiple second order phase transitions
[25,26]. The discontinuous picture is likely to be removed
for � > �m, e.g., for � = 1, where the second order line
is a function of the concentration in the interval (0, 1] (see
Fig. 2). A similar interval composition, with somewhat differ-
ent boundaries content, holds in the microcanonical ensemble.

We conclude this section by demonstrating manifestations
of “tricriticality,” first, by means of different behavior of the
canonical order parameter (5) at the critical temperature. In-
deed, as evident from Fig. 3, at that temperature, the order
parameter jumps discontinuously for p < p∗ and it is contin-
uous for p > p∗. Second, Metropolis [27] Monte Carlo (MC)
simulations are performed for a sample of N = 1000 spins.
The simulated quantities are the total magnetization (per site)
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(c)

(a)

(b)

FIG. 4. Simulated magnetization satisfying the first equation in
(16) against MC time, for different CFs, concentrations, temper-
atures, and N = 1000 spins. The chosen temperatures are in the
vicinity of the exact critical temperatures positioned on the suitable
curves in Figs. 1 and 2. (a) � = 0.48, p = 0.0151, and T = 0.2654.
(b) � = 0.48, p = 0.0385, and T = 0.3799. (c) � = 1, p = 0.0998,

and T = 0.0799. The specific energy is plotted in the inset. Its time
average (over 50,000 MC sweeps) and standard deviation are 0.1020
and 0.0020, respectively [c.f. εc = 0.0999 according to (26)].

given by the first equation in (16) and the specific energy,
proportional to (1). Plots of these quantities are presented
in Fig. 4. The first two charts refer to the previously used
CF � = 0.48. Indeed, the dynamics in these charts discrim-
inates between first and second order transitions, where in
Fig. 4(a) the system displays low frequency hops between the
coexisting ordered and disordered states for p < p̃∗, while in
Fig. 4(b) the system hops with high frequency between the
two magnetized states for p > p̃∗. Figure 4(c) refers to � = 1
where a second order transition is expected at any concentra-
tion. Indeed, small amplitude second order magnetized states,
for a rather small concentration, are evident from this chart.

IV. CONCLUDING REMARKS

A hybrid model with mean-field-like LRI and quenched
randomness is solved in the canonical and microcanonical
ensembles. The second order critical lines in concentration-
temperature plane are obtained for the two ensembles. Indeed,
these lines originate from the same solution. However, they
eventually terminate in different tricritical points. This may

result in different first order critical lines, within the two
ensembles, in some interval of small concentrations.

It is found phenomenologically that the model displays rich
and rather unusual phase portraits. Tricritical points are man-
ifested in some interval of CFs. In some part of that interval,
a discontinuity of the second order critical temperature at the
tricritical point, is displayed. A discontinuity of the second
order critical temperature is also found for larger CFs outside
the interval where the tricritical points exist. These disconti-
nuities may indicate that multiple simultaneous second order
transitions are exhibited.

Interestingly, the model has no borderline CF, �s, above
which, presumably (as in the pure mode), there is no phase
transition [28]. Specifically, the model undergoes a second
order transition, with no possible azeotropy, for CFs outside
ICTP (or the similar microcanonical interval). This can be
easily verified by noting that (28) describes a continuous
function that becomes monotonic for sufficiently large �.
Indeed, for such �, by leaving footprints of a second order
transition, the simulations [Fig. 4(c)] may provide another
support.

Special attention should be drawn to the observation that,
in the large � regime, the system may utilize the presence of
small concentrations of Ising spins to eliminate the absence
of magnetic ordering characterizing the homogeneous p = 0
case. This can be realized by considering (5) and noting that
for every large � there is a small p such that the order pa-
rameter effectively takes the usual Ising form with Tc ≈ p. In
some sense, a similar phenomenon has been recently detected
in another hybrid (q-state Potts) model [29] where, in the large
q limit, the system benefits from the presence of very small
concentrations of “second order” spins [30]; this way avoids
a first order transition that would have occurred if those spins
where absent [31,32].

We believe that our approach of randomly quenching spins
that respect a subset of states of a known Hamiltonian is rather
general and can be applied to other systems with LRI. We
expect that some of the findings reported in this paper will be
observed in such systems.
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APPENDIX A: FREE ENERGY

In the following, we derive Eqs. (3) and (4) for the free
energy density. We start with linearizing the mean-field-like
term in the partition function

Z = Tr{σ }e
β

2N (
∑

i σi )2−β�
∑

i σ
2
i (A1)
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by applying the integral identity

e
ν2

2μ =
√

μ

2π

∫ ∞

−∞
e− 1

2 μx2+νxdx (A2)

to (A1) with μ = Nβ and ν = β
∑

i σi. This yields

Z = e−Nβ f = Tr{σ }e
β

2N (
∑

i σi )2−β�
∑

i σ
2
i

=
√

Nβ

2π

∫ ∞

−∞
dxe− 1

2 Nβx2
Tr{σ }eβx

∑
i σi−β�

∑
i σ

2
i

=
√

Nβ

2π

∫ ∞

−∞
dxe− 1

2 Nβx2
∏

i

∑
σi∈s∪w

eβxσi−β�σ 2
i

=
√

Nβ

2π

∫ ∞

−∞
dxe− 1

2 Nβx2
(2e−β� cosh βx)Ns

× (1 + 2e−β� cosh βx)N−Ns

=
√

Nβ

2π

∫ ∞

−∞
dxe−NhNs (x), (A3)

where the notation s ∪ w refers to the set of “either strong
(Ising) or weak (BEG) states” Ns ∼ Bin(N, p) is the number
of strong sites and

hNs (x) = 1

2
βx2 − Ns

N
ln(2e−β� cosh βx)

− N − Ns

N
ln(1 + 2e−β� cosh βx). (A4)

Applying the saddle point approximation to (A3) allows us to
write

Nβ f = N min
x

hNs (x) + o(N ). (A5)

Now, for large N and Ns the Binomial distribution approaches
a normal distribution with the same mean and variance, i.e.,
Ns obeys

Pr(Ns = z) ≈ 1√
2πN p(1 − p)

exp

(
− (z − N p)2

2N p(1 − p)

)
,

z ∈ N. (A6)

This implies that typically

Ns − 〈Ns〉 ∼
√

N (A7)

and hence

NhNs (x) − Nh(x) = o(N ), (A8)

where

h(x) = 〈
hNs (x)

〉 = 1
2βx2 − p ln(2e−β� cosh βx)

− (1 − p) ln(1 + 2e−β� cosh βx), (A9)

leading, with the aid of (A5), to

Nβ f − Nβ〈 f 〉 ∼ N min
x

hNs (x) − N

〈
min

x
hNs (x)

〉
= N min

x
hNs (x) − N min

x
h(x) = o(N ).

(A10)

In other words, it is sufficient to average over the leading
order term of the RHS of (A5) in order that the free energy
typically deviates from its sample average in an amount of
the same order of magnitude as in (A8). Finally, we conclude
from (A10) that

β f = β〈 f 〉 + o(1) = min
x

h(x) + o(1). (A11)

APPENDIX B: FIXED PROPORTION OF STRONG
AND WEAK UP AND DOWN SPINS

In the microcanonical ensemble, one fixes the energy and
finds the most probable macroscopic state, i.e., the one with
the highest entropy. This state corresponds to a maximum
number of microscopic configurations. We derive a necessary
condition, involving several counting variables (spin numbers)
associated with these configurations, for establishing the most
probable macroscopic state. To this end, we consider the en-
tropy where the latter is expressed in terms of the counting
variables k−, k+, n−, n0, n+ introduced in the main text while
keeping the total energy fixed.

We start with introducing the total number of up spins, t ,
to write the predetermined energy in the form

E = −(2t + n0 − N )2/2N + �(N − n0). (B1)

The entropy can then be written

S = ln

((
k

k+

)(
n − n0

t − k+

))

+ S0 + λ(E + (2t + n0 − N )2/2N − �(N − n0)),

= ln

(
k!(n − n0)!

k+!(k − k+)!(t − k+)!(n − n0 − t + k+)!

)

+ S0 + λ(E + (2t + n0 − N )2/2N − �(N − n0)),

(B2)

where S0 = ln
( n

n,0

)
and λ is a Lagrange multiplier assuring

that the entropy is maximized subject to the constraint (B1).
Note that since k+ + k− = k, n+ + n− + n0 = n, where k and
n are fixed, S depends only on the three variables, k+, t, n0.
Applying Stirling’s approximation to (B2) and setting the
derivative with respect to k+ to zero gives [33], ignoring terms
next to leading order,

ln(k+) + ln(n − n0 − t + k+) = ln(t − k+) + ln(k − k+),

(B3)

or, using t = k+ + n+,

k+
k − k+

= n+
n − n0 − n+

. (B4)

To fully optimize (B2) one can notice that the first term in
(B1) is simply the total magnetization M, i.e.,

M = 2t + n0 − N, (B5)

and write (B2) as

S = S̃(M, n0) + λ(E − ϕ(M, n0)), (B6)
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where S̃(M, n0) is the combinatorial term containing the infor-
mation in (B3) and (B5), and

ϕ(M, n0) = −M2/2N + �(N − n0). (B7)

One may then properly optimize (B6), provided (B7), with
respect to M, n0.

In the main text, the (normalized) strong and weak spin
numbers, where the latter are replaced with their expected val-

ues, are functions of the magnetization and energy densities,
m = M/N and ε = E /N , respectively. This allows to realize
the entropy density as s(m, ε), thus, is an alternative to the
Lagrange multiplier formulation presented here. Finally, the
equivalent treatment to the optimization of (B6) would be to
optimize s(m, ε) with respect to m.

For the sake of clarity we emphasize that we did not
perform the full optimizations described in this Appendix,
simply because we did not need them in our microcanonical
analysis.
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