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We analytically calculate the cumulant generating function of energy and particle transport in an open
one-dimensional Kitaev chain at finite temperature by utilizing the Keldysh technique. The joint distribution
of particle and energy currents satisfies different fluctuation relations in different regions of the parameter
space as a result of U(1) symmetry breaking and energy conservation. Furthermore, we investigate the linear
response behavior of the Kitaev chain within the framework of three-terminal systems, deriving the expressions
for the Seebeck coefficient and thermal conductance. Notably, we observe a pronounced peak in the thermal
conductance near the phase transition point, in agreement with previous predictions. Additionally, we prove
that the peak value saturates at half of the thermal conductance quantum for finite-length chains at the zero
temperature limit.
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I. INTRODUCTION

Microreversibility, which is a fundamental symmetry of
the physical laws, imposes remarkable constraints on the
nonequilibrium dynamics of a system. The most famous ex-
ample is the celebrated Onsager-Casimir reciprocal relation,
which states that the matrix of linear kinetic coefficient is
symmetric [1–3]. This relation greatly reduces the number
of response coefficients in a transport process, thus finding
wide applications in transport experiments. Another example
is the fluctuation-dissipation relation (FDR), which relates
the dissipation or response in a nonequilibrium process to
the properties in equilibrium [4]. Recently, a new family of
nonequilibrium relations, called fluctuation relations (FRs),
have been discovered [5–15]. The derivation of the FRs only
relies on the microreversibility of the system and does not
depend on the microscopic details. These FRs generalize
the above two well-known relations from the linear-response
regime to regimes arbitrarily far away from equilibrium.
From these relations, one can not only easily reproduce the
results in linear response theory such as the Green-Kubo
formula, but also obtain relations of higher-order response
coefficients [16–23].

The most general form of a FR about the entropy produc-
tion in an open system can be written as

P(��)

P(−��)
= e��,

where P(��) is the probability distribution of entropy pro-
duction ��. According to principles of thermodynamics, one
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can relate �� to various physical observables, such as particle
number, exchanged heat, and applied work. In an open system
without driving, there is no work done on the system. The
entropy production is associated with the exchange of parti-
cles and energy; the corresponding FR is termed as exchange
FR [24].

In the derivation of exchange FR, two ingredients are used.
One is the microreversibility of the equation of motion and
the other is the particle and energy conservation. Whereas the
former is well recognized, the latter is implicit and taken for
granted since the conservation law is a result of U(1) sym-
metry and time-translation symmetry. However, in condensed
matter physics, the U(1) symmetry can be explicitly broken in
some systems described by low-energy effective Hamiltonian,
such as the BCS Hamiltonian of the superconductor. The
breaking of U(1) symmetry implies that the particle number
is not conserved in the transport process, and it can lead to
new forms of exchange FR.

In a previous work [25], we show that the exchange FR of
particle current in the one-dimensional (1D) Kitaev chain in
the steady state takes various forms for different parameters. It
is due to the presence of a pairing term such as �ĉ†

j+1ĉ†
j which

explicitly breaks U(1) symmetry. The competition between
the pairing potential, the hopping amplitude, and the chemical
potential gives rise to different microscopic transport pro-
cesses, namely, the normal transport (NT), the local Andreev
reflection (LAR), and the crossed Andreev reflection (CAR).
Each particle current component satisfies a steady-state FR.

In this article, we go one step further and study the joint
probability distribution of energy and particle transport. We
use the Keldysh technique to analytically calculate the full
counting statistics (FCS) of the particle and energy currents.
It is shown that the joint distribution of particle and energy
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FIG. 1. The setup of an open Kitaev chain. A nanowire is put
above an grounded s-wave superconductor (SC) and is coupled to
two reservoirs. The left and right reservoirs are labeled as α = 1, 2.
The temperature and chemical potential for reservoir 1 (2) are β1, μ1

(β2, μ2), respectively. The nonzero affinities drive the system into
a steady state in the long-time limit. There are five currents: two
energy currents JE

1 , JE
2 (red arrow) associated with the counting fields

η1, η2, two particle currents JN
1 , JN

2 (blue arrow) associated with
the counting fields ξ1, ξ2, and a supercurrent JN

S from the SC to
the nanowire.

currents obeys different exchange FRs due to U(1) symmetry
breaking and energy conservation. As an application of the
FCS, we study the linear response of the Kitaev chain at finite
temperature and reproduce the well-know quantized electrical
conductance and the half quantized thermal conductance.

Our paper is structured as follows. We introduce the open
1D Kitaev chain model and analytically calculate its full
counting statistics of energy and particle in Sec. II. We discuss
the exchange FR in Sec. III. In Sec. IV, we study the linear
response properties of the Kitaev chain. In Sec. V, we discuss
our results and make a summary.

II. MODEL AND FULL COUNTING STATISTICS

We consider a Kitaev chain connected to two reservoirs.
The set up is shown in Fig. 1. A nanowire is put above an
s-wave superconductor (SC) and coupled to two reservoirs.
Due to the proximity effect, the Cooper pairs can leak into
the nanowire, and turns the low-energy effective Hamiltonian
of the nanowire into a 1D Kitaev chain [26–28]. This hybrid
system has been an canonical platform in experiment in the
search of Majorana zero modes (MZMs), and a convincing
signature of MZMs is yet to be confirmed [28–35]. The whole
Hamiltonian is

Ĥ = ĤK +
∑

α=1,2

Ĥα + ĤI, (1)

where the Hamiltonian of the Kitaev chain is

ĤK = −μ

N∑
j=1

(
ĉ†

j ĉ j − 1

2

)

+
N−1∑
j=1

(−t ĉ†
j ĉ j+1 + � ĉ j ĉ j+1 + H.c.), (2)

with μ, t,� the chemical potential, the hopping amplitude
and the superconducting gap. The Hamiltonian of the SC and
the interaction between the SC and the nanowire is completely
traced out and their effect is captured by the superconducting
gap �. The operator ĉ†

j (ĉ j) creates (annihilates) an electron on
site j; N is the site number of the Kitaev chain. The reservoirs

are described by free fermions

Ĥα =
∑

j

(h̄ωα j − μα )ĉ†
α j ĉα j, α = 1, 2. (3)

Here, ωα j denotes the energy of the jth state of reservoir
α of which the chemical potential is μα . We assume linear
couplings between the Kitaev chain and the reservoirs

ĤI =
∑

j

λ1 j (ĉ
†
1 j ĉ1 + ĉ†

1ĉ1 j ) +
∑

j

λ2 j (ĉ
†
2 j ĉN + ĉ†

N ĉ2 j ), (4)

with λα j the coupling strength. In experiment, the chemical
potential μ and the superconducting gap � are controlled
by the so-called “super gate” and an external magnetic field,
respectively [35,36]. The coupling strengths λα j are tuned by
altering the barrier gate settings. We will use the hopping
amplitude t as the unit of energy and set h̄ = 1 without loss of
generality.

We adopt the two-point measurement scheme. We as-
sume that the initial state is a product state, and every
part is prepared in its thermal equilibrium state ρ̂0 =
e−β0ĤK−∑

α=1,2 βαĤα /Tr[e−β0ĤK−∑
α=1,2 βαĤα ], where β0 and βα are

the initial temperatures of the Kitaev chain and reservoir α, re-
spectively. We measure the particle number N̂α = ∑

j ĉ†
α j ĉα j

and the energy Ĥα of reservoir α simultaneously at the initial
time and a latter time τ . The outcomes are Eαk , Nαk at the
initial time and E ′

α j , N ′
α j at the final time. The particle (energy)

exchanged between the reservoir and the chain during the time
interval [0, τ ] is defined to be the difference between the two
outcomes

�Eα, jk = E ′
α j − Eαk,

�Nα, jk = N ′
α j − Nαk .

The joint probability distribution of observing these outcomes
is given by

P(�Nα,�Eα ) =
∏
α

∑
jk

δ[�Eα − �Eα, jk]δ[�Nα − �Nα, jk]

× Tr[1 j2 jÛ (τ )1k2k ρ̂02k1kÛ
†(τ )],

(5)

where α j projects reservoir α to the eigenstate with energy
Eα j and particle number Nα j , and Û (τ ) is the unitary evolution
operator of the total Hamiltonian. For later convenience, we
rewrite the stochastic variables into a compact form,

�X = (�N1,�N2,�E1,�E2) = (�N,�E ),

and define the operator X̂ = (N̂1, N̂2, Ĥ1, Ĥ2). In practice, it
is more convenient to calculate the so-called moment gener-
ating function (MGF) which encodes the same information as
P(�X ) and is defined as the Fourier transform of the joint
probability distribution P(�X )

Z (λ) =
∫

d�X P(�X )ei�N·ξei�E·η

= Tr[ρ̂0Û
†(τ, 0)eiX̂ ·λÛ (τ, 0)e−iX̂ ·λ], (6)

with the counting fields λ = (ξ, η) = (ξ1, ξ2, η1, η2).
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We insert fermionic coherent states and write it in the
form of contour functional integral; by utilizing the Keldysh
technique [25,37,38], we obtain the MGF of the open Kitaev
chain in the long time limit τ → ∞,

Z (λ) =
∏
ω

√
Z (λ; ω), (7)

where the MGF of every mode ω is composed of three com-
ponents: the normal transport, the crossed Andreev reflection,

and the local Andreev reflection

Z (λ; ω) = ZNT(ξ1 − ξ2) + ZCAR(ξ1 + ξ2) + ZLAR(ξ1, ξ2)

ZNT(0) + ZCAR(0) + ZLAR(0)
.

(8)

The three components are given by

ZNT(ξ1 − ξ2) = pNT{1 + TNT[n1en̄2e(ei(ξ1−ξ2 )eiωη− − 1) + n̄1en2e(e−i(ξ1−ξ2 )e−iωη− − 1)]}
× {1 + T̄NT[n1hn̄2h(e−i(ξ1−ξ2 )eiωη− − 1) + n̄1hn2h(ei(ξ1−ξ2 )e−iωη− − 1)]},

ZCAR(ξ1 + ξ2) = pCAR{1 + TCAR[n1en̄2h(ei(ξ1+ξ2 )eiωη− − 1) + n̄1en2he−i(ξ1+ξ2 )e−iωη− − 1)]}
× {1 + T̄CAR[n1hn̄2e(e−i(ξ1+ξ2 )eiωη− − 1) + n̄1hn2e(ei(ξ1+ξ2 )e−iωη− − 1)]},

ZLAR(ξ1, ξ2) = pLAR{1 + TLAR,1[n1en̄1h(e2iξ1 − 1) + n̄1en1h(e−2iξ1 − 1)]}
× {1 + TLAR,2[n2en̄2h(e2iξ2 − 1) + n̄2en2h(e−2iξ2 − 1)]}. (9)

Here for simplicity, we eliminate the redundancy of the count-
ing fields of energy by introducing a new counting field η− =
η1 − η2. The Fermi distribution of electrons and holes in reser-
voir α are denoted by nαe(ω) = fα (ω − μα ) and nαh(ω) =
fα (ω + μα ), respectively, where fα (ω) = 1/[eβαω + 1]. The
unoccupied distributions are defined as n̄αe(ω) ≡ 1 − nαe(ω)
and n̄αh(ω) ≡ 1 − nαh(ω). The factors TNT, TCAR, and TLAR

(pNT, pCAR, and pLAR) are the transmission coefficients
(weights) of the NT, CAR, and LAR channels, respec-
tively, and T̄ (ω) ≡ T (−ω). The weights are normalized
pNT + pCAR + pLAR = 1. The expressions of these factors by
Green’s function are given in Appendix A. This form of MGF
is valid for arbitrary number of sites and arbitrary parameters.
Different numbers of sites correspond to different weights
pNT, pCAR, pLAR and coefficients TNT, TCAR, TLAR but do not
affect the remaining expressions of the MGF. We also note
that either only one channel is present, or all three channels
are present. To see this, let us assume that only NT and
CAR are present. Then an electron in the left reservoir can
be reflected as an hole in the same reservoir by successively

getting through the NT channel and the CAR channel 1e
NT−→

2e
CAR−−→ 1h. In the following, we will only use η− as the

counting field for energy flow, i.e., η = η−. The reduction
of the number of counting fields of energy is a consequence
of energy conservation. Please note that the information of
the initial state of the Kitaev chain is lost in the long-time
limit.

III. FLUCTUATION RELATION

From the explicit form of MGF, we observe that the
transport process is composed of independent bidirectional
processes of mode ω. Every process consists of three subpro-
cesses. The three subprocesses are the NT, the CAR, and the
LAR. The NT corresponds to transferring one electron (hole)
from the left reservoir to the right reservoir, while the CAR
corresponds to a process in which an incoming electron from

the left reservoir is turned into an outgoing hole in the right
reservoir [39,40]. As a result, one electron from each reservoir
is injected into the SC to form a Cooper pair. The LAR
corresponds to the process in which an incident electron from
one reservoir is converted into a backscattered hole. The CAR
and LAR break the particle conservation in two reservoirs,
which is due to the presence of a nonzero pairing potential
�. If we take � = 0, then TCAR and TLAR,α vanish and only
TNT is nonzero. In this case, the number of conservation law
recovers to two and only two counting fields ξ1 − ξ2, η− are
required to generate the cumulants of the currents. However,
the particle conservation is also recovered if we take into
account the third reservoir, the superconductor, which does
not appear explicitly in the Hamiltonian of the open Kitaev
chain.

From Eqs. (8) and (9), one can find that the MGF satisfies
a symmetry relation

Z (ξ, η−) = Z (−ξ + iAN ,−η− + iAE ), (10)

where AN = (β1μ1, β2μ2) and AE = β2 − β1 are the affini-
ties. The symmetry of the MGF implies an exchange FR of
the joint probability distribution [12,13,18]

P(�N1,�N2,�E1)

P(−�N1,−�N2,−�E1)
= e�N1μ1β1+�N2μ2β2 e�E1(β2−β1 ).

(11)
Under certain conditions, one of the three current compo-
nents dominates the transport process and Eq. (11) is reduced
to a simpler FR. We consider three different cases in the
following.

The first case is when the pairing potential � = 0, i.e., the
Kitaev chain is a conventional conductor. The transmission
amplitudes of CAR TCAR and LAR TLAR,1, TLAR,2 vanish.
Whenever one reservoir receives a particle, the other reservoir
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loses a particle, �N1 = −�N2. The FR reads

P(�N1,�E1)

P(−�N1,−�E1)
= e�N1(μ1β1−μ2β2 )e�E1(β2−β1 ), (12)

which is the conventional FR of two terminal systems.
If we introduce a nonzero pairing potential � �= 0 and turn

off the hopping term t = 0, then only CAR will occur [41]. In
this case, �N1 = �N2, and the FR becomes

P(�N1,�E1)

P(−�N1,−�E1)
= e�N1(μ1β1+μ2β2 )e�E1(β2−β1 ). (13)

Two points are worth emphasizing. The first one is that when
we apply symmetric bias, i.e., μ1β1 = −μ2β2, the probability
distribution P(�N1) is symmetric about �N1 = 0, and gives
zero mean particle current but nonzero energy current. The
second one is that when we apply equal bias, i.e., μ1β1 =
μ2β2, the nonzero particle current signatures the presence of
a nonzero pairing potential.

The third case is the Majorana case � = t , μ = 0. Two
Majorana zero modes will emerge and localize at the ends
of the Kitaev chain. The NT and CAR are completely sup-
pressed, that is, TNT = TCAR = 0. The FR decouples

P(�N1)

P(−�N1)
= e�N1μ1β1 ,

P(�N2)

P(−�N2)
= e�N2μ2β2 . (14)

In this case, there is no energy transport, since LAR effectively
transports two electrons with opposite energy to the chain.
The net exchange of particle number is two, while the net
exchange of energy is zero. The expression of transmission
coefficient of LAR TLAR,α in the third case is independent of
the site number [42]. It can be proved that the Kitaev chain
in the third case is equivalent to a three-level system. The
above discussion of the MZM case applies when the localized
MZMs do not overlap, i.e., the LAR dominates the transport
of the system. At the “sweet point” μ = 0, t = �, the lowest
two Majorana modes are exactly degenerate with zero energy.
The wave functions of these two MZMs are perfectly localized
at two ends of the chain. If we increase |μ| and the system
deviates from the “sweet point,” then the wave functions will
extend from two ends to the bulk. As long as the penetration
length is less than N/2, i.e., the wave function of the two sides
do not overlap, the gap between the two Majorana modes are
approximately zero. In this case, we say that the system is in
a topological superconducting (TSC) phase. In the thermody-
namic limit N → ∞, the overlap occurs when |μ| � 2t . For a
finite chain, the chemical potential |μ| at which the two wave
functions begin to overlap can be determined by requiring
the system has a zero energy solution and is found to be
|μ| = 2N/(N + 1) [43,44]. For a short chain, the TSC phase
will shrink in the phase diagram due to the finite-size effect
(see Fig. 2). In summary, all three subprocesses contribute to
the particle current, but only NT and CAR contribute to the
energy flow.

IV. LINEAR RESPONSE IN KITAEV CHAIN

The FCS encodes all the information about the trans-
port process. All the cumulants can be generated from the

FIG. 2. The energy spectrum of a Kitaev chain with open bound-
aries. Dark points are for 3 sites; light points are for 20 sites. The
regime for TSC phase is reduced to about |μ/t | < 0.5 for a 3-site
chain from about |μ/t | < 1.7 for 20-site system; both are denoted as
dotted vertical lines. For 20 sites, the gap opens at |μ/t | ∼ 1.7, while
for 3 sites, the gap opens at |μ/t | ∼ 0.5. The phase boundary of a
Kitaev chain in the thermodynamic limit is |μ/t | = 2. The shrink of
the TSC phase is a manifestation of the finite-size effect.

cumulant generating function (CGF) which is defined as

F (λ, A) ≡ lim
τ→∞

1

τ
ln Z (λ, A), (15)

where we update the definition of counting fields λ =
{λ1, λ2, λ3} ≡ {ξ1, ξ2, η−}. The affinities are denoted as A =
{AN , AE }. By taking successive derivatives of the CGF with
respect to the counting fields and setting them to zero,
we obtain expressions for various cumulants. For instance,
the mean current (the first cumulant) and the current noise
(the second cumulant) are given by

Jj (A) ≡ ∂F (λ, A)

∂ (iλ j )

∣∣∣∣
λ=0

, (16)

Djk (A) ≡ ∂2F (λ, A)

∂ (iλ j )∂ (iλk )

∣∣∣∣
λ=0

. (17)

The CGF inherits the symmetry in the MGF [Eq. (10)]

F (λ, A) = F (−λ + iA, A), (18)

which implies a universal relation between the cumulants
and response coefficients [16,18,19]. The first-order relation
is nothing but the Onsager reciprocal relation and FDR. In
Appendix A, we demonstrate the response relation up to the
second order by explicit expression of the response coeffi-
cients.

In this section, we focus on the linear response regime. The
linear response of the Kitaev chain, has been extensively stud-
ied [40,44–52]. The most important results are the quantized
zero bias peak in the local electrical conductance when the
Kitaev chain is in the TSC phase, and the half-quantized peak
in the thermal conductance when the Kitaev chan undergoes
topological phase transition [51,53–55].

From Eq. (16), we obtain the expression of the particle cur-
rent JN

1 from the left reservoir and JN
2 from the right reservoir,
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as well as the energy current JE
1 from the left reservoir

JN
1 =

∫
dω

2π
[TNT(pe→e − pe←e) + TCAR(pe→h − pe←h)

+TLAR,1(n1en̄1h − n̄1en1h)], (19)

JN
2 =

∫
dω

2π
[TNT(pe←e − pe→e) + TCAR(pe→h − pe←h)

+TLAR,2(n2en̄2h − n̄2en2h)], (20)

JE
1 =

∫
dω

2π
ω[TNT(pe→e − pe←e) + TCAR(pe→h − pe←h)],

(21)

where pe→e = n1en̄2e, pe←e = n̄1en2e, pe→h = n1en̄2h, and
pe←h = n̄1en2h. The transmission coefficients are given by

TNT = pNTTNT, TCAR = pCARTCAR,

TLAR,α = pLARTLAR,α.

The energy current of the right reservoir JE
2 is equal to the

opposite of JE
1 , and the supercurrent JN

S is equal to the op-
posite of JN

1 + JN
2 . Three independent currents are consistent

with three affinities. As mentioned before, the energy current
is carried by the particles participating in the NT and the CAR
processes, while all the three transport processes contribute
to the particle flow. We obtain the linear response coefficients
Lj,k relevant to JN

1 as

L1,1 =
∫

dω

2π
[TNT(ω) + TCAR(ω) + 2TLAR,1(ω)]n1en̄1e,

(22)

L1,2 =
∫

dω

2π
[−TNT(ω)n2en̄2e + TCAR(ω)n2hn̄2h], (23)

L1,E =
∫

dω

2π
ω[TNT(ω) + TCAR(ω) + 2TLAR,1(ω)]n1en̄1e.

(24)

The linear response coefficients Lj,k relevant to JN
2 are

L2,1 =
∫

dω

2π
[−TNT(ω) + TCAR(ω)]n1en̄1e, (25)

L2,2 =
∫

dω

2π
[TNT(ω) + TCAR(−ω) + 2TLAR,2(ω)]n2en̄2e,

(26)

L2,E =
∫

dω

2π
ω[−TNT(ω) + TCAR(ω)]n1en̄1e. (27)

The linear response coefficients Lj,k relevant to JE
1 are

LE ,1 =
∫

dω

2π
ω[TNT(ω) + TCAR(ω)]n1en̄1e, (28)

LE ,2 =
∫

dω

2π
ω[−TNT(ω)n2en̄2e + TCAR(ω)n2hn̄2h], (29)

LE ,E =
∫

dω

2π
ω2[TNT(ω) + TCAR(ω)]n1en̄1e. (30)

From Eqs. (24) and (28), it seems that Onsager reciprocal
relation is apparently violated due to the presence of LAR. But
actually, we have TLAR,1(ω) = TLAR,1(−ω) as a consequence
of the particle-hole symmetry, so the term containing TLAR,1

in Eq. (24) is an odd function of ω at zero affinity and vanishes

after the integration. Hence, the Onsager reciprocal relation
remains valid in the Kitaev chain.

In experiment, the more familiar linear response coeffi-
cients are the electrical conductance G, thermal conductance
K , and Seebeck coefficient S. The effective Hamiltonian
Eq. (1) suggests a two-terminal setup, but the presence of
three independent currents (and three affinities) indicates that
this model is actually a three-terminal system. The coupling
between the nanowire and the third SC terminal is encoded
in the gap �. A closely related system is the two Majorana
modes which serves as a low-energy effective model of the
Kitaev chain. We give the expression of currents and a detailed
discussion of two MZMs coupled to two reservoirs in the
framework of three-terminal system in Appendix B. There
are already many discussions of the three-terminal system
[34,35,56–58]. Most of the work focuses on the electrical
conductance matrix Gi j and thermal conductance K in the
zero temperature limit. In the following, we give a finite-
temperature analysis.

In a three-terminal system, we write the relation between
the currents and affinities in the linear response regime as⎛

⎜⎝
JN

1

JN
2

JQ
1

⎞
⎟⎠ =

⎛
⎜⎝

L1,1 L1,2 L1,E

L2,1 L2,2 L2,E

LE ,1 LE ,2 LE ,E

⎞
⎟⎠
⎛
⎜⎝

δμ1/T

δμ2/T

δT/T 2

⎞
⎟⎠, (31)

where we take the temperature of the right reservoir as the ref-
erence temperature T = T2 and δT = T1 − T2. The chemical
potential of the grounded SC μSC = 0 is taken as the reference
of chemical potential and δμα ≡ μα − μSC = μα . The heat
current from the left reservoir is defined as JQ

1 ≡ JE
1 − μ1JN

1
as a result of thermodynamical laws [59]. Following Ref. [60],
the electrical conductance is obtained under the isothermal
condition, i.e.,

Gi j =
(

e2JN
i

δμ j

)
δT =0

δμk=0 k �=i

= e2

T

(
L1,1 L1,2

L2,1 L2,2

)
. (32)

Here, G11 and G22 are the local electrical conductances and
G12(= G21) is the nonlocal electrical conductance. The See-
beck coefficients are obtained as the ratio of the voltage
difference and the temperature difference when there are no
electrical currents, i.e.,

S jE = −
(

δμ j

eδT

)
JN

k =0 ∀k

.

We find

S1E = 1

eT

L1,E L2,2 − L1,2L2,E

L1,1L2,2 − L1,2L2,1
,

S2E = 1

eT

L1,1L2,E − L1,E L1,2

L1,1L2,2 − L1,2L2,1
. (33)

The Peltier coefficient is related to Seebeck coefficient by
E j = T SjE . The thermal conductance is defined as the ratio
of heat current and temperature difference when the particle
current is zero, i.e.,

K =
(

JQ
1

δT

)
JN

k =0 ∀k

= 1

T 2
(LE ,E − T LE ,1S1E − T LE ,2S2E ).

(34)
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FIG. 3. The electrical conductance G11, G12, and G22 in units
of 2e2/h for a 20-site Kitaev chain. The parameters are set to be
t = � = 1, and we adopt asymmetric coupling strengths �1/t =
0.5, �2/t = 0.1. (a–c) are for G11, G12, and G22, respectively.
(d) Cross sections of electrical conductances for a low temperature
T/t = 0.01 and a high temperature T/t = 0.2. The local conduc-
tances G11 and G22 are quantized at low temperature when |μ| < t ,
which indicates the current component of LAR dominates the trans-
port process.

From Eqs. (32)–(34), we recognize that the electrical conduc-
tance between the left reservoir and the chain is still given
by G11 = L1,1/T , which is identical to the two-terminal case.
Nevertheless, the expressions for Seebeck coefficients SjE and
thermal conductance K are different from the two-terminal
case [61].

In Refs. [44,62], the local electrical conductance for a sym-
metric bias configuration μ1 = −μ2 = δμ/2 when the Kitaev
chain is in the TSC phase, is found to be half-quantized at
e2/h instead of the expected 2e2/h. This discrepancy arises
from the use of different definitions for the local conductance.
While those references define it as δI/δμ, a more reasonable
definition is δI/δμ1 = 2δI/δμ from Eq. (32).

As mentioned in Sec. II, we measure all energy in the unity
of t . The superconductor gap of a typical InSb-Al nanowire
devices is of order ∼100 µeV ≈ 1.6 K, and the working tem-
perature is around 0.02 K. We choose our parameters as
�/t = 1 and vary the temperature T/t from 0.01 to 1 follow-
ing the experiment. Under this choice, μ = 0 corresponds to
perfect MZM case and only LARs are present. We plot the
electrical conductances G for different μ at finite temperature
for a 20-site model in Fig. 3. We adopt the asymmetric effec-
tive coupling strengths �1/t = 0.5, �2/t = 0.1 [63]. We find
the local electrical conductance [Figs. 3(a) and (c)] is nearly
unity at low T in the region |μ| < 1.7t . It is consistent with
the spectrum of a 20-site model in Fig. 2 which shows that the

FIG. 4. The transmission functions TLAR,α (dashed line) and
Fermi-Dirac factor n1en̄1e (solid line) at T/t = 0.02, 0.8. The pa-
rameters are μ = 0, t = � = 1, �1 = 0.5, and �2 = 0.1. At low
temperature, due to the small number of excitation, the factor n1en̄1e

are concentrated around ω = 0, where the two transmissions have
identical values. Consequently, the local conductances G11 and G22

are relatively close to each other. At high temperature, as the ther-
mal excitation distribution broadens, the discrepancy between the
transmission functions leads to significant differences in the local
conductances G11 and G22.

nanowire hosts Majorana modes at two ends of the wire when
|μ| < 1.7t . In contrast, the nonlocal electrical conductance
[Fig. 3(b)] is small at low temperature and is nonzero near
the gap-opening region. The low-temperature feature of the
electrical conductances of the left and right reservoirs is quite
similar even though the coupling strengths are asymmetric.
As the temperature increases, high-energy modes begin to get
involved, and the asymmetry in the coupling strengths affect
the conductance dramatically. For example, at T = 0.2, the
electrical conductance of the left reservoir G11 is nearly three
times of the right one G22 [see Fig. 3(d)]. This distinction
becomes evident when we examine the region μ � t in which
the transport is primarily governed by the LAR. The transmis-
sion functions of the left LAR and the right LAR at the sweet
point μ = 0, � = t = 1 are [25]

T sp
LAR,α (ω) = 16�2

α

�4
αω2 + ω2(ω2 − 4)2 + 2�2

α (ω4 − 4ω2 + 8)
.

At low temperature, the small number of excitations leads to
a concentration of the factor n1en̄1h near ω = 0, where the
two transmission functions exhibit similar values, resulting
in an almost equal local electrical conductance. However, at
higher temperature, the broader excitation distribution spreads
over a wide frequency range, causing the discrepancy between
the transmission functions to significantly affect the conduc-
tance G11 and G22 (see Fig. 4). As the chemical potential μ

increases, the LAR is suppressed and the normal transport
becomes dominant, causing the two conductances G11 and G22

to converge.
In Fig. 5, we show the thermal conductance K/T as a

function of T/t and μ/t . We see that the K/T is nearly
zero in the region |μ| < 1.7t and increases dramatically in
the vicinity of the gap opening point |μ|/t ∼ 1.7, which is
different from the behavior of local electrical conductance.
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FIG. 5. Thermal conductance in units of π 2k2
B/3h of a 20-site

Kitaev chain. The parameters are t = � = 1, and we adopt asymmet-
ric coupling �1 = 0.5, �1 = 0.1. (a) The temperature and chemical
potential dependence of K/T . (b). Cross sections of thermal conduc-
tance at various T .

The zero value of thermal conductance is due to the fact that
LAR does not transfer energy. It can also be seen in Fig. 5(b).
When μ = 0, the system is in the exactly solvable case. Two
Majorana modes are perfectly localized at two ends of the
chain. NT and CAR vanish and only LAR is present. There
is no energy transport, so the thermal conductance is always
zero regardless of the temperature. Another interesting feature
is that the peak at low temperature T/t = 0.01 is close to
half of a thermal conductance quantum (1/2)πk2

B/3h. Similar
feature is also seen in the two Majorana modes system (see
Appendix B). Previous works show the peak is exactly half
quantized at the phase transition point in the long chain limit
[53], and numerical studies show it is also the case in the finite
chain case [51,52]. We prove that the half quantization is exact
in the zero temperature limit for a finite Kitaev chain and the
two Majorana modes system in Appendices A and B.

V. SUMMARY

In this article, we obtain a general form of the MGF of en-
ergy and particle transport in an 1D open Kitaev chain at finite
temperature. The explicit expression of the MGF allows us to
extract the fluctuation relations in a straightforward manner.
The energy current is carried by the particles involved in the
NT process and the CAR process, while the particle current
is also carried by the LAR process in addition to the above
two processes. We find that the joint distribution of particle
and energy currents satisfies different fluctuation relations in
different regions of the parameter space as a result of U(1)
symmetry breaking and energy conservation. Moreover, we
study the linear response properties of the Kitaev chain in the
framework of three-terminal system. The electrical conduc-
tance is quantized in the TSC phase when the Kitaev chain
hosts two Majorana modes at two ends as expected. The
thermal conductance, however, is half quantized at the phase
transition point.

In addition to its significance in the field of Majorana
physics, the Kitaev chain could serve as a thermal ma-
chine outside the TSC phase and it offers a promising
platform for exploring thermodynamics of three-terminal sys-
tem, in parallel to other three-terminal systems, such as the

phonon-thermoelectric systems [60,64–71], or the Cooper-
pair splitter [72–75]. Future investigations in this direction
could delve into the analysis of work power and efficiency
across different phases, as well as exploring the impact of
finite size effects, with the help of our exact expression of
MGF.
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APPENDIX A: EXPRESSION OF THE FACTORS
IN THE MGF

In this Appendix, we give the exact expression of factors
in the MGF (9). First we calculate the nonequilibrium Green’s
function (GF) of the Kitaev chain. We choose the site-ordered
particle-hole basis

�̂ = (d̂†
1 . . . dN d̂†

N )T .

In this basis, the Hamiltonian of the Kitaev chain can be
written as

ĤK = 1
2 �̂TH�̂,

where H is an antisymmetric block tridiagonal matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iσyμ D 0 . . . . . . 0

DT iσyμ D 0 . . . 0

0 DT . . .
. . .

. . .
...

...
. . .

. . .
. . . D 0

0 . . . 0 DT iσyμ D
0 . . . . . . 0 DT iσyμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with

D ≡ iσ T
y t + �σz =

(
� t
−t −�

)

and σ j ( j = x, y, z) the Pauli matrix. The free GF is given by

G = (i∂t − H − �)−1, (A1)

where � is the self-energy of the reservoirs

� =

⎛
⎜⎜⎜⎜⎜⎝

�1 0 . . . 0
0 0 . . . 0
...

. . .
. . .

...
...

. . .
. . . 0

0 . . . 0 �N

⎞
⎟⎟⎟⎟⎟⎠,

with

�α =
(

�αe

�αh

)
.
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Under the wide-band approximation, the self-energy of reser-
voir α is given by

�αe = −i�α

(
1 2(1 − nαe)
0 −1

)
,

�αh = −i�α

(
1 2(1 − nαh)
0 −1

)
.

Here, the subscript (e, h) indicates the self-energy of electrons
or holes. The free GF can be divided into N × N blocks. Each
block is a 4 × 4 matrix

[G]i j =
(

[G]eh
i j [G]ee

i j

[G]hh
i j [G]he

i j

)
,

and its element [G]αβ
i j (α, β = e, h) enjoys a so-called causal-

ity structure

[G]αβ
i j =

(
[GK ]αβ

i j [GR]αβ
i j

[GA]αβ
i j 0

)
,

with GR, GA, GK the retarded, advanced, and Keldysh GFs,
respectively. Now we introduce the scattering matrix which is
related to GF by Fisher-Lee formula [76]

S = I − i
√

i�GR
√

i�, S† = I + i
√

i�GA
√

i�.

The scattering matrix is unitary

SS† = S†S = I

and can be written as

S =

⎛
⎜⎜⎜⎝

r11 r12 . . . r1N

r21 r22 . . .
...

...
. . .

. . .
...

rN1 . . . . . . rNN

⎞
⎟⎟⎟⎠,

where the reflection matrix r jk has a 2 × 2 block structure in
the particle-hole space

r jk =
(

reh
jk ree

jk

rhh
jk rhe

jk

)
.

Here reh
j j , ree

jk , and reh
jk are the usual amplitude of the LAR at

site j, the amplitude of the NT from site j to site k, and the
amplitude of the CAR from site j to site k, respectively.

With the help of the scattering matrix, we find that

TNT = pNTTNT = ∣∣ree
1N

∣∣2 = 4�1�2
[
GR

1N

]ee[GA
N1

]ee
,

TCAR,e = pCARTCAR = ∣∣reh
1N

∣∣2 = 4�1�2
[
GR

1N

]eh[GA
N1

]he
,

TLAR,1 = pLARTLAR,1 = ∣∣reh
11

∣∣2 = 4�2
1

[
GR

11

]he[GA
11

]eh
,

TLAR,2 = pLARTLAR,2 = ∣∣reh
NN

∣∣2 = 4�2
2

[
GR

NN

]he[GA
NN

]eh
,

and

pNTTNTT̄NT = TNT − det[S†
eeSee],

pCARTCART̄CAR = TCAR − det[S†
ehSeh],

pLARTLAR,1TLAR,2 = TLAR,1 − det[S†
LSL],

where

See =
[

reh
11 ree

1N

rhh
11 rhe

1N

]
,Seh =

[
reh

11 reh
1N

rhh
11 rhe

1N

]
,SL =

[
reh

11 ree
1N

reh
1N ree

11

]
.

We only need to find the expression of the retarded GF
since GA is the complex conjugate of GR. The block tridiago-
nal structure of the GF allows us to obtain an exact expression
of the retarded GF. The inverse of the retarded GF in fre-
quency space can be read out from the GF (A1)

[GR]−1(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 B 0 . . . . . . 0

BT D B 0 . . . 0

0 BT . . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 BT D B
0 . . . . . . 0 BT DN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a 2N × 2N block tridiagonal matrix with diagonal
block elements

D1 =
[
ω + μ + i�1

ω − μ + i�1

]
,

DN =
[
ω + μ + i�2

ω − μ + i�2

]
,

Dn =
[
ω + μ

ω − μ

]
, for 1 < n < N,

and the subdiagonal block element

B =
[−t −�

� t

]
.

Now we can use the formula of inverse of block tridiagonal
matrices in Refs. [77–80]. We introduce two matrix sequences
{Xn} and {Yn}, which are obtained recursively

Xn =
{

0 if n = N,

B[Dn+1 − X n+1]−1BT if 1 � n < N,
(A2)

Yn =
{

0 if n = 1,

BT [Dn−1 − Y n−1]−1B if 1 � n < N.
(A3)

Then the diagonal block of GR is given by

GR
n,n(ω) = [B − Xn − Yn]−1, (A4)

and the off-diagonal blocks are

GR
m,n =

{
−[Dm − Xm]−1BT

m−1GR
m−1,n if m > n,

−[Dm − Ym]−1Bm−1GR
m+1,n if m < n.

(A5)

Even though the computations scale linearly with N , each
step in the recurrence can be expensive. The near block
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Toeplitz form of [GR]−1 allows us to obtain a compacted
form. We introduce the matrix Möbius transformation which
is defined as

T◦z ≡ (a · z + b)(c · z + d )−1, (A6)

where z is a 2 × 2 matrix and T a 4 × 4 block matrix with
block elements

T =
[

a b
c d

]
.

The dot operation · in the right-hand side of Eq. (A6) is the
usual matrix product. The Möbius transformation is associa-
tive, namely,

S ◦ (T ◦ z) = (S · T ) ◦ z

for two 4 × 4 block matrix S and T . Hence, we rewrite
the recurrence relation (A2) of {Xn} (1 < n < N) except the

boundary terms as

Xn = B[(BT )−1Dn+1 − (BT )−1Xn+1]

=
[

0 B
−(BT )−1 (BT )−1D

]
◦ Xn+1

=
[

0 B
−(BT )−1 (BT )−1D

]N−1−n

◦ XN−1. (A7)

Similarly, the recurrence relation (A3) of {Yn} (1 < n < N)
except the boundary terms is rewritten as

Yn =
[

0 BT

−B−1 B−1D

]n−2

◦ Y2. (A8)

The matrix elements of GR(ω) is evaluated efficiently by using
Eqs. (A4) and (A5) and Eqs. (A7) and (A8).

Equations (A7) and (A8) hold for a nonsingular B. When
B is singular, such as the parameter choice t = � in the
main text, the original block tridiagonal matrix [GR]−1 can be
actually transformed to a tridiagonal matrix

[G̃R]−1 ≡ U [GR]−1UT

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ω + i�1 −μ . . . 0
−μ ω + i�1 −2t

−2t ω −μ

−μ
.. . −2t
−2t ω + i�2 −μ

−μ ω + i�2

⎤
⎥⎥⎥⎥⎥⎥⎦

by the 2N × 2N diagonal block unitary matrix

U jk = δ jk
1√
2

[
1 1
1 −1

]
.

We denote the diagonal sequences of [G̃R]−1 as
{d1, d2, . . . d2N }, where

d1 = d2 = ω + i�1, d2N−1 = d2N = ω + i�2,

dn = ω for 2 < n < 2N − 1.

The subdiagonal sequences of [G̃R]−1 are denoted by
{a2, a3, . . . a2N }, with

a2n = μ, a2n+1 = 2t, for n = 1, 2, . . . N.

The inverse of a tridiagonal matrix is characterized by two
sequences {xn} and {yn} which are obtained recursively with
the help of the sequences {dn} and {an} [77], namely,

x2N = d2N ,

x j = d j − a2
j+1

x j+1
, j = 2N − 1, . . . , 1,

and

y1 = d1,

y j = d j − a2
j

y j−1
, j = 2, . . . , 2N.

The retarded GFs associated with NT, CAR, and LAR are
given by[

GR
1N

]ee = 1

2

a2 . . . a2N−1

y1 . . . y2N
(x2N + a2N )(1 + y1/a2),

[
GR

1N

]eh = 1

2

a2 . . . a2N−1

y1 . . . y2N
(x2N − a2N )(1 + y1/a2),

[
GR

11

]eh = 1

2

1

x1
(1 − y1/x2),

[
GR

11

]eh = 1

2y2N
(x2N/y2N−1 − 1).

1. Half-quantized thermal conductance

We find numerically that the linear thermal conductance
is nearly half quantized K/T ∼ π2k2

B/(6h) in the low-
temperature regime (see Fig. 5). Now we prove that the
half quantization is actually exact in the zero-temperature
limit. We first rescale the parameters by the temperature, e.g.,
ω → ω/T and �α → �α/T . At the zero temperature T →
0, the value of the transmission coefficient TNT(ω) can be
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approximated by TNT(0) (same for TCAR and TLAR). Then
the thermal electrical response coefficients are all zero, for
example,

LE ,1 =
∫

dω

2π
ω[TNT(ω) + TCAR(ω)]n1en̄1e

= T 2[TNT(0) + TCAR(0)]
∫

dω

2π

ω

4 cosh2(ω/2)

= 0.

Notice that the thermal conductance K [Eq. (34)] can be
written as

K = 1

T 2

det L

T det G
,

where L is the 3 × 3 linear response matrix in Eq. (31) and G
is the linear electrical conductance matrix in Eq. (32). Since
the thermal electrical response coefficients are all zero LE ,1 =
LE ,2 = L1,E = L2,E = 0, the thermal conductance reduces to

K = 1

T 2
LE ,E = T [TNT(0) + TCAR(0)]

∫
dω

2π

ω2

4 cosh2(ω/2)

= π

6
[TNT(0) + TCAR(0)]T .

From the expression of GR
1N , we obtain the expression of

TNT(0) and TCAR(0),

TNT(0) = TCAR(0)

= �1�2
μ2N−4

(
�2

1 + μ2
)(

�2
2 + μ2

)
(2t )2N[(

�2
1 + μ2

)(
�2

2 + μ2
)
μ2N−4 + �1�2(2t )2N−2

]2

� 1

4
,

where the equality is achieved when

(
�2

2 + μ2
)(

�2
1 + μ2

)
(2t )4

(
μ

2t

)2N−4

= �1�2

(2t )2
. (A9)

Thus, the thermal conductance is bounded by the half-thermal
conductance quantum

K/T = π

6
[TNT(0) + TCAR(0)] � π

12
= 1

2

π2k2
B

3h
,

where we resort to SI unit in the last equality.
The location of the peak of K/T is determined numerically

by solving Eq. (A9) or estimated as follows. We expect the so-
lution to Eq. (A9) is around the phase transition point μ/2t =
±1. We write μ/2t = 1 + dμ, substitute it into Eq. (A9),
and expand the left-hand side to the first order of dμ. The

FIG. 6. (a) Linear thermal conductance K/T in units of π2k2
B/3h

at the phase transition point for the Kitaev chain with site num-
ber N = 10, 20, 40. The parameters are t = � = 1, and we adopt
asymmetric coupling strengths �1 = 0.5, �2 = 0.1. The chemical
potential |μ| is solved from Eq. (A9), and |μ| ≈ 1.60, 1.79, 1.89 for
N = 10, 20, 40, respectively. (b) The chemical potential μ calculated
from Eq. (A9) and Eq. (A10) when K/T is half quantized.

solution is

dμ = �1�2 − (
4t2 + �2

1

)(
4t2 + �2

2

)
2
(
4t2 + �2

1 + �2
2

) + (
4t2 + �2

1

)(
4t2 + �2

2

)
(n − 2)

+ O

(
1

n2

)
. (A10)

We see that dμ ∼ 1/(n − 2) and the solution is indeed around
the phase transition point μ/2t = ±1 for N � 1. In Fig. 6(a),
the linear thermal conductance K/T is indeed asymptotically
converge to the half-thermal conductance quantum for the
chemical potential μ solved from Eq. (A9) as temperature
goes to zero. From Fig. 6(b), we verify our expectation that
the solution of Eq. (A9) μ/2t → 1 as we approach the ther-
modynamic limit.

2. Response theory from FR

In this section, we first review the response theory which
is derived from the exchange FR [16,18,19], including the
well-known results in linear response theory, such as the On-
sager reciprocal relation and FDR. Then we obtain the exact
expression of nonlinear response coefficients of the Kitaev
chain.

At equilibrium (A = 0), the mean current vanishes. We
notice that the mean current can be expanded in powers of
the affinities close to equilibrium

Jj =
∑

k

L j,kAk + 1

2

∑
k,l

Mj,kl AkAl + . . . .

This expansion implies a definition of the response coeffi-
cients

Lj,k ≡ ∂2F (λ, A)

∂ (iλ j )∂Ak

∣∣∣∣
λ=0
A=0

, (A11)

Mj,kl ≡ ∂3F (λ, A)

∂ (iλ j )∂Ak∂Al

∣∣∣∣
λ=0
A=0

, (A12)

Ni, jkl = ∂3Ji(A)

∂Aj∂Ak∂Al

∣∣∣∣
A=0

, (A13)

...
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The response coefficients and the cumulants satisfy a family
of universal relations, which can be derived from the exchange
FR (18) [16,18,19]. The first-order response relations are
nothing but the FDR

Lj,k = Djk (A = 0), (A14)

and the Onsager reciprocal relation

Lk, j = Lj,k,

where the second relation is from the symmetry of Djk = Dk j .
Thus, we see that the two main cornerstones of linear response
theory are encoded in the exchange FR.

As for nonlinear response at equilibrium, we have similar
relations [16,18,19]

Mi, jk =
(

∂Di j

∂Ak
+ ∂Dik

∂Aj

)∣∣∣∣
A=0

, (A15)

Ni, jkl =
(

∂2Di j

∂Ak∂Al
+ ∂2Dik

∂Aj∂Al
+ ∂2Dil

∂Aj∂Ak
− 1

2

∂Ci jk

∂Al

)∣∣∣∣
A=0

,

...

In the following, we will consider response properties up to
the second order.

3. Demonstration of the Response relation

In this section, we check the nonlinear response relation
Eq. (A15) up to the second order with the exact expression of
the MGF.

We consider the second-order response coefficients M1, jk

( j, k = 1, 2, E ) for example. At zero affinity, M1, jk are
given by

M1,i j =
∫

dω

2π
p0(1 − p0)(1 − 2p0)

⎛
⎝ TNT + TCAR 0 ω(TNT + TCAR + 2TLAR,1)

0 −(TNT + TCAR) 0
ω(TNT + TCAR + 2TLAR,1) 0 ω2(TNT + TCAR)

⎞
⎠.

Accordingly, the derivative of noise D1 j are given by

∂D1i

∂Aj
= 1

2

∫
dω

2π
p0(1 − p0)(1 − 2p0)

⎛
⎜⎝

TNT + TCAR TNT − TCAR ω(TNT + TCAR + 4TLAR,1)

−TNT + TCAR −TNT − TCAR ω(−TNT + TCAR)

ω(TNT + TCAR) ω(TNT − TCAR) ω2(TNT + TCAR)

⎞
⎟⎠.

It is easy to check that the nonlinear response relation Eq. (A15) is satisfied in the Kitaev chain, namely

Mi, jk = ∂Di j

∂Ak
+ ∂Dik

∂Aj
. (A16)

It can be checked that higher-order response relations are also valid in the Kitaev chain.

APPENDIX B: TWO-TERMINAL MAJORANA JUNCTION

In this Appendix, we study the transport of two Majorana modes localized at two ends of a nanowire. This model has been
extensively studied in the literature, since it is simple enough but still captures the main features of the Majorana physics. The
Hamiltonian of the whole system is composed of three parts Ĥ = ĤM + ∑

α=1,2 Ĥα + Ĥ ′
I , where Ĥα is given by Eq. (3) and

ĤM = i

2
εM γ̂1γ̂2,

Ĥ ′
I =

∑
j

(t1 j,1ĉ†
1 j γ̂1 + t2 j,2ĉ†

2 j γ̂2 + H.c.).

Here, εM is the energy gap of the MZMs, and Ĥ ′
I describes the coupling between the reservoirs and the nearest Majorana

mode γ̂α . The Majorana modes satisfy the anticommutation relation {γ̂α, γ̂α′ } = 2δαα′ , and can be combined to a Dirac fermion
d̂† = (γ̂1 + iγ̂2)/2, d̂ = (γ̂1 − iγ̂2)/2 which satisfies {d̂, d̂†} = 1.

We use the Keldysh functional integral and obtain the MGF of this system. The MGF takes the same form as Eq. (8) but the
expressions of the components are slightly different

ZM,NT(ξ1 − ξ2) = pM,NT + TM,NT[n1en̄2e(ei(ξ1−ξ2 )eiωη− − 1) + n̄1en2e(e−i(ξ1−ξ2 )e−iωη− − 1)]

+ T̄M,NT[n1hn̄2h(e−i(ξ1−ξ2 )eiωη− − 1) + n̄1hn2h(ei(ξ1−ξ2 )e−iωη− − 1)], (B1)

ZM,CAR(ξ1 + ξ2) = pM,CAR + TM,CAR[n1en̄2h(ei(ξ1+ξ2 )eiωη− − 1) + n̄1en2he−i(ξ1+ξ2 )e−iωη− − 1)]

+ T̄M,CAR[n1hn̄2e(e−i(ξ1+ξ2 )eiωη− − 1) + n̄1hn2e(ei(ξ1+ξ2 )e−iωη− − 1)], (B2)
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ZM,LAR(ξ1, ξ2) = pM,LAR{1 + TM,LAR,1[n1en̄1h(e2iξ1 − 1) + n̄1en1h(e−2iξ1 − 1)]}
× {1 + TM,LAR,2[n2en̄2h(e2iξ2 − 1) + n̄2en2h(e−2iξ2 − 1)]}. (B3)

The reflection and transmission coefficients are given by

TM,NT = T̄M,NT = TM,CAR = T̄M,CAR = 4�1�2ε
2
M(

4�2
1 + ω2

)(
4�2

2 + ω2
) + ε2

M

(
8�1�2 + ε2

M − 2ω2
) ,

TM,LAR,α = 4�2
α

4�2
α + ω2

,

pM,LAR =
(
4�2

1 + ω2
)(

4�2
2 + ω2

)
(
4�2

1 + ω2
)(

4�2
2 + ω2

) + ε2
M

(
8�1�2 + ε2

M − 2ω2
) ,

pM,NT + pM,CAR = ε2
M

(
8�1�2 + ε2

M − 2ω2
)

(
4�2

1 + ω2
)(

4�2
2 + ω2

) + ε2
M

(
8�1�2 + ε2

M − 2ω2
) .

We assume the effective coupling strengths are equal �1 = �2 = �. The particle currents from the left and right reservoirs are

JN
1 =

∫
dω

2π

4�2(n1en̄1h − n1hn̄1e)
(
4�2 + ε2

M + ω2
)

(4�2 + ω2)2 + (8�2 − 2ω2)ε2
M + ε4

M

=
∫

dω

2π
TN (ω)(n1e − n1h), (B4)

JN
2 =

∫
dω

2π

4�2(n2en̄2h − n2hn̄2e)
(
4�2 + ε2

M + ω2
)

(4�2 + ω2)2 + (8�2 − 2ω2)ε2
M + ε4

M

=
∫

dω

2π
TN (ω)(n2e − n2h), (B5)

where the transmission coefficient is

TN (ω) = pM,LARTM,LAR + TM,NT = 4�2
(
4�2 + ε2

M + ω2
)

(4�2 + ω2)2 + (8�2 − 2ω2)ε2
M + ε4

M

.

The energy currents from the left and the right reservoirs are

JE
1 =

∫
dω

2π
ω

4�2ωε2
M (n1e + n1h − n2e − n2h)

(4�2 + ω2)2 + (8�2 − 2ω2)ε2
M + ε4

M

=
∫

dω

2π
2ωTE (ω)(n1e − n2e),

(B6)

JE
2 =

∫
dω

2π

4�2ωε2
M (−n1e − n1h + n2e + n2h)

(4�2 + ω2)2 + (8�2 − 2ω2)ε2
M + ε4

M

=
∫

dω

2π
2ωTE (ω)(n2e − n1e),

with

TE (ω) = TM,NT = 4�2ε2
M

(4�2 + ω2)2 + (8�2 − 2ω2)ε2
M + ε4

M

.

The net effect of the NT and the CAR in the particle current
JN
α is to convert an electron in the left reservoir to an hole

in the same reservoir. It can be seen by considering current
j(ω) through a single channel ω. From the MGF Eqs. (B1)
and (B2), the current components for a single channel ω from
NT and CAR are

jNT(ω) ≡ TM,NT(n1e − n2e) − T̄M,NT(n1h − n2h),

jCAR(ω) ≡ TM,CAR(n1e − n2h) − T̄M,CAR(n1h − n2e).

Since TM,NT,= T̄M,NT = TM,CAR = T̄M,CAR, we have jNT +
jCAR = 2TM,NT(n1e − n1h), which indicates the whole process
is equivalent to a LAR. Again, we see that JN

1 �= JN
2 generally

and JE
1 = −JE

2 . Previously, some studies, e.g., Refs. [81,82],
incorrectly use the Landauer-Büttiker formula of a two-
terminal system, instead of that of a three-terminal system,
such as Eqs. (3) and (4) in Ref. [81] (in our notation)

JN
1 =

∫
dω

2π
TN (ω)[n1e(ω) − n2e(ω)], (B7)

JE
1 =

∫
dω

2π
ωTN (ω)[n1e(ω) − n2e(ω)]. (B8)

The above expression of particle current Eq. (B7) only take
the NT into account and neglect other two Andreev reflec-
tion processes, compared to Eq. (B4). That is why the above
expressions of current gives half the quantized electrical con-
ductance e2/h (the correct one is 2e2/h). The expression of
energy current Eq. (B8) is also incorrect in the transmission
term TN (ω) compared to Eq. (B6), because TN (ω) incorrectly
includes contributions from LAR which is not involved in the
energy transport.
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FIG. 7. The electrical conductance G11 in units of 2e2/h and
thermal conductance K/T in units of π 2k2

B/3h for two MZMs. The
coupling strength is set to � = 1. (a) Electrical conductance G11 as a
function of the gap εM/� and the temperature T . (b) Cross sections of
the electrical conductance at various temperatures T = 0.02, 0.2, 0.4,
and 0.8. (c) Thermal conductance K/T as a function of the gap εM/�

and the temperature T . (d) Cross sections of the thermal conductance
at various temperatures T = 0.02, 0.2, 0.4, and 0.8.

1. Linear response regime

In the framework of the three-terminal system, the linear
response matrix for two MZMs reads

L =
⎛
⎝L1,1 0 0

0 L2,2 0
0 0 LE ,E

⎞
⎠,

with

L1,1 = L2,2 =
∫

dω

2π
TN (ω)

1

2 cosh2 β2ω

2

,

LE ,E =
∫

dω

2π
2ω2TE (ω)

1

4 cosh2 β2ω

2

. (B9)

The electrical conductance is

G = e2

T

(
L1,1 0

0 L2,2

)
,

which shows that there is no nonlocal conductance. The See-
beck coefficients are all zero. Thermal conductance is given
by

K = 1

T 2
LE ,E .

In Fig. 7, we plot K (εM, T ) and G(εM, T ). The behavior
of G is consistent with previous studies: it is quantized at

FIG. 8. (a) The thermal conductance K/T in units of π2k2
B/3h as

a function of �/T and εM/T . The solid line is 2� = εM . (b) The
thermal conductance K/T as a function of εM/� at T = 0.02.
The maximum of K/T is half of a thermal conductance quantum
π 2k2

B/6h, which is obtained in the zero-temperature limit εM/T →
∞, �/T → ∞, and εM/� = 2. The points deviating from the red
curve in panel (b) correspond to small εM and small �.

2e2/h at zero gap εM = 0 at low temperature. Nevertheless,
the thermal conductance differs substantially from previous
studies. It vanishes at zero gap regardless of the temperature
and increases to the maximum at finite gap. Interestingly, the
maximum value of K/T is about half-thermal conductance
quantum (1/2)π2k2

B/3h. As the temperature increases, the
quantization is smeared out gradually. In the following, we
demonstrate that the quantization of K/T is in fact exact. We
measure the energy in the unit of T , i.e., we rescale ω → βω,
� → β�, εM → βεM . Then K can be written as

K = T
∫

dω

2π
2ω2TE (ω)

1

4 cosh2 ω
2

.

The integral reaches its maximum in the limit �/T → ∞ and
εM/T → ∞ (zero-temperature limit). In this limit, we can
approximate the integrand TE (ω) ≈ TE (0) and carry out the
integral

K/T = TE (0)
∫

dω

2π

ω2

2 cosh2 ω/2
= π

3
TE (0)

= π

3

4�2ε2
M(

4�2 + ε2
M

)2 � π

12
= 1

2

π2k2
B

3h
,

where the equality is achieved at εM/� = 2 and we resort to
SI unit in the last equality. We show K/T as a function of �/T
and εM/T in Fig. 8.

2. Demonstration of the response relation

The explicit expression of the currents can give us some in-
sight about the response coefficients. The occupation number

n1e(ω) − n1h(ω) = sinh A1

cosh [(β2 − AE )ω] + cosh A1
(B10)

is an odd function of A1, thus all responses coefficients
associated with even power terms of A1 = β1μ1 vanishes.
Equation (B10) is also an even function of ω. Differentiating
it with respect to AE = β2 − β1 will not change the parity of
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Eq. (B10). So the responses coefficients only associated with
odd powers of A1 are nonzero. Similar consideration applies to
JN

2 . Since JN
2 does not depend on AE , the response coefficients

of JN
2 are diagonal. In the following, we demonstrate the

validity of the nonlinear response relation

Mi, jk =
(

∂Di j

∂Ak
+ ∂Dik

∂Aj

)∣∣∣∣
A=0

for i = 1 in the two MZMs model. Other cases can be checked
similarly. From the expression of currents Eqs. (B4) and (B5),
the only nonzero second-order response coefficient is

M1,1E = M1,31 =
∫

dω

2π
2ωTN p0(1 − p0)(1 − 2p0),

where p0 = 1/(eβ2ω + 1). The current noises D1 j are

D11(A) = 1

2

∫
dω

2π

[
TM,NT(n1en̄2e + n̄1en2e + n1en̄2h + n̄1en2h) + 2pM,LARTM,LAR,1(n1en̄1h + n̄1en1h) − (

jN
1

)2]
,

D12(A) = 1

2

∫
dω

2π

[
TM,NT(−n1en̄2e − n̄1en2e + n1en̄2h + n̄1en2h) + 2pM,LARTM,LAR,1TM,LAR,2(n1e − n1h)(n2e − n2h) − jN

1 jN
2

]
,

D1E (A) = 1

2

∫
dω

2π
ω
[
TM,NT(n1en̄2e + n̄1en2e + n1en̄2h + n̄1en2h) − jN

1 jE
1

]
.

At zero affinity, they reduce to

D11(A = 0) =
∫

dω

2π
2TN p0(1 − p0) = L1,1 = L2,2,

D1E (A = 0) =
∫

dω

2π
2ωTE p0(1 − p0) = L1,E ,

D12(A = 0) = 0,

as expected. The derivatives of current noise D1i at zero affinities are

∂D1i

∂Aj
=

∫
dω

2π
p0(1 − p0)(1 − 2p0)

⎛
⎜⎝

0 0 ω(TM,NT + 2pM,LARTM,LAR,1)

0 0 0

ωTM,NT 0 0

⎞
⎟⎠.

The symmetric sum of D1 j,k is

∂D1i

∂Aj
+ ∂D1 j

∂Ai
=

⎛
⎜⎝

0 0 D11,E + D1E ,1

0 0 0

D1E ,1 + D11,E 0 0

⎞
⎟⎠.

In comparison with the expression of M1, jk we verify Eq. (A15) in the two Majorana modes system

M1, jk =
(

∂D1 j

∂Ak
+ ∂D1k

∂Aj

)∣∣∣∣
A=0

.
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