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Nonequilibrium steady states of long-range coupled harmonic chains

Francesco Andreucci ,1 Stefano Lepri ,2,3 Stefano Ruffo ,1,2 and Andrea Trombettoni4,1,5

1SISSA and INFN, Sezione di Trieste, Via Bonomea 265, 34136 Trieste, Italy
2Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

3Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
4Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste, Italy

5DEMOCRITOS Simulation Center, IOM, CNR, Via Bonomea 265, 34136 Trieste, Italy

(Received 5 May 2023; accepted 12 July 2023; published 8 August 2023)

We perform a numerical study of transport properties of a one-dimensional chain with couplings decaying
as an inverse power r−(1+σ ) of the intersite distance r and open boundary conditions, interacting with two
heat reservoirs. Despite its simplicity, the model displays highly nontrivial features in the strong long-range
regime −1 < σ < 0. At weak coupling with the reservoirs, the energy flux departs from the predictions of
perturbative theory and displays anomalous superdiffusive scaling of the heat current with the chain size. We
trace this behavior back to the transmission spectrum of the chain, which displays a self-similar structure with a
characteristic σ -dependent fractal dimension.
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I. INTRODUCTION

The main task of statistical mechanics is to relate the
microscopic interactions of a given system to its macroscopic
properties. One typical instance is the context of heat
transfer. Suppose we apply a temperature gradient ∇T to a
system; after a while the system will reach a stationary state
characterized by the presence of a heat flux J . The thermal
conductivity κ is defined in terms of these quantities as

J = −κ∇T . (1)

In the case of diffusive transport, Fourier’s law holds
and κ does not depend on the size of the system N in
the thermodynamic limit. This is typically the case for
three-dimensional systems with short-range interactions. We
remark, however, that there is currently no generic way, given
the microscopic properties of a system, to know whether
Fourier’s law holds or not.

A case in which Fourier’s law is systematically violated
is the case of harmonic interactions. For instance, for the har-
monic crystal each phonon propagates freely and the transport
is ballistic. This was shown for the first time for a chain
with nearest-neighbor interactions in the seminal paper by
Rieder et al. [1]. They found that the thermal conductivity κ

diverges as κ ∝ N , with N the number of particles in the chain.
Moreover, the bulk temperature profile is flat, while Fourier’s
law would lead to a linear one. The nonequilibrium properties
of quantum harmonic lattices have also been considered in
recent decades [2–6].

Generally speaking, in harmonic lattices transport features
are dictated by the spectral properties of both the thermal
reservoirs and the system itself. For instance, in the case
of disordered lattices displaying Anderson localization, the
conductivity (or energy flux) depends not only on the local-
ization lengths, but also on the boundary conditions [7], the
spectral density of the baths at low frequencies [8], and the

distribution and correlations of the random disorder [9,10].
For more general nonhomogeneous harmonic networks, the
spectral properties can be accounted for by random matrix
theory and can describe also current fluctuations [11]. This
is even more striking for active (nonequilibrium) baths that
can lead to nontrivial transport regimes even for the ordered
harmonic chain [12].

It became progressively become clear that in one and
two dimensions there are violations of Fourier’s law also for
nonlinear systems [13–17], such as the Fermi-Pasta-Ulam-
Tsingou (FPUT) chain. In one dimension, these violations
manifest themselves as a power-law divergence of the ther-
mal conductivity κ with the system’s size κ ∝ Nα . Transport
in these cases is called anomalous. It is now clear that su-
perdiffusive transport is a generic feature of nonlinear one-
and two-dimensional nonintegrable systems conserving mo-
mentum, energy, and stretch. There is both numerical and
analytical evidence that the exponent α can be used to identify
different universality classes [16]. For weakly nonintegrable
models the scenario may be more involved since quasiparti-
cles may have very large mean-free paths [18,19].

Another element of interest is represented by the presence
of forces that are not strictly local. Indeed, much less is known
about systems with long-range interactions, that is, systems
in which the interparticle interaction scales with the particle
distance r as V (r) ∝ r−d−σ . Several physical systems are
characterized by long-range interaction, both classical (grav-
ity, pure plasmas, and two-dimensional hydrodynamics) and
quantum (dipolar systems and trapped atoms). As a concrete
experimental instance we mention trapped ion chains, where
ions are confined in periodic arrays and interact with exter-
nal reservoirs [20,21]. On a macroscale, effective long-range
forces arise for tailored macroscopic systems like a chain
of coupled magnets [22] and the effects of fluctuations and
nonlinearity may be relevant.
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Long-range systems have received considerable attention
in recent years (for reviews see, for example, [23,24] for
classical and quantum systems, respectively). Concerning the
present work, we recall that, at equilibrium, the universality
class of a one-dimensional long-range system depends on the
value of σ . Indeed, for −1 < σ < 0, the critical exponents
are the mean-field ones, that is, the ones we obtain by setting
σ = −1. Then there exists a nonuniversal value σ ∗ such
that for σ > σ ∗ we recover the critical exponents of the
short-range case σ = ∞. Typically, σ ∗ > 0. Furthermore,
excitations in long-range systems can propagate at diverging
velocity [25,26] and therefore we can expect some form of
superdiffusive transport. There are already several, mainly
numerical, studies of heat transport in long-range interacting
systems that confirm these expectations. On the classical side,
the heat transport was analyzed for the long-range XY model
[27,28] the FPUT chain [28–32] and the lattice ϕ4 theory
[33]. In all cases Fourier’s law is violated in different ways
according to the value of σ . Scaling analysis of equilibrium
correlations also suggests that hydrodynamics is nonstandard
[30,33]. Thus, one may interpret transport as a fractional
diffusion process with energy carriers performing Lévy
flights, with jump statistics controlled by the exponent σ .

A classical harmonic long-range model with stochastic dy-
namics was studied analytically in [34,35] and the heat flux
and temperature profile for a mean-field chain were computed
in [36,37]. The same system was studied in the quantum
regime in [37] and a hydrodynamic approach to study trans-
port in quantum magnets was proposed in [38]. We refer
again to [24] for more references on the study of dynamics
and transport in quantum long-range systems. However, in
the literature there is not yet a detailed study of the plain
harmonic chain with power-law interaction and the present
work aims at filling this gap. We will show that the results
are far from trivial in the strong long-range case and deserve
careful analysis.

More precisely, in this paper we study numerically heat
transport in a quadratic chain with a power-law interaction by
coupling the first and last sites of the system to two heat baths
at different temperature. We focus on computing the heat flux
in the stationary state with different approaches. In Sec. II we
introduce the model and the main methods that we will use
to compute the heat flux. In Secs. III–V we report an analysis
based on the spectral properties of the transmission spectra
and the nonequilibrium Green’s function and we discuss them.
We summarize and discuss our conclusions in Sec. VI.

II. MODEL AND METHODS

A. Long-range coupled harmonic chain

We consider a one-dimensional chain of particles with a
power-law interaction

H = 1

2

∑
i

p2
i + 1

2

∑
i j

xi�i jx j, (2)

where the interaction matrix � is given by

�i j =
(

2δi j − 1

Nσ

1

|i − j|1+σ

)
, Nσ =

N∑
l=1

l−σ , (3)

where Nσ is the usual Kac factor introduced to guarantee
extensivity of the energy, chosen as site independent. The
matrix correctly reduces to the discrete Laplacian for large σ .
Note that the definition (3) corresponds to open boundary con-
ditions, which are the ones appropriate for our problem due to
the presence of the baths. For long-range systems we expect
that the role of boundary conditions can have very important
consequences, even more than for short-range systems, and
we focus on this natural choice for simplicity.

In the case of open boundary conditions the spectrum of
matrix � is not known analytically. The usual standing waves
are not eigenvectors and the matrix cannot be diagonalized
exactly. Even in the continuum limit, this would correspond
to solving the spectral problem for the fractional Laplacian in
a finite domain, which is notoriously not straightforward [39].

For comparison, it is useful to recall the solvable case
for periodic boundary conditions where the proper definition
of � is

�i j =
(

2δi j − 1

Nσ

1

min(N − |i − j|1+σ , |i − j|1+σ )

)
. (4)

Here the spectrum is known (see, for example, Ref. [40]). Due
to translational invariance, the eigenvectors are plane waves
of wave number k. The nature of the eigenfrequency spectra
strongly depends on whether σ is positive or negative. In the
first case, the system has a proper continuum limit and for
low momenta k the squared frequencies ω2 of the plane waves
behave as

ω2
k ≈

{
|k|σ , 0 < σ < 2

k2, σ > 2.
(5)

Thus, for σ > 0 one has the standard acoustic dispersion and
a finite group velocity, while the group velocity diverges as
|k|(σ−2)/2 in the first case. This result can also be derived
from the continuum limit, corresponding to a fractional wave
equation in the infinite domain [41]. On the other hand, if σ <

0 the spectrum remains discrete even in the thermodynamic
limit and contains a countable infinite number of frequencies
that accumulate at the band edge [40].

To simulate the nonequilibrium steady state, we follow
the usual procedure and connect the first and last sites of
the system to two Langevin heat baths at temperatures TL

and TR, respectively. The coupling with the baths introduces
both noise and dissipation in the dynamics of the system. The
resulting equations of motion are

ẍi = −
∑

j

�i jx j + δi1(ξL − λẋi ) + δiN (ξR − λẋi ), (6)

where the ξ ’s are Gaussian noises that satisfy the fluctuation-
dissipation relation

〈ξa(t )ξa(t ′)〉 = 2Taλδ(t − t ′), a = L, R. (7)

After a transient, the system reaches a stationary state; we are
interested in the heat flux of the chain in this state. To compute
this quantity, we will employ three different methods.

B. The Rieder-Lebowitz-Lieb approach

The first method was introduced a long time ago in
[1]. It consists in solving the many-body Fokker-Planck
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equation related to (6) [in the following we will refer to
this method as the Rieder-Lebowitz-Lieb (RLL) method]. In
particular, defining the vector y = (x1, . . . , xN , p1, . . . , pN )
and denoting by P(y, t ) its probability at time t , the
aforementioned equation reads

∂P(y, t )

∂t
= Ai j

∂

∂yi
(y jP) + 1

2
Di j

∂2P

∂yi∂y j
, (8)

where the drift and diffusion matrices are

A =
(

O −I

−� λR

)
, D =

(
O O
O 2kBλT (R + ηS )

)
, (9)

where

T = TL + TR

2
, η = TL − TR

T
, Ri j = δi j (δi1 + δiN ),

(10)

Si j = δi j (δi1 − δiN ). (11)

The solution of Eq. (8) is a multivariate Gaussian whose
covariance matrix is given by the matrix of correlations
among the canonical coordinates

P(y, t ) ∝ exp

{
− 1

2
C−1

i j yiy j

}
, C =

(
〈xix j〉 〈xi p j〉
〈pix j〉 〈pi p j〉

)
.

(12)

By plugging (12) in the Fokker-Planck equation (8) we get

∂tC = D − AC − CAT . (13)

Furthermore, in the stationary state ∂tC = 0, so we get the
so-called (continuous) Lyapunov equation

AC + CAT = D, (14)

which has to be solved numerically. Knowing the various
correlators, we can then express the heat flux in the stationary
state as the difference between the temperature of the left bath
and the temperature of the first site:

J = λ(TL − T1), Ti = 1
2

〈
p2

i

〉
. (15)

C. Nonequilibrium Green’s function

The second method consists in writing the exact solution to
(6) in terms of the Green’s function G(ω), which is possible
due to the linearity of the equations. The details of this method
are explained in Refs. [3,14,42]. Since we are interested in the
stationary state, we work directly in frequency space

x̃l (ω) =
∑

ln

Gln(ω)[ξ̃L,n(ω) + ξ̃R,n(ω)], (16)

G(ω) = (−ω2I + � + iλωR)−1, (17)

where the tilde indicates the Fourier transform and R is the
matrix defined in Eqs. (9) and (11). As explained in [14], we
can express the heat flux in the stationary state as

J = 2T λ2

π

∫ ∞

0
dω ω2|G1N (ω)|2. (18)

D. Generalized eigenvalue method

There is in the literature another approach to the Green’s
function method, called the generalized eigenvalues method,
which we briefly outline below (for a more detailed explana-
tion see [6,43,44]). Let GL(s) be the Green’s function defined
in Laplace space

GL(s) = (−s2I + � + λsR)−1 (19)

and introduce the 2N complex numbers {sa}2N
a=1 and the 2N

vectors {ra}2N
a=1 as defined by the linear problem

GL(sa)ra = 0. (20)

Then the Green’s function (19) can be written as [44]

GL(s) =
2N∑

a=1

sa

s − sa
rar†

a. (21)

Note that the sa come in complex conjugate pairs. We now
recall that we can obtain the Green’s function in frequency
space G(ω) via a Wick rotation G(ω) = GL(−is). Then we
can compute the integral in (18) with a contour integration to
find [6]

J = 2T λ2
2N∑

a,b=1

s3
asb

sa + sb
ra,1ra,N rb,N rb,1. (22)

The formula (22) gives yet another way of computing the heat
flux and extract the scaling exponents.

E. Discussion

Before proceeding, let us comment on the numerical is-
sues connected with the above approaches. The numerical
implementation of the RLL method is rather straightforward,
resorting to the numerical routines available to solve the Lya-
punov equation based on the Bartels-Stewart algorithm, as
implemented, for instance, in the SCIPY library [45]. Indeed,
one can easily reach sizes of N ∼ 103. Some convergence
issues may arise in the case of strong degeneracies [37]. The
numerical implementation of the Green’s function method can
be more involved than the one of the RLL method. Indeed, we
need to numerically invert the matrix in the definition of the
Green’s function (17) in the range of ω where the transmission
is nonvanishing in order to be able to compute the integral in
(18). Furthermore, the sampling over ω has to be fine enough
to ensure accuracy, especially if the transmission coefficient
oscillates rapidly. This difficulty does occur in our model, as
will become clear in what follows. In practice, it is difficult
to study lattices larger than N ∼ 102 using this method. The
generalized eigenvalues method has the advantage of reduc-
ing the problem to the calculation of the eigenvalues and
eigenvectors of a 2N × 2N matrix [43], which can be done
by standard linear algebra routines, the main limitation being
memory storage and accuracy of very small eigenvalues and
avoiding the sampling problem.

III. HEAT FLUX

In the short-range case σ = ∞, two of the methods out-
lined above have been used to obtain exact analytical results
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for the heat flux in the thermodynamic limit [1,14]. This is
possible because the matrix of the interactions � reduces to
the discrete Laplacian, which is a tridiagonal matrix. In our
case the matrix � is dense and we are unable to either solve
analytically the Lyapunov equation or exactly compute the
Green’s function. Nonetheless, it is possible to obtain a certain
amount of information about the heat flux numerically.

A. Small coupling

If the coupling with baths λ is small, a perturbative cal-
culation of the steady-state current is possible in terms of
the eigenvalues and eigenvectors of the isolated harmonic
chain. This approach yields the so-called Matsuda-Ishii for-
mula, whereby J ≈ JMI to the leading order in the coupling
constant [13,46], with JMI given by

JMI = λT
∑

k

ψ2
k,1ψ

2
k,N

ψ2
k,1 + ψ2

k,N

, (23)

where T = TL − TR and ψk,n denotes the n component of
the kth eigenvector of the matrix � defined in (3). For the
model we consider here (which is homogeneous and mirror
symmetric, i.e., the first and last components of each eigen-
vector are equal ψk,1 = ψk,N for k = 1, . . . , N) the expression
(23) simplifies to

JMI = λT

2

∑
k

ψ2
k,1 = λT

2
, (24)

where in the last step we used the property of completeness of
the set of eigenvectors. Note that Eq. (24) expresses the fact
that the chain is a ballistic conductor.

Typically, in the short-range case σ → ∞, this result ap-
plies for λ � λ0 ≈ O(1). In the our long-range case, however,
the situation is more complicated. In Fig. 1 we compare the
formula (24) and the numerical solution of the Lyapunov
equation. As we can see, Eq. (24) holds for λ smaller than
a certain threshold λ0(σ, N ), which depends both on N and on
σ . More specifically, λ0 decreases with σ and with N . On the
other hand, for σ > 0 the perturbative approximation holds
well in the considered range.

To have some insight into these deviations, we may per-
form some further checks. Usually the perturbative approach
is justified by assuming that the separation of the unper-
turbed normal mode frequencies is smaller than the typical
dissipation caused by the coupling with the baths [6]. This as-
sumption can actually be checked by examining the poles sa.
In particular, we compare the spacings between the imaginary
parts of consecutive poles Im(sa+1 − sa) and the real parts
Re(sa). As we can see from Fig. 2, the former is always much
larger than the latter; therefore this assumption is justified.
This suggests that the observed deviations from the Matsuda-
Ishii formula may have a different origin.

B. Strong coupling

We now want to understand how the flux scales with the
system size N for not too weak coupling λ. In order to so,
we compute the heat flux using the RLL method for several
values of N and σ for λ = 1 (we set λ = 1 for the rest of the

(a) (b)

(c) (d)

FIG. 1. Plots of the ratio between the heat flux J , computed
numerically with the RLL method, and the Matsuda-Ishii heat flux
(24) versus the system size N for several values of σ and λ in the
weak-coupling regime: (a) σ = −0.7, (b) σ = −0.5, (c) σ = 0, and
(d) σ = 0.5.

paper). As shown in Fig. 3, the data can be fitted with a power
law J ∝ N−γ .

Although the direct computation of the Green’s function
is numerically cumbersome, we can easily compute its poles,
compute the heat flux according to (22), and fit a power law
as we did before. In Fig. 4(b) we report both the exponents
fitted with the generalized eigenvalues method and those fitted
with the RLL method. As we can see, they are qualitatively in
agreement.

The results of fits using the two methods are reported in
Fig. 4. We can identify three regions: the region close to the
mean-field case σ = −1 and the one close to the short-range
case σ > 1, where finite-size effects are almost absent, and
an intermediate region in which finite-size effects are quite
strong. We also note that γ seems to be converging to the
short-range value γ = 0 while σ goes to 1. Summarizing,
even if we are not able to extract the exact values of the
exponents, it is clear that the flux scales with some nontrivial
power of the system’s size N .

IV. TRANSMISSION SPECTRA

To understand the origin of the nontrivial dependence of
the flux on the size, let us investigate the transmission spec-
trum of the chain. We begin by plotting the transmission coef-
ficient, namely, the integrand in (18) as a function of the fre-
quency ω, in Fig. 5 for several values of σ . We can see that it
is characterized by a rather complicated peak structure which
consists of N − 2 peaks (as can be checked numerically).

A main point we want to make and explore is that the
structure of such resonances determines the scaling of the
current. Notice that a change of sign in ω in (17) is equivalent
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FIG. 2. Plots of the spacing between the imaginary parts of the
poles of the Green’s function Im(sk+1) − Im(sk ) (circles) and the real
parts of the poles Re(sk ) (crosses) for σ = −0.5. Different colors
correspond to different system sizes: N = 256, 512, and 1024 in blue,
orange, and green, respectively.

to the complex conjugation of G(ω). Since the transmission
coefficient depends on the square modulus of G(ω) it is an
even function of ω and we can therefore restrict ourselves to
study positive frequencies. Let us denote by ωk (k = 1, 2, . . .)
the location of the peak frequencies for positive ω. The peaks
accumulate at a band-edge frequency ωB < 2, i.e., ωk → ωB

for k large. Furthermore, upon approaching ωB, the width
of the peaks decreases. Notice that this is the reason why
it is important to finely sample the Green’s function in ω,
especially in the proximity of the band edge. Indeed, we used a

FIG. 3. A log-log plot of the heat flux J versus the system’s size
N for λ = 1 and different values of the long-range exponent σ . The
flux is computed using the RLL method as described in the text.

(a) (b)

FIG. 4. Plot of the scaling exponent of the flux γ , defined as
J ∝ N−γ . (a) The exponents are obtained by fitting a power law to
the heat flux obtained with the RLL method. To check the finite-
size effects, each data set corresponds to a fit over different length
ranges: 50 � N � 1600 (circles), 500 � N � 2000 (squares), and
1500 � N � 7500 (triangles). (b) Comparison between the expo-
nents obtained by the RLL method (circles) and by the generalized
eigenvalue method (triangles).

logarithmic sampling in order to increase the sampling points
near ωB. The integrand is thus a much more complicated func-
tion of ω with respect to the mean-field case σ = −1 [36,37],
where only the first peak is present. It can be checked numer-
ically that the first few peaks are Lorentzian with amplitude
k ≈ N−1, exactly like the peak in the mean-field case. The
subsequent peaks are too narrow to be resolved. For positive
values of σ the situation becomes even more complicated, as
a curve emerges below the peaks, as we can see in Fig. 5 for
σ = 0.5.

For the reasons outlined above, it seems more convenient
to consider the cumulative function F (ω), that is, the integral
(18) performed up to frequency ω. In Figs. 5(e)–5(h) we report
the function F (ω) for several values of N of order 102 and σ ,
rescaled by Nγ , where γ is the exponent obtained with the
RLL method for values of N of order 102–103. As we can see,
the curves nicely collapse for σ = −0.7,−0.5, but for higher
values of σ , such as σ = −0.3, the collapse is not as good
due to the finite-size effects, as expected. Regardless of the
lack of further quantitative progress in the computation of the
exponents, the qualitative information about the peak structure
will be crucial in our understanding of the model, as we will
see later.

V. POLES OF THE GREEN’S FUNCTION

In view of the numerical difficulties encountered above
and for comparison, we also perform a study of poles of the
Green’s function. These are computed through the generalized
eigenvalue method described above.

The main advantage of the analysis is that we gain a differ-
ent perspective on the peak structure discussed before. Indeed,
the positions ωk of the peaks in Fig. 5 are given by the absolute
value of the imaginary part of sa, while the absolute value of
the imaginary part should be proportional to their widths k .

In particular, we consider all the peaks as Lorentzian (for
simplicity, but also because all the peaks that we were able to
resolve are actually very well approximated by a Lorentzian)
with width given by k (N ) = Re(sk ). In this approximation,
as far as scaling with the size is concerned, the heat flux can
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(c) (d)

(a) (b)

(g)

(h)

(e) (f)

FIG. 5. (a)–(d) Transmission spectra [the integrand of the heat flux expression (18)] for different values of the range exponent (a) σ =
−0.7, (b) σ = −0.5, (c) σ = 0.1, and (d) σ = 0.5 and for a chain with N = 100. Only positive frequencies are reported. (e)–(h) Rescaled
cumulative function Nγ F (ω) for (a) N = 80 and σ = −0.7, (b) N = 100 and σ = −0.5, (c) N = 120 and σ = −0.1, and (d) N = 140 and
σ = 0.5. The values of γ are taken from the blue points in Fig. 4. The abrupt increase of the cumulative function in (e) and (f) at ω ≈ 1.3
is due to the dominant contribution of the first peak in (a) and (b). The subsequent smaller jumps are due to the contributions of the other
peaks.

be estimated as the sum of the widths of the peaks k (N ).
Furthermore, the height of each peak can be shown to be
equal to λ2/4 (indeed, note that in Fig. 5, in which λ = 1, the
heights of the peaks are all the same and equal to 1

4 ). Thus,
we replace the integrand in Eq. (18) with a sum of normalized
Lorentzians and we get

J (N )

T
≈

∫ ∞

−∞

dω

π

N−2∑
k=1

λ2k (N )2/4

(ω − ωk )2 + k (N )2

= λ2

4

N−2∑
k=1

k (N ). (25)

The relevant information should thus be contained in the de-
pendence of the k on k and N . Physically, this is the effective
damping of plane waves due to the coupling with the thermal
reservoirs.

The dependence of k on N is reported in Fig. 6, where we
plot (parametrically) the real parts of the poles as a function
of the imaginary ones, for negative and positive values of
σ , respectively. Since the resonance accumulates at the band
edges, it is convenient to report the frequencies as a function
of their relative distance from ωB. Let us focus on the case of
negative σ to begin with. From Figs. 6(a)–6(d) it can be seen
that the poles can be grouped in two sets, each having different
dependences on ωk and N . Empirically, this is accounted for
by the scaling

k (N ) ≈
{

dk/N, k < k0

dk/Nδ, k > k0,
(26)

where k0 � N and dk do not depend N . We do not have an
a priori theoretical estimate of δ, but we find that there is
a good collapse upon choosing δ ≈ 1 + |σ |. It is interesting
to point out that the exponent δ can be interpreted as the
fractal dimension of area below the graphs in Fig. 5. Indeed,
if we increase the system’s size N , new peaks emerge with
progressively shrinking area and in a putative N → ∞ limit
we would have an infinite number of peaks with vanishing
area.

In addition, there are a few poles whose widths do not
follow this scaling and fall consistently well outside the col-
lapsed curve. It actually turns out that there are two degenerate
eigenvalues between the sa’s that do not follow the scaling
law. However, this is inconsequential, as one can check that
the contribution of these eigenvalues to (22) vanishes. Heuris-
tically, this is because, as one can check, the eigenvectors
related to these eigenvalues are localized at the end points of
the chain and therefore do not contribute to transport. This
also explains why the peaks in Fig. 5 are N − 2 instead of N .
We can therefore infer the following scaling law for the heat
flux (22) plugging (26) into (25):

J ≈
∑ko

k=1 dk

N
+

∑N
k=ko

dk

Nδ
∝ N1−δ. (27)

The first term scales as N−1, since ko does not scale with
N (as can be inferred from Fig. 6). On the other hand, the
second term scales as N1−δ since each dk is of order 1 and
thus their sum scales as N . Finally, since δ > 0, we get the
reported scaling for the heat flux. For positive σ , the scaling
of k is reported in Figs. 6(e)–6(h): As we can see in this case
k ≈ N−1, over the entire spectrum. Therefore, the estimate

024115-6



NONEQUILIBRIUM STEADY STATES OF LONG-RANGE … PHYSICAL REVIEW E 108, 024115 (2023)

(c) (d)

(a) (b)

(g) (h)

(e) (f)

FIG. 6. (a)–(d) Real parts of the poles of the Green’s functions sa versus the distance of their imaginary parts from the band edge. Here
σ < 0, i.e., (a) σ = −0.7, (b) σ = −0.5, (c) σ = −0.3, and (d) σ = −0.1, and the vertical axis is rescaled by N δ with δ ≈ 1 − σ . The inset in
(a) demonstrates the different scaling of the collapse for the widths of the first peaks (the first 80, 160, 320, 640, and 1280 for N = 256, 512,
1024, 2048, and 4096, respectively) rescaled by N . For the other values of σ , we get the same scaling for the first peaks. (e)–(h) Same as in
(a)–(d) but for σ > 0, i.e., (e) σ = 0.1, (f) σ = 0.3, (g) σ = 0.5, and (h) σ = 0.7, with the vertical axis rescaled by N . Note that such scaling
works for the whole spectrum in this case.

of the heat flux yields

J ≈
∑N

k=1 dk

N
≈ O(1). (28)

So the heat flux for positive σ behaves as the heat flux for
σ = ∞ (the nearest-neighbor case), that is, it does not scale
with N .

To summarize, according to the approximation (25) and the
numerical estimate of δ extracted from the data, we find that
the heat flux scales as

J ∝ N−γ̃ , γ̃ ≈
{

1 − δ, σ < 0

0, σ > 0.
(29)

As we already mentioned (see Fig. 6), we found a good
collapse of the imaginary part of the poles of the Green’s
functions for δ ≈ 1 − |σ |. So this yields

γ̃ ≈ −σ (30)

for negative σ . Admittedly, this estimate accounts only qual-
itatively for the behavior of the exponents as given in Fig. 4.
The deviations are sizable and in addition the dependence
of γ on σ appears to be nonlinear. While this could be due
to the aforementioned finite-size effects, the discrepancy is
present even for values of σ for which the exponent γ has
basically converged (for example, σ = −0.7,−0.5). Another
possibility, which seems more likely, is that, while the widths
of the peaks of Fig. 5 are indeed related to the real parts of
sa on general grounds, they are not exactly equal. On the
other hand, we point out that, since the sa are related to the
widths of the peaks, the transition in the scaling of the k’s

at σ = 0 suggests that the scaling of the heat-flux between the
short-range and the long-range behavior has to occur at σ = 0.

VI. CONCLUSION

Heat transport in short-range linear systems has been
widely studied [13]. In contrast, the behavior of linear os-
cillators with long-range power-law couplings is not yet
well understood beyond the mean-field (fully coupled) case
[36,37]. In this paper we have made progress in this direction
by applying three different methods [1,6,14] that allow us
to compute numerically both the heat flux and its scaling
with the system’s size. All the methods give a clear scaling
of the current with a power law in the system’s size. This
scaling interpolates between the short-range behavior, where
the current is constant in the system’s size, and the mean-
field behavior, where the current is inversely proportional
to the system’s size. However, the fitted scaling exponents
show significant finite-size effects for all three methods. The
method of Ref. [1], which consists in solving a matric equa-
tion, is straightforwardly applicable to the long-range case.
The Green’s function approach allows us to express the cur-
rent as an integral over frequencies, which cannot be solved
analytically. However, the integrand has the interesting prop-
erty of showing a sequence of peaks that accumulate near
the band edges of the spectrum. Further properties of these
peaks can be inferred using the third method, which allows
us to compute the poles of the Green’s function. Indeed,
the real and the imaginary part of these poles are related
to the position and the width of the peaks, respectively. We
find a sharp transition in the scaling of the real parts of the
poles at the value of the long-range coupling exponent σ = 0
corresponding to the transition between the long-range and
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the short-range behavior of the system. The crucial problem
is now the dependence on σ of the scaling exponent of the
current. Assuming that all of the peaks of the integrand are
well-separated Lorentzians and that their widths are exactly
given by the real parts of the poles, we might conclude that
the heat current scales as J ∝ N−|σ | for −1 < σ < 0, in
agreement with the one derived directly from the fit of the
current, which is anyway affected (at least for small values
of |σ |) by significant finite-size effects. The disagreement
between these two scaling exponents remains to be explored,
even though our analysis of the scaling of the real part of the

poles of the Green’s function clearly supports the presence of
a transition at σ = 0 from the long-range to the short-range
behavior.
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