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Noise-induced bistability in a simple mutual inhibition system
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In this study, we study noise-induced bistability in a simple bivariate mutual inhibition system with slow
fluctuating responses to external signals. We give a general condition that the marginal stationary probability
density of one of the two variables experiences a transition from a unimodal shape to a bimodal one. We show
that the transition occurs even when the stationary probability density of the response to external signals is
monotone. The mechanism for the transition is investigated in terms of the calculation of the mean first passage
time. We also discuss the genericity of the transition mechanism.
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I. INTRODUCTION

Noise can induce nontrivial phenomena in nonlinear
systems, including noise-induced order in one-dimensional
iterated maps [1], noise-induced stability in high-dimensional
recurrent neural networks [2], noise-induced synchronization
in phase oscillators [3], noise-induced oscillations in pop-
ulation dynamics [4] and gene regulatory cirtuits [5], and
noise-induced bistability in autocatalytic systems [6–8] and
mutual inhibition systems [9]. Such noise-induced phenom-
ena sometimes play functional roles in biological systems
[10–12]. In this paper, we present noise-induced bistability
with a mechanism inspired by a recent experiment on the true
slime mold [13].

Shirakawa et al. studied the behavior of the plasmodium of
the true slime mold Physarum polycephalum when it was pre-
sented with a contradictory situation [13]. In this experiment,
they gave the plasmodium stimuli consisting of a mixture of
an attractant and a repellant. The responses of the plasmod-
ium to the stimuli were diverse: the degree of attraction or
repulsion varied trial by trial, even though the concentrations
of attractant and repelllant were fixed and the samples used
were clones split from the same cell. To explain the diverse
responses of the plasmodium, Shirakawa et al. constructed
a simple signal transduction network model that replicated
the experimental results, at least qualitatively. The molecular
species comprised in the model were signal transducers xa and
xr for the attractant and repellant signals, receptors ya and yr

for the attractant and the repellant, and an activating factor
z for cell motility. The signal transduction network model
assumes that ya and yr are not only taken as the receptors but
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also the attractant and repellant stimuli, the signal transducers
xa and xr mutually inhibit each other, and the cell motility z is
activated by xa but inhibited by xr . The model equations were
given by

dxa

dt
= vxa

y2
a

Kya + y2
a

Kxr ,1

Kxr ,1 + xr
− dxa xa, (1)

dxr

dt
= vxr

y2
r

Kyr + y2
r

Kxa,1

Kxa,1 + xa
− dxr xr, (2)

dz

dt
= vz

xa

Kxa,2 + xa

Kxr ,2

Kxr ,2 + xr
− dzz, (3)

where vxa , vxr , and vz are the reaction rates, Kya , Kyr , Kxa,1,
Kxr ,1, Kxa,2, and Kxr ,2 are the dissociation constants, and dxa ,
dxr , and dz are the degradation rates.

Shirakawa et al. numerically simulated Eqs. (1)–(3) with ya

and yr sampled from given normal distributions at each time
step. For certain model parameter values, they found that the
stationary probability density of z shows “weak bimodality”:
the density has a main single peak with a bump at its tail.
Note that it is straightforward to see that Eqs. (1) and (2)
have a single globally stable solution (x∗

a, x∗
r ) when ya and

yr are fixed. Then, the stationary value of z is obtained by
substituting (x∗

a, x∗
r ) into the right-hand side of Eq. (3). Thus

the numerically observed weak bimodality is expected to orig-
inate from the interplay between the fluctuations of ya and yr

and the nonlinearity of the model equations.
In what follows, we investigate the mechanism behind

weak bimodality using stochastic differential equations [14].
We extract the core of the model equations proposed by Shi-
rakawa et al., which seem to be essential for weak bimodality,
and reformulate them as stochastic differential equations. We
show that our model does not exhibit weak bimodality but
genuine bimodality instead. We give general conditions for
the emergence of bimodality. Thus the aim of this paper is not
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to directly explain weak bimodality observed by Shirakawa
et al., but to reveal the mechanism of noise-induced bistability
hidden in their model. However, in the Supplemental Material
[15], we study the model equations including all of xa, xr , and
z, and discuss the origin of weak bimodality.

The remainder of this paper is organized as follows. In
Sec. II, we describe our model equations. In Sec. III, we derive
a general necessary and sufficient condition for the transition
from a unimodal density to a bimodal density and examine
its mechanism in terms of the calculation of the mean first
passage time. Finally, in Sec. IV, we discuss the genericity
of the noise-induced transition and its difference from known
mechanisms of noise-induced bistability.

II. MODEL

Our model consists of the following differential and
stochastic differential equations:

dxa

dτ
= ua

xr + 1
− xa, (4)

dxr

dτ
= ur

xa + 1
− xr (5)

and

dua = Aa(ua)dt +
√

Ba(ua)dWa, (6)

dur = Ar (ur )dt +
√

Br (ur )dWr, (7)

where xa and xr are signal transducers for the attractant and
repellant signals, ua and ur represent the activity of the re-
ceptors in response to the attractant and the repellant (see the
next paragraph), Wa and Wr are independent Wiener processes,
and τ = αt with α � 1. α � 1 implies a difference in the
time scales between (xa, xr ) and (ua, ur ), namely, the change
of (ua, ur ) is much slower than that of (xa, xr ). We restrict
the ranges of ua and ur to the intervals [0, νa] and [0, νr], re-
spectively, and we impose the reflecting boundary conditions
on Eqs. (6) and (7). At present, we do not specify the forms
of the drift terms Aa(ua) and Ar (ur ) or the diffusion terms
Ba(ua) � 0 and Br (ur ) � 0 in Eqs. (6) and (7). Although all
of the dissociation constants and degradation rates are taken
to be 1 in Eqs. (4) and (5), we do not lose generality so
long as α � 1 holds, which implies Eq. (8) in Sec. III A
below. We write Xa, Xr , Ua, and Ur for the stochastic variables
corresponding to xa, xr , ua, and ur , respectively.

For simplicity, we assume that the cell motility z is identi-
cal to xa and study the transition from a unimodal stationary
probability density to a bimodal one for xa. Indeed, we con-
sider the model equations including z in addition to xa and
xr in the Supplemental Material [15]. We show that the same
kind of transition occurs for z, although the transition condi-
tion for z has a more complicated form than that for xa given in
Sec. III A below [Eq. (18)]. In the Supplemental Material [15],
we also investigate the origin of weak bimodality found in the
original model of Shirakawa et al. [13]. We show that weak
bimodality can be recovered when the time-scale separation
introduced above is weakened. Indeed, it is not unreasonable
to think that the time-scale separation does not hold for the
numerical results in Shirakawa et al. [13]. In the original
model, the fluctuations of ya and yr are imposed at every time

step of numerical simulations of Eqs. (1)–(3), although they
are not modeled as stochastic differential equations.

To fit the setting of Eqs. (1)–(3) into the above general
framework, one first could model the dynamics of the at-
tractant ya and the repellant yr using Ornstein-Uhlenbeck
processes whose stationary probability densities are Gaussian
distributions. One would then consider the change of variables

ua = νa
y2

a
1+y2

a
and ur = νr

y2
r

1+y2
r
, where the dissociation con-

stants are assumed to be 1 without loss of generality. Finally,
one derives the stochastic differential equations governing the
time evolution of ua and ur by applying Ito’s formula. How-
ever, we do not study this example but consider an analytically
solvable one in Sec. III for clarity and simplicity.

III. RESULTS

In this section, we derive the general condition that the
stationary probability density of Xa has a peak at xa = 0. If
it has another peak in xa > 0, we obtain a bimodal probability
density. We give an analytically solvable example in which the
transition from a single peak density to a bimodal density ac-
tually happens. We also calculate the mean first passage time
of Xa from xa = 0 to a given positive value of xa. This will
shed a different light on the mechanism behind the transition.

A. Stationary probability density

Under the assumption of the time-scale separation between
(xa, xr ) and (ua, ur ), we expect that the solutions of Eqs. (4)–
(7) satisfy

dxa

dτ
= dxr

dτ
= 0. (8)

Let P(xa, xr ) be the stationary joint probability density of
(Xa, Xr ), Qa the stationary probability density of Ua, and Qr

the stationary probability density of Ur . Equation (8) defines
the change of variables

ua = xa(xr + 1), (9)

ur = xr (xa + 1). (10)

Geometrically, this change of variables can be described as
follows. Let (x∗

a, x∗
r ) be the positive solution of Eq. (8) with

ua = νa and ur = νr . Explicitly, x∗
a = νa−νr−1+

√
(νa−νr−1)2+4νa

2
and x∗

r = x∗
a − νa + νr . The change of variables Eqs. (9) and

(10) defines a one-to-one correspondence between the rectan-
gle [0, νa] × [0, νr] in the ua-ur plane and the region in the
xa-xr plane enclosed by the xa axis, xr axis, xr = νr

xa+1 , and
xr = νa

xa
− 1. Note that the upper-right corner (νa, νr ) of the

rectangle [0, νa] × [0, νr] is mapped to (x∗
a, x∗

r ), which is the
intersection of xr = νr

xa+1 and xr = νa
xa

− 1. We also note that
ua = xa on the xa axis and ur = xr on the xr axis.

Using the change of variables Eqs. (9) and (10), we have

P(xa, xr ) = Qa(ua)Qr (ur )J (ua, ur |xa, xr ) (11)

= Qa[xa(xr + 1)]Qr[xr (xa + 1)](xa + xr + 1), (12)
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FIG. 1. Typical time series of xa and xr for the main example. (a) ε = 1. (b) ε = 2.87. (c) ε = 5. Those after ignoring the initial 104

transient steps are shown.

where J (ua, ur |xa, xr ) is the Jacobian matrix determinant of
the change of variables from (xa, xr ) to (ua, ur ). Qa(ua) and
Qr (ur ) are explicitly given by [14]

Qa(ua) ∝ 1

Ba(ua)
exp

(
2

∫ ua

0
du′

a

Aa(u′
a)

Ba(u′
a)

)
, (13)

Qr (ur ) ∝ 1

Br (ur )
exp

(
2

∫ ur

0
du′

r

Ar (u′
r )

Br (u′
r )

)
. (14)

The stationary probability density of Xa is obtained by
marginalizing out Xr :

Pa(xa) =
∫ min{ νr

xa+1 , νa
xa

−1}

0
dxrP(xa, xr ). (15)

Similarly, the stationary probability density of Xr is

Pr (xr ) =
∫ min{ νa

xr +1 , νr
xr

−1}

0
dxaP(xa, xr ). (16)

The condition that Pa(xa) has a peak at xa = 0 is given by

dPa

dxa
(0) < 0. (17)

This is equivalent to (Appendix A)

d ln Qa

dua
(0) <

2〈Ur〉
〈(Ur + 1)2〉 , (18)

where 〈 f (Ur )〉 = ∫ νr

0 dur f (ur )Qr (ur ) is the expected value
of f (Ur ) for a given function f (ur ). Equation (18) means
that Pa(xa) has a peak at 0 even if dQa

dua
(0) > 0 as long as

Ur has a positive average and dQa

dua
(0) is sufficiently small.

Note that the left-hand side of Eq. (18) can be written ex-
plicitly in terms of Aa and Ba: since Qa(ua) ∝ e−φa (ua ) with a

potential function φa(ua) = − ∫ ua

0 du′
a

2Aa (u′
a )− dBa

dua
(u′

a )

Ba(u′
a ) , we have

d ln Qa

dua
(0) = − dφa

dua
(0) = 2Aa (0)− dBa

dua
(0)

Ba(0) .

Let us consider the case Aa(ua) = �a
2(ua+ε) , Ba(ua) = �a,

Ar (ur ) = 0, and Br (ur ) = �r , where ε � 0 and �a,�r > 0.
ε controls the strength of the drive toward greater activity by
ua. The larger ε is, the weaker the drive is. In what follows, we
refer to this case as the main example. From Eqs. (13) and (14)
and the normalization condition for the probability densities,

we obtain

Qa(ua) = ca(ua + ε), (19)

Qr (ur ) = cr, (20)

where ca = 1
1
2 ν2

a +νaε
and cr = 1

νr
. Note that Qa(ua) is a mono-

tonically increasing function of ua and approaches a constant
function as ε increases. From Eq. (12), P(xa, xr ) is explicitly
obtained as

P(xa, xr ) = cacr[xa(xr + 1) + ε](xa + xr + 1). (21)

Using Eqs. (15) and (16), explicit expressions for Pa(xa) and
Pr (xr ) can also be obtained (Appendix B). By d ln Qa

dua
(0) =

2Aa (0)− dBa
dua

(0)

Ba (0) = 1
ε

and an elementary calculation, Eq. (18) is
reduced to

ε >
ν2

r + 3νr + 3

3νr
, (22)

which is a necessary and sufficient condition for Pa(xa) to have
a peak at xa = 0 in the case of Eq. (21).

Figures 1–3 show typical time series of xa and xr , Pa(xa)
and Pr (xr ) when ε = 1, 2.87, and 5, respectively. Here,
we take �a = 25, �r = 100, νa = 10, νr = 5, and α = 100.
Equations (4)–(7) are numerically simulated using the Euler-
Maruyama method with a time step δt = 10−4. In this case,
Eq. (22) becomes ε > εcrit = 43

15 ≈ 2.87. We can see that
Pa(xa) has a single peak at xa = x∗

a = 2 + √
14 ≈ 5.74 when

ε = 1, while it has another peak at xa = 0 when ε = 2.87
and 5 (Fig. 2). When ε = 2.87 and 5, we observe that xa

switches from larger values to smaller values and vice versa
in Figs. 1(b) and 1(c), which reflects the bimodal stationary
densities in Figs. 2(b) and 2(c). In contrast to Pa(xa), Pr (xr )
does not exhibit any qualitative change as ε increases (Fig. 3).
We note that Pa(xa) begins to have the second peak at xa >

0 when ε = 4×3
1
4 ν

1
2

r −2νr
3 + 1 ≈ 1.59, which can be checked

using elementary differential calculus. As ε is increased to
εcrit ≈ 2.87, the position of the second peak approaches and
reaches xa = 0. Thus Pa(xa) is already a bimodal density
even at ε = 2.87 as in Fig. 2(b). We also note that the peak

at xa = x∗
a vanishes at ε = 1 + 3(x∗

a+1)4−2ν2
r (x∗

a+1)+3ν2
r

3νr (x∗
a+1) = 379

15 +
46

√
14

5 ≈ 59.69, which can also be checked using elementary
differential calculus.
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FIG. 2. Stationary probability density of xa for the main example. (a) ε = 1. (b) ε = 2.87. (c) ε = 5. Numerical densities are obtained from
a single trial of length 108 steps after ignoring the initial 104 transient steps.

The peak at xa = 0 in Pa(xa) does not need any peak on
the boundary xa = 0 in P(xa, xr ). Since P(xa, xr ) is increasing
in xr on xa = 0 as can be seen from Eq. (21), it must exist at
(xa, xr ) = (0, νr ) if it actually exists. In general, the condition
that P(xa, xr ) has a peak at (xa, xr ) = (0, νr ) is expressed as

∂P
∂xr

(0, νr )
∂P
∂xa

(0, νr )
> −α, (23)

where α is the slope of the tangent line of xr = νr
xa+1 at

(xa, xr ) = (0, νr ). In the case of Eq. (21), Eq. (23) is reduced
to

(νr − 1)ε > (νr + 1)2, (24)

which is ε > 9 when νr = 5. Thus, when 2.87 ≈ εcrit < ε �
9, Pa(xa) in the main example has a peak at xa = 0, while
P(xa, xr ) does not.

We note that P(xa, xr ) is a stationary solution of the
stochastic differential equation governing the dynamics of
(xa, xr ), which can be obtained from Eqs. (6) and (7) together
with the change of variables Eqs. (9) and (10) by using Ito’s
formula [14]. In Appendix C, we derive the stochastic differ-
ential equation for the above example and discuss how its drift
and diffusion terms change when ε is varied.

B. Mean first passage time

We compute the mean first passage time TXa (0, c) of Xa

from 0 to c with 0 < c � x∗
a . By using the change of variables

Eqs. (9) and (10), this can be done as follows.

Let 0 < c � x∗
a . First, observe that the lines xa = 0 and

xa = c in the xa-xr plane correspond to the lines ua = 0 and
ua = c( ur

c+1 + 1) in the ua-ur plane, respectively. Thus the de-
sired first passage time can be computed in terms of the ua-ur

plane. Assume that the initial probability density is stationary.
Since the stochastic differential equations (6) and (7) for Ua

and Ur are not coupled, we have

TXa (0, c) =
∫ νr

0
durQr (ur )TUa

[
0, c

(
ur

c + 1
+ 1

)]

= c + 1

c

∫ c( νr
c+1 +1)

c
duaQr

[
(c + 1)

(
ua

c
− 1

)]

× TUa (0, ua), (25)

where TUa (0, ua) is the first passage time of Ua from 0 to ua.
TUa (0, ua) is obtained as [14]

TUa (0, ua) = 2
∫ ua

0

du

ψ (u)

∫ u

0
dv

ψ (v)

Ba(v)
, (26)

where ψ (u) = exp(
∫ u

0 dv 2Aa (v)
Ba (v) ).

An explicit formula for TXa (0, c) in the case Aa(ua) =
�a

2(ua+ε) , Ba(ua) = �a, Ar (ur ) = 0, and Br (ur ) = �r with ε �
0 and �a,�r > 0 is given in Appendix D.

In Fig. 4, we compare the theoretical predictions of the
mean first passage time Eq. (D2) for ε = 1, 2.87, and 5 with
numerical simulations. One can see that they agree well. The
mean first passage time becomes larger as ε is increased.
This is consistent with the fact that a peak emerges at xa = 0
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FIG. 3. Stationary probability density of xr for the main example. (a) ε = 1. (b) ε = 2.87. (c) ε = 5. Numerical densities are obtained from
a single trial of length 108 steps after ignoring the initial 104 transient steps.
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FIG. 4. Mean first passage time of xa from 0 to 0 < c � x∗
a for

the main example. Given a pair of values (ε, c), the average over 103

trials is taken. The initial condition for the numerical simulation is
given as follows: ua(0) = 0 and ur (0) is sampled from the stationary
density of Ur , namely, the uniform distribution on [0, νr]. xa(0) and
xr (0) are then given by the formulas for the change of variables
Eqs. (9) and (10). Marks are numerical simulations and lines are
theoretical predictions [Eq. (D2)].

and grows in the stationary probability density of xa as ε is
increased.

Note that TXa (0, c) > TUa (0, c) holds from Eqs. (25) and
(26). Thus the mutual inhibition between xa and xr makes the
time it takes xa to go from 0 to c longer than that for ua.

IV. DISCUSSION

We can generalize Eqs. (4) and (5) as
dxa

dτ
= ua

ρr (xr )
− xa, (27)

dxr

dτ
= ur

ρa(xa)
− xr, (28)

where ρr (xr ) and ρa(xa) are differentiable functions of xr

and xa satisfying ρr (0), ρa(0) > 0, dρr

dxr
(xr ) > 0 for xr � 0

and dρa

dxa
(xa) > 0 for xa � 0. Without loss of generality, we

can assume that ρr (0) = ρa(0) = 1. Assuming that Eq. (8)
defines a well-defined change of variables ua = xaρr (xr ) and
ur = xrρa(xa), the stationary probability density of (xa, xr ) in
this case is given by

P(xa, xr ) = Qa[xaρr (xr )]Qr[xrρa(xa)]

×
(

ρr (xr )ρa(xa) − xaxr
dρr

dxr
(xr )

dρa

dxa
(xa)

)
(29)

from Eq. (11).
The condition that Pa(xa) has a peak at xa = 0 [Eq. (17)] is

d ln Qa

dua
(0) = 2Aa(0) − dBa

dua
(0)

Ba(0)
<

2 dρa

dxa
(0)

〈
Ur

dρr

dxr
(Ur )

〉
〈ρr (Ur )2〉 ,

(30)
which can be derived by a similar calculation as that in
Appendix A. Here, ρr (Ur ) and dρr

dxr
(Ur ) are stochastic vari-

ables obtained by substituting Ur into xr in ρr (xr ) and
dρr

dxr
(xr ), respectively. Equation (30) becomes Eq. (18) when

ρr (xr ) = 1 + xr and ρa(xa) = 1 + xa. Similar to the result ob-
tained in Sec. III A, Pa(xa) can have a peak at xa = 0 even
when dQa

dua
(0) > 0 so long as Eq. (30) holds. Note that the

right-hand side of Eq. (30) is positive when Ur has a positive
average as in the case of Eq. (18) [for example, when Br (ur ) is
positive and Ar (ur ) is an arbitrary function so long as Eqs. (6)
and (7) are well defined] since dρa

dxa
(0) > 0 and 〈Ur

dρr

dxr
(Ur )〉 �

〈Ur〉 dρa

dxr
(0) > 0. Thus the emergence of a peak at xa = 0 is

not restricted to the specific form of mutual inhibition as in
Eqs. (4) and (5), but is a generic phenomenon.

Apparently similar noise-induced transitions from a uni-
modal to a bimodal stationary probability density have been
reported in various systems [6–8,11,16,17]. Such transitions
can be induced by either extrinsic noise [11,16,17] or intrinsic
noise [6–9]. In these previous studies, the deterministic part
of the model equation typically had a single globally stable
equilibrium point. The transition from a unimodal density
peaked at the equilibrium point to a bimodal density was
caused by inhomogeneous multiplicative noise: if the noise
strength is stronger than the rest of the phase space around
the equilibrium point, then the orbit of the system’s state stays
less frequently around the equilibrium point and the relative
frequency to visit the rest of the phase space increases. In
particular, if the dimension of the phase space is 1 and it is
a finite interval, then the stationary probability density can
have two peaks around the two end points of the phase space
interval [7,8].

The mechanism for the transition presented in this paper
seems to be different from that for the noise-induced transition
mentioned above. In the main example, we observed that
Pa(xa) can have a peak at xa = 0 even when P(xa, xr ) does not
have one on the line xa = 0. The emergence of this left-side
peak in Pa(xa) is due to the marginalization of P(xa, xr ) and
the mutual inhibition defining the change of variables which
deforms Qa(ua)Qr (ur ) to P(xa, xr ) so that the latter has more
mass in the region with small xa.

The peak at xa = 0 in Pa(xa) represents an “inactive” state
in contrast to the “active state” represented by the peak at
xa = x∗

a . Since Pa(xa) is the marginal density of P(xa, xr ), this
inactive state includes a continuous spectrum of inhibition
strength: from no inhibition xr = 0 to the maximum inhibition
xr = νr . As we observed in the calculation of the mean first
passage time from xa = 0 to xa = c (0 < c � x∗

a), the smaller
the strength of inhibition at xa = 0, the easier it is to reach
xa = c. Thus the transition from the inactive state to the “ac-
tive” state and vice versa typically occurs by passing through
the “gate” region where both xa and xr have small values. Con-
struction of such an inactive state could provide a possible ba-
sis for diversity in decision making in biological systems [13].

In conclusion, a different type of noise-induced transition
from a unimodal to a bimodal stationary probability density
occurs in a simple mutual inhibition system with slow fluc-
tuating responses to external signals. The transition is not
dependent on the specific form of mutual inhibition used in
this paper and should be considered a generic property.
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APPENDIX A: DERIVATION OF EQ. (18)

Assume that xa < x∗
a holds. Then, νr

xa+1 < νa
xa

− 1. Put f (xa) = νr
xa+1 . Thus Eq. (15) becomes

Pa(xa) =
∫ f (xa )

0
dxrP(xa, xr ), (A1)

where P(xa, xr ) is given by Eq. (12). We have

dPa

dxa
(xa) = P(xa, f (xa))

df

dxa
(xa) +

∫ f (xa )

0
dxr

∂P

∂xa
(xa, xr ). (A2)

The goal is to compute dPa
dxa

(0). Since df
dxa

(xa) = −νr
(xa+1)2 and

∂P

∂xa
(xa, xr ) = dQa

dua
[xa(xr + 1)](xr + 1)Qr[xr (xa + 1)](xa + xr + 1)

+ Qa[xa(xr + 1)]
dQr

dur
[xr (xa + 1)]xr (xa + xr + 1) + Qa[xa(xr + 1)]Qr[xr (xa + 1)], (A3)

we obtain

dPa

dxa
(0) = P(0, f (0))

df

dxa
(0) +

∫ f (0)

0
dxr

∂P

∂xa
(0, xr )

= −Qa(0)Qr (νr )νr (νr + 1) + dQa

dua
(0)

∫ νr

0
dxrQr (xr )(xr + 1)2

+ Qa(0)
∫ νr

0
dxr

dQr

dur
(xr )xr (xr + 1) + Qa(0)

∫ νr

0
dxrQr (xr )

= dQa

dua
(0)

∫ νr

0
dxrQr (xr )(xr + 1)2 − 2Qa(0)

∫ νr

0
dxrQr (xr )xr, (A4)

where we used integration by parts to compute the third term in the second line. It is straightforward to obtain Eq. (18) from
Eq. (A4).

APPENDIX B: EXPLICIT EXPRESSIONS FOR Pa(xa) AND Pr(xr) IN THE MAIN EXAMPLE

When Aa(ua) = �a
2(ua+ε) , Ba(ua) = �a, Ar (ur ) = 0, and Br (ur ) = �r in Eqs. (6) and (7), Eqs. (15) and (16) are

Pa(xa) =
{

cacr
(
νr (xa + ε) + ν2

r (xa+ε)
2(xa+1)2 + ν2

r xa

2(xa+1) + ν3
r xa

3(xa+1)3

)
if xa < x∗

a,

cacr
( (xa+1)(νa−xa )(xa+νa+2ε)

2xa
+ (νa−xa )2(xa+2νa+3ε)

6x2
a

)
otherwise

(B1)

and

Pr (xr ) =
⎧⎨
⎩cacr

( ν2
a (2νa+3ε)
6(xr+1)2 + 1

ca

)
if xr < x∗

r ,

cacr
( (xr+1)(νr−xr )3

3x3
r

+ [(xr+1)2+ε](νr−xr )2

2x2
r

+ ε(xr+1)(νr−xr )
xr

)
otherwise,

(B2)

respectively.

APPENDIX C: STOCHASTIC DIFFERENTIAL EQUATION GOVERNING THE DYNAMICS OF (xa, xr)
IN THE MAIN EXAMPLE

Stochastic differential equations (6) and (7) are transformed to

dxa =
(

Aa(ua)
∂xa

∂ua
+ Ar (ur )

∂xa

∂ur
+ 1

2
Ba(ua)

∂2xa

∂u2
a

+ 1

2
Br (ur )

∂2xa

∂u2
r

)
dt +

√
Ba(ua)

∂xa

∂ua
dWa +

√
Br (ur )

∂xa

∂ur
dWr, (C1)

dxr =
(

Aa(ua)
∂xr

∂ua
+ Ar (ur )

∂xr

∂ur
+ 1

2
Ba(ua)

∂2xr

∂u2
a

+ 1

2
Br (ur )

∂2xr

∂u2
r

)
dt +

√
Ba(ua)

∂xr

∂ua
dWa +

√
Br (ur )

∂xr

∂ur
dWr (C2)

by applying Ito’s formula [14] under the change of variables in Eqs. (9) and (10). We have

∂xa

∂ua
= xa + 1

xa + xr + 1
,

∂xa

∂ur
= −xa

xa + xr + 1
,

∂xr

∂ua
= −xr

xa + xr + 1
,

∂xr

∂ur
= xr + 1

xa + xr + 1

024108-6
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and

∂2xa

∂u2
a

= ∂2xr

∂u2
a

= 2xr (xa + 1)

(xa + xr + 1)3
,

∂2xa

∂u2
r

= ∂2xr

∂u2
r

= 2xa(xr + 1)

(xa + xr + 1)3
.

Substituting these and Aa(ua) = �a
2(ua+ε) , Ba(ua) = �a, Ar (ur ) = 0, and Br (ur ) = �r into Eqs. (C1) and (C2), we obtain

dxa =
(

�a(xa + 1)

2[xa(xr + 1) + ε](xa + xr + 1)
+ �axr (xa + 1) + �rxa(xr + 1)

(xa + xr + 1)3

)
dt +

√
�a

xa + 1

xa + xr + 1
dWa −

√
�r

xa

xa + xr + 1
dWr,

(C3)

dxr =
(

− �axr

2[xa(xr + 1) + ε](xa + xr + 1)
+ �axr (xa + 1) + �rxa(xr + 1)

(xa + xr + 1)3

)
dt−

√
�a

xr

xa + xr + 1
dWa +

√
�r

xr + 1

xa + xr + 1
dWr .

(C4)

Note that Eq. (21) is a stationary solution of Eqs. (C3) and (C4). In particular, it is a potential solution since Qa(ua)Qr (ur ) is. We
observe that when ε increases, the drift term of Eq. (C3) decreases and that of Eq. (C4) increases. On the other hand, none of the
diffusion terms contain ε. Thus we can expect that the probability density of (xa, xr ) becomes more biased toward the upper-left
corner as ε becomes larger.

APPENDIX D: EXPLICIT EXPRESSION FOR TXa (0, c) IN THE MAIN EXAMPLE

We take Aa(ua) = �a
2(ua+ε) , Ba(ua) = �a, Ar (ur ) = 0, and Br (ur ) = �r in Eqs. (6) and (7). In this case, we have ψ (u) = u

ε
+ 1.

Thus we obtain

TUa (ua) = 1

�a

[
u2

a

2
+ εua − ε2 ln

(
ua

ε
+ 1

)]
(D1)

from Eq. (26). Substituting Eqs. (20) and (D1) into Eq. (25) and solving the integral gives

TXa (0, c) = c + 1

�aνrc

[
I

(
νrc

c + 1
+ c

)
− I (c)

]
, (D2)

where

I (c) = 1
6 c3 + 1

2εc2 − ε2(c + ε)[ln(c + ε) − 1] + (ε2 ln ε)c. (D3)

[1] K. Matsumoto and I. Tsuda, J. Stat. Phys. 31, 87 (1983).
[2] L. Molgedey, J. Schuchhardt, and H. G. Schuster, Phys. Rev.

Lett. 69, 3717 (1992).
[3] J. N. Teramae and D. Tanaka, Phys. Rev. Lett. 93, 204103

(2004).
[4] A. J. McKane and T. J. Newman, Phys. Rev. Lett. 94, 218102

(2005).
[5] Q. Li and X. Lang, Biophys. J. 94, 1983 (2008).
[6] Y. Togashi and K. Kaneko, Phys. Rev. Lett. 86, 2459 (2001).
[7] J. Ohkubo, N. Shnerb, and D. A. Kessler, J. Phys. Soc. Jpn. 77,

044002 (2008).
[8] T. Biancalani, L. Dyson, and A. J. McKane, Phys. Rev. Lett.

112, 038101 (2014).
[9] M. Jozsa, T. I. Donchev, R. Sepulchre, and T. O’Leary, Proc.

Natl. Acad. Sci. USA 119, e2116054119 (2022).

[10] C. V. Rao, D. M. Wolf, and A. P. Arkin, Nature (London) 420,
231 (2002).

[11] T. J. Kobayashi, Phys. Rev. Lett. 106, 228101 (2011).
[12] U. Alon, Introduction to Systems Biology, Second Edition

(Chapman and Hall/CRC, Boca Raton, FL, 2020).
[13] T. Shirakawa, Y.-P. Gunji, H. Sato, and H. Tsubakino, Int. J.

Unconv. Comput. 15, 275 (2020).
[14] C. W. Gardiner, Stochastic Methods, Fourth Edition (Springer-

Verlag, Berlin, Heidelberg, 2009).
[15] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.108.024108 for the analysis of the model in-
cluding z and the discussion on the origin of “weak bimodality.”

[16] W. Horsthemke and R. Lefever, Noise-Induced Transitions
(Springer-Verlag, Berlin, 1984).

[17] T. Haruna, Artif. Life Robot. 24, 297 (2019).

024108-7

https://doi.org/10.1007/BF01010923
https://doi.org/10.1103/PhysRevLett.69.3717
https://doi.org/10.1103/PhysRevLett.93.204103
https://doi.org/10.1103/PhysRevLett.94.218102
https://doi.org/10.1529/biophysj.107.109611
https://doi.org/10.1103/PhysRevLett.86.2459
https://doi.org/10.1143/JPSJ.77.044002
https://doi.org/10.1103/PhysRevLett.112.038101
https://doi.org/10.1073/pnas.2116054119
https://doi.org/10.1038/nature01258
https://doi.org/10.1103/PhysRevLett.106.228101
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-15-number-4-2020/ijuc-15-4-p-275-285/
http://link.aps.org/supplemental/10.1103/PhysRevE.108.024108
https://doi.org/10.1007/s10015-019-00526-0

