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Merged Potts-clock model: Algebraic and conventional multistructured multicritical orderings
in two and three dimensions
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A spin system is studied with simultaneous permutation-symmetric Potts and spin-rotation-symmetric clock
interactions in spatial dimensions d = 2 and 3. The global phase diagram is calculated from the renormalization-
group solution with the recently improved (spontaneous first-order detecting) Migdal-Kadanoff approximation
or, equivalently, with hierarchical lattices with the inclusion of effective vacancies. Five different ordered phases
are found: Conventionally ordered ferromagnetic, quadrupolar, antiferromagnetic phases and algebraically
ordered antiferromagnetic, antiquadrupolar phases. These five different ordered phases and the disordered phase
are mutually bounded by first- and second-order phase transitions, themselves delimited by multicritical points:
Inverted bicritical, zero-temperature bicritical, tricritical, second-order bifurcation, and zero-temperature highly
degenerate multicritical points. One rich phase diagram topology exhibits all of these phenomena.
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I. INTRODUCTION: TWO MODELS MERGED

The q-state Potts models, ever since the establishment of
their quantitative relevance to surface phase transitions [1]
and of the intricate renormalization-group mechanism for
their changeover from second- to first-order phase transi-
tions [2,3], have held high interest in statistical physics. The
q-state clock models, ever since the establishment of their
algebraic ordering in relation to the XY model [4], have
also held high interest. In the current work, we merge the
two models into the q-state Potts-clock models and solve, in
spatial dimensions d = 2 and d = 3, with the recently im-
proved Migdal-Kadanoff approximation [5] or, equivalently,
exactly on hierarchical lattices [6–9], obtaining algebraically
[10–13] and conventionally ordered multistructured multi-
critical global phase diagrams. This merged model has been
recently studied [14] on the square lattice for q = 6 for pos-
itive couplings J and K (see below) by the corner transfer
matrix renormalization-group method, showing the ferromag-
netic phase with a single phase transition from the disordered
phase for the Potts limit and with a narrow intermediate BKT
phase in the clock limit.

The Potts and clock models, by themselves, have a
lower-critical dimension above which a low-temperature
ordered phase occurs. In the antiferromagnetic case, the low-
temperature phase is algebraically ordered when ground-state
entropy occurs, as in all Potts models and the clock models
with an odd number of states q. For ferromagnetic Potts
models, the phase transitions are second order only for low
d and low q. All of these properties are obtained by position-
space renormalization-group methods, as used in this study
[2,3,5,10,11,13], For the ferromagnetic q = 5 clock model on
the square lattice, the phase transition occurs with a narrow
intermediate BKT phase [14].

The merged model is defined by the Hamiltonian

−βH =
∑
〈i j〉

[J δ(�si, �s j ) + K �si · �s j], (1)

where β = 1/kBT , at site i the spin �si can point in q different
directions θi = 2πni/q in the xy plane, with ni = 0, 1, ..., q −
1 providing the q different possible states, the delta function
δ(�si, �s j ) = 1(0) for �si = �s j (�si �= �s j ), and the sum is over all
interacting pairs of spins. We independently vary the Potts
interaction strength J and the clock interaction strength K of
the merged Potts-clock model, to obtain the multistructured
multicritical global phase diagram.

II. METHOD: MIGDAL-KADANOFF APPROXIMATION,
IMPROVED, AND HIERARCHICAL LATTICES

The Migdal-Kadanoff approximation [15,16] renders a
nondoable renormalization-group transformation doable by a
physically motivated approximate step, is very easily calcu-
lated, flexibly applicable to large number of systems, highly
used and highly successful. For example [Fig. 1(a)], an exact
renormalization-group transformation cannot be applied to the
cubic lattice. Thus, as an approximation, some of the bonds
are removed. However, this weakens the connectivity of the
system and, to compensate, for every bond removed, a bond
is added to the remaining bonds. This whole step is called
the bond-moving step and constitutes the approximate step
of the renormalization-group transformation. At this point,
the intermediate sites can be eliminated by an exact summa-
tion over their spin values in the partition function, which
yields the renormalized interaction between the remaining
sites. This is called the (exact) decimation step and completes
the renormalization-group transformation.
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FIG. 1. (a) The Migdal-Kadanoff approximate renormalization-group transformation on the cubic lattice. Bonds are removed from the
cubic lattice to make the renormalization-group transformation doable. The removed bonds are compensated by adding them to the remaining
bonds: Before, after, or partially before partially after. In each of (b)–(d), a hierarchical model is constructed by self-imbedding a graph into
each of its bonds, ad infinitum [6]. The exact renormalization-group solution proceeds in the reverse direction, by summing over the internal
spins shown with the dark circles. Shown in (b)–(d) are the most used, so called diamond hierarchical lattices [6–8]. The length-rescaling factor
b is the number of bonds in the shortest path between the external spins shown with the open circles, b = 3 in these cases. The volume rescaling
factor bd is the number of bonds replaced by a single bond, bd = 27 in these cases, so that d = 3. In the renormalization-group solutions, in
(b), bd−1 bond moving is done after summing over (namely decimating) the internal spins along a length-rescaling line of b bonds. In (d), bd−1

bond moving is done before decimation over b bonds. In (c), the fraction f of the bond moving is done before and the remaining fraction 1 − f
is done after the decimation.

As acceptable as the procedure just described, the removed
bonds can be compensated by adding the appropriate number
of bonds to the result of the decimation, this being the number
of decimated bonds that the removed bonds would have given.
Alternately, a certain fraction f of the removed bonds could
be compensated before decimation and the remaining fraction
1 − f could be compensated after the decimation. The choice
of 0 � f � 1 is left to us.

Furthermore, as shown in Figs. 1(b)–1(c), the
renormalization-group recursion relations of the Migdal-
Kadanoff approximation are identical to those of an exactly
solved hierarchical model [6–9], making the Migdal-Kadanoff
approximation a physically realizable approximation, as used
in polymers, electronic systems, and turbulence, respectively,
in Refs. [17–20], and therefore a robust approximation.
Hierarchical models [6–9] are exactly solvable microscopic
models that are currently widely used [21–30]. The
construction of hierarchical models is illustrated in Fig. 1.
Each line segment in Fig. 1 represents a nearest-neighbor
spin-spin interaction J δ(�si, �s j ) + K cos(�si · �s j ) as given in
Eq. (1). In each of Figs. 1(b)–1(d), a hierarchical model
is constructed by self-imbedding a graph into each of its
bonds, ad infinitum [6]. Figures 1(b)–1(c) show hierarchical
lattices for bond moving before [Fig. 1(b)], after [Fig. 1(d)],
or a combination as explained above [Fig. 1(c)]. The exact
renormalization-group solution proceeds in the reverse direc-
tion, by summing over the internal spins shown with the dark
circles.

In the current study, our calculation corresponds to the
hierarchical model in Fig. 1(c), with the factor f chosen
so that our calculation yields the exact transition tempera-
ture of the model with q = 2, namely the Ising model. This
choice was used previously, e.g., in the quantum mechanical
renormalization-group study of high-temperature supercon-
ductivity in the tJ model of electronic conduction [31,32].
Thus, in the current study, the exact critical temperatures
[33,34] of 1/(J/2 + K ) = 2.26918531 and 4.51152785 are
obtained, in d = 2 and 3, with f = 0.5459793 and 0.1775492,
respectively. Note that for q = 2, both the Potts and clock
terms in Eq. (1) reduce to the Ising model, with combined
interaction constant J/2 + K .

The above can be rendered algebraically in the most
straightforward way by writing the transfer matrix between
two neighboring spins, for example, for q = 4,

Ti j ≡ e−βHi j =

⎛
⎜⎜⎜⎜⎝

eJ+K 1 e−K 1

1 eJ+K 1 e−K

e−K 1 eJ+K 1

1 e−K 1 eJ+K

⎞
⎟⎟⎟⎟⎠

, (2)

024116-2



MERGED POTTS-CLOCK MODEL: ALGEBRAIC AND … PHYSICAL REVIEW E 108, 024116 (2023)

and for q = 5,

Ti j ≡ e−βHi j

=

⎛
⎜⎜⎜⎜⎜⎜⎝

eJ+K e0.31K e−0.81K e−0.81K e0.31K

e0.31K eJ+K e0.31K e−0.81K e−0.81K

e−0.81K e0.31K eJ+K e0.31K e−0.81K

e−0.81K e−0.81K e0.31K eJ+K e0.31K

e0.31K e−0.81K e−0.81K e0.31K eJ+K

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(3)

where −βHi j is the part of the Hamiltonian between the two
spins at the neighboring sites i and j. An important degen-
eracy difference between these two transfer matrices, with
important phase diagram consequences, will be discussed
below.

The bond-moving step of the Migdal-Kadanoff approxi-
mate renormalization-group transformation consists in taking,
before decimation, the power of f bd−1 of each element
in this matrix and in taking, after decimation, the power
of (1 − f )bd−1 of each element in this matrix. Here b
is the length-rescaling factor of the renormalization-group

transformation, namely the renormalized nearest-neighbor
separation in units of unrenormalized nearest-neighbor sep-
aration. The decimation step consists in matrix-multiplying b
transfer matrices. The flows, under this transformation, of the
transfer matrices determine the phases, the phase transitions
and all of the thermodynamic densities of the system, as
illustrated below.

An important aspect of an occurring phase transition is the
order of the phase transition. The q-state Potts models have
a second-order phase transition for q � qc and a first-order
phase transition for q > qc [35–37]. In renormalization-group
theory, this has been understood and reproduced as a conden-
sation of effective vacancies formed by regions of disorder
[2,38]. The above has been included [5] as a local disorder
state into the two-spin transfer matrix of Eq. (2). Inside an
ordered region of a given spin value, a disordered site does
not significantly contribute to the energy in Eq. (1), but has
a multiplicity of q − 1. The substraction comes from the fact
that the disordered site cannot be in the spin state of its sur-
rounding ordered region. This is equivalent to the exponential
of an on-site energy and, with no approximation, is shared on
the transfer matrices of the 2d incoming bonds. The transfer
matrix becomes, for example, for q = 4,

Ti j ≡ e−βHi j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eJ+K 1 e−K 1 (q − 1)1/2d

1 eJ+K 1 e−K (q − 1)1/2d

e−K 1 eJ+K 1 (q − 1)1/2d

1 e−K 1 eJ+K (q − 1)1/2d

(q − 1)1/2d (q − 1)1/2d (q − 1)1/2d (q − 1)1/2d (q − 1)1/d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

III. GLOBAL PHASE DIAGRAMS

Phase diagram predictions can be made from the a priori
examination of the Hamiltonian of the Potts-clock model in
Eq. (1). For the q = 4 model (and in general for all even q
Potts-clock models), for interaction ratio J/K = −2, a can-
cellation occurs between the Potts and clock terms and the
energies are equal for the completely aligned (ni = n j ) and
completely antialigned (|ni − n j | = q/2) interacting pairs of
spins. Thus, along this line on the phase diagram, all phases
must be invariant under π rotation of any individual spin.
In fact, only the quadrupolar [39] and disordered phases are
seen along this line in our calculated phase diagrams (Figs. 2
and 3). Indeed, in the quadrupolar phase, the neighboring
spins are, randomly, either aligned or π antialigned. For the
q = 5 model (and in general for all odd q Potts-clock mod-
els), the energies are equal for the two most antialigned (but
cannot be completely antialigned due to odd q) pairs of spins
(|ni − n j | ± 1/2 = q/2), so that for interactions favoring an-
tialignment, there is a ground-state energy degeneracy. Thus,
fluctuations will occur no matter how low the temperature,
leading to a nonzero-temperature sink fixed point if an ordered
phase occurs, making the latter algebraically ordered [10,11].
This is in fact what is seen, with the algebraic antiferromag-
netic and algebraic antiquadrupolar phases in our calculated
phase diagrams (Figs. 2 and 3).

Under repeated renormalization-group transformations, the
phase diagram points of the ordered phases of the Potts-clock
model flow to the sinks shown in Table I. The sink values
of the transfer matrix elements epitomize the whole basin of
attraction of the completely stable fixed point that is the sink.
For example, in the ferromagnetic phase the spins are aligned
along one of the q spin directions, in the antiferromagnetic
phase the spins up-down alternate along a spatial direction,
in the quadrupolar phase the spins align, randomly, in a spin
direction and its opposite direction. The algebraically ordered
phases are discussed further below. The disordered phase has
two sinks, one sink with the lower-right (q + 1) × (q + 1)
element of the transfer matrix equal to 1 and the rest zero,
another sink with all elements in the upper-left q × q block
equal to one and the rest zero. Analysis at the unstable fixed
points attracting the phase boundaries give the order of the
phase transition [1]. Our calculated phase diagrams are shown
in Figs. 2 and 3.

For q = 4 (Figs. 2 and 3), ferromagnetic and antifer-
romagnetic phases, with intervening quadrupolar [39] and
disordered phases, are seen. The quadrupolar phase intervenes
between the ferromagnetic and antiferromagnetic phases, up
to a second-order bifurcation point P in d = 2 and up to
an inverted bicritical [40,41] point B in d = 3. The bicriti-
cal points are inverted, namely, their first-order stem is on
the high-temperature side (Fig. 3), whereas in previously
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FIG. 2. Calculated phase diagrams of the q = 4 and 5 state Potts-clock models in d = 2 and 3, in terms of the respective interactions J and
K . First- and second-order phase transition lines are shown with dashed and full lines, respectively. The disorder line, occurring in q = 4, is
shown with a dotted line. Two types (namely, bordered by different phases) of inverted (see Fig. 3) bicritical points B, two types of second-order
bifurcation points P, three types of tricritical points t are seen. As seen in the insets (bottom two panes), the narrow disordered phase, between
the algebraically ordered ferromagnetic phase or the algebraically ordered quadrupolar phase and the ferromagnetic phase, narrowly extends
to two types of zero-temperature (see insets) bicritical points Z (Fig. 3). We recall that our calculation is a numerically exact solution of the
models on a hierarchical lattice, so that the phase boundaries are obtained beyond the accuracies of the thickness of the lines in the figures, as
seen in the insets here. Both in d = 2 and 3, the conventionally ordered quadrupolar phase (q = 4) non-narrowly extends to zero-temperature
highly degenerate multicritical point S, given in Fig. 3. Thus, a qualitatively very different picture emerges for even and odd number of
states q.

024116-4



MERGED POTTS-CLOCK MODEL: ALGEBRAIC AND … PHYSICAL REVIEW E 108, 024116 (2023)

TABLE I. Under repeated renormalization-group transformations, the phase diagram points of the ordered phases of the Potts-clock model
flow to the sinks shown on this Table. Only the top row of the sink transfer matrix is shown here. The subsequent rows are obtained by cyclically
rotating the elements. The last row and last column of the transfer matrix, corresponding to the effective vacancies, have all elements zero at
the ordered sinks and are not given here.

Sinks of the Ordered Phases of the (q = 4)-state Potts-Clock Model
[0,0,1,0] [1,0,1,0] [1,0,0,0]
Antiferromagnetic Quadrupolar Ferromagnetic

Sinks of the Ordered Phases of the (q = 5)-state Potts-Clock Model
[0,1/3,1,1,1/3] [0,1,1/3,1/3,1] [1,0,0,0,0]
Algebraic Antiferromagnetic Algebraic Antiquadrupolar Ferromagnetic

FIG. 3. Calculated strong-coupling behaviors in d = 2 and d = 3, in terms of the temperature variables 1/J or 1/K and the ratio of
the Potts-clock interactions K/J or J/K . First- and second-order phase transitions are shown with dashed and full lines, respectively. Top
row: The q = 4 state Potts-clock models. The disorder line is shown with a dotted line. Both in d = 2 and 3, the conventionally ordered
quadrupolar phase non-narrowly extends to the zero-temperature highly degenerate multicritical point S. Bottom row: The q = 5 state Potts-
clock model in d = 3. As also seen in the insets, the narrow disordered phase, between the algebraically ordered ferromagnetic phase or the
algebraically ordered quadrupolar phase and the ferromagnetic phase, narrowly extends to two types (namely, bordered by different phases) of
zero-temperature (see insets of Fig. 2) bicritical points Z . As also seen in Ref. [10,11], the algebraically ordered phases do not occur in d = 2.
Two different types of tricritical points t occur in each pane of the figure.
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studied bicritical points the first-order stem extends towards
low temperature. All other phase transitions are second
order. A highly degenerate multicritical point S occurs
at 1/J = 0, K/J = −0.5 (Fig. 3), due to the degeneracy
discussed at the beginning of this section. The ferromag-
netic, quadrupolar, antiferromagnetic phases meet at this
single zero-temperature multicritical point [41] in both d = 2
and 3.

For q = 5 (Figs. 2 and 3), in d = 3, an algebraically
ordered antiferromagnetic phase or the algebraically or-
dered antiquadrupolar phase and the ferromagnetic phase
are separated by a narrow disordered phase terminating at a
zero-temperature bicritical point. In both cases, at the phase
boundaries at higher temperatures on each side of the phase
diagram, a tricritical point separates first- and second-order
transition lines (Fig. 3). In d = 2, second-order phase tran-
sitions separate the ferromagnetic and disordered phases. It is
seen from Table I that the sinks of the q = 5 antiferromagnetic
and antiquadrupolar phases have a temperature scale, namely
that all elements of the sink transfer matrix are not 1 or 0.
In general, at a renormalization-group fixed point, the system
is scale invariant, so that the correlation length ξ is zero
(at disordered or conventionally ordered phase sinks), which
cannot be if there is a temperature scale, or infinity (at fixed
points attracting critical systems) [42,43]. Thus, in the present
case the entirety of these antiferromagnetic and antiquadrupo-
lar phases are critical [10–12]. The correlation length ξ is
infinite throughout these phases and, having no length scale,
the phases are algebraically ordered. In the d = 2, the al-
gebraically ordered phases are not seen. Previous work has
consistently shown for both Potts [10,11] and odd-q clock [13]
models, that the algebraically ordered phases occur for d = 3,
but not for d = 2, where the disordered phase persists to zero
temperature.

For K = 0 and J = 0, the model reduces to the Potts and
clock models, respectively. For q = 4 (Figs. 2 and 3), the
expected second-order phase transitions are seen for both
Potts and clock models in d = 2, but in d = 3 the expected
Potts first-order phase transition is narrowly missed in the
proximity of a bicritical point. For q = 5 (Figs. 2 and 3),
the expected first-order phase transition is not seen for Potts
in d = 2, and the expected Potts first-order phase transition
is narrowly missed, in the proximity of a tricritical point,
in d = 3. Similarly, in d = 2, the narrow intermediate BKT
phase [14] is missed for the clock model.

IV. CONCLUSION

The much-used Potts models and clock spin models
have been merged into a simple but complex Potts-clock
model and solved by renormalization-group theory. The re-
sulting global phase diagram contains a disordered phase
and five different ordered phases, namely conventionally
ordered ferromagnetic, quadrupolar, and antiferromagnetic
phases; algebraically ordered antiferromagnetic and anti-
quadrupolar phases. These six different phases are separated
by first- and second-order phase boundaries, themselves
delimited by multicritical points: Inverted bicritical, zero-
temperature bicritical, tricritical, second-order bifurcation,
and zero-temperature highly degenerate multicritical points.
A rich sequence of phase diagram topologies is thus obtained
from a simple model.
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