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Steady state of a two-species annihilation process with separated reactants
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We describe the steady state of the annihilation process of a one-dimensional system of two initially separated
reactants A and B. The parameters that define the dynamical behavior of the system are the diffusion constant,
the reaction rate, and the deposition rate. Depending on the ratio between those parameters, the system exhibits
a crossover between a diffusion-limited (DL) regime and a reaction-limited (RL) regime. We found that a key
quantity to describe the reaction process in the system is the probability p(xA, xB ) to find the rightmost A (RMA)
particle and the leftmost B (LMB) particle at the positions xA and xB, respectively. The statistical behavior
of the system in both regimes is described using the density of particles, the gap length distribution xB − xA,
the marginal probabilities pA(xA) and pB(xB ), and the reaction kernel. For both regimes, this kernel can be
approximated by using p(xA, xB ). We found an excellent agreement between the numerical and analytical results
for all calculated quantities despite the reaction process being quite different in both regimes. In the DL regime,
the reaction kernel can be approximated by the probability to find the RMA and LMB particles in adjacent sites.
In the RL regime, the kernel depends on the marginal probabilities pA(xA) and pB(xB ).
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I. INTRODUCTION

Reaction-diffusion (RD) systems are of great importance
in modern physics due to their versatility as models for the
study and description of many phenomena such as pattern
formation, growth by aggregation, evolution of reactants by
chemical reactions, disease spread, population growth, and
opinion evolution [1–8].

In RD systems, the basic mechanism of matter transport
is diffusion; once the interaction range is reached, the system
components interact with each other through reactions. When
the diffusion time is much longer than the reaction time, the
system is said to be diffusion limited (DL); otherwise, it is
said to be reaction limited (RL) [7–10]. In the DL regime,
it is common to have spatial fluctuations in the density of
reactants, which are translated into the nonhomogeneity of
the system. In contrast, for the RL regime, the components
are mixed, favoring the homogeneity of the system. The RD
systems are generally difficult to study because they evolve
through nonlinear processes out of equilibrium. Because of
this, it is often necessary to use analytical approximations and
numerical tools to describe the properties of the system.

Multispecies RD systems are quite interesting since the
reactions occur in certain regions of the system where the con-
centrations of the reactants overlap. These regions are called
“reaction zones” [2,11]. The description of the time evolution
of these systems usually requires a proper understanding of
the processes in the reaction zones as well as knowledge of

*sasiri.vargas@correounivalle.edu.co
†diego.luis.gonzalez@correounivalle.edu.co
‡gtellez@uniandes.edu.co

the spatial distribution of particles in the reaction front. The
RD systems with a two-species annihilation reaction

A + B
β−→ ∅, (1)

where ∅ is an empty site and β the reaction rate, have been
widely studied since it is one of the simplest reactions that, in
one dimension, can show anomalous kinetics [12,13]. This re-
action has been used to describe the evolution of super-heavy
magnetic monopoles produced in the very early universe.
These monopoles evolve disappearing only through annihi-
lation with an antimonopole [14]. Another example of the
application of this reaction can be found in the study of
epidemic reactions and epidemic spreading. In these cases,
the contagion from one neighbor to the next is not always
successful leading to a finite reaction rate as the one used
in the current work. The particle-hole recombination in irra-
diated semiconductors is also a classical application of this
reaction [15,16].

Recent studies focusing on reaction-diffusion systems on
complex networks have shown how the topology of the un-
derlying networks modify the statistical properties of the
system [17–20]. For instance, for homogeneous networks with
bounded fluctuations, the particle density decreases as the
inverse of time. In contrast, for heterogeneous scale-free net-
works, the density decreases as a power law which depends
on the degree distribution. There are other recent works about
quantum reaction-diffusion dynamics that suggest that quan-
tum effects change the collective universal behavior compared
to that found in classical systems [21–24].

Another important factor in the time evolution of RD
systems is the initial condition. In Refs. [14,25] the time
evolution of a random mixture of reactants with the reaction
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FIG. 1. Basic diagram of the processes that define the time evolution of the system. The hopping and reaction rates are λ and β, respectively.
If one of the sites i = ±N is empty, the probability of deposition of a particle in that site is dp.

given by Eq. (1) has been studied. Another initial condition
that has been studied is that where the two types of reactants
are initially separated [8,11,26–31].

The steady-state properties of a one-dimensional system
of two reactants, A and B, initially separated into two well-
defined spatial regions and subjected to the annihilation
reaction given by Eq. (1), are studied in this paper to supple-
ment the work presented in Ref. [11]. In the original work of
Hoyuelos et al. [11], the statistical behavior of the system is
described using numerical results for the density of reactants
and complemented by numerical and analytical calculations
for the gap length distribution between the particles A and
B at the reaction front. In this paper we want to discuss a
different approach to study the steady state of the system
based on the calculation of a more fundamental quantity: the
joint distribution for the positions of the rightmost A (RMA)
and leftmost B (LMB) particles, p(xA, xB). This distribution
can be used not only to calculate P (�) but also the probability
to have a reaction at position x and the probability to find the
RMA and LMB particles at positions xA and xB, respectively.
Unlike the work of Hoyuelos, we propose analytic expressions
for the densities of particles A and B from the solution of a set
of differential equations that depend on a reaction kernel. This
kernel is estimated from the expression obtained for p(xA, xB).
Our analytical results are compared with those from numerical
simulations. In contrast with the numerical algorithm pro-
posed in Ref. [11], we use a rejection-free kinetic Monte Carlo
(kMC) algorithm for our computer simulations.

II. SYSTEM DESCRIPTION

Following Ref. [11], a discrete one-dimensional lattice
with 2 N sites and two kinds of particles A and B is considered.
At t = 0, all lattice sites are occupied in such a way that
both species are separated into two independent regions: the
particles A are in the lattice region x < 0, while the particles
B are in the region x > 0. There are two types of interactions
between particles. The first one is volume exclusion, i.e.,
each lattice site can be occupied at most by a single particle.
The two-particle reaction given in Eq. (1) defines the second
interaction. The probability that two adjacent particles A and
B react in a time interval �t is pr = β�t . Particles execute
random hops in both directions exclusively to their empty
nearest neighbors, moving a distance �x in a time interval
�t . These hops occur with probability λ �t , where λ is the

hopping rate. The diffusion coefficient, D, can be calculated
as D = λ �x2. On the other hand, at lattice sites, i = −N and
i = N , particles A and B are deposited, respectively. In this
way there is an input of particles at each end of the lattice.
The probability of deposition is dp if the site i = ±N is empty;
otherwise, it is zero. A scheme of the system and the processes
associated with its evolution is shown in Fig. 1.

For suitable values of the parameters dp, β, and λ, the
system reaches a steady state where the average number of
particles that get into the lattice J�t equals the average num-
ber of reactions, R �t , where J is the particle flux and R the
system reaction rate of the system. In the limit, β � λ the time
associated with the diffusion process is much larger than the
reaction time. In this regime, the system is limited by diffusion
(DL). In the opposite case, β � λ, the typical reaction time is
much larger than that of diffusion, and the system is limited
by reaction (RL). Note that in the DL regime, the timescale
associated with the diffusion is much larger than that of the
reaction; therefore, in this regime the analytical expressions
do not depend on β. In the RL regime, the opposite occurs,
and the behavior of the system does not depend on D. For
the intermediate regime, the statistical behavior depends on
the relative value of the three basic timescales associated with
diffusion, reaction, and input of particles.

As shown in Ref. [11], the distance distribution between
the particles RMA and LMB, P (�), is a key quantity for
describing the steady state of the system. The functional form
of P (�) strongly depends on the ratio between the parameters
β, λ, and D. According to Ref. [11], for the steady state P (�)
can be approximated by the continuous distribution

P (�) ≈ J

2D
�e−J�2/4D, (2)

in the DL regime, while in the RL regime we have

P (�) ≈ J

k
e−J�/k, (3)

where k is the reaction constant defined as k = β�x.

III. JOINT PROBABILITY DISTRIBUTION

Let n and m be the lattice sites occupied by the parti-
cles RMA and LMB, respectively. The master equation for
the joint probability distribution Pn,m(t ) can be found using
the interparticle distribution function method [7–10,32]. The
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detailed derivation is shown in Appendix A, resulting in

dPn,m(t )

dt
= −4λPn,m(t ) + λ[Pn+1,m(t ) + Pn−1,m(t )]

+ λ[Pn,m+1(t ) + Pn,m−1(t )]

+ λ (Pn,mQn,m − Pn,m−1Qn,m−1)

+ λ (Pn,mQ̃n,m − Pn+1,mQ̃n+1,m)

+
m−2∑

k=n+1

Pk,k+1 Tn,m,k, (4)

where Qn,m, Q̃n,m, and Tn,m,k are conditional probabilities
defined in (A5), (A6), and (A7). Unfortunately, even in the
steady state, it is difficult to find an explicit expression
for Pn,m(t ) from Eq. (4) due to the presence of the un-
known probabilities Qn,m, Q̃n,m, and Tn,m,k associated with the

configurations C1 :
i• ◦ · · · ◦ k• k+1

� ◦ · · · ◦ j
� and C2 : • i+1•

◦ · · · ◦ j
�. The gap length distribution, Pl , can be calculated

from pi, j (t ) by taking the following relation into account:

Pl (t ) =
m−1∑

n=−∞

∞∑
m=n+1

pm,n(t ) δl−(m−n). (5)

Therefore, replacing Eq. (4) in Eq. (5) and evaluating the
sums, it is possible to find

dPl (t )

dt
= −4λPl + 2λPl+1 + 2λPl−1

+ 2λ(PlQl + PlQ̃l − Pl−1Ql−1 − PlQ̃l−1)

+ k P1Tl , (6)

where the conditional probabilities Tl and Ql are defined by

P1 Tl = P(•
�+1︷ ︸︸ ︷◦ · · · ◦ • � ◦ · · · ◦ �) (7)

and

P� Ql = P(•
�−1︷ ︸︸ ︷◦ · · · ◦��), (8)

respectively. In this notation P(C) is the probability to have the
configuration C, black dots and triangles represent particles
A and B, respectively, and open dots represent empty sites.
Using Eqs. (6) to (8) and taking the continuum space limit,
�x l → � and Pl (t ) → P (�, t ), we found

∂P (�, t )

∂t
= 2D

∂2P (�, t )

∂�2
+ 2D Q(�, t )

∂P (�, t )

∂�

+ 2D P(�, t )
∂Q(�, t )

∂�
+ k P (0, t ) T (�, t ). (9)

Following Ref. [11], Eq. (9) can be solved in the stationary
state regime using the following approximations. First,

Qn = P(•
n−1︷ ︸︸ ︷◦ . . . ◦��)

P(• ◦ . . . ◦ �)
≈

P(•
n−1︷ ︸︸ ︷◦ . . . ◦�) P(

n�n+1� )
P(�)

P(• ◦ . . . ◦︸ ︷︷ ︸
n−1

�)

= P(
n
�

n+1
� )

P(�)
≈ ρn+1. (10)

In the continuum limit, the last equation can be approximated
by

Q(�) ≈ J

D

�

2
+ P (0). (11)

The conditional probability T (�) can be approximated in a
similar way,

Ti = P(•
i+1︷ ︸︸ ︷◦... ◦ • � ◦ ... ◦ �)

P1
≈ P(•

i−1︷ ︸︸ ︷◦... ◦ �)P1

P1

≈ P(•
i−1︷ ︸︸ ︷◦... ◦ �), (12)

which can be written as

T (�) ≈ P (�). (13)

Replacing Eqs. (11) and (13) in Eq. (9) it is possible to show
that

d2P (�)

d�2
+ J

2D

(
2D

k
+ �

)
dP (�)

d�
+ J

D
P (�) = 0, (14)

with P (∞) = 0 and P (0) = J/k the associated boundary
conditions. The last condition represents the balance between
annihilation and deposition of particles at the steady state. As
shown in Ref. [11], the solution of Eq. (14) is given by

P (�) = J

2D

(
� + 2D

k

)
e− J�

4D (�+ 4D
k ). (15)

Notice that Eq. (15) reduces to Eq. (2) for D/k → 0 (DL
regime) and to Eq. (3) for D/k → ∞ (RL regime).

In the continuum spatial limit, the positions of the RMA
and LMB particles are xA → n�x and xB → m�x, respec-
tively. The continuum version of the joint probability pn,m,
p(xA, xB) for the steady state can be estimated using the
change of variables � = xB − xA and κ = (xA + xB)/2. Note
that κ and � are the position of the center of mass and the
distance between the RMA and LMB particles, respectively.
Due to the symmetry of the system, the average of κ , 〈κ〉, must
be zero. Furthermore, the distribution of κ should be close
to a Gaussian distribution because the position of the center
of mass evolves by simple random walk. We propose the
approximation P (�, κ ) ≈ G(κ )P (�) where G(κ ) denotes the
probability distribution of the position of the center of mass.
This approximation assumes that the stochastic variables κ

and � are independent, i.e., the position of the center of mass
is independent of the gap length. A similar approximation
cannot be made in the space of variables xA and xB because
these variables are strongly correlated due to the condition
xB > xA. As mentioned before, the position of the center of
mass evolves by diffusion. As a result, we propose G(κ ) =√

a/π exp(−a κ2), and the joint distribution P (�, κ ) can be
written as

P (�, κ ) ≈
√

a

π
e−a κ2 J

2D

(
� + 2D

k

)
e− J�

4D (�+ 4D
k ), (16)

where a = 1/(2σ 2) with σ 2 the variance of the distribution
G(κ ), which is a measure of the width of the reaction front.
The joint probability for the positions of the RMA and LMB
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particles, p(xA, xB), can be extracted from Pc(�, κ ); we found

p(xA, xB) ≈
∫

d�

∫
dκ {P (�, κ ) δ[� − (xB − xA)]

× δ[2κ − (xA + xB)]}

= J

2D

√
a

π

(
2D

k
+ (xB − xA)

)
e− a

2 (x2
A+x2

B )

× e−(xB−xA )2( J
4D − a

4 )− J (xB−xA )
k , (17)

with −∞ < xA � xB < ∞. Equation (17) provides a simple
interpretation for the behavior in the steady state of the RMA
and LMB particles in terms of an equivalent two-particle
system in equilibrium. In this equivalent system, the effective
interaction potential is given by

ϑ (xA, xB) = log

[
2D

k
+ (xB − xA)

]

− (xB − xA)

[
(xB − xA)

(
J

4D
− a

4

)
+ J

k

]

− a

2

(
x2

A + x2
B

)
. (18)

The first two lines represent the interaction between the par-
ticles RMA and LMB, while the third one represents the
interaction of these particles with an external field. The loga-
rithmic term leads to a repulsive force due to the reaction, and
the second term is an attractive interaction due to diffusion.
The third term can be interpreted as an interaction with an
external quadratic field that confines the particles. This field
can be associated with the effective force applied by the left
and right neighbors of the RMA and LMB particles, respec-
tively. For small distances, the interaction between particles is
dominated by the logarithmic term, while for large distances,
the last two terms are the most relevant.

IV. DISCUSSION

In contrast with the numerical algorithm proposed in
Ref. [11], we implement a rejection-free kMC algorithm
based on three events: deposition of particles, annihilation,
and diffusion [33–35]; for more information see Appendix B.
In our simulations we use �t = 1, λ = 1/2, and dp = 1. In
the plots, lines correspond to the analytical model and dots to
kMC results.

In Fig. 2 the behavior of P (�) for three different values of
β is shown. For β = 0.95 (square dots) the system is in the DL
regime, while for β = 0.01 (triangular dots) the system is in
the RL regime. Note that our approach allows us to recover
the previous results found in Ref. [11]. In the RL regime,
P (�) decays exponentially, while in the DL the right tail of
the distribution is Gaussian. The repulsive force between the
RMA and LMB particles vanishes at low reaction rates, and
the balance between deposition and reaction implies P (0) =
J/k > 0. For instance, from Fig. 2, for β = 0.1 (circular dots)
we have P(0) ≈ 0.34 implying J ≈ 0.034.

From the distribution p(xA, xB) given by Eq. (17) the
marginal distributions for the positions of the RMA and LMB
particles, pA(xA) and pB(xB), can be calculated. By definition

FIG. 2. Gap length distribution between the particles RMA and
LMB, P (�). The inset shows the behavior of the distribution for large
values of �.

we have

pδ (xα ) =
∫ ∞

−∞
dxγ p(xA, xB), (19)

with δ = A and γ = B or δ = B and γ = A. In the RL regime
pδ (xδ ) reduces to the simple expression

pα (xδ ) = J

k
e

J (J±2a k xδ )

a k2 erfc

(
J ± a k xδ√

a k

)
, (20)

where the upper sign corresponds to α = A and the lower to
δ = B. Unfortunately, Eq. (17) leads to a lengthy expression
for pδ (xδ ) in the DL regime, which we omit for simplicity.
However, the average values of xA and xB for arbitrary param-
eter values can be calculated. We found

〈xα〉 = ∓1

2

√
πD

J
e

DJ
k2 erfc

(√
JD

k

)
. (21)

For the DL regime, the right side of Eq. (21) reduces to
∓√

πD/4J , while for the RL regime it becomes zero. As
a result, we can expect the overlapping of the distributions
pA(xA) and pB(xB) to increase as the value of k decreases. The
maximum difference, 〈xB − xA〉, is found in the DL regime
and is given by

√
πD/J .

The behavior of the marginal distributions pA(x) and pB(x)
for β = 0.01 and 0.95 is shown in Fig. 3, where lines cor-
respond to the results obtained from Eq. (19) and dots to
the results from kMC simulations. As before, square dots
correspond to the DL regime (β = 0.95) and triangular dots
for the RL regime (β = 0.01). Black and red are used for
the distributions of the LMB and RMA particles, respectively.
As predicted by our analytical results, in the DL regime,
the difference 〈xB − xA〉 is much larger than that in the RL
regime. Both distributions have similar mean values in the
latter regime, thus pA(xA) and pB(xB) almost completely over-
lap. For the parameters used in Fig. 3, Eq. (21) gives 〈�〉 =
〈xB − xA〉 ≈ 23 for the DL regime, while for the RL regime
〈�〉 ≈ 3.9. The analytical results given by Eq. (17) agree with
the numerical results especially for the RL regime. Because
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FIG. 3. Marginal distributions pA(x) and pB(x). The approxima-
tion used to write Eq. (16) works better for the RL regime than in the
DL regime.

the RMA and LMB particles can survive close to each other
for a long time at low reaction rates, their adjacent particles
can populate the sites near the center of the system, confining
the RMA and LMB particles. In this sense, in the RL regime
the system is more mixed than in the DL regime.

The probability distribution for the position of reactions,
R(x), is shown in Fig. 4. We use square dots for β = 0.95 and
triangles for β = 0.01. A reaction occurs when x = xA = xB,
and, thus by definition, κ = (xA + xB)/2 = x, and R(x) is
closely related to the distribution of the mass center of par-
ticles RMA and LMB, G(κ ). Due to the Gaussian nature of
G(κ ) and the symmetry of the system we expect that R(x)
follows a Gaussian with mean value zero

R(x) =
√

a

π
e−ax2

. (22)
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FIG. 4. Probability distributions for the reaction position R(x).
The inset shows the behavior of the distribution for large values of x.

Note that the inset of Fig. 4 supports the validity of this
assumption, and Eq. (22) describes quite well the numerical
results even for large values of x. We found that R(x) is
wider in the DL regime than in the RL regime, confirming
that, as suggested by Fig. 2, in the RL regime the average
distance between the RMA and LMB particles is smaller than
that in the DL regime. This can be understood considering
that in the RL regime, the reaction time is larger than that
in the DL regime. In the RL regime, the particles to the left
of the RMA particle have more time between consecutive
reactions to diffuse to the center of the system, increasing the
confinement force on the RMA particle, i.e., increasing the
parameter a and the effective external field on the RMA parti-
cle. An analogous situation occurs for the LMB particle. The
confinement force reduces the available space for the diffusion
of the RMA and LMB particles, decreasing the width of the
reaction front. With dp and D held constant, as k decreases, so
does the parameter a and the effective quadratic external field,
implying that the variances of R(x) and G(κ ) decrease. From
our simulations, we found a ≈ 0.0074 in the RL regime while
in the DL regime a ≈ 0.0040.

Using previous results, it is possible to write an equa-
tion for the densities in the steady state. However, we must
proceed carefully because the reaction mechanism in the DL
regime is quite different from that in the RL regime. Let
us consider first the DL regime, for the stationary state we
propose

d2ρδ (x)

dx2
= KF (x), (23)

with δ = A or B, K the unknown reaction constant, and F (x)
a function that represents the changes in the densities due to
the reactions. In the DL regime, the reactions occur in the
low-density region. By definition the density of particles can
be calculated from the average ρα (x) = 〈∑i δ(x − xi )〉 where
the sum is extended over all the particles α = A or B. In the
case of ρA, for x � 0 the leading term on the average is due
to the RMA particle, while for x � 0, ρB is dominated by the
contribution of the LMB particle. For densities much smaller
than one, ρA(x) ≈ pA(x) and ρB(x) ≈ pB(x). Therefore, it is
reasonable to expect that F (x) ∝ R(x) ∝ ρA(x)ρB(x). In or-
der to solve the resulting differential equations it is convenient
to introduce the auxiliary densities ρ+(x) = ρA(x) + ρB(x)
and ρ−(x) = ρA(x) − ρB(x). The differential equations for
ρ+(x) and ρ−(x) are

d2ρ+(x)

dx2
= 2KR(x) and

d2ρ−(x)

dx2
= 0, (24)

respectively. Integrating Eqs. (24) over the interval [−L, L]
yields the following result:

dρ+
dx

∣∣∣∣
x=L

− dρ+
dx

∣∣∣∣
x=−L

= 2K, (25)

where the limits of the integral over R(x) were extended over
all the real axis because the reactions occur in a region with
a length much smaller than 2 L. In the left side of Eq. (25),
the first term is J/D, and the second is −J/D. Therefore, the
reaction constant is given by K = J/D. Figure 5 shows the
behavior of the second derivative of the functions ρ+(x) and
ρ−(x); continuous lines correspond to Eq. (24) and black dots
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FIG. 5. Reaction kernels for the DL and RL regimes. The behav-
ior of the kernel strongly depends on the regime.

to numerical results for β = 0.95. The agreement is excellent
for both functions. The second derivative of ρ−(x) is equal to
zero, thus, ρ−(x) must be a linear function of x.

Integrating Eq. (24) it is possible to find

ρ+(x) = K x erf(
√

ax) + K e−ax2

√
a π

+ c1 x + c2 (26)

and

ρ−(x) = c3 x + c4, (27)

where erf is the error function and the constants ci are
determined by the boundary conditions of the densities
ρA(−L) = ρB(L) = 1 and dρA/dx|x=−L = −dρB/dx|x=L =
−J/D. Thus, for the DL regime we found

ρδ (x) = 1

2

[
K x erf(

√
a x) + K e−ax2

√
π a

+ c2 + c1 x ∓ J (L + x)

D
± 1

]
, (28)

where the upper sign corresponds to δ = A and the lower to
δ = B. The constants c1 and c2 are given by

c1 = D − JL

DL
(29)

and

c2 = 2 − K L erf(
√

a L) − K e−a L2

√
a π

− JL

D
. (30)

The case of the RL regime is quite different. In this case the
reaction does not occur exclusively in the low-density region,
and the changes in the densities are not well described by
R(x). Figure 5 shows that, in contrast with the DL regime, for
the RL regime (red lines and dots) the reaction kernel is not
equal for both species. In order to understand this result we
have to take into account that reactions close to but at the left
of x = 0 increase the flux of particles A because the gap be-
tween the RMA and LMB particles will be more likely filled
by A particles than by B particles. Similar behavior is found in
the region close to but at the right of the center of the system;

in this region, the current of A particles decreases while that
of B particles increases due to the reactions. This analysis
suggests that for x � 0 we have FA(x) ≈ (1 − α)pA(x) < 0
while for x � 0 FA(x) ≈ (1 + α)pB(x) > 0 with α > 1 a
constant. The reaction kernel can be written as a function of
the marginal distributions pδ (xδ ); we propose

Fγ (x) = (1 − α)pγ (x) + (1 + α)pδ (x), (31)

where γ = A and δ = B or γ = B and δ = A. Using Eq. (31)
in Eq. (23), the auxiliary functions ρ−(x) and ρ+(x) satisfy

d2ρ+(x)

dx2
= K[pB(x) + pA(x)] (32)

and

d2ρ−(x)

dx2
= αK[pB(x) − pA(x)]. (33)

Figure 5 shows the comparison between the numerical results
(red dots) and the analytical approximation (red lines) for the
reaction kernel with β = 0.01. The integration of Eqs. (32)
and (33) then leads to

ρ+(x) = 1 − J (L + x)

D

+ K
(−e−a ξ 2

1 − e−a ξ 2
2 + e−a ξ 2

3 + e−a ξ 2
4
)

2
√

a π

− K
2

ξ4[erf(
√

a ξ1) − erf(
√

a ξ4)]

+ K
2

ξ3[erf(
√

a ξ2) + erf(
√

a ξ3)] (34)

and

ρ−(x) = 1 − J (L + x)

D

+ αK
(
e−a ξ 2

1 − e−a ξ 2
2 + e−a ξ 2

3 − e−a ξ 2
4
)

2
√

a π

+ αK
2

ξ3[erf(
√

a ξ2) + erf(
√

a ξ3)]

+ αK
2

ξ4[erf(
√

a ξ1) − erf(
√

a ξ4)], (35)

where ξ1 = μ − L, ξ2 = μ + L, ξ3 = x − μ and ξ4 = μ + x.
The parameter α can be calculated with either of the condi-
tions ρA(−L) = ρB(L) = 1. We found

α =
√

a π ea ξ 2
2 [2 − KL f (L)]

K
[√

a π μ ea ξ 2
2 f (L) − e4 a L μ + 1

] , (36)

where

f (L) = erf(
√

a ξ2) − erf(
√

a ξ1). (37)

As in the DL regime, the boundary conditions determine the
constants of integration. The explicit expressions for the den-
sities are obtained from Eqs. (34) and (35) and taking into
account that ρA(x) = (ρ+(x) + ρ−(x))/2 and ρB = (ρ+(x) −
ρ−(x))/2.
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FIG. 6. Density of particles ρA(x) and ρB(x).

The behavior for the density of particles is shown in Fig. 6
for β = 0.01 and 0.95. Square symbols represents β = 0.95
and triangular symbols β = 0.01; black represents the B par-
ticles and red A particles. The agreement of our analytical
model with the kMC results is excellent. Near the ends of the
system, there are no reactions, and the densities satisfy the
diffusion equation. Therefore, in the steady state, the density
of particles satisfies dρα/dx = ∓J/D and ρα behaves linearly
close to the ends of the system. The slope J/D allows one
to calculate the current J; we found the approximate values
of 0.003 and 0.0025 for the DL and RL regimes, respectively.
The linear behavior of the densities changes close to the center
of the system due to the reactions between A and B particles.
The region where the densities do not behave linearly defines
the width of the reaction front. The behavior of the auxiliary
densities is shown in the inset of Fig. 6. Note that ρ+(x) has a
similar functional form in both regimes, while ρ−(x) is linear
for the DL regime and close to a piecewise linear function for
the RL regime. Additionally, in the DL regime, the current of
particles behaves monotonically but in the RL regime it does
not.

Finally, it is worth showing that, for dp = 1.0, the crossover
between DL and RL regimes is characterized by a smooth
change of P (�) from the form given by Eq. (2) to that of
Eq. (3); see Fig. 7. In contrast, as β increases, the densities
ρA(x) and ρB(x) quickly change from the RL to the DL form.
For instance, as shown in Fig. 7 from β > 0.05 the densities
almost have the characteristic shape of the DL regime; how-
ever, for β = 0.05, β = 0.1, and β = 0.2 the distribution P (�)
clearly differs from Eq. (2). This suggests that the distribution
P (�) is more sensitive to the system parameters than the
densities and therefore is a better indicator of the regime of
the system. Values of β close enough to one guarantee that
the system is the DL regime as shown in Fig. 7 where the
curves for β = 0.95 and β = 1.0 are almost indistinguishable.
Similarly, for values of β close to zero the system is in the
RL regime. Unfortunately, it is not easy to obtain analytical
expressions for ρA(x) and ρB(x) in the intermediate regime.
The general functional form of the reaction kernel for arbitrary
values of β remains unknown.
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FIG. 7. Gap length distribution and density of particles ρA(x) and
ρB(x) for dp = 1, λ = 0.5, and different values of β.

V. CONCLUSIONS

The behavior of the system strongly depends on the ratio
between the different timescales of the system. In the DL
regime, the diffusion time is much larger than the reaction
time, while in the RL the opposite occurs. The difference
between both regimes becomes evident when comparing the
behavior of the densities ρA(x) and ρB(x) or the distribution
P (�).

Although the reaction is localized in the central region of
the system, it affects the density profile in the entire system.
This suggests the existence of strong correlations between the
position of the particles

The probability to have a reaction at the position x, R(x),
has a Gaussian form in both regimes, but it is wider in the
DL than in the RL regime. This is due to the confinement
force on the RMA and LMB applied by their neighbors. In
the RL regime the marginal distributions pA(x) and pB(x) are
more overlapped than in the DL regime. Therefore, in the RL
regime, the system is more mixed than in the RL regime.

For both regimes, we find expressions for ρA(x) and ρB(x)
which describe well the numerical results. The behavior of
these densities were calculated from the reaction kernel F (x)
whose functional form is radically different in both regimes.
In the DL regime F (x) is proportional to R(x), i.e., it depends
on the probability of having the RMA and LMB particles
in adjacent sites. However, in the RL regime, the reaction
kernel can be approximated by a linear superposition of pA(x)
and pB(x). For both regimes the reaction kernels can be ap-
proximated using the information provided by the distribution
p(xA, xB), i.e., the reaction kernel can be characterized by this
distribution and used to describe the density of particles in the
entire system.

Unfortunately, our results cannot be easily extrapolated to
quantum systems because quantum effects modify the be-
havior of these kinds of systems. For example, the results
presented in Ref. [24] suggest that the coagulation and an-
nihilation processes do not belong to the same universality
class in contrast with their classical counterpart. In future
work, it would be interesting to study the system discussed
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in this paper but now including quantum effects. For this
purpose, the diffusion can be modeled by coherent hopping
of hard core bosons while reactions between particles add
to the Hamiltonian a dissipative term; see Ref. [21]. In this
case we can expect a slower relaxation towards the steady
state than that found in the classical system. In general, due
to the complexity of the numerical simulation of many-body
quantum systems, we know very little about the impact of
quantum effects on the dynamical behavior of those systems.
Another direct extension of our work is the study of two
coupled networks with initially separated reactants. It is well
known that the physical properties of RD systems depend on
the dimension of the system d due to the properties of random
walks depend on d . Therefore, for two coupled networks we
can expect new features because the diffusion of particles
strongly depends on the topology of the networks.

Binary reaction kinetics in one-dimensional systems can
be studied using a thin capillary tube; see Refs. [36–38].
The reaction can be modeled using suitable chemical com-
pounds, for instance, Cr3+ for A and xylenol orange (XO)
for B or equivalently Cu2+ and tetra [disodium ethyl bis-(5-
tetrazolylazo) acetate trihydrate]. The kinetics of the front
formed in the reaction-diffusion process and the position of
the reaction can be monitored by using a CCD camera [38].
In this way it would be possible to archive experimental ob-
servations of the quantities calculated in this work.
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APPENDIX A: DERIVATION OF THE MASTER
EQUATION FOR Pn,m(t )

The general form of the master equation is

Pi, j (t + �t ) =
∑
C′

P(C ′) WC,C′, (A1)

where WC,C′ is the conditional probability to move from con-
figuration C ′ to C. The probability Pn,m(t ) is the probability to
have the configuration

C0 :
n• ◦ · · · ◦ m

�. (A2)

For the sake of simplicity, we consider separately the effect on
Pn,m(t ) due to diffusion and reaction. Let’s consider the effect
of diffusion. For m > n + 1, all the configurations with the
RMA and LMB at positions n and m, respectively, are

C1: ◦ n• ◦ · · · ◦ m
� ◦,

C2: • • ◦ · · · ◦ � ◦,
C3: ◦ • ◦ · · · ◦ � �,
C4: • • ◦ · · · ◦ � �.

The conditional probabilities to remain in these configura-
tions in a time interval �t are

WC1,C1 = 1 − 4λ�t,

WC2,C2 = 1 − 3λ�t,

WC3,C3 = 1 − 3λ�t,

WC4,C4 = 1 − 3λ�t . (A3)

On the other hand, the configurations from where it is possible
to reach the configuration C0 are

C5: ◦ n+1• ◦ · · · ◦ m
�,

C6:
n• ◦ · · · ◦ m−1

� ◦,

C7:
n−1• ◦ · · · ◦ m

�,

C8:
n• ◦ · · · ◦ m+1

� .

The conditional probability to reach C0 in an interval of
time �t for each of these configurations is λ�t . The change
of Pn,m(t ) due to a reaction can be determined considering the
following configuration:

C9:
n• ◦ · · · ◦ k• k+1

� ◦ · · · ◦ m
�,

where conditional probability WC0,C9 = β�t . Therefore, the
change in Pn,m(t ) due to diffusion and reaction can be written
as

dPn,m(t )

dt
= −4λPn,m(t ) + λ[Pn+1,m(t ) + Pn−1,m(t )]

+ λ
[
Pn, jm+1(t ) + Pn,m−1(t )

]
+

m−2∑
k=i+1

P
( n• ◦ · · · ◦ k• k+1

� ◦ · · · ◦ m
�

)

− λ P
( n• ◦ · · · ◦ m−1

� �
)

+ λ P
( • n• ◦ · · · ◦ m

�
)

− λ P
( • n+1• ◦ · · · ◦ m

�
)

+ λ P
( n• ◦ · · · ◦ m

� �
)
, (A4)

where P(C) is the probability of the configuration C. It is
convenient to define the conditional probabilities Qn,m, Q̃n,m,
and Tn,m,k according to

Qn,m = P
( n• ◦ · · · ◦ m

� �
)/

Pn,m, (A5)

Q̃n,m = P
( • n• ◦ · · · ◦ m

�
)/

Pn,m, (A6)

and

Tn,m,k = P
( n• ◦ · · · ◦ k• k+1

� ◦ · · · ◦ m
�

)/
Pk,k+1, (A7)

respectively. Using these definitions, Eq. (A4) can be written
as Eq. (4).

APPENDIX B: kMC ALGORITHM

The events that change the state of the nth site of the lattice
(−N < n < N ) are shown in Table I. All these events depends
on the state of the sites n − 1 and n + 1. Note that some
configurations such as the one of the first row has associated
two different processes, while other such as the ones in the
third column have just one. Notice that in this procedure
we have taken β/2 to eliminate the double counting of the
reaction events.

The cases of n = −N and n = N is different not only due
to the deposition but also because these sites just have one
nearest neighbor instead of two. For these cases we
have the events shown in Table II. The catalog of the
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TABLE I. Catalog of the events that change the state of the nth
site of the lattice.

◦ n• ◦ λ→ ◦ n◦ • ◦ n• ◦ λ→ • n◦ ◦
◦ n• � β/2→ ◦ n◦ ◦ ◦ n• � λ→ • n◦ �
◦ n• • λ→ • n◦ • • n• ◦ λ→ • n◦ •
• n• � β/2→ • n◦ ◦ • n

�� β/2→ ◦ n◦ �
◦ n
�◦ λ→ ◦ n◦ � ◦ n

�◦ λ→ � n◦ ◦
• n
�◦ β/2→ ◦ n◦ ◦ • n

�◦ λ→ • n◦ �
◦ n
�� λ→ � n◦ � �

n
�◦ λ→ � n◦ �

events defines the number Nk of transitions in the sys-
tem and their associated rates rk . The total rate Rk = ∑Nk

i=1
is the sum of the rates of all possible transitions. The

TABLE II. Catalog of the events that change the state of the sites
−N and N of the lattice.

−N• ◦ λ→ −N◦ • −N◦ j/�t→ −N•
◦N
� λ→ �N◦ N◦ j/�t→ N

�

algorithm is the following. At each time step all the
possible transitions are determined and the total rate is cal-
culated. A random number r ∈ [0, Rk] is generated. This
number determines the transition dp selected according
to

∑ j−1
i=1 < r <

∑ j+1
i=1 . The time is advanced according to

�t = −R−1
k log(r). This procedure is repeated for each time

step.
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