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Two-stage random sequential adsorption of discorectangles and disks on a two-dimensional surface
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The different variants of two-stage random sequential adsorption (RSA) models for packing of disks and
discorectangles on a two-dimensional (2D) surface were investigated. In the SD (sticks+disks) model, the
discorectangles were first deposited and then the disks were added. In the DS (disks+sticks) model, the disks
were first deposited and then discorectangles were added. At the first stage the particles were deposited up to the
selected concentration and at the final (second) stage the particles were deposited up to the saturated (jamming)
state. The main parameters of the models were the concentration of particles deposited at the first stage, aspect
ratio of the discorectangles ε (length to diameter of ratio ε = l/d) and disk diameter D. All distances were
measured using the value of d as a unit of measurement of linear dimensions, the disk diameter was varied in the
interval D ∈ [1 − 10], and the aspect ratio value was varied in the interval ε ∈ [1 − 50]. The dependencies of the
jamming coverage of particles deposited at the second stage versus the parameters of the models were analyzed.
The presence of first deposited particles for both models regulated the maximum possible disk diameter Dmax

(SD model) or the maximum aspect ratio εmax (DS model). This behavior was explained by the deposition of
particles in the second stage into triangular (SD model) or elongated (DS model) pores formed by particles
deposited at the first stage. The percolation connectivity of disks (SD model) and discorectangles (DS model)
for the particles with a hard core and a soft shell structure was analyzed. The disconnectedness was ensured by
overlapping of soft shells. The dependencies of connectivity versus the parameters of SD and DS models were
also analyzed.
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I. INTRODUCTION

In recent years, adsorption and random packings of macro-
molecules and colloidal particles on two-dimensional (2D)
substrates have attracted much research and development at-
tention [1,2]. Such systems demonstrated attractive practical
applications in electronic, optical, and magnetic devices. The
model of random sequential adsorption (RSA) is frequently
used as an efficient tool for investigation of deposition pro-
cesses. In RSA model the particles are deposited sequentially
on a 2D substrate without overlapping each other. In the
so-called “jamming limit” the surface coverage reaches the
saturation limit ϕJ .

Different types of random and cooperative sequential ad-
sorption models have been studied [3]. The effects particle
shape on structure of packings have attracted great inter-
est [4]. Continuous RSA problems for particles of various
shapes, e.g., for disks [5,6], squares [6,7], cubic particles
[8], rectangles [5,9–13], oriented rectangles [14], discorect-
angles [4,5,11,15], rounded rectangles, isosceles and right
triangles [16], ellipses [5,11,12,15,17,18], hard polygons [19],
spheroids [20], and needles [11,12,18,21] were analyzed. For
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elongated particles, the nonmonotonic dependencies of sur-
face coverage ϕJ versus the aspect ratio ε (width to length
ratio) have been typically observed [4]. For example, for
completely disordered RSA packing of discorectangles a
well-defined maximum ϕJ = 0.583 ± 0.004 (at εmax ≈ 1.46)
was observed [15]. This behavior can be explained by appear-
ance of orientation degrees of freedom and excluded volume
effects [22].

The spatially continuous RSA models related to simultane-
ous deposition of mixtures of particles on 2D planar surface
have been investigated [17,23–25]. In early studies the ad-
sorption of mixture of hard disks of greatly differing particle
diameters was studied theoretically [17]. The dependence of
the jamming limit of large disks as the function of the ratio
of deposition rate constants was estimated. RSA of disks
of different sizes has been also investigated using computer
simulations [23]. The different time dependencies of coverage
ϕ(t ) were observed for the large and small disks. Simulation
studies of RSA of binary mixture of disks at different rela-
tive rate constants have been recently performed [24]. The
radial distribution function and volume distribution of pores
were analyzed. For a given diameter ratio the maximum total
jamming coverage was observed at some optimum relative
rate constant. In two-species antagonistic RSA lattice models
the restriction on occupation of the nearest-neighbor sites
by opposite species was introduced [25]. For this model,
interconnected adsorption and percolation behavior was
observed.
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In previous studies different RSA models have been also
applied for investigation of particle adsorption on the hetero-
geneous (prepatterned) substrates. For disk-shaped particles
the studies of RSA processes on the square landing cells
positioned in a square lattice array revealed different deposit
morphologies (latticelike, locally homogeneous, and locally
ordered) [26]. Effect of disk polydispersity on the RSA pro-
cesses on a square patterned substrate has been also discussed
[26]. Morphological characteristics of the RSA coverings of
disk-shaped particles on a nonuniform substrate was studied
[27]. A surface heterogeneity was produced by preliminary
deposition of landing cells (elongated rectangles). The study
revealed interesting dependence between the porosity of de-
posit and the size, shape, density, and in-cell orientation.

Different variants of the extended RSA deposition mod-
els with partially precovered surfaces have been discussed
in early studies [28–30]. The two-stage RSA models with
consecutive deposition of polydisperse mixtures of spherical
particles have been developed [29,31]. This approach was
applied for deposition of different particles at the first and
second stages. Particularly, RSA processes at precovered sur-
faces and adsorption of bimodal mixtures were discussed [29].
Irreversible adsorption of colloid particles on heterogeneous
surfaces has been studied [32]. In this RSA model the prelim-
inary adsorption of small spheres was followed by adsorption
of larger particles. Theoretical estimation of the available sur-
face and the jamming coverage in the RSA of a binary mixture
of disks has been performed [31].

The effects of electrostatic interaction on RSA deposition
on partially covered surfaces were studied [33,34]. The RSA
model has been applied for investigation of the deposition
of charged polymer nanoparticles on heterogeneous surfaces
bearing negative and positive areas of controlled topography
[35]. The heterogeneity was formed by preliminary deposition
of larger particles. The results revealed interesting depen-
dencies of maximum coverage and the structure of deposits
versus the heterogeneity degree. The present works also re-
view different RSA models for deposition at heterogeneous,
prepatterned, and partially covered substrates [1,2,35,36]. Par-
ticularly, the percolation, transport properties, and possible
applications of these functional films in electronic, optical,
magnetic, and biological devices were intensively discussed.

However, the two-stage RSA problem for mixtures of par-
ticles of different sorts (e.g., disks and elongated particles) has
not been studied in detail before to the best of our knowledge.
In this work, different variants of a two-stage RSA deposition
of disks and discorectangles were investigated. In the SD
(sticks+disks) model, the discorectangles were first deposited
to some level of coverage and then the disks were added until
the state of jamming. In the DS (disks+sticks) model, the disks
were first deposited and then the discorectangles were added.
The effects of different parameters (diameter of disks, aspect
ratio of discorectangles, and level of preliminary coverage)
on the structure of deposits and percolation connectivity of
particles inside deposits were studied.

The rest of the paper is organized as follows. Section II
presents the computational technical details, main definitions,
and examples of patterns of particle packings. Section III
presents the main results, and the final Sec. IV summarizes
our conclusions.

(a) (b)

(d)(c)

FIG. 1. Main definitions for the SD (a) and DS (b) models.
Presented patterns are enlarged portions of the size 64 × 64. Here,
l and d are the length and thickness of discorectangle (aspect ratio
was defined as length to diameter of ratio, i.e., ε = l/d), D is a
diameter of disk. Connectivity analysis was performed using the
particles of the second sort in jamming state (the disks for SD model
and discorectangles for DS model). The particles were covered by
the shells of thickness of δ. Particles that form a percolation cluster
are filled (colored in red) and examples of the percolation clusters
are presented for SD (c) and DS (d) models. The examples of the
patterns are presented for particular cases with parameters ε = 10,
ϕ p

ε = 0.1, D = 2, ϕJ
D = 0.448, δ = 4.96 (SD model), and for D =

10, ϕ
p
D = 0.54, ε = 10, ϕJ

ε = 0.160, δ = 1.08 (DS model).

II. MAIN FORMULATIONS AND COMPUTATIONAL
TECHNIQUE

The adsorption structures were formed using a two-stage
RSA model for packing of disks and discorectangles on the
2D plane. At the first stage, a preliminary deposition of parti-
cles of the first type (disks or discorectangles) was performed,
and at the second stage, the particles of another type (dis-
corectangles or disks) were deposited. Two variants of particle
deposition were considered (Fig. 1). In the SD model, the
discorectangles were first deposited to some level of coverage
ϕ

p
ε and then the disks were added until they reached their

jamming coverage ϕJ
D. In the DS model, the filling procedure

of 2D plane was reversed. Here the disks were first deposited
to some level of coverage ϕ

p
D and then the discorectangles

were added until they reached their jamming coverage ϕJ
ε .

An aspect ratio of discorectangles was defined as length to
diameter of ratio, i.e. ε = l/d . Diameter of the disks was
defined as D. All distances were measured using the value
of d as a unit of measurement of linear dimensions. Most
of the calculations presented in this paper were performed
for intervals D ∈ [1 − 10] and ε ∈ [1 − 50]. The total size of
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FIG. 2. Examples of time dependencies of the coverages dur-
ing the second stage of the deposition for the SD model (squares)
ϕD(t ) and for the DS model (triangles) ϕε (t ). For the SD model
the preliminary coverages by the discorectangles were ϕp

ε = 0.01
(open squares) and ϕ p

ε = 0.2 (filled squares). For the DS model the
preliminary coverages by the disks were ϕ

p
D = 0.01 (open triangles)

and ϕ
p
D = 0.2 (filled triangles). The data are presented for L = 256

and particular cases of ε = 10 and D = 1. Here ϕJ
D∞ and ϕJ

ε∞ are the
jamming coverages in the limit of t → ∞ for SD and DS models,
respectively.

the systems was L = Lx = Ly = 256, and periodic boundary
conditions were applied along x and y directions.

A coverage of the plane by the particles was calculated as
ϕ = NS/L2, where N is the number of deposited particles, S
is the surface area of the particle (S = πD2/4 for disk and
S = π/4 + ε − 1 for discorectangles). An analysis of the con-
nectedness percolation of RSA packing was always performed
for the particles of the second sort in the jamming state, i.e.,
for the disks in the SD model, and for the discorectangles in
the DS model. It was assumed that the particles of the sec-
ond sort have the hard-core/soft-shell structure with variable
thickness of the outer shell δ (Fig. 1). The presence of the
outer shell did not affected the RSA process.

The connectedness percolation procedure was similar to
that applied earlier [37]. During the connectivity analysis the
thickness of the shell was varied and the minimum (critical)
value of δ required for formation of a percolation cluster in the
RSA packing was determined. The analysis was carried out
using a list of near-neighbor particles [38] and the calculations
were performed using the Hoshen-Kopelman algorithm [39].
Particles that form a percolation cluster are filled (colored
in red). Figure 1 also presents examples of the percolation
clusters for SD [Fig. 1(c)] and DS [Fig. 1(d)] models (colored
in red).

Figure 2 presents the examples of time dependencies of
the coverage during the second stage of the deposition for the
SD model (squares) ϕD(t ) and for the DS model (triangles)
ϕε(t ). For the SD model the preliminary coverages by the
discorectangles were ϕ

p
ε = 0.01 (open squares) and ϕ

p
ε = 0.2

(filled squares). For the DS model the preliminary coverages

FIG. 3. Examples of the normalized jamming coverage ϕ∗ (ϕ∗ =
ϕJ

D/ϕJ
D∞ for the SD model and ϕ∗ = ϕJ

ε /ϕ
J
ε∞ for the DS model)

versus inverse size of the system 1/L. Here ϕJ
D∞ and ϕJ

ε∞ are the
jamming coverages in the limit of L → ∞. For the SD model the
preliminary coverages by the discorectangles were ϕp

ε = 0.01 (open
squares) and ϕ p

ε = 0.2 (filled squares), for the DS model the pre-
liminary coverages by the disks were ϕ

p
D = 0.01 (open squares) and

ϕ
p
D = 0.2 (filled squares). The data are presented for L = 256 and

particular cases of ε = 10 and D = 1.

by the disks were ϕ
p
D = 0.01 (open triangles) and ϕ

p
D = 0.2

(filled triangles). The data are presented for L = 256 and
particular cases of ε = 10 and D = 1. Here ϕJ

D and ϕJ
ε are

the jamming coverages in the limit of t → ∞ for SD and DS
models, respectively.

The deposition time was calculated using dimensionless
time units as t = n/L2, where n is the number of deposition
attempts [37]. The majority of calculations were performed
using L = 256 and the jamming state was typically observed
at t = 108 − 1010.

Figure 3 presents the examples of the normalized jam-
ming coverage ϕ∗ (ϕ∗ = ϕJ

D/ϕJ
D∞ for the SD model and

ϕ∗ = ϕJ
ε /ϕ

J
ε ∞ for the DS model) versus the inverse size of

the system 1/L for different preliminary coverages. The data
are presented for L = 256 and particular cases of ε = 10 and
D = 1.

The jamming coverages in the limits of L → ∞, ϕJ
D∞ (SD

model) and ϕJ
ε∞ (DS model) were estimated assuming linear

ϕJ
D and ϕJ

ε versus 1/L dependencies.
For each given set of parameters, the computer experiments

were averaged over 10–100 independent runs. The error bars
in the figures correspond to the standard errors of the means.
When not shown explicitly, they are of the order of the marker
size.

III. RESULTS AND DISCUSSION

A. SD model

For the SD model the discorectangles were first deposited
and then the disks were added. Figure 4 presents examples
of jamming coverages ϕJ

D behavior for disks. Here, the de-
pendencies of ϕJ

D versus the disk diameter D at fixed values
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(a)

(b)

FIG. 4. Jamming coverage for disks ϕJ
D versus their diameters D

at different concentration of first deposited discorectangles ϕp
ε (a) and

versus ϕε at different values of D (b). The data are presented for
the SD model at fixed aspect ratio ε = 10. The values ϕJ

D ≈ 0.547
(a) and ϕJ

ε ≈ 0.481(b) are the jamming coverages for disks and
discorectangles deposited on empty surfaces, respectively. Here, the
value of Dmax corresponds to the limiting (maximum) diameter of the
disk (a) and the value of ϕmin

D corresponds to the minimum value of
ϕJ

D at ϕJ
ε ≈ 0.481 (b).

of ϕ
p
ε [Fig. 4(a)] and versus concentration of discorectangles

ϕ
p
ε at fixed values of D [Fig. 4(b)] are given. The value of

aspect ratio was fixed at ε = 10. The similar dependencies
were observed for other values of ε. Preliminary deposition
of discorectangles resulted in decreasing of ϕJ

D [Fig. 4(a)].
For example, at ϕ

p
ε = 0.05 and D = 1 we have ϕJ

D = 0.508 ±
0.002 that is noticeably smaller than the jamming limit for the
disks on empty surface without the sticks: ϕJ

D ≈ 0.547 [40].
The value of ϕJ

D decreased with increasing of D [Fig. 4(a)]
and increasing of ϕε [Fig. 4(b)].

Obtained data evidenced that above some maximum value
of Dmax the deposition of disks was practically absent (i.e.,
the probability of deposition was very small). In this work,

(a)

(b)

FIG. 5. Maximum diameter of the disk Dmax versus the concen-
tration of first deposited discorectangles ϕp

ε (a) and the minimum
jamming coverage for the disks ϕmin

D [Fig. 3(b)] versus the D (b). The
data are presented for the SD model and different values of aspect
ratio of ε. Dashed line in (a) shows values of ϕJ

ε in a jamming state.
The value DJ

max corresponds to the maximum value at ϕ p
ε = ϕJ

ε .

the value of Dmax was defined as the maximum value of
D at rather small coverage ϕJ

D = 0.01. The value of Dmax

depends upon values of ε and ϕ
p
ε . For example at ε = 10

and ϕ
p
ε = 0.2 we have Dmax ≈ 10. Note that the value of ϕ

p
ε

cannot exceed the jamming coverage of discorectangles at a
given ε [e.g., ϕJ

ε ≈ 0.481 at ε = 10, Fig. 4(b)]. At fixed value
of ϕ

p
ε the value of ϕJ

D decreased with increasing of D. At
jamming coverage for first deposited discorectangles, i.e., at
ϕ

p
ε = ϕJ

ε [e.g., ϕJ
ε ≈ 0.481 for ε = 10 in Fig. 4(b)] a mini-

mum value of ϕJ
D(= ϕmin

D ) was observed. The defined above
parameters of the maximum diameter of the disk Dmax and
the minimum jamming coverage for the disks ϕmin

D were sig-
nificantly dependent versus the aspect ratio of first deposited
discorectangles ε.

Figure 5(a) presents Dmax versus the concentration ϕ
p
ε at

different aspect ratios ε. The value of Dmax decreased with
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FIG. 6. Maximum diameter of a disk DJ
max versus the aspect ratio

ε of first deposited discorectangles for the fixed concentration ϕp
ε =

ϕJ
ε (jamming state). The line corresponds to the linear approximation

in Eq. (1). Insert shows the example of packing pattern of size 20 ×
20 for the following parameters: ε = 10, ϕp

ε = ϕJ
ε ≈ 0.481, D = 4.

increasing of ϕ
p
ε and reached its minimum for jamming cov-

erage of discorectangles ϕJ
ε at the given ε. Note that the

dependence ϕJ
ε (ε) demonstrated well-defined maximum at

ϕJ
ε ≈ 0.583 and ε ≈ 1.46 [4,15]. Figure 5(b) presents ϕmin

D
versus D at different values of ε for preliminary deposition of
discorectangles up to the jamming state ϕ

p
ε = ϕJ

ε . The value
of ϕmin

D decreased with increasing of D and became zero
above some maximum value of D = DJ

max. Figure 6 shows
the maximum diameter of the disk DJ

max versus the aspect
ratio of first deposited discorectangles ε up to the jamming
limit with the coverage ϕ

p
ε = ϕJ

ε . This dependence can be well
approximated by the linear function

DJ
max = 1 + α(ε − 1), (1)

where α = 0.38 ± 0.02.
The linear character of DJ

max(ε) dependence can be ex-
plained on the basis of the following simple geometric
arguments. In the packings of first deposited discorectangles
the formation of stacks of nearly parallel particles and creation
of large “triangular pores” was typically observed. During the
second stage of adsorption, the disks can be adsorbed only in
such large pores between stacks (see inset in Fig. 6 for exam-
ple of the packing pattern). For an ideal equilateral “triangular
pore” with side length ε, the diameter of the disk inscribed
inside the pore is determined by the formula D = γ ε, where
γ = 1/

√
3 ≈ 0.58. The difference between values of α and

γ can reflect nonideality of the “triangular pores” and their
smaller sizes in real packings.

Figure 7 presents a percolation thickness of the shells
around the disks δD versus the aspect ratio of first de-
posited discorectangles ε. For disks with core-shell structure
at this percolation thickness, the formation of spanning cluster
through the entire system was observed. In the particular case

FIG. 7. Percolation thickness of a disk shell δD versus the aspect
ratio ε of first deposited discorectangles for their concentrations
ϕ p

ε = 0.1 and ϕ p
ε = 0.2, and diameters of the disks D = 1, 2 and 6.

of ϕ
p
ε = 0 and jamming coverage of plane by disks (ϕJ

D ≈
0.547) the shell thickness was estimated to be δD = 0.0843 ±
0.001. The total coverage of a plane by disks with shells
was estimated to be 0.642 ± 0.001. Note that this value is a
little less than estimated total coverage for overlapping disks
of equal diameter at the percolation threshold ϕ ≈ 0.676339
[41].

The observed behavior for different diameters of the disks
D and concentration of discorectangles ϕ

p
ε (Fig. 7) can be

explained using the following arguments. The preliminary
coverage by discorectangles resulted in reducing of proba-

FIG. 8. Percolation thickness of the disk shell δD versus the
concentration of first deposited discorectangles ϕp

ε . The data are
presented for D = 2, 4 and ε = 2, 8.

024109-5



NIKOLAI LEBOVKA et al. PHYSICAL REVIEW E 108, 024109 (2023)

(a)

(b)

FIG. 9. Jamming coverage of discorectangles ϕJ
ε versus the as-

pect ratio ε at different coverage of first deposited disks ϕ
p
D (a) and

versus ϕ
p
D at different aspect ratio ε (b). The data are presented for

the DS model at fixed diameter D = 2. The value εmax (a) is the
maximum aspect ratio of discorectangle that can be deposited for
the given value of ϕ

p
D. The value ϕmin

ε is the minimum coverage of
discorectangles for the coverage of first deposited disks ϕ

p
D = ϕJ

D ≈
0.547 (jamming state).

bility of deposition of disks at the second stage in nearest-
neighbor vicinity to each -other. This tendency is enhanced
with increasing of ϕ

p
ε and D and both these factors resulted

in increasing of δD (Fig. 7). The weak dependencies of shell
thickness at D = 1, 2 may reflect the insignificant impact of
first deposited discorectangles at small concentrations ϕ

p
ε =

0.1, 0.2 on the connectivity of jammed networks of disks.
The significant effects of aspect ratio ε on the disk connec-
tivity was only observed at relatively large concentration of
discorectangles ϕ

p
ε for commensurate values of D and ε. It ev-

idently reflects the separation of disks at large distances with
their location in pores between the stacks (see inset to Fig. 6).

Figure 8 illustrates examples of δD versus ϕε dependencies
for several values of D and ε. In absence of preliminary depo-
sition of discorectangles (at ϕε = 0) the percolation thickness
was relatively small and proportional to the disk diameter
δD = aD, where a = 0.084 ± 0.001. However, the δD(ϕε ) de-

(a)

(b)

FIG. 10. Maximum aspect ratio of discorectangle εmax (a) versus
the coverage of first deposited disks ϕ

p
D, and the minimum coverage

of discorectangles ϕmin
ε (for the coverage of first deposited disks

ϕ
p
D = ϕJ

D ≈ 0.547, jamming state) versus the aspect ratio ε (b). The
data are presented for the DS model at at several values of D.

pendencies were rather strong (practically exponential) and at
large values of ϕε the percolation thickness of a disk shell δD

may significantly exceed the value of D.

B. DS model

For DS model the disks were first deposited and then the
discorectangles were added. Figure 9 presents examples of
jamming coverages ϕ

p
ε behavior for discorectangles. Here,

the dependencies ϕJ
ε versus the aspect ratio ε [Fig. 9(a)]

and versus the concentrations of first deposited disks ϕ
p
D

[Fig. 9(b)] are shown. The data are presented for the fixed
D = 2. For deposition on uncovered surface (ϕp

D = 0) a well-
defined maximum ϕJ

ε,m ≈ 0.583 at ε ≈ 1.46 was observed
[4,15].

For preliminary covered surfaces the value ϕε,m decreased
with increasing of ϕ

p
D, and particularly, at the jamming point

ϕ
p
D = ϕJ

D ≈ 0.547 we have ϕJ
ε ≈ 0.14 [Fig. 9(a)]. Obtained
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FIG. 11. Maximum aspect ratio of discorectangle εJ
max versus the

relative diameter of first deposited disks D for the fixed concentration
ϕ

p
D = ϕJ

D ≈ 0.547 (at the jamming state). The line corresponds to the
linear approximation in Eq. (2). Insert shows the example of packing
pattern of size 20 × 20 for the following parameters: D = 2, ε = 5.4.

data also evidenced that above some maximum value of εmax

the deposition of discorectangles was practically absent (i.e.,
the probability of their deposition was very small). In this
work, the value of εmax was defined as the maximum value
of ε at ϕJ

ε = 0.01.
The values of ϕJ

ε approximately linearly decreased with
increasing of the concentrations of first deposited disks ϕ

p
D up

to the value ϕmin
ε at ϕ

p
D � ϕJ

D ≈ 0.583 [Fig. 9(b)].
Figure 10 presents εmax versus ϕD [Fig. 10(a)] and ϕmin

ε

versus ε [Fig. 10(b)] dependencies at several values of D. The
value of εmax decreased with increasing of ϕD up to the mini-
mum value at ϕJ

D ≈ 0.547 (jamming state for first deposited
disks). Otherwise, at fixed value of ϕD the value of εmax

increased with increasing of D [Fig. 10(a)]. This behavior
may be explained by formation of more large pores suitable
for deposition of discorectangles at large D. The value ϕmin

ε

(at ϕ
p
D � ϕJ

D ≈ 0.583) decreased up to the zero at ε = εmax

with increasing of ε [Fig. 10(b)]. Moreover, the value εmax

increased with increasing of D.
Figure 11 presents the maximum aspect ratio of the dis-

corectangle εmax versus the diameter od first deposited in disks
D. This dependence can be well approximated by the linear
function

εJ
max = β(D − 1), (2)

where β = 5.46 ± 0.26.
The inset to Fig. 11 demonstrates the example of RSA

parking for the DS model with preliminary parking of disks
at D = 2, ϕ

p
D = 0.54 (close to the jamming state), and one

discorectangle with aspect ratio ε = 5.4 (close to the value
εJ

max). It can be clearly seen that the value of εJ
max is defined

by the dimensions of “elongated” pores inside the preliminary
parking of disks. Figure 12 presents a percolation thickness
of the shells around the discorectangles δε versus the diameter
of first deposited disks D. For discorectangles with core-shell

FIG. 12. Percolation thickness of discorectangle shell δε ver-
sus the diameter of first deposited disks D for their concentrations
ϕ

p
D = 0.1, ϕ

p
D = 0.2, and aspect ratios ε = 1 and 10. Insert shows

the example of packing pattern of size 64 × 64 for the following
parameters: D = 10, ϕ

p
D = 0.2, and ε = 10.

structure at this percolation thickness the formation of span-
ning clusters through the entire system was observed. The
value of δε decreased up to some asymptotic value with in-
creasing of D and increased with increasing ε. Such behavior
can by explained by the following arguments. At relatively
large D the first deposited disks can be considered as large
inclusions in the packaging of the discorectangles (see inset to
Fig. 7). In this case the connectivity of the the discorectangles
can be only determined by the value of ε.

IV. CONCLUSION

A study of the two-stage RSA packing of discorectangles
and disks on a plane surface was carried out. Two models
were analyzed. In the SD model, the discorectangles were
first deposited, and then disks were added. The situation was
reversed in the DS model. Here the disks were preliminary and
then discorectangles were added. For both deposition models
the presence of first deposited particles significantly affected
the properties of packings formed at the second stage. Particu-
larly for jamming packing formed at the first stage there were
observed the limiting maximum values of disk diameter DJ

max
(model SD) or aspect ratio εJ

max (model DS). Moreover, the
linearly proportional dependencies of type DJ

max ∝ ε (model
SD) and εJ

max ∝ D (model DS) were observed in both cases.
It is interesting that at relatively small preliminary coverages
the near linear ϕJ

D versus ϕ
p
ε (SD model) and ϕJ

ε versus ϕ
p
D (DS

model) decreasing dependencies were observed. Such behav-
ior may reflect the specific impact of preliminary deposited
particles at the first stage on the jamming coverage of particles
deposited at the second stage.

Using the hard core—soft shell particle model the perco-
lation connectivity of the particles deposited at the second
stage was analyzed. For the SD model the percolation shell
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thickness δD decreased with increasing of both values ε and
D. The value of δD exponentially increased with increasing
the concentration of first deposited discorectangles ϕε. For
the DS model the percolation shell thickness δε decreased
with increasing of D and increased with increasing of both
the concentration of first deposited disks ϕD and aspect ratio
ε. Such behavior evidences the possibility of fine regulation
of the connectivity and transport behavior in films obtained
by two-stage adsorption procedure. In further studies it is
desirable to consider simultaneous RSA codeposition of mix-
tures of particles with different shapes and evaluation of

percolation and transport properties of such multicomponent
films.
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[14] L. Petrone and M. Cieśla, Random sequential adsorption of
oriented rectangles with random aspect ratio, Phys. Rev. E 104,
034903 (2021).

[15] K. Haiduk, P. Kubala, and M. Cieśla, Saturated packings of
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[34] P. Weroński, Effect of electrostatic interaction on deposition
of colloid on partially covered surfaces: Part II. Results of
computer simulations, Colloids Surf., A 294, 267 (2007).
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