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This paper provides an analysis of the time evolution of a many-particle system starting out of equilibrium
with its control parameter fixed at a value corresponding to a many-body energy-level crossing (degeneracy). We
prove theorems concerning ergodicity, equilibration, and thermalization. For certain conditions, the occupancy
of symmetrically equivalent basis states has different time-averaged probabilities. This nonergodicity remains
in equilibrium. If the symmetrically equivalent states have opposite parity in relation to some physical property,
then a left and right particle number imbalance averaged in time is nonzero. This imbalance does not occur
for all initial basis states. In addition, the Hilbert space of the system is not fragmented; however, there is a
subspace spanned by favored basis states, where the system is most likely to be found. Therefore, our results
reveal what appears to be a unique mechanism for a weak eigenstates-thermalization-hypothesis breakdown,
where the degenerate eigenstates can work as nonthermal eigenstates. To illustrate these findings, we consider
the Hubbard Hamiltonian. In this case, ergodicity breaking produces a left and right magnetization imbalance,
where the time-averaged probability of finding a spin-σ electron on one side of the crystal lattice is greater than
on the other side. This imbalance is not associated with electrical charge; thus the conductance is preserved. The
potential use in technology is discussed.
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I. INTRODUCTION

The existence or lack of degeneracies in the spectrum of a
many-body Hamiltonian defines the behavior of several physi-
cal properties of the system. An emblematic example involves
the statistics of the spacing between consecutive energy levels,
which converges to either a Wigner-Dyson distribution (where
level crossings are avoided) at the thermodynamic limit and
far from the edges of the spectrum, indicating quantum chaos,
or Poisson distribution (where level crossings are not prohib-
ited), indicating quantum integrability [1–4]. The presence of
quantum chaos implies that the system satisfies the ergodic
hypothesis; conversely, the extensive number of conserved
quantities in integrable systems breaks down the ergodicity.
Furthermore, if the degeneracy occurs as a crossing of the
two lowest energy levels under a specific set of parameters for
the Hamiltonian, then the system exhibits a quantum phase
transition (QPT) [5].

However, in general, a many-body energy-level crossing
does not actually occur. Instead, the levels repel each other
and an avoided level crossing emerges [6,7]. To understand the
conditions under which a crossing takes place, let us consider
a Hamiltonian Ĥ that depends on two parameters:

Ĥ = JK̂ + UV̂ , (1)

where J and U are the parameters of the system, and K̂
and V̂ are operators. In this way, the dimensionless control
parameter (g) can be defined by g = U/J . Let |ψα〉 and |ψβ〉
be eigenvectors of Ĥ with eigenenergies Eα and Eβ , respec-
tively. Thus a sufficient condition for the levels Eα and Eβ to
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intersect is [K̂, V̂ ] = 0 [5]. If K̂ commutes with V̂ , then |ψα〉
and |ψβ〉 are also eigenvectors of both K̂ and V̂ ; therefore,
K̂|ψα(β )〉 = κα(β )|ψα(β )〉 and V̂ |ψα(β )〉 = υα(β )|ψα(β )〉 (where
κ and υ are eigenvalues of K̂ and V̂ , respectively). From this
we obtain that |ψα〉 and |ψβ〉 do not depend on g and that
Ĥ |ψα(β )〉 = (Jκα(β ) + Uυα(β ) )|ψα(β )〉 = Eα(β )|ψα(β )〉. Hence,
the degeneracy Eα = Eβ arises when the parameters J and
U are adjusted such that g = U/J = (κα − κβ )/(υβ − υα ).
Nevertheless, [K̂, V̂ ] �= 0 usually holds and thus an avoided
level crossing is the most probable scenario, as per the von
Neumann-Wigner theorem [6,7]. In this case ([K̂, V̂ ] �= 0),
an energy-level crossing can occur if |ψα〉 or |ψβ〉 satisfies
the equation 〈ψα (or β )|[K̂, V̂ ]|ψα (or β )〉 = 0; it follows that
|ψα〉 or |ψβ〉 must be a state such that K̂|ψα (or β )〉 = 0 or
V̂ |ψα (or β )〉 = 0. Therefore, |ψα〉 or |ψβ〉 does not depend on
g. For Ĥ |ψα〉 = Jκα|ψα〉 (wherein V̂ |ψα〉 = 0), for instance,
and introducing εβ (g) ≡ Eβ/J , the energy-level crossing oc-
curs at g = gc determined by the equation εβ (gc) = κα ,
provided it yields a real solution.

As an example of energy-level crossing associated with
〈ψ |[K̂, V̂ ]|ψ〉 = 0 (i.e., K̂|ψ〉 = 0 or V̂ |ψ〉 = 0), where |ψ〉 is
one of the states involved in the crossing, we have the quantum
transition to a saturated ferromagnetic phase of a system of
interacting itinerant electrons described by the single-band
Hubbard Hamiltonian [8]. This Hamiltonian is expressed as
Eq. (1), where

K̂ =
∑
〈r,s〉

∑
σ=↑,↓

ĉ†
r,σ ĉs,σ , (2)

and

V̂ =
∑

r

n̂r,↑n̂r,↓. (3)
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The creation (annihilation) operator, ĉ†
r,σ (ĉs,σ ), creates

(annihilates) one electron with spin σ at site r (s). The sum
over 〈r, s〉 corresponds to nearest-neighbor sites. The particle
number operator, n̂r,σ = ĉ†

r,σ ĉr,σ , provides the number of elec-
trons with spin σ at site r (nr,σ ). Thus Eq. (2) describes the
hopping between nearest-neighbor sites, and Eq. (3) describes
the on-site interaction. The Hubbard Hamiltonian is SU (2)
invariant; that is, it commutes with the components of the
total spin operator, Ŝz = (h̄/2)

∑
r (n̂r,↑ − n̂r,↓), Ŝx = (Ŝ+ +

Ŝ−)/2, and Ŝy = (Ŝ+ − Ŝ−)/2i, where Ŝ+ = h̄
∑

r ĉ†
r,↑cr,↓ is

the raising operator and Ŝ− = h̄
∑

r ĉ†
r,↓cr,↑ is the lowering

operator [9,10]. The commutation with both Ŝx and Ŝy im-

plies the commutation with Ŝ+ and Ŝ−. Thus, denoting |ψ〉S(z)
tot

Stot

as an eigenstate with total spin quantum number Stot and
z component S(z)

tot , the state |ψ〉Stot−λ
Stot

≡ (Ŝ−)
λ|ψ〉Stot

Stot
(where

λ = 1, 2, . . . , 2Stot) is also an eigenstate with the same
eigenenergy as |ψ〉Stot

Stot
. A saturated ferromagnetic transition

corresponds to Stot < Smax → Stot = Smax; therefore, since
S(z)

tot is conserved, the saturated ferromagnetic state belongs to
the Hilbert subspace with S(z)

tot < Smax. For N � Ns (where N
is the number of electrons in the system and Ns is the number
of sites in the crystal lattice), a saturated ferromagnetic eigen-
state with all spin-up electrons (S(z)

tot = Smax = N/2), |ψ〉Smax
Smax

,
has no doublons (double-occupied sites) because of the Pauli
exclusion principle. From this and noting that Ŝ− does not
change the number of electrons at the site, we find that
a saturated ferromagnetic eigenstate with S(z)

tot = Smax − λ,
|ψ〉Smax−λ

Smax
, also has no doublons. Hence, given that V̂ in Eq. (3)

considers the number of doublons, we have V̂ |ψ〉Smax−λ
Smax

= 0

for all λ. Therefore, a QPT involving an eigenstate |ψ〉Smax−λ
Smax

is associated with an energy-level crossing (|ψ〉Smax−λ
Smax

does not
depend on g = U/J).

For a nonequilibrium system, an important difference
arises when it is driven across a quantum critical point (QCP)
associated with an avoided level crossing in comparison with a
QCP associated with an energy-level crossing. Let us assume
that the system is driven by varying the control parameter; that

is, a protocol for g < gc
time−−→ g > gc is performed. Let Ĥ [g(t )]

be a Hamiltonian in the form of Eq. (1) but with parameter g
varying with time t . Now, let {|ψn(gk )〉} be an orthonormal ba-
sis formed by the eigenvectors of Ĥ (gk ), where gk is the value
of g at time t = tk (t0 < t1 < t2 < · · · ); that is, gk = g(tk ).
The state of the system at time t is denoted by |
(t )〉. Thus,
considering |ψα〉 and |ψβ〉 as the states involved in the QPT,
and starting from |
(0)〉 = |ψ0(g0 	 gc)〉 = |ψα (g0)〉 [where
|ψ0(g)〉 denotes the ground state at g], we have the following
scenarios:

(a) QPT with avoided level crossing. |ψα (g)〉 has the char-
acteristics of one phase at g 	 gc and the characteristics of
the other phase at g 
 gc; therefore, the QPT is associated
with a change (at gc) in the characteristics of the ground
state. If the duration of the process g = g0 	 gc → g =
gk
1 
 gc is infinitely long, then the final state is |
(tk
1)〉 =
|ψα (gk
1)〉, as per the adiabatic theorem [7,11,12]. However,
if the duration of this process is finite (experimental situation),
the final state is |
(tk
>1)〉 = ∑

n cn(tk
1)|ψn(gk
1)〉, where
cn(tk ) = 〈ψn(gk )|
(tk )〉. Thus the probability for the change

of state |ψ0(g0)〉 = |ψα (g0)〉 time−−→ |ψβ (gk
1)〉 �= |ψ0(gk
1)〉
can be nonzero (for a two-level system this probability is
given by the Landau-Zener formula [7,13]). Furthermore, if
|ψα (gk
1)〉 is an ordered state, then the final state |
(tk
1)〉
(superposition of stationary states) describes topological de-
fects in the ordered phase of the system, according to the
Kibble-Zurek mechanism [14–18].

(b) QPT with energy-level crossing. At least one of two
eigenstates involved in the transition is not dependent on g
(let us say, |ψβ〉); thus 〈ψα (g0)|ψβ (gk )〉 = 〈ψα (g0)|ψβ (g0)〉 =
0 holds, for all k. Hence, the probability for the change

of state |ψ0(g0)〉 = |ψα (g0)〉 time−−→ |ψβ (gk
1)〉 = |ψ0(gk
1)〉
is always zero independently of the duration of the process
g = g0 	 gc → g = gk
1 
 gc. Therefore, no phase transi-
tion occurs (|ψα〉 and |ψβ〉 have the characteristics of only
one phase for all g), and the ground state simply becomes an
excited state at g > gc.

A case rarely reported in the literature is one where the
control parameter of the system is fixed at a value correspond-
ing to an energy-level crossing and the nonequilibrium system
is left to evolve over time [19]. Herein, we analyze this case.
An important and well-studied protocol to put a system out of
equilibrium is the quantum quench, in which the system is ini-
tially prepared in a simple ground state of Ĥ (g �= gc) and then
the control parameter is suddenly quenched (at t = 0) to the
value of interest (in this work, g = gc). Thus |ψ0(g �= gc)〉 be-
comes the initial state of the system described by Ĥ (g = gc).
However, as discussed in (b), a conventional quantum-quench
protocol is not suitable for probing an energy-level crossing
because the (initial) state |ψα (g)〉 is orthogonal to |ψβ (gc)〉
for all g.

In this work, we use as the initial state a basis state
that overlaps with the degenerate eigenstates, and then we
investigate the ergodicity of the system. For an arbitrary time-
independent Hamiltonian that depends on one dimensionless
control parameter, we prove that under certain conditions,
two basis states that are symmetrically equivalent to each
other, where one is transformed into the other by the action
of an operator that commutes with the Hamiltonian, are not
equally visited by the system (Sec. II). From this result, we ad-
dress questions about whether a system that does not equally
visit symmetrically equivalent states reaches equilibrium and
whether the nonergodicity remains in equilibrium. Assuming
one two-level crossing, we prove that the answers to both
questions are “yes” (Sec. III). The convergence to equilibrium
has already been proven by assuming a Hamiltonian with non-
degenerate energy gaps [20,21]. However, nondegenerate en-
ergy gaps imply the nondegeneracy of the energy levels; there-
fore, these proofs do not hold in the context observed here.

Another issue we consider is thermalization. An isolated
quantum system thermalizes if the time-averaged expecta-
tion value of a (few-body) observable coincides with the
value predicted by a statistical-mechanical ensemble [22–25].
We prove the possibility of a left and right particle num-
ber imbalance, indicating nonthermalization, and discuss the
mechanism for the breakdown of the eigenstate thermalization
hypothesis (Sec. IV). Finally, we illustrate these findings in
the concrete case of the Hubbard Hamiltonian (Sec. V), where
the left and right imbalance that emerges is with respect to
magnetization. Lastly, technological aspects are analyzed.
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II. ERGODICITY

Let Ĥ (g) be an arbitrary time-independent Hamiltonian
that depends on one dimensionless control parameter g. Let
us introduce the following terminology:

(1) {|ψn(g)〉} is a complete orthonormal set of eigenvec-
tors of Ĥ (g). {En(g)} are the correspondent eigenvalues.

(2) (α, β )gc
denotes a degenerate pair at gc. Thus |ψα (g)〉

and |ψβ (g)〉 are eigenstates in which Eα (gc) = Eβ (gc).
(3) {|φ j〉} is a complete orthonormal set of basis states.
(4) {k, q} denotes a pair of symmetrically equivalent

states (SESs). By symmetrically equivalent states we mean
that there is an operator, F̂ , wherein F̂ |φk(q)〉 = |φq(k)〉 and
[Ĥ (g), F̂ ] = 0.

From this, we prove the following theorem on SESs.
Theorem 1. In the linear combination that results in an

eigenvector of Ĥ (g), the weights of the two basis states con-
stituting a pair of SESs are equal in magnitude.

Proof. From definition (4), we conclude that
F̂ (|φk〉 ± |φq〉) = ±(|φk〉 ± |φq〉). Therefore, an eigen-
vector of F̂ , |�ν〉, written on the basis {|φ j〉}, |�ν〉 =
· · · + f (ν)

k |φk〉 + f (ν)
q |φq〉 + · · · (where f (ν)

k = 〈φk|�ν〉), must

satisfy the condition f (ν)
q = ± f (ν)

k for any pair {k, q}. By
definition, F̂ commutes with the Hamiltonian; thus Ĥ |�ν〉 is
also an eigenvector of F̂ and it follows that Ĥ acting on |�ν〉
does not produce f (ν)

q �= ± f (ν)
k . Considering that {|�ν〉} is a

complete orthonormal set and writing |ψn(g)〉 on this basis,
we have

|ψn(g)〉 =
∑

ν

d (n)
ν (g)|�ν〉

=
∑

ν

d (n)
ν (g)[· · · + f (ν)

k (|φk〉 ± |φq〉) + · · ·]

= · · · +
[∑

ν

d (n)
ν (g) f (ν)

k

]
(|φk〉 ± |φq〉) + · · · ,

where d (n)
ν (g) = 〈�ν |ψn(g)〉. Comparing with |ψn(g)〉 on

the basis {|φ j〉}, |ψn(g)〉 = ∑
j a(n)

j (g)|φ j〉 (where a(n)
j (g) =

〈φ j |ψn(g)〉), we obtain

a(n)
q (g) = ±

∑
ν

d (n)
ν (g) f (ν)

k = ±a(n)
k (g) for all n. (4)

Therefore, we find that

|〈φk|ψn(g)〉| = |〈φq|ψn(g)〉| for all n. (5)

Q.E.D.

As a consequence of Theorem 1, we have the following.
Corollary. Let {k, q} be a pair of SESs. Then, the basis

states |φk〉 and |φq〉 have the same energy expectation value.
Proof. By expanding |φk〉 = ∑

n c(k)
n (g)|ψn(g)〉 [where

c(k)
n (g) = 〈ψn(g)|φk〉], the energy expectation value for the

system in the state |φk〉 is calculated as 〈φk|Ĥ (g)|φk〉 =∑
n |c(k)

n |2En(g). Similarly, 〈φq|Ĥ (g)|φq〉 = ∑
n |c(q)

n |2En(g).
As c(k)

n (g) = a(n)
k (g)∗, from Eq. (4), we find that |c(k)

n (g)| =
|c(q)

n (g)|. Therefore, 〈φk|Ĥ (g)|φk〉 = 〈φq|Ĥ (g)|φq〉. Q.E.D.

If a system is ergodic, then the time-averaged probability
is the same for all basis states having the same energy ex-
pectation value. Thus, from the Corollary, we can conclude

that a system is nonergodic if the states constituting a pair
of SESs have different probabilities over an infinitely long
timescale. To analyze the ergodicity, we consider the system
initially prepared in a basis state, |φl〉 ∈ {|φ j〉}, and evolving
in time according to Ĥ (g). In this way, the state of the system
at time t is given by |
l,g(t )〉 = e−iĤ (g)t/h̄|φl〉. Using |φl〉 =∑

n c(l )
n (g)|ψn(g)〉 and |ψn(g)〉 = ∑

j a(n)
j (g)|φ j〉, we obtain

the following:

|
l,g(t )〉 =
∑

j

bl, j (g, t )|φ j〉, (6)

where

bl, j (g, t ) = 〈φ j |e−iĤ (g)t/h̄|φl〉
=

∑
n

a(n)
l (g)∗a(n)

j (g)e−iEn (g)t/h̄. (7)

From Eq. (7), the probability of finding the system in |φ j〉
at time t after initializing in |φl〉 is given by

Pl, j (g, t ) = |bl, j (g, t )|2

=
∑
n,m

a(n)
j (g)∗a(n)

l (g)a(m)
l (g)∗a(m)

j (g)ei[En (g)−Em (g)]t/h̄.

(8)

The time-averaged probability, P̄l, j (g), is expressed as fol-
lows:

P̄l, j (g) = lim
t→∞

1

t

∫ t

0
Pl, j (g, t ′)dt ′. (9)

Thus substituting Eq. (8) in Eq. (9) yields

P̄l, j (g) =
∑
n,m

a(n)
j (g)∗a(n)

l (g)a(m)
l (g)∗a(m)

j (g)δEn,Em , (10)

where δEn,Em = 1 for En = Em (i.e., n = m or degeneracy) and
0 otherwise. For the sum in Eq. (10), all the degenerate pairs
at g must be considered. Hence, a quantum critical point and
an excited energy-level crossing have the same status.

Theorem 2 (ergodicity breaking). Let (α, β )gc
and {k, q}

be a degenerate pair and a pair of SESs, respectively, of the
system evolved by the time-independent Hamiltonian Ĥ (gc),
and let |φl〉 be the initial state. Then, P̄l,k (gc) �= P̄l,q(gc) if the
following are true:

(i) at gc, the only degeneracy is that of the pair (α, β )gc
;

(ii) {k, q} satisfies a(α)
k (gc)∗a(β )

k (gc) = −a(α)
q (gc)∗a(β )

q
(gc) �= 0; and

(iii) |φl〉 satisfies a(α)
l (gc) �= 0 and a(β )

l (gc) �= 0.
Proof. From Eq. (10) and condition (i), we find that

P̄l, j (gc) =
∑

n

∣∣a(n)
l (gc)

∣∣2∣∣a(n)
j (gc)

∣∣2
+ a(α)

j (gc)∗a(α)
l (gc)a(β )

l (gc)∗a(β )
j (gc)

+ a(β )
j (gc)∗a(β )

l (gc)a(α)
l (gc)∗a(α)

j (gc)

=
∑

n

∣∣a(n)
l (gc)

∣∣2∣∣a(n)
j (gc)

∣∣2
+ 2Re

[
a(α)

j (gc)∗a(α)
l (gc)a(β )

l (gc)∗a(β )
j (gc)

]
. (11)
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By using j = k and j = q in Eq. (11), we obtain

P̄l,k (gc) =
∑

n

∣∣a(n)
l (gc)

∣∣2∣∣a(n)
k (gc)

∣∣2
+ 2Re

[
a(α)

k (gc)∗a(α)
l (gc)a(β )

l (gc)∗a(β )
k (gc)

]
, (12)

P̄l,q(gc) =
∑

n

∣∣a(n)
l (gc)

∣∣2∣∣a(n)
q (gc)

∣∣2
+ 2Re

[
a(α)

q (gc)∗a(α)
l (gc)a(β )

l (gc)∗a(β )
q (gc)

]
. (13)

Considering condition (ii) and substituting Eq. (4) in
Eq. (13), we have

P̄l,q(gc) =
∑

n

∣∣a(n)
l (gc)

∣∣2∣∣a(n)
k (gc)

∣∣2
− 2Re

[
a(n1 )

k (gc)∗a(n1 )
l (gc)a(n2 )

l (gc)∗a(n2 )
k (gc)

]
.

(14)

As observed from conditions (ii) and (iii), the amplitudes
a(α)

k (gc), a(β )
k (gc), a(α)

l (gc), and a(β )
l (gc) are all nonzero. Thus,

on comparing Eqs. (12) and (14), we conclude that P̄l,k (gc) �=
P̄l,q(gc). Q.E.D.

Therefore, the system is nonergodic when conditions
(i)–(iii) in Theorem 2 are fulfilled. With regard to these con-
ditions, it is important to analyze each one of them. Condition
(iii) is necessary because otherwise the initial state will not be
sensitive to degeneracy (see Sec. I). The feasibility of condi-
tion (ii) is assured by Theorem 1. However, condition (i) can
be subject to two criticisms. First, specifying only one double
degeneracy is an excessively restrictive condition, and other
degeneracies actually occur. In this case, it is difficult to obtain
a precise balance in the sum of Eq. (10) such that P̄l,k equals
P̄l,q. Indeed, in the unrealistic case where all the eigenvectors
of the Hamiltonian have the same energy at gc, from Eq. (7),
we find that |bl, j (gc, t )| = |bl, j (gc, 0)|, which implies that
Pl, j (gc, t ) = Pl, j (gc, 0) [see Eq. (8)]. Thus the system stays in
the initial state at all times, and even if the initial state belongs
to a pair of SESs, the other state of the pair is never visited
by the system. Second, only one double degeneracy is an
irrelevant aspect for the nonequilibrium quantum dynamics of
a large number of particles because the many-body spectrum
is highly dense. Nevertheless, quantum many-body scars are
examples of cases where few eigenstates can be decisive for
the real-time dynamics [26–28]. Moreover, the breakdown
of the equal time-averaged probabilities occurs for any pair
of SESs that satisfies condition (ii). Thus, even for just one
two-level crossing, there may be a large number of pairs of
SESs that fulfill this condition. Indeed, in Sec. V, we show
that for a general single-band tight-binding Hamiltonian, the
number of states belonging to pairs of SESs is greater than
otherwise.

An interesting choice is the initial state belonging to a
pair of SESs, {l, �}. Using Eqs. (12) and (14), we obtain the
following:

P̄l,l (gc) =
∑

n

∣∣a(n)
l (gc)

∣∣4 + 2
∣∣a(α)

l (gc)
∣∣2∣∣a(β )

l (gc)
∣∣2, (15)

P̄l,�(gc) =
∑

n

∣∣a(n)
l (gc)

∣∣4 − 2
∣∣a(α)

l (gc)
∣∣2∣∣a(β )

l (gc)
∣∣2. (16)

The quantity P̄l,l (gc) can be interpreted as the time-
averaged Loschmidt echo. Therefore, the time-averaged
probability of the system returning to its initial state is shifted

up by an amount 2|a(α)
l (gc)|2|a(β )

l (gc)|2 as a result of the
degeneracy [Eq. (15)]. Thus, if the initial state is a SES, then
the degeneracy works as a mechanism by which the system
memorizes its initial state.

III. EQUILIBRATION

An important question raised by Theorem 2 is whether
a system that does not equally visit SESs reaches equi-
librium. An observable, O, with corresponding operator Ô
relaxes to an equilibrium value if its expectation value, 〈O〉t =
〈
(t )|Ô|
(t )〉, remains close to the equilibrium value, 〈O〉eq,

for almost all time, that is, [〈O〉t − 〈O〉eq]2 	 〈O〉2
eq, where

(· · · ) = limt→∞t−1
∫ t

0 (· · · )dt ′ [29,30]. Using the density ma-
trix, ρ(t ) = |
(t )〉〈
(t )|, we have 〈O〉t = Tr[ρ(t )Ô], and thus
〈O〉eq = Tr(ρeqÔ) is the value averaged over an equilibrium
ensemble, ρeq. It is reasonable to assume that if the expecta-
tion value of a particular observable relaxes, then it must be to
its time-averaged value, i.e., ρeq = ρ(t ).

Now, inspired by Ref. [20], we prove the following theo-
rem.

Theorem 3 (equilibration). Let H (gc) be a time-
independent Hamiltonian with only one degenerate pair
and nondegenerate energy gaps apart from the trivial
degeneracy with relation to the two levels that intersect at gc.
Consider O to be an observable representing an experimental
device with a finite range (�) of possible outcomes for a
measurement. Then, for the system evolving under H (gc)
after a measurement of O, i.e., starting from nonstationary
initial state |φl〉 (an eigenvector of Ô), the difference between
the expectation value of O at time t and its time-averaged
value is such that the following is observed:

[〈O〉t (l, gc) − 〈O〉(l, gc)]
2 � 5�2 max

n
p(l )

n (gc), (17)

where pl
n(gc) is the probabilistic weight of the nth eigenvector

of H (gc) in the linear combination that results in |φl〉.
Proof. Taking as basis states the eigenvectors of Ô, i.e.,

Ô|φ j〉 = Oj |φ j〉, from Eqs. (7) and (8), we have

〈O〉t (l, g) = 〈
l,g(t )|Ô|
l,g(t )〉 =
∑

j

Pl, j (g, t )Oj . (18)

By using Eqs. (9) and (10), it follows that

〈O〉t (l, g) =
∑

j

Pl, j (g)Oj . (19)

Rewriting Eq. (8) as Pl, j (g, t ) = ∑
n,m bn,m

l, j (g)

ei[En (g)−Em (g)]t/h̄ and Eq. (10) as P̄l, j (g) = ∑
n,m bn,m

l, j (g)

δEm,En , where bn,m
l, j (g) ≡ a(n)

j (g)∗a(n)
l (g)a(m)

l (g)∗a(m)
j (g), we

can define P̃l, j (g, t ) ≡ Pl, j (g, t ) − P̄l, j (g) = ∑
n,m b̃n,m

l, j

(g)ei[En (g)−Em (g)]t/h̄, where b̃n,m
l, j (g) ≡ bn,m

l, j (g)(1 − δEn,Em ).
With this, and as is assumed only one two-level
crossing [Eα (gc) = Eβ (gc)], we have b̃n,n

l, j (gc) = 0 and
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b̃α,β

l, j (gc) = b̃β,α

l, j (gc) = 0. Thus

[〈O〉t (l, gc) − 〈O〉t (l, gc)]
2 =

∑
j, j′

P̃l, j (gc, t )P̃l, j′ (gc, t )OjOj′

=
∑
j, j′

∑
n1,m1,n2,m2

b̃n1,m1
l, j (gc)Ojb̃

n2,m2
l, j′ (gc)Oj′δEn1 (gc )−Em1 (gc )+En2 (gc )−Em2 (gc ),0. (20)

Since a(n)
j (g) = 〈φ j |ψn(g)〉, and using completeness relations

∑
n |ψn(g)〉〈ψn(g)| = 1 and

∑
j |φ j〉〈φ j | = 1, we calculate the

following: ∑
j

Pl, j (gc, t ) =
∑

j

∑
n,m

bn,m
l, j (gc)ei[En (gc )−Em (gc )]t/h̄

=
∑
n,m

〈φl |ψn(gc)〉
⎡
⎣∑

j

〈ψn(gc)|φ j〉〈φ j |ψm(gc)〉
⎤
⎦

︸ ︷︷ ︸
=δn,m

〈ψm(gc)|φl〉ei[En (gc )−Em (gc )]t/h̄ = 1,

and ∑
j

P̄l, j (gc) =
∑

j

∑
n,m

bn,m
l, j (gc)δEn,Em =

∑
j

∑
n

bn,n
l, j (gc) +

∑
j

bα,β

l, j (gc) +
∑

j

bβ,α

l, j (gc)

=
∑

n

〈φl |ψn(gc)〉
⎡
⎣∑

j

〈ψn(gc)|φ j〉〈φ j |ψn(gc)〉
⎤
⎦

︸ ︷︷ ︸
=1

〈ψn(gc)|φl〉

+ 〈φl |ψα (gc)〉
⎡
⎣∑

j

〈ψα (gc)|φ j〉〈φ j |ψβ (gc)〉
⎤
⎦

︸ ︷︷ ︸
=0

〈ψβ (gc)|φl〉

+ 〈φl |ψβ (gc)〉
⎡
⎣∑

j

〈ψβ (gc)|φ j〉〈φ j |ψα (gc)〉
⎤
⎦

︸ ︷︷ ︸
=0

〈ψα (gc)|φl〉 = 1.

Therefore,
∑

j P̃l, j (gc, t ) = ∑
j [Pl, j (gc, t ) − P̄l, j (gc)] = 0. From this, and considering Omin � Oj � Omax (for all j), where it is

possible to define a non-negative auxiliary quantity, Õ j ≡ Oj − Omin (0 � Õ j � � and � ≡ Omax − Omin), we obtain

[〈Õ〉t (l, gc) − 〈Õ〉t (l, gc)]
2 =

∑
j, j′

P̃l, j (gc, t )P̃l, j′ (gc, t )Õ jÕ j′ =
∑
j, j′

P̃l, j (gc, t )P̃l, j′ (gc, t )OjOj′ = [〈O〉t (l, gc) − 〈O〉t (l, gc)]
2
.

(21)
For nondegenerate energy gaps apart from the trivial degeneracy with relation to levels Eα and Eβ , in Eq. (20), excluding

the cases where b̃n1,m1
l, j (gc) = 0 or b̃n2,m2

l, j′ (gc) = 0, the condition En1 (gc) − Em1 (gc) + En2 (gc) − Em2 (gc) = 0 implies that n1 = m2

and m1 = n2; or n1 = m2 �= α, β, m1 = α(β ), and n2 = β(α); or m1 = n2 �= α, β, n1 = α(β ), and m2 = β(α). Hence, Eq. (21)
is modified as follows:

[〈O〉t (l, gc) − 〈O〉t (l, gc)]
2 =

∑
j, j′

Õ jÕ j′

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n, m

[n �= m, n(m) �= α(β ), n(m) �= β(α)]

b̃n,m
l, j (gc)b̃m,n

l, j′ (gc)

+
∑

n
(n �= α, β )

[
b̃n,α

l, j (gc)b̃β,n
l, j′ (gc) + b̃n,β

l, j (gc)b̃α,n
l, j′ (gc)

]

+
∑

m
(m �= α, β )

[
b̃α,m

l, j (gc)b̃m,β

l, j′ (gc) + b̃β,m
l, j (gc)b̃m,α

l, j′ (gc)
]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭.
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Since b̃n,n
l, j (gc) = b̃α,β

l, j (gc) = 0, the restrictions on the sums can be dropped, and we find that

[〈O〉t (l, gc) − 〈O〉t (l, gc)]
2 =

∑
j, j′

Õ jÕ j′

⎧⎨
⎩∑

n,m

b̃n,m
l, j (gc)b̃m,n

l, j′ (gc) + 2
∑

n

[
b̃α,n

l, j (gc)b̃n,β

l, j′ (gc) + b̃β,n
l, j (gc)b̃n,α

l, j′ (gc)
]⎫⎬⎭.

By using b̃m,n
l, j (g) = b̃n,m

l, j (g)∗, 0 � Õ j � �, and |b̃n,m
l, j (g)| � |bn,m

l, j (g)|, we can conclude that

[〈O〉t (l, gc) − 〈O〉t (l, gc)]
2 =

∑
n,m

∣∣∣∣∣∣
∑

j

b̃n,m
l, j (gc)Õ j

∣∣∣∣∣∣
2

+ 4Re
∑

n

∑
j, j′

b̃α,n
l, j (gc)b̃n,β

l, j′ (gc)Õ jÕ j′

� �2
∑
n,m

∑
j

∣∣bn,m
l, j (gc)

∣∣2 + 4

∣∣∣∣∣∣
∑

n

∑
j, j′

b̃α,n
l, j (gc)b̃n,β

l, j′ (gc)Õ jÕ j′

∣∣∣∣∣∣. (22)

Analyzing the first term on the right-hand side of Eq. (22), we have∑
n,m, j

∣∣bn,m
l, j (gc)

∣∣2 =
∑
n,m, j

∣∣a(n)
j (gc)∗a(n)

l (gc)a(m)
l (gc)∗a(m)

j (gc)
∣∣2

=
∑
n,m, j

∣∣a(n)
j (gc)

∣∣2∣∣a(n)
l (gc)

∣∣2∣∣a(m)
l (gc)

∣∣2∣∣a(m)
j (gc)

∣∣2
� max

n

∣∣a(n)
l (gc)

∣∣2 ∑
m

∣∣a(m)
l (gc)

∣∣2 ∑
j

∣∣a(m)
j (gc)

∣∣2 ∑
n

∣∣a(n)
j (gc)

∣∣2 � max
n

∣∣a(n)
l (gc)

∣∣2. (23)

For the second term on the right-hand side of Eq. (22), it is important to note the following:

|〈ψn(gc)| ˆ̃O|ψm(gc)〉| �
√

〈ψn(gc)|ψn(gc)〉
√

〈ψm(gc)| ˆ̃O
† ˆ̃O|ψm(gc)〉

�
√

〈ψm(gc)| ˆ̃O
2|ψm(gc)〉

�
√∑

j

∣∣a(m)
j (gc)

∣∣2Õ2
j

�
√

�2
∑

j

∣∣a(m)
j (gc)

∣∣2
� �,

where in the first line we use the Cauchy-Schwarz inequality, and the second line is a consequence of ˆ̃O ≡ Ô − Omin Î (Î denotes
the identity operator) being a Hermitian operator. With this we obtain

∣∣∣∣∣∣
∑

n

∑
j, j′

b̃α,n
l, j (gc)b̃n,β

l, j′ (gc)Õ jÕ j′

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑

n
(n �= α, β )

∑
j, j′

bα,n
l, j (gc)bn,β

l, j′ (gc)Õ jÕ j′

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣
a(α)

l (gc)a(β )
l (gc)∗

∑
n

(n �= p, q)

∣∣a(n)
l (gc)

∣∣2 ∑
j

a(α)
j (gc)∗a(n)

j (gc)Õ j

︸ ︷︷ ︸
=〈ψα (gc )| ˆ̃O|ψn(gc )〉

∑
j′

a(n)
j′ (gc)∗a(β )

j′ (gc)Õ j′

︸ ︷︷ ︸
=〈ψn(gc )| ˆ̃O|ψβ (gc )〉

∣∣∣∣∣∣∣∣∣∣∣∣
�

∣∣a(α)
l (gc)

∣∣∣∣a(β )
l (gc)

∣∣ ∑
n

(n �= p, q)

∣∣a(n)
l (gc)|2|〈ψα (gc)

∣∣ ˆ̃O|ψn(gc)〉||〈ψn(gc)| ˆ̃O|ψβ (gc)〉|

�
∣∣a(α)

l (gc)
∣∣∣∣a(β )

l (gc)
∣∣�2

∑
n

∣∣a(n)
l (gc)

∣∣2 � �2 max
n

∣∣a(n)
l (gc)

∣∣2. (24)
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Defining p(l )
n (g) ≡ |a(n)

l (g)|2 as the probabilistic weight of
eigenvector |ψn(g)〉 in the linear combination that results in
the initial state |φl〉, and substituting Eqs. (23) and (24) in
Eq. (22), we finally arrive at Eq. (17). Q.E.D.

From Chebyshev’s inequality with 〈O〉t (l, g) being a ran-
dom variable with a mean value given by Eq. (19), variance
given by Eq. (17), and standard deviation (χ ) bounded by
χ � �η

√
5η [where η3 ≡ maxn p(l )

n (gc)] [20,31], we obtain
the following:

P[|〈O〉t (l, gc) − 〈O〉t (l, gc)| > �η] � 5η, (25)

where P(x) denotes the probability that a random variable
takes on value x.

Let us now analyze the magnitude of η and �η. Con-
sider dl ≡ ∑

n (1 − δ〈ψn|φl 〉,0) as the effective dimension of
the initial state |φl〉, that is, the number of states |ψn〉 such
that 〈ψn|φl〉 �= 0. The information entropy of |φl〉 (Sl ), which
is the average level of uncertainty about |φl〉 when a |ψn〉
is measured, can be calculated by Sl = ∑

n p(l )
n ln(1/p(l )

n )
[31–33]. Thus Sl becomes larger as distribution p(l )

n becomes
more uniform. In this case, p(l )

n = (1 − δ〈ψn|φl 〉,0)/dl and Sl =
ln(dl ); it follows that Sl increases with dl and vice versa.
As the entropy of a state is associated with the number of
different ways wherein the system arrives at it according to
the dynamics given by the Hamiltonian, we conclude that
dl increases with wl ≡ ∑

j (1 − δ〈φl |Ĥ |φ j〉,0). Considering, for
example, nearest-neighbor tight-binding Hamiltonians on a
bipartite lattice, such as the Hubbard Hamiltonian [Eqs. (1)–
(3)], the state with N↑ = N↓ = Ns/2 (where Nσ is the number
of spin-σ electrons of the system) and an antiferromagnetic
configuration has wl = zNs (where z is the coordination num-
ber of the lattice). In addition, wl = zNs/2 for the state with
N↑ = N↓ = Ns/4 and a single-occupied site as the nearest
neighbor to empty sites (independently of the spin config-
uration). Therefore, for macroscopic systems (Ns and N on
the order of 1023) we have dl ∼ zO(Ns ), where O denotes the
order of magnitude. This example illustrates that the value of
p(l )

n ∼ 1/dl is typically extremely small. For generic many-
body systems with f degrees of freedom, we can estimate that
η = [maxn p(l )

n (gc)]
1/3 ∼ 1/10O( f ) [20,21,34]. From this, we

have that �η ∼ �/10O( f ). Calling δO the resolution limit of
an experimental device measuring O, since � is the (finite)
range of possible outcomes of a measurement of O, then, even
for � ∼ O( f ), there is a sufficiently large number of particles
(typically 	 1023) where �η ∼ O( f )/10O( f ) < δO. There-
fore, from Eq. (25), we conclude that for the overwhelming
majority of times 〈O〉t (l, gc) is excessively close to 〈O〉t (l, gc)
such that the accuracy of the measurement using any exper-
imental device cannot capture the difference between them.
This is an apparent equilibration because Theorem 3 does not
in fact ensure that 〈O〉t (l, gc) converges to a certain value
(〈O〉t can even be periodic [34]). Finally, from Eq. (19), we
find that the equilibrium ensemble of basis states is ρeq =∑

j Pl, j (gc)|φ j〉〈φ j |. The presence of Pl, j (gc) in ρeq means
that the breakdown of ergodicity stated by Theorem 2 occurs
in equilibrium.

IV. THERMALIZATION

Theorems 2 and 3 imply that a system in equilibrium at
an energy-level crossing point is nonergodic, at least for the
cases where the assumptions of these theorems are fulfilled.
Thus thermalization obviously does not occur. However, it
is important to understand the mechanism that leads to the
breakdown of the eigenstate thermalization hypothesis (ETH).

The ETH is a sufficient condition for thermalization and
asserts that 〈ψn|Ô|ψn〉 = 〈O〉mc(En), where 〈· · · 〉mc(E ) de-
notes the microcanonical average on an energy window of
width δE around energy E [3,22,24,35,36]. Since a window
δE defines a Hilbert subspace spanned by the neighboring
eigenstates |ψm〉 such that Em ∈ (En−δE/2, En + δE/2), the
conjecture underlying the ETH is that 〈ψm|Ô|ψm〉 fluctuates
very little between these eigenstates. Thus, for instance, if
there is no degeneracy, then 〈O〉t = ∑

n |c(l )
n |2〈ψn|Ô|ψn〉 ≈∑

|Em−E |<δE/2 |c(l )
m |2〈O〉mc(E ) = 〈O〉mc(E ) (the ergodic hy-

pothesis holds), where E is defined by the initial state (i.e.,
E = 〈φl |Ĥ |φl〉) and the coefficients |c(l )

m |2 are assumed to be
strongly clustered around n such that 〈ψn|Ĥ |ψn〉 = E . There-
fore, 〈O〉t does not depend on the choice of the initial state
and 〈O〉t = 〈O〉mc(E ) holds for all initial states that are in the
microcanonical energy window.

Systems of large enough size with rare nonthermal eigen-
states, comprising a vanishing fraction of the Hilbert space,
can still thermalize [37]. However, even for these systems,
if the initial state strongly overlaps with the nonthermal
eigenstates, then thermalization is prevented from occurring
[38]. For example, initial states that strongly overlap with
some quantum many-body scars give rise to nonergodic dy-
namics [26–28]. A fundamental theoretical aspect of models
with quantum many-body scars is that the Hilbert subspace
spanned by the nonthermal eigenstates (scars) is disconnected
from the thermalizing subspace [28]. This is the mecha-
nism whereby the ergodicity breaks. Dramatically, there are
models where the Hilbert space for each symmetry sector
fragments into many exponentially disconnected subspaces
[39–41]. This phenomenon is called Hilbert space fragmen-
tation, and, in contrast to quantum many-body scars, this
fragmentation occurs in relation to some local basis (for
instance, product states). The fragmentation occurs because
an interplay among the terms of the Hamiltonian imposes
constraints on the dynamics of the particles, which results in
conserved quantities (without any underlying symmetry). In
the following, we shall show, by analyzing the particle number
imbalance in the system, that the origin of nonthermalization
of the system at an energy-level crossing point is the existence
of both favored and disfavored Hilbert subspaces, where the
system is most and less likely to be found, respectively. Since
breakdown of ergodicity only occurs for initial states that
overlap with the degenerate eigenstates (see Theorem 2), this
appears to be a unique mechanism of weak ETH breakdown,
where the degenerate eigenstates can work as nonthermal
eigenstates.

The imbalance in the distribution in real space of some
property of the particles (single-particle energy, electrical
charge, spin, etc.) is adequate to identify a system that is
nonthermal [42–47]. In other words, if a system starts from an
out-of-equilibrium state with some asymmetry in real space,
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and if it evolves such that a nonzero imbalance remains, then
this system retains a memory of the initial state and therefore
does not undergo thermalization. Let us consider that NX is
the number of particles with value X for some physical prop-
erty and that basis states {|φ j〉} are eigenvectors of N̂X . Thus,
for NX particles having an asymmetric distribution between
the left and right sides of the system, the left (NX,L) and right
(NX,R) particle number imbalance (IX ) can be quantified by

IX
l,g(t ) = 1

N

[
NX,L

l,g (t ) − NX,R
l,g (t )

]
, (26)

where NX,Y
l,g (t ) = 〈
l,g(t )|N̂X,Y |
l,g(t )〉 and Y = L, R. The

separation of the system into left and right sides is not unique,
but this does not affect the results obtained here. It is im-
portant to mention that the ETH may be valid for operators
acting on a subsystem of up to half of the total system size
(i.e., few-body observables) [48]. Using N̂X,Y |φ j〉 = NX,Y

j |φ j〉
(because [N̂X , N̂X,Y ] = 0) and Eqs. (6) and (10), we find that
the time-averaged imbalance is as follows:

IX
l,g = 1

N

∑
j

P̄l, j (g)
[
NX,L

j − NX,R
j

]
. (27)

Theorem 4 (nonthermalization). If conditions (i)–(iii) of
Theorem 2 are satisfied and F̂ N̂X,L(R) = N̂X,R(L)F̂ , then the
time-averaged imbalance is nonzero at an energy-level cross-
ing point.

Proof. Since F̂ |φk(q)〉 = |φq(k)〉 [definition (4) in Sec. II]
and N̂X,Y |φ j〉 = NX,Y

j |φ j〉, from assumption F̂ N̂X,L(R) =
N̂X,R(L)F̂ , we calculate the following:

F̂ N̂X,L(R)|φk〉 = N̂X,R(L)F̂ |φk〉,
F̂
(
NX,L(R)

k |φk〉
) = N̂X,R(L)|φq〉,

NX,L(R)
k F̂ |φk〉 = NX,R(L)

q(k) |φq(k)〉,
NX,L(R)

k

∣∣φq
〉 = NX,R(L)

q |φq〉,
⇒ NX,L(R)

k = NX,R(L)
q . (28)

Therefore, the states of every pair of SESs, {k, q}, have
opposite parity in relation to X , and the action of F̂ corre-
sponds to a parity inversion. Based on this, it is convenient
to write B = BL>R ∪ BL<R ∪ BL=R, where B is the complete
set of basis states, BL>R is the subset in which NX,L

j > NX,R
j ,

BL<R is the subset in which NX,L
j < NX,R

j , and BL=R is the

subset in which NX,L
j = NX,R

j (in this case j /∈ {k, q}). Thus F̂
transforms a state of BL>R into a state of BL<R, and vice versa.
Then, for any pair {k, q}, we have k ∈ BL>R and q ∈ BL<R. For
pairs of SESs that satisfy condition (ii) of Theorem 2, we have
P̄l,k (gc) �= P̄l,q(gc). Based on symmetry, we conclude that the
states favored by the degeneracy are all in either BL>R or BL<R.
Thus, and using Eq. (28), we obtain the following:

∑
j∈B

P̄l, j (gc)
[
NX,L

j − NX,R
j

] =
∑

j∈BL>R

P̄l, j (gc)
[
NX,L

j − NX,R
j

]
+

∑
j∈BL<R

P̄l, j (gc)
[
NX,L

j − NX,R
j

] +
∑

j∈BL=R

P̄l, j (gc)
[
NX,L

j − NX,R
j

]
︸ ︷︷ ︸

=0

=
∑
{k, q}

k ∈ BL>R, q ∈ BL<R

{
P̄l,k (gc)

[
NX,L

k − NX,R
k

] + P̄l,q(gc)
[
NX,L

q − NX,R
q

]}

=
∑
{k, q}

k ∈ BL>R, q ∈ BL<R

{
P̄l,k (gc)

[
NX,L

k − NX,R
k

] + P̄l,q(gc)
[
NX,R

k − NX,L
k

]}

=
∑
{k, q}

k ∈ BL>R, q ∈ BL<R

[P̄l,k (gc) − P̄l,q(gc)]
[
NX,L

k − NX,R
k

]︸ ︷︷ ︸
>0

. (29)

Therefore, if P̄l,k∈BL>R (gc) � P̄l,q∈BL<R (gc) for every pair of
SESs [the equality holds for pairs that do not satisfy condi-
tion (ii) of Theorem 2], then

∑
j∈B P̄l, j (gc)[NX,L

j − NX,R
j ] > 0.

Conversely, if P̄l,k∈BL>R (gc) � P̄l,q∈BL<R (gc) for every {k, q},
then

∑
j∈B P̄l, j (gc)[NX,L

j − NX,R
j ] < 0. In any case, we have

IX
l,gc

�= 0 [see Eq. (27)]. Q.E.D.

In addition to Theorem 3 for equilibration, Theorem 4
does not avoid the possibility that IX

l,gc
will have a nonzero

value that is not detectable by any experimental device. In
this case, there is an apparent thermalization. Furthermore,
note that the nonthermalization at gc is not because of discon-
nected Hilbert subspaces. Since F̂ commutes with Ĥ , and the

nonthermalization is associated with an occupancy imbal-
ance between basis states of BL>R and BL<R, which are
exchanged by an action of F̂ , then the time evolution oper-
ator, exp[−iĤ (gc)t/h̄], is able to drive the system from one
subspace (spanned by BL>R, BL<R, or BL=R) to another. The
degeneracy favors the occupancy of a Hilbert subspace, but
no decoupling occurs.

V. MODEL

In order to illustrate the results found in the previous
sections, let us consider a system composed of interact-
ing itinerant electrons on an arbitrary lattice with dynamics
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expressed by the following general single-band tight-binding
Hamiltonian:

Ĥ = Ĥhop + Ĥint, (30)

where

Ĥhop =
Ns∑

r,s=1

∑
σ=↑,↓

tr,sĉ
†
r,σ ĉs,σ , (31)

Ĥint = 1

2

Ns∑
r,s=1

∑
σ,λ=↑,↓

V (|r − s|)n̂r,σ n̂s,λ. (32)

tr,s is the hopping amplitude between the sites (Wannier or-
bitals) r and s, and we assume that it is real and isotropic (i.e.,
tr,s = ts,r). V (|r−s|) is the electrostatic interaction between
electrons; therefore, it is real and only depends on the distance
|r−s| between the electrons. For the case where r = s, the
Pauli exclusion principle imposes that λ = −σ and thus V
coincides with the on-site Hubbard interaction U .

Let us adopt as basis states the eigenvectors of the parti-
cle number operator, N̂ = N̂↑ + N̂↓ (where N̂σ = ∑Ns

r=1 n̂r,σ ),
that is, |φ j〉 = |n( j)

1,↑n( j)
1,↓, n( j)

2,↑n( j)
2,↓, . . . , n( j)

Ns,↑n( j)
Ns,↓〉. For an iso-

lated system, N̂ |φ j〉 = N |φ j〉 for all the basis states (N is
conserved). The states {|φ j〉} are also eigenvectors of Ĥint

[Eq. (32)], but not of Ĥhop [Eq. (31)]. However, Ĥhop can
be expressed as

∑
σ Ĥhop,σ = Ĥhop,↑ + Ĥhop,↓, where Hhop,σ =∑

r,s tr,sĉ†
r,σ ĉs,σ [see Eq. (31)]. Thus the itinerant dynamics for

spin-up and spin-down electrons are decoupled. This implies
that Nσ is conserved and states with different values of N↑ or
N↓ belong to different Hilbert subspaces.

Let F̂ be an operator that changes the spin direction of
electrons in singly occupied sites. Thus F̂ |φk〉 = |φq〉 if |φk〉
and |φq〉 are two states with the same spatial configura-
tion and opposite spins, such as F̂ |↑, ↑, 0, ↓, 0, ↑↓, · · ·〉 =
|↓, ↓, 0, ↑, 0, ↑↓, · · ·〉. The following expression can be
written for this operator:

F̂ =
∏

r

{
σ̂+

r + σ̂−
r + [

1 − (
σ̂ z

r

)2]}
, (33)

where σ̂+
r = ĉ†

r,↑ĉr,↓, σ̂−
r = ĉ†

r,↓ĉr,↑, and σ̂ z
r = n̂r,↑ − n̂r,↓.

Now let us focus on subspace N↑ = N↓. In this case, we
have that F̂ Ĥhop,σ |φ j〉 = Ĥhop,−σ F̂ |φ j〉 because the hopping
amplitude tr,s does not depend on the spin. Therefore, the
sum over σ results in F̂ Ĥhop|φ j〉 = ĤhopF̂ |φ j〉 ⇒ [F̂ , Ĥhop] =
0. Furthermore, we also have that F̂ Ĥint|φ j〉 = ĤintF̂ |φ j〉 ⇒
[F̂ , Ĥint] = 0 because |φ j〉 is an eigenvector of Ĥint and the
interaction V (|r−s|) does not depend on the spin. Hence,
F̂ commutes with the Hamiltonian of Eq. (30), and thus
two states with the same spatial configuration and opposite
spins constitute a pair of SESs, independent of the values
of parameters {tr,s} and {V (r−s)}. Each basis state having at
least one singlon (singly occupied site) belongs to a pair of
SESs. By evaluating the total number of basis states (NB),
NB = {Ns!/[Nσ !(Ns − Nσ )!]}2, and the number of basis states
having no singlon (in which F̂ |φ j〉 = |φ j〉),

√
NB, we conclude

that there are NB−√
NB states belonging to pairs of SESs.

Thus, in the thermodynamic limit, the fraction of nonsymmet-
rically equivalent states tends to zero. This reveals that SESs

are typical states; however, the SESs that strongly overlap
with degenerate eigenstates can be rare.

However, it is difficult to know whether the spectrum of
the Hamiltonian (30)–(32) presents any energy-level crossing.
Nevertheless, for V (r−s) = Uδr,s, this Hamiltonian reduces
to the standard Hubbard Hamiltonian [8] [Eqs. (1)–(3) are
obtained if tr,s = J (= 0) for r and s denoting (non-) nearest-
neighbor sites]. Because the Hubbard Hamiltonian is SU (2)
invariant, a saturated ferromagnetic transition, if it exists,
is associated with an energy-level crossing, as discussed in
Sec. I. Fortunately, Tasaki proved that certain Hubbard mod-
els exhibit saturated ferromagnetism at zero temperature and
sufficiently large (but finite) interaction U [49]. Thus, at the
ferromagnetic quantum critical point of a Hubbard model, the
ergodicity is expected to be broken for a subset of basis states
satisfying condition (ii) of Theorem 2. On the other hand,
Theorem 4 states that an imbalance will occur over a long
timescale if F̂ N̂X,L(R) = N̂X,R(L)F̂ . Hence the choice N̂X =
N̂σ is not valid because, for example, F̂ |↑,↓〉L|0, 0〉R equals
|↓,↑〉L|0, 0〉R and not |0, 0〉L|↑,↓〉R, therefore, F̂ N̂σ,L(R) �=
N̂σ,R(L)F̂ . Thus we use N̂X = M̂ ≡ N̂↑ − N̂↓, where M is the
total magnetic moment of the system; therefore, Eq. (26)
becomes IM

l,g(t ) = [ML
l,g(t ) − MR

l,g(t )]/N which denotes a left

and right magnetization imbalance. In this way, F̂ M̂L(R) =
M̂R(L)F̂ is valid. Consequently, Theorem 4 holds, and a left
and right magnetization imbalance must persist. In other
words, although a long-time electrical charge density is not
spatially asymmetric (the electrical conductance is preserved),
the time average of the spin-σ electron numbers for different
regions of the crystal lattice is imbalanced (if the initial state
overlaps with the degenerate eigenstates). This is in agreement
with the results reported in Ref. [19] for Hubbard clus-
ters solved by numerical exact diagonalization. Additionally,
nonergodicity has been observed in tilted Hubbard chains;
however, in this case, the underlying mechanism is the Hilbert
space fragmentation due to the kinetic constraints imposed by
a large tilt energy [47].

Strictly speaking, Theorem 4 is valid only at gc. However,
experimental measurements are obtained over a finite
timescale. Then, for g close to gc (where Eα − Eβ is
very small), the period of the oscillation produced by
exp{i[Eα (g) − Eβ (g)]t/h̄} in Eq. (8) is excessively large, such

that IM
l,g �= 0 close to an energy-level crossing point. This

aspect can be relevant for technological applications such
as quantum memories [50–52]. Nevertheless, a fundamental
question related to technology is whether IM

l,gc
is sufficiently

large to facilitate measurement. By noting Eq. (29), we
find that IM

l,gc
depends on �P̄k,q(gc) ≡ P̄l,k∈BL>R (gc) −

P̄l,q∈BL<R (gc) and, from Eqs. (12) and (14), we have
that �P̄k,q(gc) = 4Re[a(α)

k (gc)∗a(α)
l (gc)a(β )

l (gc)∗a(β )
k (gc)].

Thus, for a uniform distribution of the coefficients,
i.e., |a(n)

j (g)|2 = 1/NB, we obtain �P̄k,q(gc) � 4/N2
B and

IM
l,gc

= N−1 ∑
{k,q} �P̄k,q(gc)[ML

k −MR
k ] � 4NP/N2

B , where NP

is the number of pairs of SESs. Since NP = (NB−√
NB)/2,

we find that IM
l,gc

< 2/NB. For N↑ = N↓ = Ns/2, for example,

NB scales asymptotically as 2Ns ; thus IM
l,gc

< 2/NB ∼ 21−Ns .
Therefore, the technological use of the ergodicity breaking
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should be possible only for small systems, such as magnetic
molecules [19,53–56].

VI. CONCLUSION

We investigated the effect of degeneracy resulting from a
many-body energy-level crossing driven by a control param-
eter in a time-independent Hamiltonian that depends on one
dimensionless control parameter. A ferromagnetic quantum
phase transition described by the Hubbard model is an exam-
ple of this scenario.

At the energy-level crossing point, starting from a nonequi-
librium basis state that overlaps with the degenerate eigen-
states, the evolution in time of the system is such that it visits
one subset of basis states more than the other, even in a case
where the states in one are symmetrically equivalent to those
in the other. This ergodicity breaking implies that the time-
averaged probability of finding the system in a certain basis
state of the favored subspace is higher than that of finding it in
the symmetrically equivalent state of the disfavored subspace.
Symmetrically equivalent states are those where one state is
transformed into the other by the action of an operator that
commutes with the Hamiltonian. No additional requirements

are imposed on the Hamiltonian beyond a two-level crossing;
in this sense, the Hamiltonian is general and arbitrary. The
favored subspace is defined by choosing the initial state. Af-
ter a long time, the system reaches equilibrium, and in the
overwhelming majority of times, the difference between the
expectation value of an observable and its time-averaged value
is below the resolution limit of any realistic experimental de-
vice. Therefore, nonergodicity is a feature of the equilibrium
state, and thus the system is not subjected to thermalization.
Since this nonthermalization is not true for all initial basis
states and the system Hilbert space is not fragmented, our
results seemingly reveal a unique mechanism for a weak ETH
breakdown, where the degenerate eigenstates can work as
nonthermal eigenstates.

Considering a Hubbard Hamiltonian with the number of
spin-up electrons equal to the number of spin-down electrons,
the nonergodicity at a degenerate point (and neighboring
point) corresponds to a higher time-averaged probability of
finding spin-up electrons on one side and spin-down electrons
on the opposite side of the crystal lattice than the reverse.
Thus a left and right magnetization imbalance remains over
a long timescale. The use of this phenomenon in technologies
is apparently possible, at least for small systems.
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