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Higher-order topological heat conduction on a lattice for detection of corner states
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A heat conduction equation on a lattice composed of nodes and bonds is formulated assuming the Fourier law
and the energy conservation law. Based on this equation, we propose a higher-order topological heat conduction
model on the breathing kagome lattice. We show that the temperature measurement at a corner node can detect
the corner state which causes rapid heat conduction toward the heat bath, and that several-nodes measurement
can determine the precise energy of the corner states.
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I. INTRODUCTION

The bulk-edge correspondence, which was originally pro-
posed for the quantum Hall effect [1,2], plays a central role
nowadays in various symmetry-protected topological (SPT)
phases [3–7]. Recent developments have revealed the univer-
sality of the bulk-edge correspondence, including classical
and/or nonequilibrium systems such as photonic crystals
[8–12], phononic systems [13–19], electrical circuits [20–23],
hydrodynamics [24,25], etc.

Recently, inspired by the heat conduction in anti-PT sym-
metric systems [26], heat conduction on a one-dimensional
lattice which corresponds to a coarse discretization of the
diffusion equation was theoretically proposed in Ref. [27].
Incorporating alternating thermal diffusivities similar to the
Su-Schrieffer-Heeger (SSH) model [28], they showed [27]
that edge states have a significant impact on heat conduction
next to the heat bath. Such an effect has been experimentally
observed in Refs. [29,30], indeed. It was also pointed out that
the heat conduction on a lattice is reflected by the continuum
diffusion equation with a similar SSH-like structure [31]. This
implies the usefulness of the heat conduction phenomena for
experimental realization of SPT phases.

On the other hand, as new types of boundary states due
to topological origin, the higher-order topological insulators
(HOTI) [32–40] have been attracting much current interest.
The boundary states called corner states, hinge states, etc.,
inherent in the HOTI have been observed in various systems
such as electrical circuits [41], sonic crystals [42], and pho-
tonic crystals [43].

In this paper, we propose a higher-order topological heat
conduction system for experimental detection of corner states.
We demonstrate that the corner states cause rapid heat
conduction at corners next to heat bath, and temperature mea-
surement of several nodes enables to determine the precise
energy of the corner states. This is due to the localization
properties of the corner states.

This paper is organized as follows. In the next section,
we formulate a generic heat conduction on a lattice based
on the Fourier law and the energy conservation. In Sec. III,

we apply it to the heat conduction on the breathing kagome
lattice, which is one of the typical models of the HOTI [40]. In
Sec. III B 1, we show that the measurement of the temperature
only at a single corner is enough to detect the corner state.
We also propose more precise measurement of the energy
of the corner states using several nodes around the corner in
Sec. III B 2. In Sec. III C, the effect of the Stefan-Boltzmann
thermal radiation was estimated. In the Appendix we argue
the relationship between the lattice heat equation and the
continuum heat equation, using the one-dimensional model
with a SSH-like structure.

II. HEAT CONDUCTION ON A LATTICE

Let us consider heat conduction on lattice systems com-
posed of nodes which are connected by bonds, as illustrated
in Fig. 1. We assume that the node at i has volume Vi and
surface area Si characterized by the specific heat capacity ci

and density ρi, whereas the bond between i and i′ has the
area of cross section Ai,i′ and the length Li,i′ with the thermal
conductivity ki,i′ . We assume that the heat current flowing
along the bond from i′ and i is given by the Fourier law,

Ji,i′ = −Ki,i′ (Ti − Ti′ ), (1)

where Ti is the temperature of nodes at i and Ki,i′ is the thermal
conductance given, using the thermal conductivity ki,i′ , by

Ki,i′ = ki,i′
Ai,i′

Li,i′
. (2)

At each node i with the heat capacity ciρiVi, we require the
continuity equation,

ciρiVi∂t Ti =
∑

n

Ji,in + qi, (3)

where n of in labels all the bonds connected with the node i
(see Fig. 1), and qi denotes some source term of heat. In this
paper, we consider effects of the thermal radiation obeying
the Stefan-Boltzmann law, qi = εσSi(T 4

0 − T 4
i ), where T0 is

the temperature of the heat bath, σ is the Stefan-Boltzmann
constant, and ε is emissivity 0 � ε � 1. Here, we assume that
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FIG. 1. Nodes specified by i = (i1, i2), and bonds between them.

the thermal radiation occurs at the nodes only. Together with
the Fourier law, the continuity equation can be written as

∂t Ti = −
∑

n

Di,in

(
Ti − Tin

) + σi
(
T 4

0 − T 4
i

)

≡ −
∑

j

Hi jTj + σi
(
T 4

0 − T 4
i

)
, (4)

where

Di,i′ ≡ ki,i′

ciρi

Ai,i′

ViLi,i′
, σi ≡ εσ

ciρi

Si

Vi
. (5)

Equation (4) with (5) is the heat conduction equation on a
lattice we study in this paper. In Eq. (5), ki,in/(ciρi) seems
the conventional thermal diffusivity. However, note that the
thermal conductivity ki,i′ is that of the bonds, whereas the
heat capacity is ciρi that of the nodes. Moreover, the ther-
mal conductance Di,i′ depends on the geometrical structure
of the lattice system. Therefore, in the diffusion on the lat-
tice, diffusion constants should be regarded just as effective
parameters, which may be obtained by suitable renormal-
ization from the continuum heat conduction equation. We
exemplify this fact in the Appendix, comparing the heat equa-
tion in one dimension discretized by fine meshes and coarse
meshes.

As an experimental implementation, we assume that ini-
tially all nodes have the same temperature as the heat bath T0,
and that at time t = 0, some nodes are heated up to T0 + δT ,
which causes the heat conduction on a lattice. In such an
experiment, it may be convenient to introduce the notation

Ti = δT (φi + φ0), (0 � φi � 1), (6)

where φ0 = T0/δT . Then Eq. (4) can be written as

∂tφi = −
∑

j

Hi jφ j + αi
[
φ4

0 − (φi + φ0)4
]
, (7)

where

αi = σiδT 3. (8)

In the next section, we will mainly consider the model
without thermal radiation, σ = 0, since it will turn out that

FIG. 2. Nodes and bonds forming the kagome lattice. The orange
triangle indicates the unit cell, and the red arrows are primitive
translation vectors.

this effect is very limited, as shown in Sec. III C. In this case,
it may be convenient to introduce the eigenvalue equation:

∑
j

Hi jφ jn = φinεn. (9)

For simplicity, let us introduce the vector-notation φn which
is a vector whose components are φin. When σ = 0, the time
evolution of the local temperature φi(t ) starting from the ini-
tial temperature distribution φi(0), which is also denoted as a
vector φ(t ) or φ(0), is simply obtained as

φ(t ) = e−Htφ(0) =
∑

n

e−εntφnφ
T
n φ(0), (10)

where φT
n φ(0) = ∑

j φ jnφ j (0).

III. HEAT CONDUCTION ON THE
BREATHING KAGOME LATTICE

The breathing kagome lattice is one of the well-known ex-
amples of the HOTI [40] (See also Ref. [44], which examined
corner states of the kagome lattice in proximity to supercon-
ductors). Therefore, for the detection of the corner states,
let us consider heat conduction on the breathing kagome
lattice illustrated in Fig. 2, where we have defined the unit
cell composed by three nodes specified by a = 1, 2, 3. The
primitive translation vectors are a1 and a2, and, in addition,
a3 ≡ −(a1 + a2) is introduced for convenience. These vectors
have the same length |a j | ≡ a. We assume that all nodes are
identical, whereas the bonds have two kinds of geometrical
forms characterized by Aj/Lj ( j = 1, 2), or two kinds of
thermal conductivities, k j ( j = 1, 2), both of which yield two
kinds of thermal diffusion constants Dj ( j = 1, 2). It follows
from Eqs. (7) and (5) that the heat equation on the breathing
kagome lattice is given by

∂tφa,i(t ) =
∑
b( �=a)

[
D1(φb,i − φa,i) − D2

(
φa,i − φb,i−εabcac

)]

+ α
(
φ4

0 − φ4
a,i

)
, (11)
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FIG. 3. Spectrum of H in Eq. (9) for the breathing kagome lattice
system (11) at δ = 0.3 of equilateral triangle with 10 unit cells per
side. The threefold degenerate states encircled are corner states, other
bands specified by numbers one, two, and three are the bulk bands,
and the band with no number is due to the edge states. The inset
shows the bulk spectrum.

where

Dj ≡

⎧⎪⎪⎨
⎪⎪⎩

k
cρ

Aj

V L j
≡ d

l2
j

or ( j = 1, 2),
k j

cρ
A

V L ≡ d j

l2

α = εσ

cρ

S

V
δT 3. (12)

In this equation, we assume that d or d j with some suitable
renormalization denotes the conventional thermal diffusivity
for the continuum system, and the parameter l j with the di-
mension of length characterizes the length scale of the present
lattice system. Since we treat the nodes and bonds as simple
points and lines, ignoring their geometric shapes, the model
includes only the lattice constant a which has the dimension
of length. In what follows, we introduce the parametrization

D1 ≡ d1

a2
, D2 ≡ d2

a2
, (D1 = δD2) (13)

using the lattice constant a of the kagome lattice. Here, the pa-
rameter δ characterizes the topological phases of the breathing
kagome lattice. Let us also define a typical time scale

τ = 1

D
= a2

d
, (14)

where D ≡ min(D1, D2) and d ≡ min(d1, d2).

A. Spectrum of a finite system

This model show three bands, lowest and middle dispersive
bands with a gap as well as a flat band at the top of the
middle band (inset of Fig. 3). To investigate the corner states,
let us consider the system of the triangle shape surrounded

FIG. 4. The spectrum of the same equilateral triangle system of
Fig. 3 as a function of (a) δ and (b) 1/δ, where δ is defined in Eq. (13).
The red dots indicate the corner states.

by heat bath, including N nodes. For example, N is given by
N = 55 × 3 = 165 for the triangle with ten unit cells per side.
Figure 3 shows the spectrum for δ = 0.3 in the HOTI phase,
where δ is defined in Eq. (13). We can see two dispersive
bulk bands and a flat band, as well as threefold degenerate
corner states and edge states in between the gap of dispersive
bands one and two. We show in Fig. 4, the spectrum of H as
a function of δ. Since this model belongs to HOTI phase for
0 < δ < 1/2, it exhibits the corner states in this range [40].
Even for 1/2 < δ < 1, there exist corner states, but embedded
in the bulk upper band. For 1 < δ, the model belongs to a
trivial phase without corner states as shown in Fig. 4(b). Not
only corner states but also edge states can be seen in Fig. 4(a),
which are missing in the trivial regime in Fig. 4(b).

B. Toward the detection of the corner states

Toward experimental detection of the corner states in the
heat conduction system, we first consider the temperature
measurement at one corner node [27], which indeed reveals
the existence of the corner states. Next, we discuss an im-
proved way to determine the corner states by using data of
temperature of several nodes around a corner which provides
more accurate energy of the corner state. This may be called
an effective Hamiltonian approach. For simplicity, we con-
sider the case of α = 0.

1. Heat conduction at a corner

Assume that all the nodes are at the room temperature,
φi = 0. Let us give temperature φc = 1 only at the corner
node highlighted in red in Fig. 5 at time t = 0, and mea-
sure how the given temperature decreases [27]. The result is
shown in Fig. 6(a), in which one can see a clear distinction
between the topological phase (solid curve) and trivial phase
(dashed curve) in a short time regime. In particular, the heat
conduction at the corner node is dominated in the topological
phase by the corner state up to t ∼ τ . In passing, we point
out that away from the corner but on the boundary highlighted
by blue in Fig. 5, edge states can also be observed, as shown
in Fig. 6(b). Indeed, the solid curve in the topological phase
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FIG. 5. Top corner. The red and blue nodes are the nodes used for
single-node measurement in Sec. III B 1. The nodes surrounded by
red (A) and blue (B) triangles are used for deriving effective Hamil-
tonians. Regions A and B include 18 and 12 nodes, respectively, in
Sec. III B 2.

has clear difference from the dashed curve in the trivial phase.
Its curvature also suggests the dispersive band for the edge
states. For comparison, we show in Figs. 6(c) and 6(d) the
temperature profiles on the lattice for the corner state and edge
state, respectively.

2. Effective Hamiltonian approach

So far we have shown that only one-node measurement of
temperature is enough to detect the corner state in the heat

ln ln

FIG. 6. Single-node temperature as a function of t/τ . (a) and
(b) are the corner node and edge node highlighted in red and blue
in Fig. 5, respectively. Full curves and dashed curves are the cases
δ = 0.3 and δ = 1/0.3, respectively, which belong to the topolog-
ical and trivial phases. Thin dotted lines are −εct , where εc is the
energy of the corner states εcτ = 2(D1 + D2)/D. (c) and (d) show
the examples of the temperature profiles on the lattice for the corner
states (No. 66) and edge states (No. 37, the lowest of the edge band),
respectively, in the topological phase.

conduction system. However, more precise determination of
the energy of the corner state is achieved if one measures
the temperature at more than one node [27]. To this end, let
us prepare several initial distributions distinguished by index
p. As in Eq. (9), we introduce the vector notation φp whose
components are φip(0). We assume that they are independent
in the sense

φT
p φq = δpq. (15)

Since the local temperature φi(t ) depends on the initial dis-
tribution φp, let us denote φip(t ), for which we also use the
vector notation φp(t ). Then, the time evolution (10) is written
as

φp(t ) =
∑

n

e−εntφnφ
T
n φp. (16)

Taking the inner product with φq, we have [27]

Tpq ≡ φT
q φp(t ) = φT

q e−Htφp ≡ e−Hqpt . (17)

The left hand side can be measured experimentally, whereas
the right hand side tells how to compute the energy of the
Hamiltonian H. Namely, let En be eigenvalues of the matrix
T . Then, the eigenvalues of H are given by εn = −(log En)/t .
For a finite system with N nodes, if we prepare N independent
initial temperature distributions and measure the temperature
at all N nodes, we can reproduce the exact energies shown in
Fig. 3, as carried out in [27].

However, for the purpose of observing corner states and de-
termining their energy, fewer initial conditions and fewer node
temperature measurements are sufficient since each corner
state is localized around each corner. Actually, in Sec. III B 1,
only one-node measurement at one corner with only one initial
distribution enables to detect the existence of the corner mode.
For such restricted measurements using reduced degrees of
freedom, the energies, which should be constant along the
time evolution, inevitably depend on time. Nevertheless,
the energy of the corner states is almost constant. This is due
to their localized nature. Thus, the time dependence of the
energies could distinguish the energy of the corner state from
those of other extended states.

For simplicity, we propose the following initial tempera-
ture distributions: We keep the temperature of all the nodes
φ j = 0 except for that of node i which is set φi = 1. The
number of such initial distributions is of course N and they
satisfy Eq. (15). Here, we propose the restricted number of ini-
tial distributions to the nodes specified by triangles in Fig. 5.
The whole system has 165 nodes, whereas regions A and B
include only 18 and 12 nodes, each of which is given the
initial temperature 1. Then, the measurements of the local
temperature of each node in regions A and B at time t allow us
to calculate the energies of the reduced Hamiltonian. In Fig. 7,
we show the energies of such a reduced Hamiltonian.

From the single-node measurement in Sec. III B 1, we ex-
pect that the energies of the effective reduced Hamiltonian are
decreasing as functions of time, since long-time behavior is
controlled by low energy states, some of which are neglected
in the reduced Hamiltonian. In Fig. 7, we plot the spectra of
the reduce Hamiltonian for the restricted nodes in the A and
B regions in Fig. 5. Indeed, Fig. 7 shows that all the energies
are basically decreasing function. Among them, the energies

024112-4



HIGHER-ORDER TOPOLOGICAL HEAT CONDUCTION ON A … PHYSICAL REVIEW E 108, 024112 (2023)

FIG. 7. Spectra of effective Hamiltonian with restricted degrees
of freedom as functions of time. (a) and (b) correspond to regions A
and B in Fig. 5. Red and blue dots denote the exact energy of the
corner state and the flat band, respectively.

which are nearly degenerate with the corner state at t ∼ 0 are
largely decreasing, as can be seen in Fig. 7(a). These are due
to the states at the artificial boundary between A and A, which
are connected by the large D bonds. On the other hand, almost
constant energies are due to the states which are not affected
by the artificial boundary. The corner state may be the most
typical state with such a property, because it has a localized
temperature profile. Another typical state may be the flat band:
Huge degeneracy enables to create a localized state by suitable
linear combination of degenerate states, as indicated by blue
dots in Fig. 7.

C. System with thermal radiation

Finally, we briefly discuss the effect of the thermal radia-
tion. The Stefan-Boltzmann law gives rise to nonlinear effect
term in Eq. (4). We solve such a nonlinear equation numer-
ically, and apply the same procedure in Sec. III B 2, which
may serve as a mean field approximation. First of all, let us
estimate the order of several parameters of the model.

The implementation of the experiment in Ref. [30] is such
that the bonds have the area of the cross-section A ∼ 10−5 m2

and the length L ∼ 115 × 10−3 m, and the nodes have the area
of the surface S ∼ πR2 ∼ 3 × 10−5 m2. The room tempera-
ture is T0 = 294 K and δT ∼ 40 K, and hence, φ0 ∼ 7.4. From
Eqs. (12) and (13), we have

α

D
= εσ

k

SL

A
δT 3 ∼ 10−10εδT 3 ∼ 6.4ε × 10−5, (18)

where we have used k = 200 W/m·K for aluminum, and the
Stefan-Boltzmann constant σ = 5.7 × 10−8W/m2K4 with a
relatively large emissivity ε = 0.3. We calculate the energies
as follows. Starting from the same initial condition used in
Sec. III B 2, solving the equations (11) numerically, and using
data φp(t ), we compute the eigenvalues of T in Eq. (17), from
which we deduce the energies in the same way in Sec. III B 2.
In Fig. 8, we show the energies thus computed in which
small deviation can be seen, but basically, the effect of the
thermal radiation is quite small even in a large emissivity. In

FIG. 8. Same as Fig. 7 but with the Stefan-Boltzmann radiation
with ε = 0.3.

the realistic case, at most ε ∼ 0.1, and therefore, the thermal
radiation may be negligible.

IV. SUMMARY

We proposed a higher-order topological heat conduction
system toward the detection of the corner states. We first
formulated generic heat conduction on a lattice composed
of nodes and bonds, based on the Fourier law and energy
conservation. Such a description indeed has an intimate re-
lationship with the continuum heat conduction equation, as
examined in the Appendix using a one-dimensional system
with the SSH-like structure. We next applied to the breathing
kagome lattice which is one of typical models showing HOTI
phase. We showed that corner states can be observed by a
simple measurement of the temperature only at one corner.
We also proposed more precise measurement of the energy of
the corner state using several nodes around a corner. Finally,
the effect of the Stefan-Boltzmann thermal radiation was esti-
mated, but this was found to be negligible.

In this paper, we showed that heat conduction on lattices
is useful to detect topological properties for corresponding
lattice systems. We also point out that heat transport from
and to reservoirs can also be a useful probe for the same
purposes [45]. Thus, we expect that the heat conduction is
much more useful than we expected to reveal, directly or
indirectly, topological properties for various systems.
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APPENDIX: DIFFUSION ON A LATTICE AS A
DISCRETIZATION OF THE DIFFUSION EQUATION

We have introduced diffusion phenomena on a lattice com-
posed of nodes and bonds. We show in this Appendix that
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FIG. 9. Schematic illustration of the 1D system. (a) Experimen-
tal implementation in Refs. [29,30]. (b) Corresponding continuum
system obeying diffusion equation. (c) Discretized model of (b),
which is numerically solved, instead of (b), in this Appendix.

such a description of diffusion phenomena can be regarded as
a coarse discretization of the conventional diffusion equation
if the diffusion constant of a lattice system is interpreted as an
effective renormalized parameter. We show this fact using a
simple 1D system with the SSH-like structure.

The SSH-like structure for the heat conduction [27]
has been realized in experimental implementation (a) in
Fig. 9 [29,30], in which the nodes composed of cylindri-
cal materials are connected by thin bonds whose large and
small heat conductances are controlled by the length of the
bonds. Apart from the geometric structure, the heat con-
duction on such a system may be basically described by
the 1D diffusion equation for type (b) in Fig. 9, where the
geometric structure of (a) is reflected by the assumption
that the heat capacity of the nodes are very large in (a)
and hence, the corresponding parts in (b) have very small
heat conductivity. Instead of solving the continuum diffu-
sion equation, we discretized (b) in fine meshes like (c)
in Fig. 9. In this sense, the heat conduction on lattices in
the text is the most coarse discretization of the diffusion
equation.

The discretized Hamiltonian illustrated in Fig. 9(c) is given
by

Hφ j = −∂∗D′
j∂φ j

= −[D′
jφ j+1 + D′

j−1φ j−1 − (D′
j + D′

j−1)φ j], (A1)

where ∂ and ∂∗ stand for the forward and backward dif-
ference operators, ∂ f j = f j+1 − f j and ∂∗ f j = f j − f j−1,

FIG. 10. The bulk spectra (curves) and edge states (dots). Or-
ange and blue are the cases of (N1, N2, N0) = (50, 10, 5), (20,4,4),
whereas black is (0,0,1), which is the simple SSH model in Fig. 9(a).
The heat conductivities used are (d, d0 ) = (1, 10−2) for colored
discretized models, whereas for the SSH model we have used
(D1, D2) = (0.2, 1). As an effective energy we have used 1/τ ′ =
d/(N1a2) for the discretized models and D1/a2 for the SSH model,
namely the smaller heat conductivity of the bonds.

respectively, and

D′
j =

{
D′ ≡ d/a2

0 ( j ∈ bonds)
D′

0 ≡ d0/a2
0 ( j ∈ nodes)

. (A2)

In the above, a0 = a/(N1 + N2 + 2N0) is the artificial lattice
constant of the mesh in (c), where a is the length of the unit
cell. Here we assume that d0 � d , since the heat capacity
of the nodes are very large, as mentioned above. Note here
that the bonds have the same heat conductivity D′, and the
difference of D1 and D2 for the SSH heat conduction model is
due to the difference of the lengths of the bonds, N1 and N2.

In Fig. 10, we show some examples of the bulk spectra
as well as the edge states restricted to the two lowest energy
bands. Here, the edge states are computed by the method
proposed in Ref. [46]. The numbers of meshes in a unit cell are
70 (orange), 34 (blue), and 2 (black). The last one corresponds
to the SSH heat conduction model [27,30]. One can indeed
see that the most coarse lattice model can describe very well
the fine-mesh model close to the continuum heat conduction
equation, including the edge states. Of course, if one wants to
finetune the energies, one should regard τ ′ as a parameter, or
use renormalized diffusion conductivities.
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