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We study phase space properties of critical, parity symmetric, N-qudit systems undergoing a quantum phase
transition (QPT) in the thermodynamic N → ∞ limit. The D = 3 level (qutrit) Lipkin-Meshkov-Glick model is
eventually examined as a particular example. For this purpose, we consider U(D)-spin coherent states (DSCS),
generalizing the standard D = 2 atomic coherent states, to define the coherent state representation Qψ (Husimi
function) of a symmetric N-qudit state |ψ〉 in the phase space CPD−1 (complex projective manifold). DSCS
are good variational approximations to the ground state of an N-qudit system, especially in the N → ∞ limit,
where the discrete parity symmetry ZD−1

2 is spontaneously broken. For finite N , parity can be restored by
projecting DSCS onto 2D−1 different parity invariant subspaces, which define generalized “Schrödinger cat
states” reproducing quite faithfully low-lying Hamiltonian eigenstates obtained by numerical diagonalization.
Precursors of the QPT are then visualized for finite N by plotting the Husimi function of these parity projected
DSCS in phase space, together with their Husimi moments and Wehrl entropy, in the neighborhood of the critical
points. These are good localization measures and markers of the QPT.
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I. INTRODUCTION

Information theoretic and statistical measures together
with phase space methods have proved to be useful in the
description and characterization of quantum phase transitions
(QPTs). For example, in the traditional Anderson metal-
insulator transition [1–3], where Hamiltonian eigenfunctions
underlie strong fluctuations. Phase space methods are a fun-
damental tool in quantum optics [4], providing connections
between quantum mechanics (in the so-called Wigner-Weyl-
Moyal scheme [5]) and classical statistical mechanics. This
connection is often established through (quasiclassical, min-
imum uncertainty) coherent states (CSs). The best known
CSs are the canonical (harmonic oscillator) CSs introduced a
long time ago by Schrödinger [6] and later used by Glauber
to study the radiation field [7]. Canonical CSs are linked
to the Heisenberg-Weyl group (with the typical Lie algebra
canonical commutation relations [q, p] = ih̄) and can be seen
as a group action or displacement on the vacuum. Replacing
the Heisenberg-Weyl group by the rotation group SU(2) (with
angular momentum commutation relations [Jx, Jy] = ih̄Jz and
cyclic permutations), we get the so called spin j, atomic, or
Bloch CSs [8,9]. From this perspective, generalizations to
arbitrary (finite-dimensional) Lie groups G provide further
families of CSs (we address the reader to the standard ref-
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erence [10]). In particular, this article is involved with the
generalization from U(2) to U(D), which is in the heart of
the generalization from qubits (physically represented by two-
level/component atom/particle quantum systems) to qudits
(D-level quantum systems).

Canonical CSs provide complex analytic (Bargmann,
phase space) representations of quantum states and oper-
ators in quantum mechanics [11]. Among all phase space
quasiprobability distribution functions (playing a role similar
to genuine probability distributions of statistical mechanics),
the more popular are Wigner W , Husimi Q, and Glauber-
Sudarshan P (also called Berezin’s covariant and contravariant
symbols, respectively) functions, usually associated with
the symmetric, antinormal, and normal ordering of position
and momentum operators, respectively [4,12,13]. Although
Wigner function is perhaps more popular, Husimi function can
be more easily extended to general phase spaces associated
to coset spaces X = G/H of a symmetry Lie group G for an
isotropy subgroup H ⊂ G. This will be our case, with G =
U(D) the unitary group of degree D, and phase space X =
U (D)/U (D − 1) = CPD−1 the complex projective space gen-
eralizing the Bloch sphere S2 = CP1 for D = 2. This case
is linked to the totally symmetric (bosonic) representation of
U(D), to which we are going to restrict ourselves here [see
[14] for other phase spaces like the flag manifold U(D)/U (1)D

linked to more general fermion mixtures and Young tableaux].
Given a CS system {|z〉, z ∈ X }, the Husimi function of

a density matrix ρ is the phase space X valued function
Qρ (z) = 〈z|ρ|z〉. In an attempt to build bridges between
classical and quantum entropies, and even though Qρ (z) is
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only a semiclassical quasiprobability distribution function, a
semiclassical Shannon-type entropy was defined by Wehrl
[15] as SW (ρ) = − ∫

Qρ (z) log Qρ (z)dμX (z), with dμX (z) a
G-invariant measure on the phase space X . Wehrl’s entropy
measures the area occupied by the quantum state ρ in phase
space; actually, moments Mν of Qρ (and their associated
Rényi-Wehrl entropies [16–18]), like the so called inverse
participation ratio M2, also measure the localization of ρ in
phase space and are easier to compute. Some early works
where these measures where studied are [19,20]. They have
also been employed recently in other systems [21–25].

For a critical quantum system described by a Hamiltonian
H (λ) depending on a control parameter λ, abrupt changes in
the Wehrl entropy of the ground state (as a function of λ)
usually provide good indicators of the existence of a quantum
phase transition (QPT) around a critical point λc, even for a
finite number N of particles. Moreover, Wehrl entropy can be
also used to identify the order of a QPT [26], as an alternative
definition to the standard Ehrenfest classification based on
discontinuities of the derivatives of the ground state energy
density with respect to λ in the thermodynamic limit N → ∞.
Husimi function and its Wehrl entropy have already given a
good phase space description of interesting quantum critical
systems like Bose-Einstein condensates [27], the Dicke model
of superradiance for two-level [28,29] and three-level [30]
atoms, the U(3) vibron model of molecular benders [31], the
U(4) bilayer quantum Hall system [32], the U(2) (two-level)
ubiquitous Lipkin-Meshkov-Glick (LMG) model [33–35],
etc. Here we want to extend the scope of applicability of these
phase space methods to symmetric multiqudit systems (like
D-level atom models) described by a U(D) invariant LMG
model. In addition to the obvious technical complication,
U(D) provides some novelties and a much richer structure that
is not possible to grasp starting from U(2). In particular, the
standard discrete parity symmetry group Z2 = {0, 1}, which is
spontaneously broken in the thermodynamic limit for second
order QPTs of D = 2 level systems, now becomes ZD−1

2 and
provides more case studies of Schrödinger cat states than the
standard even and odd ones of the literature [36–38], in the
sense of quantum superpositions of weakly overlapping quasi-
classical (coherent) states, the most symmetric one mimicking
the structure of the ground state in the highly interacting quan-
tum phase (see later in Sec. V and [39] for previous studies on
Dicke models of three-level atoms interacting with one-mode
radiation field).

The organization of the article is as follows. In Sec. II we
introduce the D-level LMG model and particularize it for the
cases D = 2 (qubits) and D = 3 (qutrits). A brief discussion
about the Fock basis and the discrete parity symmetry ZD−1

2
is also included. In Sec. III we define U(D)-spin coherent
states |z〉 (DSCSs for brevity) labeled by points z ∈ CPD−1

in phase space; we also compute the DSCS matrix elements
〈z|Si j |z′〉 of U(D)-spin operators Si j, i, j = 1, . . . , D, and we
project DSCSs |z〉 into the 2D−1 invariant subspaces c of
the parity symmetry group ZD−1

2 , introducing the notion of
“c-parity U(D) Schrödinger cat states” |z〉c (called c-DCAT
states, for short). Then, in Sec. IV, the traditional Husimi
function Qψ (z) = |〈z|ψ〉|2 of a quantum state |ψ〉 in the stan-
dard phase space C 	 z (for canonical, harmonic oscillator,
or Heisenberg-Weyl coherent states) is extended to the phase

space CPD−1 	 z using DSCSs |z〉 and a convenient Haar
integration measure, which allows to define ν moments of the
Husimi function and the Wehrl entropy as useful localization
measures in phase space. These measures are computed in
the case of DSCS and c-DCAT states, including their ther-
modynamic limit N → ∞. Appendixes B and C show in
more detail some of the long calculations of this section. In
Sec. V we focus on the D = 3 level LMG Hamiltonian for
symmetric qutrits and the minimization of its energy surface
in the limit N → ∞ using DSCSs as variational states. The
degeneration of the ground state in the thermodynamic limit
and the QPTs make their apparition here, but are not discussed
in depth until the next two sections. In Sec. VI, the variational
ground state obtained in the previous section is projected
on parity c subspaces and the corresponding c-DCATs are
compared to the low-lying Hamiltonian eigenstates of the
LMG model obtained by numerical diagonalization for finite
N . This procedure (projection after energy minimization) pro-
vides a fairly good variational approximation to the ground
state in terms of the completely even, c = 0, DCAT state, but
not so precise for first excited states in terms of DCAT states
of other parities c, for which we try a proper overlap maxi-
mization (fidelity) procedure. In Sec. VII, the Husimi function
and the localization measures of Sec. IV are employed to
visualize how the variational and the numerical eigenstates
split into Gaussian-type wave packets throughout the three
different quantum phases of the D = 3 level LMG model. The
inverse participation ratio (Husimi second moment) and the
Wehrl entropy are also used to quantify the overlap of these
packets, and hence the localization and spread of the low-lying
Hamiltonian eigenstates in phase space is compared to that of
DSCS and c-DCAT variational states. Finally, in Sec. VIII we
present the main conclusions of this work.

II. D-LEVEL LMG MODEL HAMILTONIAN
AND PARITY SYMMETRY

The original (D = 2 levels and modes) LMG schematic
shell model appeared in nuclear physics [40–42] to describe
the quantum phase transition from spherical to deformed
shapes in nuclei. Since then, it is an ubiquitous model that
appears in a multitude of physical contexts. For example, the
Hamiltonian of an anisotropic XY Ising model, with μ =
1, . . . , N lattice sites, in an external transverse magnetic field
ε with infinite-range constant interactions

HXY = ε

N∑
μ=1

σ (μ)
z +

∑
μ<ν

λxσ
(μ)
x σ (ν)

x +
∑
μ<ν

λyσ
(μ)
y σ (ν)

y , (1)

(σ (μ)
x,y,z denote the Pauli matrices at site μ) adopts the form

of the two-level LMG schematic shell model Hamiltonian
[40,41]

H2 = εJz + λ1

2
(J2

+ + J2
−) + λ2

2
(J+J− + J−J+) (2)

when written in terms of the SU(2) angular momentum col-
lective operators


J = (Jx, Jy, Jz ) =
N∑

μ=1

(
σ (μ)

x , σ (μ)
y , σ (μ)

z

)
, (3)
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and J± = (Jx ± iJy)/2, as usual. We could also think of a
model describing a system of N interacting two-level identical
atoms (symmetric “qubits”). Long-range constant interac-
tions make this Hamiltonian translation invariant, that is, it
is symmetric under permutation of lattice sites μ ↔ ν (or
permutation of atoms and qubits). Therefore, the Hamilto-
nian does not couple different angular momentum sectors
j = N/2, N/2 − 1, . . . , 1/2 or 0 (for odd or even N , respec-
tively) and it is a common practice to restrict oneself to
the largest (fully symmetric) sector j = N/2 to which the
ground state of the system belongs. This restriction reduces
the size of the Hamiltonian matrix to be diagonalized from
2N to N + 1 = 2 j + 1 and assumes that D = 2 level atoms
and qubits are indistinguishable. For this case, it is convenient
to use a Jordan-Schwinger realization of angular momentum
operators in terms of bilinear products of bosonic creation a†

i
and annihilation a j operators as

Si j = a†
i a j, i, j = 0, . . . , D − 1 (4)

where we are already extending to arbitrary D-level atom
systems with U(D) symmetry. For example, for D = 2 we
recover J+ = S10, J− = S01, Jz = 1

2 (S11 − S00) and the con-
served total number N of particles C1 = S00 + S11 [the linear
Casimir operator of U(2)]. U(D)-spin operators Si j fulfill the
commutation relations

[Si j, Skl ] = δ jkSil − δil Sk j . (5)

The LMG Hamiltonian H2 in (2) for D = 2 level systems is
generalized to arbitrary D levels as

HD =
D−1∑
i=0

εi(Si+1,i+1 − Sii ) +
D−1∑

i �= j=0

(
λ1S2

i j + λ2Si jS ji
)
, (6)

where εi now denotes the energy gap between levels i and
i + 1. The λ1 interaction term annihilates pairs of particles
in one level and creates pairs in another level, whereas the
λ2 term scatters one particle from i → j while another is
scattered back from j → i. The total number of particles N =∑D−1

i=0 Sii [the linear Casimir operator of U(D)] is conserved.
For the sake of simplicity, we shall consider λ2 = 0 and εi = ε

(same energy spacing between levels). Since we are interested
in the thermodynamic limit N → ∞, we shall also renormal-
ize one-body interactions ε → ε/N by the total number N of
particles, and two-body interactions λ2 → −λ/[N (N − 1)] by
the total number N (N − 1) of pairs, so that the final Hamilto-
nian density for us becomes

H = ε

N
(SD−1,D−1 − S00) − λ

N (N − 1)

D−1∑
i �= j=0

S2
i j . (7)

We shall measure energy in ε > 0 units, and discuss the en-
ergy spectrum and the phase diagram in terms of the control
parameter λ (see later in Sec. V). There are already some
studies in the literature of this Hamiltonian for D = 3 level
atoms and its chaotic behavior (see, e.g., [14,43–48]).

We shall consider indistinguishable atoms, so that the
Hilbert space dimension reduces from DN to

(N+D−1
D−1

)
, the

dimension of the fully symmetric irreducible representation of
U(D) (which coincides with the total number of compositions

of N into D non-negative integers when order does not mat-
ter). This restriction considerably reduces the computational
complexity for large number of particles N (see [14] for the
role played by other mixed permutation symmetry sectors
in the thermodynamic limit N → ∞). Therefore, the Hilbert
space is spanned by the Bose-Einstein-Fock basis states (|
0〉
denotes the Fock vacuum)

|
n〉 = |n0, . . . , nD−1〉 = (a†
0)n0 . . . (a†

D−1)nD−1

√
n0! . . . nD−1!

|
0〉, (8)

where ni denotes the occupancy number of level i (the eigen-
value of Sii), with the restriction n0 + · · · + nD−1 = N (the
total number of atoms and qudits). In the low-interaction
regime λ � 1, the ground state of (7) is a Bose-Einstein
condensate 1√

N!
(a†

0)N |
0〉 of N atoms in the i = 0 level, which
we shall take as a reference level from now on.

These Fock states are the natural generalization of angular
momentum j = N/2 Dicke states | j, m〉 with angular momen-
tum third component m = − j, . . . , j; more explicitly,

| j, m〉 = |n0 = j + m, n1 = j − m〉, (9)

so that m = (n0 − n1)/2 [the eigenvalue of Jz = 1
2 (S11 − S00)]

represents the population imbalance between levels i = 0 and
1. The expansion of a general symmetric N-qudit state ψ in
the Fock basis will be written as

|ψ〉 =
∑

‖
n‖1=N

c
n|
n〉, (10)

where the sum is restricted to ‖
n‖1 = n0 + · · · + nD−1 = N .
Collective U(D)-spin operators (4) matrix elements in the
Fock basis are easily computed as

〈 
m|Sii|
n〉 = niδ 
m,
n,

〈 
m|Si j |
n〉 = √
(ni + 1)n jδmi,ni+1δmj ,n j−1

∏
k �=i �= j

δmk ,nk . (11)

At this point, we would like to highlight the existence of
an interesting parity symmetry. Indeed, this symmetry of the
Hamiltonian has to do with the fact that the interaction only
scatters pairs of particles, thus conserving the parity 
 j =
exp(iπS j j ), even (+) or odd (−), of the population S j j in each
level j = 0, . . . , D − 1. Note that 
 j |
n〉 = (−1)n j |
n〉, and
therefore we have the constraint 
0 . . . 
D−1|
n〉 = (−1)N |
n〉
which allows to write, for example, 
0 = (−1)N
1 . . . 
D−1.
Hence, this discrete parity symmetry corresponds to the finite
group ZD−1

2 = Z2× D−1. . . ×Z2, with Z2 = {0, 1} the usual par-
ity group (the cyclic group of order 2). Consequently, energy
eigenstates have well defined parity under ZD−1

2 . We will
see later in Sec. V that low-lying Hamiltonian eigenstates
with different parities collapse in the thermodynamic N → ∞
limit, giving rise to a degenerate ground state as a conse-
quence of a spontaneous breakdown of the parity symmetry
ZD−1

2 .
Let us denote by the binary string b = [b1, . . . , bD−1] ∈

{0, 1}D−1 one of the 2D−1 elements of the parity group ZD−1
2 .

There are 2D−1 parity invariant subspaces labeled by the in-
equivalent group characters c = [c1, . . . , cD−1] ∈ {0, 1}D−1 of

the Pontryagin dual group ̂ZD−1
2 ∼ ZD−1

2 . The projectors onto
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these invariant subspaces of definite parity c are given by


c = 21−D
∑

b∈{0,1}D−1

(−1)c·b
b, (12)

with c · b = c1b1 + · · · + cD−1bD−1 and


b ≡ 

b1
1 . . . 


bD−1
D−1. (13)

Note that ∑
c∈{0,1}D−1


c = I, (14)

the identity I in the representation space. For example, for
D = 2 we have just 
0 = 
even and 
1 = 
odd the standard
projectors on even and odd parities, with I = 
even + 
odd.
For general D, we sometimes shall single out the totally even
0 = [0, . . . , 0] and totally odd 1 = [1, . . . , 1] parity represen-
tations.

III. U(D)-SPIN COHERENT STATES
AND ADAPTATION TO PARITY

A. U(D)-spin coherent states

U(D)-spin coherent states (DSCSs for brevity) are defined
as a generalization of standard binominal (two-mode) U(2)-
spin coherent states to the multinomial (D-mode) case as

|z〉(N ) = 1√
N!

(
a†

0 + z1a†
1 + · · · + zD−1a†

D−1√
1 + |z1|2 + · · · + |zD−1|2

)N

|
0〉, (15)

so that they are labeled by D − 1 complex numbers z j ∈ C ar-
ranged in the column vector z = (z1, z2, . . . , zD−1)t ∈ CD−1.
Properly speaking, this really corresponds to a certain patch of
the complex projective manifold CPD−1, which results when
choosing i = 0 as a reference level; see, e.g., [49] for more
information about other choices and patches. DSCSs are also
labeled by the total number of particles N [also labeling a
specific symmetric representation of U(D)], which will be
omitted as superscript in Eq. (15) to simplify the notation, i.e.,
|z〉 ≡ |z〉(N ).

DSCSs |z〉 have the form of a Bose-Einstein condensate
of D modes, generalizing the spin U(2) (binomial) coherent
states of two modes introduced by [50] and [9] a long time
ago. If we take i = 0 as a reference energy level, then the state
|z = 0〉 would be the ground state, whereas general |z〉 could
be seen as coherent excitations. The coefficients c
n(z) of the
expansion (10) of |ψ〉 = |z〉 in the Fock basis are simply

c
n(z) =
√

N!∏D−1
i=0 ni!

∏D−1
i=1 zni

i

(1 + z†z)N/2
, (16)

where z†z = |z1|2 + · · · + |zD−1|2 denotes the standard scalar
product in CD−1.

In general, DSCSs are not orthogonal since the scalar prod-
uct

〈z|z′〉 = (1 + z†z′)N

(1 + z†z)N/2(1 + z′†z′)N/2
(17)

is not necessarily zero. However, they are an overcomplete set
of states closing a resolution of the identity

1 =
∫
CD−1

|z〉〈z|dμ(z),

dμ(z) = (D − 1)!

πD−1

(
N + D − 1

N

)
d2z1 . . . d2zD−1

(1 + z†z)D
, (18)

with d2zi = d Re(zi)d Im(zi) the Lebesgue measure on C and
dμ(z) the Fubini-Study measure [16,51] in the corresponding
complex projective space. This closure relation of DSCSs will
be important when discussing phase space constructions.

B. Coherent state operator matrix elements

DSCS matrix elements of D-spin operators Si j are easily
computed from (11) and (16) and they are simply

〈z′|Si j |z〉 = Nz̄′
iz j

(1 + z′†z)N−1

(1 + z′†z′)N/2(1 + z†z)N/2
, (19)

where we understand z0 = 1 = z′
0. From here, DSCS matrix

elements of quadratic powers of D-spin operators can be con-
cisely written as

〈z′|Si jSkl |z〉 = δ jk〈z′|Sil |z〉 + N − 1

N

〈z′|Si j |z〉〈z′|Skl |z〉
〈z′|z〉 .

(20)

Note that

lim
N→∞

〈z|Si jSkl |z〉
〈z|Si j |z〉〈z|Skl |z〉 = 1, (21)

which means that quantum fluctuations are negligible in the
thermodynamic (classical) limit N → ∞. We shall use these
ingredients when computing energy surfaces in Sec. V.

C. Parity adapted U(D)-spin coherent states

DSCSs are sometimes called “quasiclassical” states. As we
shall see in Sec. V, |z〉 turns out to be a good variational state,
which reproduces the energy and wave function of the ground
state of multilevel LMG atom models in the thermodynamic
(classical) limit N → ∞. However, DSCSs do not display
the parity symmetry ZD−1

2 of the LMG Hamiltonian, which
is commented at the end of Sec. II. This parity symmetry is
spontaneously broken in the thermodynamic limit N → ∞
due to the degeneration of the different parity states, but it
should be restored for finite N to properly reproduce the
ground (and excited) state wave function properties. A parity
adaptation of DSCSs can be done by applying projectors 
c

in (12) on invariant subspaces of definite parity c. The effect
of level i population parity operations 
i = exp(iπSii ) on
DSCSs reduces to


i|z〉 = |(z1, . . . ,−zi, . . . , zD−1)〉. (22)

That is, 
i just changes the sign of zi in |z〉. Let us denote by

|z〉b = 
b|z〉 = |((−1)b1 z1, . . . , (−1)bD−1 zD−1)〉 ≡ |zb〉,
(23)
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with 
b in (13), and by

|z〉c ≡ 
c|z〉
N (z)c

= 21−D

N (z)c

∑
b∈{0,1}D−1

(−1)c·b|z〉b, (24)

with 
c in (12), the normalized projection of |z〉 onto the
parity c invariant subspace, with squared normalization factor

N (z)2
c = 21−D

∑
b(−1)c·b(1 + z†zb)N

(1 + z†z)N
. (25)

We will write |z〉b = |zb〉 indistinctly, with zb =
((−1)b1 z1, . . . , (−1)bD−1 zD−1) as defined in Eq. (23). The
same as 
b and 
c denote different operators, do not
confuse |z〉b with |z〉c, which can be seen as the dual Fourier
(Walsh-Hadamard) transformed version of |z〉b with

χc(b) = (−1)c·b = (−1)c1b1+...cD−1bD−1 (26)

the characters of the parity group ZD−1
2 . The factors (−1)cibi

are the analog of the traditional discrete Fourier transform
characters χω(t ) = eiωt , ω, t = 0, . . . , M − 1, but for the ad-
ditive group ZM of integers modulo M (or the multiplicative
group of Mth roots of unity), with M = 2 in our case. The
characters (26) have some useful properties such as∑

c∈{0,1}D−1

χc(b) = 2D−1δc,0, (27)

χc(b) = χb(c), (28)

χc(0) = 1, (29)

χc(b)χc′ (b) = χc+c′ (b). (30)

The coefficients c
n(z)c of the expansion (10) of |ψ〉 = |z〉c
in the Fock basis can be derived from (24) and (16),

c
n(z)c = 21−D

N (z)c

∑
b∈{0,1}D−1

(−1)(c+n)·bc
n(z)

= 1

N (z)c
c
n(z)δn,c, (31)

where n = [mod(n1, 2), . . . , mod(nD−1, 2)] is retrieved from

n removing n0 and expressing it in modulo 2, and δn,c =
δmod(n1,2),c1 . . . δmod(nD−1,2),cD−1 is the product of Kronecker
deltas.

For D = 2, the parity adaptations |z〉[0] = |z〉+ and |z〉[1] =
|z〉− of a U(2)-spin coherent state |z〉 [for z = (z1) = z] adopt
the form

|z〉± = |z〉 ± | − z〉√
2 ± 2

( 1−|z|2
1+|z|2

)N
, (32)

and are sometimes called even (+) and odd (−) “Schrödinger
cat states” since they are a quantum superposition of weakly

overlapping (or distinguishable, i.e., 〈z| − z〉 N→∞−−−→ 0 for z �=
0) quasiclassical (minimal uncertainty) coherent wave pack-
ets. Hence, we shall name c-DCATs the c-parity adapted
DSCSs |z〉c in (24) from now on.

Likewise, for D = 3 we have 2D−1 = 4 parity sectors,

c = [c1, c2] ∈ {[0, 0], [0, 1], [1, 0], [1, 1]}, (33)

and therefore four Schrödinger cat states associated to the
DSCS |z〉 = |(z1, z2)〉 adopting the explicit form

|z〉c = 1

4N (z)c
[|(z1, z2) + (−1)c1 |(−z1, z2)〉〉

+ (−1)c2 |(z1,−z2)〉 + (−1)c1+c2 |(−z1,−z2)〉], (34)

with squared norm

N (z)2
c = 1

4(1 + |z1|2 + |z2|2)N
[(1 + |z1|2 + |z2|2)N

+ (−1)c1 (1 − |z1|2 + |z2|2)N

+ (−1)c2 (1 + |z1|2 − |z2|2)N

+ (−1)c1+c2 (1 − |z1|2 − |z2|2)N ]. (35)

Note that there are at most 2D−1 Schrödinger cat states |z〉c
associated to a DSCS |z〉 for arbitrary z. However, we can have

c|z〉 = 0 and N (z)c = 0 when ci = 1 and zi = 0, so that the
c-DCAT in (24) contains an indeterminate form of type “0/0.”
For instance, in the previous example with D = 2, the odd
2CAT state becomes

lim
z→0

|z〉− = lim
z→0

|z〉 − | − z〉√
2 − 2

( 1−|z|2
1+|z|2

)N

= lim
z→0

(
2
√

N√
(N−1)!

z(a†
0)N−1a†

1 + O(z2)
)|
0〉

2
√

Nz + O(z2)

= |n0=N−1, n1=1〉. (36)

The result is then a Fock basis state (8), which codifies the
antisymmetry of the odd 2CAT |z〉− by filling the level i = 1
with n1 = 1 particle. This “transmutation” of c-DCATs into
Fock states for some zero components of z will be visualized
when plotting the Husimi function of the c-DCATs in the next
section. On the other hand, the even 2CAT also transmutes to
another Fock basis state in the limit limz→0 |z〉+ = |n0=N,n1=0〉.

It is also relevant to calculate the zi → 0 limits in the
particular case of the c-3CATs, as they will be used to study
the variational approach to the Hamiltonian eigenstates of the
LMG U(3) model in the different quantum phases in Sec. VI.
For D = 3, the 3CAT state (34) has the following limits:

lim
z1→0

|z〉(N )
c = (a†

1)c1 |(0, z2)〉(N−c1 )
[c2] ,

lim
z2→0

|z〉(N )
c = (a†

2)c2 |(z1, 0)〉(N−c2 )
[c1] , (37)

lim
z1,z2→0

|z〉(N )
c = |n0=N−c1−c2, n1=c1, n2=c2〉,

where a†
i are the bosonic creation operators (4), and

|(0, z2)〉[c2] ∝ 
[c2]|(0, z2)〉
= 2−1

∑
b2∈{0,1}

(−1)c2b2 |(0, (−1)b2 z2)〉,

|(z1, 0)〉[c1] ∝ 
[c1]|(z1, 0)〉
= 2−1

∑
b1∈{0,1}

(−1)c1b1 |((−1)b1 z1, 0)〉, (38)

are reduced-parity projected U(3) CSs, according to (12) and
(22). In the expression (37), we have also recovered the
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superscript |z〉(N ) notation of the DSCSs (15) to highlight that
the c-3CAT |z〉(N )

c = |(z1, z2)〉(N )
[c1,c2] of N particles becomes

a reduced [c2]-3CAT |(0, z2)〉(N−c1 )
[c2] [respectively [c1]-3CAT

|(z1, 0)〉(N−c2 )
[c1] ] with N − c1 (respectively N − c2) particles

after the limit z1 → 0 (respectively z2 → 0). The new [ci]-
3CATs after the limits have a smaller parity symmetry group,
as [c1] and [c2] belong to Z1

2 �= Z2
2, the original 3CAT parity

group ZD−1
2 for D = 3. Despite the states in Eq. (38) have a

similar structure to the 2CATs in (32), they are actually Z1
2-

parity adapted U(3)-spin CSs, as they belong to a three-level
Fock space. Furthermore, they have a similar structure to the
photon-added CSs, which are defined as a creation operator
acting on a canonical CS [52], but for the U(3)-spin CSs in
our case. The photon-added CSs has also been extended to
SU(2) [53] and SU(1,1) [54]. As these states have only been
studied for the Heisenberg-Weyl group, and for SU(2) [53]
and SU(1,1) [54], the generalization to SU(D) presents a novel
research topic [55].

The zi → 0 limits in the general c and D cases of a c-
DCAT are not straightforward to compute analytically (see
[55]), thus, Appendix A is devoted to show in detail these cal-
culations. However, it is necessary to introduce the following
limit and notation to progress in our discussion. The zero limit
zi → 0 can be used repeatedly for a set of l = D − 1 − k dif-
ferent coordinates zL = {zi1 , . . . , zil }, whose indices are taken
from a set of nonrepeated indices L = {i1, . . . , il}. Equiva-
lently, we can define the set of the k nonzero coordinates
zK = {z j1 , . . . , z jk } which are not used in the limits, where
the indices K = { j1, . . . , jk} are not duplicated neither. Note
that z = (zK , zL ) = (z1, . . . , zD−1) include all the projective
coordinates as k + l = D − 1 by definition. After the limits,
the c-DCAT is transformed into

lim
zL→0L

|z〉(N )
c = (

a†
i1

)ci1. . .(a†
il

)cil |(zK , zL = 0L )〉(N−‖cL‖0 )
cK

, (39)

obtaining a reduced cK -DCAT |(zK , zL = 0L )〉cK , with N −
‖cL‖0 particles, cK = [c j1 , . . . , c jk ] ∈ Zk

2 parity, and to which
it is added a series of ‖cL‖0 particles occupying the levels
ni1 = ci1 , . . . , nil = cil . The expression ‖cL‖0 means the 0
norm (number of nonzero components) of cL = [ci1 , . . . , cil ].
The rest of the notation in (39) is similar to the one used in
Eq, (A3). Equation (39) generalizes the results for D = 2 in
(36) and for D = 3 in (37).

We will use Eqs. (34), (35), and (37) in Sec. (V) to restore
the parity c = 0 = [0, 0] of the variational DSCS of a N atoms
LMG model with D = 3 levels since the true ground state of
this model exhibits a Schrödinger cat structure with totally
even parity 0. We will also see that the other parities in (37)
can model some of the first excited states in the LMG U(3)
model. But before that, we shall introduce the Husimi function
and some localization measures in phase space to characterize
the different quantum phases that appear in the LMG model.

IV. HUSIMI FUNCTION AND LOCALIZATION
MEASURES IN PHASE SPACE

Coherent states provide phase space representations (also
known as Bargmann/holomorphic representation) of wave
functions in quantum physics. Here we shall concentrate on
the Husimi or Q function [56] of a pure state |ψ〉, defined

as Qψ (z) = |〈z|ψ〉|2 for a given overcomplete set of coher-
ent states |z〉. The most popular case is in quantum optical
systems, for which |z〉 makes reference to a Glauber [7] or
canonical (harmonic oscillator) coherent state associated to
the Heisenberg-Weyl group. This definition can be extended
to other coherent state systems like those associated to more
general symmetry groups [10] (see also [57] for some gener-
alizations). In our case, the Husimi function of the quantum
state (10) is defined in terms of the DSCS coefficients (16) as

Qψ (z) = |〈z|ψ〉|2 =
∣∣∣∣∣∣

∑
‖
n‖1=N

c
n(z)c
n(ψ )

∣∣∣∣∣∣
2

, (40)

and it is normalized∫
CD−1

Qψ (z)dμ(z) = 1, (41)

according to the measure (18). This definition is straightfor-
wardly extended to nonpure states defined by a density matrix
ρ as Qρ (z) = 〈z|ρ|z〉 (see, e.g., [16,57]).

The Husimi function of a DSCS |z〉 is simply Q|z〉(z′) =
|〈z′|z〉|2, where the coherent state overlap 〈z′|z〉 is given in
(17). A more interesting example is the Husimi function of
a c-DCAT state |z〉c (24), which adopts the form

Q|z〉c (z′) = |〈z′|z〉c|2 = 41−D

N (z)2
c

∣∣∣∣∣
∑
b

(−1)c·b〈z′|zb〉
∣∣∣∣∣
2

= 21−D
∣∣∑

b(−1)c·b(1 + z†z′b)N
∣∣2

(1 + z′†z′)N
∑

b(−1)c·b(1 + z†zb)N
, (42)

where we have used the coherent state overlap 〈z′|zb〉 in
(17) and the normalization constant N (z)c in (25). There are
studies in the literature relating the distribution of zeros in
phase space of the Husimi function of the ground state of
a critical quantum system and the onset of quantum chaos
(see, e.g., [58,59]) and also studies on the critical behavior
of excited states and its relation to order and chaos [60]. Note
that, for c-DCAT states |z〉c, the structure of zeros of their
Husimi function (42) depends on the parity c. Moreover, the
case D > 2 is much richer and opens new possibilities since Q
is multivariate and its zeros are not necessarily isolated points
but form curves, surfaces, etc.

In order to visualize the QPT in the critical LMG model
across the phase diagram, we shall use the νth moments of the
Husimi quasidistribution function

Mν (ψ ) =
∫
CD−1

[Qψ (z)]νdμ(z), ν > 1. (43)

Among all Husimi moments, we shall single out ν = 2, which
corresponds with the so called “inverse participation ratio”
(IPR) [2,32], that measures the localization of (inverse area
occupied by) Qψ in phase space and can be generalized to
any probability density function [61,62]. The νth moments of
the Husimi function supposedly reach their maximum value
when ψ itself is a coherent (highly localized) state, that is,
when ψ only participates of a single coherent state. This
conjecture has been proved in the cases of families of coherent
states of compact semisimple Lie groups [57], including the
symmetric and antisymmetric representations of SU(D) as
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particular cases [63]. This affirmation is widely known as
part of the Lieb conjecture, which is mentioned at the end of
this subsection. For example, for the particular case of |ψ〉 =
|z = 0〉 = 1√

N!
(a†

0)N |
0〉 (a boson condensate of N atoms in
their ground state i = 0) and a generic number of levels D,
a quite straightforward calculation gives

Mν (|0〉) = (Nν)!

N!

(N + D − 1)!

(Nν + D − 1)!

= (N + D − 1)D−1

(Nν + D − 1)D−1

N→∞−−−→ 1/νD−1, (44)

where (x)n = x(x − 1) . . . (x − n + 1) denotes the descending
factorial or Pochhammer symbol. The last result (44) can be
straightforwardly extended to any DSCS, that is,

Mν (|z〉) = Mν (|0〉), ∀ z ∈ CD−1, (45)

and, in fact, to any boson condensate of N atoms in any
level i = 0, . . . , D − 1 (see Appendix B for a proof). This
in particular means that all coherent states occupy the same
area in phase space. Indeed, any DSCS |z〉 can be obtained
by translating and rotating |z = 0〉 → U (z)|0〉 by a unitary
transformation U (z) ∈ U(D) (that is, |z〉 can be seen as a “dis-
placed ground state”), which means that Q|z〉(z′) = Q|0〉(z′ ∗
z−1) with U (z′ ∗ z−1) = U †(z)U (z′) the composition of two
U(D) transformations; the fact that the Fubini-Study measure
dμ(z) in (18) is U(D) invariant completes the proof. There-
fore, the ν moments of the Husimi function of a DSCS |z〉 do
not depend on the phase space points z ∈ CD−1, but just on
ν, the number of particles and atoms N , and the number of
atom levels D. Equations (44) and (45) agree with those of
Refs. [18,31] in the particular cases of D = 2 and 3, respec-
tively, and with [63] in the general D case.

The c-DCAT states |z〉c in (24) participate on several co-
herent states |zb〉 and therefore have a lower IPR value (i.e.,
they occupy a bigger area in phase space), usually a fraction
of Mν (|0〉). More concretely, the ν moment of Q|z〉c can be
explicitly calculated as in [63],

Mν (|z〉c) = Mν (|z〉)
∑

|
k|=Nν

∣∣B2

k
∣∣, (46)

with

B
k =
√

(N!)ν

(Nν)!

∑
|
n1|=···=|
nν |=N

( 
k

n1, 
n2, . . . , 
nν

)1/2

× c
n1 (z)cc
n2 (z)c . . . c
nν
(z)c, (47)

where c
ni (z)c are the c-DCAT coefficients in the Fock basis
(31). The last sum is restricted to 
n1 + 
n2 + · · · + 
nν = 
k, and
we are denoting( 
k


n1, 
n2, . . . , 
nν

)
≡ 
k!


n1! . . . 
nν!
, (48)

where all the vectors 
n1, 
n2, . . . , 
nν correspond to
different Fock vectors according to (8), i.e. |
ni〉 =
|ni,0, ni,1, . . . , ni,D−1〉, so that we mean by 
ni! ≡ ∏D−1

j=0 (ni, j )!

and by |
ni| ≡ ∑D−1
j=0 ni, j .

In the thermodynamic N → ∞ limit, the bulky expression
(46) reduces to the more compact one (see Appendix C for a

proof)

lim
N→∞

Mν (|z〉c) = (2D−1)1−ν lim
N→∞

Mν (|z〉) = (2D−1)1−ν

νD−1
,

(49)

which proves that c-DCATs have lower IPR value than DSCSs
since (2D−1)1−ν < 1 for all ν � 2. Hence, DCATs are less
localized (occupy a greater area) than DSCSs in phase space.
In addition, the limit is independent of the DCAT parity c.
To be more precise, the equation above is only valid when all
the coordinates zi are nonzero, i.e., zi �= 0 ∀ i = 1, . . . , D − 1.
Nevertheless, for a totally even 0-DCAT which has only k <

D − 1 nonzero vector components in z, we can apply Eq. (A3)
for all the zi that tend to 0, transforming the 0-DCAT into a
reduced 0K -DCAT with a parity symmetry described by Zk

2.
This leads to a expression similar to (49),

lim
N→∞

lim
zL→0L

Mν (|z〉0) = (2k )1−ν lim
N→∞

lim
zL→0L

Mν (|z〉)

= (2k )1−ν

νD−1
, (50)

where the notation is the same as in Eq. (39). Note that the
denominator νD−1 is the same as in Eq. (49), as we calculate
the N → ∞ limit of a U(D) CS, not a U(k) one (this result
is proven in Appendix C). For a general parity c-DCAT, the
expression above transforms into

lim
N→∞

lim
zL→0L

Mν (|z〉c) = (2k+‖cL‖0 )1−ν

νD−1
, (51)

where ‖cL‖0 and k = ‖z‖0 are the number of nonzero compo-
nents in cL and z, respectively. The sum k + ‖cL‖0 coincides
with the number of humps displayed by the Husimi function
Q|z〉c (z′) in the phase space coordinates z′, as we will see in
Sec. VII. Equation (51) includes Eq. (50) as a particular case
since ‖cL‖0 = 0 for the 0-DCAT.

Instead of Mν (ψ ), it is sometimes preferred to express
delocalization (as a measure of area in phase space) in terms
of Rényi-Wehrl entropy, which is defined as [16–18]

SW,ν (ψ ) = 1

1 − ν
ln[Mν (ψ )], ν �= 1. (52)

Taking the limit ν → 1 in the Rényi-Wehrl entropy (52), one
obtains the Wehrl entropy [64] given by

SW (ψ ) = −
∫
CD−1

Qψ (z) ln[Qψ (z)]dμ(z). (53)

Since the definition of the Husimi function is related to a
specific classical phase space (the CPD−1 complex projective
space defined by DSCSs in our case), the Wehrl entropy is
also called (semi)classical entropy [64,65]. It is the Gibbs
entropy continuous form of the Husimi probability function
Qρ for the state described by a density matrix ρ [16,64].
This picture contrasts with other common entropies such as
the von Neumann entropy SN = −tr(ρ ln ρ), which we have
previously used to study entanglement (quantum nonlocality)
in symmetric multiqudit systems [49], and has no immediate
relation to classical mechanics. The last one measures how
much a state is mixed (nonpure), rather than its localization
in phase space. According to the Lieb conjecture [66], the
minimum Wehrl entropy (53) is attained when ψ is a DSCS.
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It was proved for SU(2) spin- j CSs in [65,67], for symmetric
SU(D) spin CSs (DSCSs for us) in [68], and for any compact
semisimple Lie group in [57]. The minimum Wehrl entropy
value can be easily obtained from the Husimi ν moment of
the highest-weight vector |z〉 = |0〉 in (44), once we realize
that SW = limν→1 SW,ν in (52), and that

min
ψ

SW (ψ ) = SW (|z〉) = SW (|0〉) (54)

according to (45). Therefore, taking the limit ν → 1 in (44)
we arrive to

SW (|0〉) = N[ψ (0)(N + D) − ψ (0)(N + 1)]

= N
D−1∑
k=1

1

N + k
N→∞−−−→ D − 1, (55)

for a generic number D of levels, where ψ (0)(x) = �′(x)/�(x)
is the digamma function. There is a particular version of
this result for a U(3) vibron model in [31]. As a particu-
lar case, in the thermodynamic limit N → ∞, the minimum
Wehrl entropy is D − 1 = 1 for D = 2, which is the minimum
value of the Wehrl entropy predicted by Lieb in [66] for the
harmonic oscillator coherent states (Heisenberg-Weyl group).
This is so because Bloch SU(2) spin- j coherent states |z〉 tend
to the Heisenberg-Weyl (harmonic oscillator) coherent states
|α〉 in the large spin limit j = N/2 � 1 with the rescaling
z = α/

√
N [10,69]. Unlike for DSCSs, we do not have closed

analytical formulas for the Wehrl entropy of c-DCAT states,
except in the thermodynamic limit when, in general,

lim
N→∞

SW (|z〉c) = lim
N→∞

SW (|z〉) + log(2D−1)

= (D − 1)[1 + log(2)], (56)

being the same for all different parities c. As we already
commented in Eq. (50), when there are only k nonzero com-
ponents in z for the fully even 0-DCAT, the expression above
(56) has to be replaced by

lim
N→∞

lim
zL→0L

SW (|z〉0) = (D − 1) + k log(2). (57)

Therefore, the totally even parity adaptation of a DSCS entails
a Wehrl entropy (area in phase space) excess of

SW (|z〉0) − SW (|z〉)
N→∞−−−→ k log(2) (58)

in the thermodynamic limit. This is a particular case of the
result proposed by Mintert and Zyczkowski in [16]. Also, the
limits (50) and (57) for the 0-DCAT generalize the results ob-
tained in [31] for D = 3 and z = (z1,−z̄1), which is equivalent
to having only one nonzero component in z, i.e., k = 1. For the
general c-parity case, we use Eq. (51) to obtain

lim
N→∞

lim
zL→0K

SW (|z〉c) = (D − 1) + (k + ‖cL‖0) log(2). (59)

All the expressions in the thermodynamic limit presented in
this section are examined in more detail in Appendix C.

In Sec. VII, we propose Husimi second moments and
Rényi-Wehrl entropies of the ground state of a three-level
atom LMG model (7) as localization measures in phase space,
in order to characterize the three quantum phases appearing in
this model. But previously we are going to study the phase

diagram of the critical D = 3 level LMG model in the next
section.

V. LMG MODEL FOR THREE-LEVEL ATOMS
AND ITS QUANTUM PHASE DIAGRAM

We particularize the Hamiltonian (7) for D = 3 (three-level
atoms or qutrits). Therefore, our Hamiltonian density will be

H = ε

N
(S33 − S11) − λ

N (N − 1)

3∑
i �= j=1

S2
i j . (60)

We shall measure energy in ε units and discuss the energy
spectrum and the phase diagram in terms of the only con-
trol parameter λ. In [14] we have proved that this model
displays three different quantum phases for the completely
symmetric unitary irreducible representation of U(3) labeled
by the total number of particles N ; Ref. [14] also stud-
ies other permutation symmetry sectors (fermionic mixtures
from two-row Young diagrams) which will not be discussed
here. Let us summarize the essential points. Coherent (semi-
classical) states are in general good variational states which
faithfully reproduce the ground state energy of Hamiltonian
models in the semiclassical and thermodynamic limit N →
∞. Therefore, we define the energy surface associated to the
Hamiltonian density H in (60) as the DSCS expectation value
of the Hamiltonian density in the thermodynamic limit

E|z〉(ε, λ) = lim
N→∞

〈z|H |z〉

= lim
N→∞

(
ε
〈z|S33|z〉 − 〈z|S11|z〉

N
− λ

∑3
i �= j=1〈z|Si j |z〉2

N (N−1)

)
,

(61)

with 〈z|Si j |z〉 in (19). Note that we have used that there are no
spin fluctuations in the thermodynamic limit (21). Denoting
z = (z1, z2) the phase space coordinates for U(3)-spin coher-
ent states (15), the energy surface has the explicit form

E|z〉(ε, λ) = ε
|z2|2 − 1

|z1| + |z2|2 + 1
− λ

z2
1

(
z̄2

2 + 1
) + z2

2 + c.c.

(|z1| + |z2|2 + 1)2 .

(62)
This energy surface is invariant under parity transformations
z1 → −z1, z2 → −z2, a symmetry which is inherited from the
discrete parity symmetry of the Hamiltonian (60). In fact, the
energy surface E|z〉(ε, λ) coincides with all c-DCAT Hamilto-
nian expectation values in the thermodynamic limit, that is

E|z〉c (ε, λ) = E|z〉(ε, λ) ∀ c ∈ ZD−1
2 . (63)

This can be seen by using the linear and quadratic U(D)-spin
operator expectation values in a c-parity DCAT defined in
[49], and realizing that

lim
N→∞ c〈z|Si j |z〉c = lim

N→∞
〈z|Si j |z〉, (64)

which can also be extended to quadratic (two-body)
U(D)-spin operator expectation values because of the absence
of quantum fluctuations in the thermodynamic limit (21).
This fact has important consequences in the spontaneous
breakdown of the parity symmetry in the thermodynamic
limit and the quantum phase transition, as we are going to see
in the following.
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The variational minimum (ground state) energy

E (0)(ε, λ) = minz1,z2∈CE|(z1,z2 )〉(ε, λ) (65)

is attained at the critical (real) coherent state parameters

z(0)
1±(ε, λ) = ±

⎧⎪⎪⎨
⎪⎪⎩

0, 0 � λ � ε
2√

2λ−ε
2λ+ε

, ε
2 � λ � 3ε

2√
2λ

2λ+3ε
, λ � 3ε

2

z(0)
2±(ε, λ) = ±

{
0, 0 � λ � 3ε

2√
2λ−3ε
2λ+3ε

, λ � 3ε
2 .

(66)

Inserting (66) into (62) gives the ground state energy density
in the thermodynamic limit

E (0)(ε, λ) =

⎧⎪⎪⎨
⎪⎪⎩

−ε, 0 � λ � ε
2 (I)

− (2λ+ε)2

8λ
, ε

2 � λ � 3ε
2 (II)

− 4λ2+3ε2

6λ
, λ � 3ε

2 (III).

(67)

Here we clearly distinguish three different phases: I, II, and
III, and two second-order QPTs (according to Ehrenfest’s
classification) occurring at critical points λ

(0)
I↔II = ε/2 and

λ
(0)
II↔III = 3ε/2, respectively, at which the second derivative

of E0(ε, λ) is discontinuous. As we have already anticipated,
the ground state is degenerated since there are four differ-
ent DSCSs |z(0)

1±, z(0)
2±〉 (or, equivalently, four 3CAT states |z〉c

with parities c = [0, 0], [1, 0], [0, 1], and [1,1]) with the same
energy (67) in the thermodynamic limit N → ∞. This is a
consequence of the spontaneous breakdown of the discrete
parity symmetry Z2

2 of the Hamiltonian (60), as was already
pointed out in [14]. For general D, the ground state degeneracy
would go as 2k , with k the number of nonzero components
of z(0), with a maximum degeneracy of 2D−1 (the number of
elements of the parity group ZD−1

2 ).

VI. FIDELITY BETWEEN VARIATIONAL CATS
AND NUMERICAL LOW-LYING HAMILTONIAN

EIGENSTATES WITH DEFINITE PARITY

For a finite number N of atoms, coherent states |z〉 still
provide a fairly good approximation to the ground state when
properly adapted to the (not yet broken) parity. There are two
possible variational approaches for finite N :

(1) Project |z〉 onto parity c = 0 = [0, 0] (the ground
state is always totally even), use this 0-3CAT state |z〉0 as
a variational state, and determine the critical coherent state
parameters z(0,N ) that minimize the energy expectation value
0〈z|H |z〉0 for finite N (the matrix elements 0〈z|Si j |z〉0 can be
found in [49]).

(2) Use one of the four critical coherent state parameter
combinations z(0) = (z(0)

1+, z(0)
2+) obtained for N → ∞ in (66),

substitute them into |z〉 for finite N creating |z(0)〉, then restore
parity by projecting onto fully even parity


0|z(0)〉 = 1
4

[∣∣z(0)
1+, z(0)

2+
〉 + ∣∣z(0)

1+, z(0)
2−

〉 + ∣∣z(0)
1−, z(0)

2+
〉 + ∣∣z(0)

1−, z(0)
2−

〉]
(68)

and normalize

|z(0)〉0 = 
0|z(0)〉
N (z(0) )0

. (69)

FIG. 1. Energy density spectrum of the first excited states of
the LMG U(3) model, obtained by numerical diagonalization of the
LMG U(3) Hamiltonian (60) for N = 20 particles, as a function
of the control parameter λ. The colored lines represent states with
well defined parity, which is indicated in the legend. The black lines
represent the rest of the eigenstates’ energy densities. The quantum
critical points λ

(0)
I↔II = ε/2 and λ

(0)
II↔III = 3ε/2 are indicated by verti-

cal dashed grid lines. Energies and λ are given in ε units.

The second procedure is less accurate but much easier.
We shall adopt it in the following to obtain variational ap-
proximations |z(0)〉0 (the properly normalized projection of

0|z(0)〉) to the ground state |ψ0〉, and to evaluate how faithful
(in the sense of [70]) they are to numerical solutions obtained
by direct Hamiltonian diagonalization. Moreover, we shall
naively extend this procedure to evaluate the fidelity between
other c-3CATs |z(0)〉c ∝ 
c|z(0)〉 and the first excited states
|ψi〉, i = 1, 2, 3, 4, 5 (in increasing order of energy), which
have definite parity c and are obtained by numerical diago-
nalization of the Hamiltonian (60) for different values of the
control parameter λ. In this case, the c-3CATs are reduced to
a smaller parity group 3CATs when some of the coordinates
in z(0) = (z(0)

1+, z(0)
2+) tend to 0 [see Eq. (37) and the discussion

below it]. Therefore, it would be more precise to define the
variational excited states (ES for short) as

|z(0)〉c = lim
z→z(0)

|z〉c, ∀ c �= 0 (70)

rather than directly using Eq. (69), in order to avoid a null
projection [see the discussion above Eq. (36) for more details].
This will become important when plotting Figs. 2, 6, and 9.

The condition for a Hamiltonian eigenstate |ψi〉 to have a
definite parity c is 〈ψi|
c|ψi〉 = 1. In particular, for N = 20
and λ ∈ (0, 3), we have obtained the following parities for the
fist low-lying Hamiltonian eigenstates (in increasing order of
energy):

〈ψ0|
[0,0]|ψ0〉 = 1, 〈ψ1|
[1,0]|ψ1〉 = 1,

〈ψ2|
[0,0]|ψ2〉 = 1, 〈ψ3|
[0,1]|ψ3〉 = 1, (71)

〈ψ4|
[1,0]|ψ4〉 = 1, 〈ψ5|
[1,1]|ψ5〉 = 1.

In Fig. 1 we represent the low-lying spectrum of the LMG
Hamiltonian (60) as a function of the control parameter λ for
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FIG. 2. Fidelity |c〈z(0)|ψi(λ)〉|2 between the variational c-3CATs
(70) and the numerical LMG Hamiltonian eigenstates ψi as a func-
tion of λ (ε units and logarithm scale in abscissa axis) for N = 20.
Vertical grid lines denote the quantum critical points.

N = 20 particles. The four colored lines represent the states
ψi, i = 0, 1, 3, 5, which have the same c-parity of specific
c-DCATs. After the first phase transition around λ

(0)
I↔II = ε/2,

the states i = 0, 1 (red and blue) start getting closer until they
finally merge for large λ. This degeneracy in the ground state
for finite N can be considered as a “precursor” of the first QPT
at λ = ε/2. The degeneracy is also present in the excited states
i = 3, 5 (green and orange) around λ

(0)
I↔II. Furthermore, as we

move towards the next critical point λ
(0)
II↔III = 3ε/2, the states

i = 0, 1, 3, 5 start to merge in a fourfold degenerate ground
state, providing another “precursor” but for the second QPT
at λ = 3ε/2. This degeneracy phenomenom is more and more
evident as we approach the thermodynamic limit, where the
ground state is completely fourfold degenerate.

Figure 2 shows the fidelity

F (|z(0)〉c, |ψi〉) = |c〈z(0)|ψi〉|2 (72)

between variational excited states (70) and numerical low-
lying Hamiltonian eigenstates ψi with the same parity c
(states with different parities are orthogonal). As expected,
the 3CAT state |z(0)〉0 gives a fairly good approximation to
the ground state |ψ0〉, with a high fidelity F � 0.8 (especially
in phase I), except near the critical points λ

(0)
I↔II = ε/2 and

λ
(0)
II↔III = 3ε/2, where fidelity always drops. Figure 2 also

shows the fidelity between the variational approximations
|z(0)〉c, with parities c = [1, 0], [0, 1], [1, 1], and the excited
states |ψi〉, i = 1, 3, 5, respectively. The excited states |ψ2〉
and |ψ4〉 are not considered in this discussion because they
already share parity with |ψ0〉 and |ψ1〉, respectively, and
therefore they can not be faithful to |z(0)〉[0,0] and |z(0)〉[1,0]

since 〈ψ2|ψ0〉 = 0 and 〈ψ4|ψ1〉 = 0, i.e., they are mutu-
ally orthogonal as Hamiltonian eigenstates with diferent
eigenvalues. Let us continue discussing Fig. 2. The fidelity
|[1,0]〈z(0)|ψ1〉| is also fairly high, although not as much as
for the ground state. Note that, according to Eq. (66), the
first component z(0)

1 of z(0) is zero in phase I and z(0)
2 = 0

FIG. 3. Parametric plot of the fitting points zmax
i = (zmax

1,i , zmax
2,i )

maximizing the overlap or fidelity |c〈z|ψi(λ)〉|2, as a function of
λ ∈ (0, 20) (ε units and logarithm scale) for N = 20 particles. The
fitting points are compared to the critical values z(0) = (z(0)

1±, z(0)
2±) in

(66), represented by the solid magenta line.

in phases I and II. Therefore, according to Eqs. (37) and
(38), in the phases I and II, the fidelity must be calculated
using reduced-parity 3CATs. For instance, in the phase I, the
3CAT |z(0)〉[1,0] becomes a Fock basis state |n0=N−1, n1=1, n2=0〉
because z(0)(λ) = (0, 0) at λ < ε/2; and in the phase II, it
“transmutes” to a Z2-parity 3CAT |(z(0)

1+, 0)〉(N )
[1] . The same

happens with the fidelities |[0,1]〈z(0)|ψ3〉| and |[1,1]〈z(0)|ψ5〉|,
which are fairly high far from the critical points. All the
fidelities presented in Fig. 2 tend to 1 when λ → 0, which cor-
responds to the coordinates z(0)(λ) = (0, 0). This is possible
because the numerical diagonalization in the noninteracting
case (λ = 0) reproduces very accurately the Fock basis states
at the bottom of Eq. (37). The spectrum classification of the
noninteracting LMG U(3) model was already studied ana-
lytically in [14], giving Fock basis states as eigenstates of
the Hamiltonian. Additionally, the fourfold degeneracy of the
eigenstates i = 0, 1, 3, 5 is present in Fig. 2 at high λ � 1,
where all the colored lines merge.

The failure of the variational state |z(0)〉c to properly rep-
resent the numerical Hamiltonian eigenstate |ψi〉 (for the
corresponding parity c) near the quantum critical points λ =
ε/2 and 3ε/2, can be fixed by simply maximizing the overlap

|c〈z|ψi(λ)〉|2 = N (z)2
cQψi (λ)(z) (73)

in the phase space coordinates z = (z1, z2) for each value of
λ. This procedure, of course, results in fitting values zmax

i =
(zmax

1,i , zmax
2,i ), which are different from the critical values z(0) =

(z(0)
1±, z(0)

2±) in (66) at the thermodynamic limit. Indeed, in Fig. 3
we plot the (real) values of zmax

i , to be compared to z(0), as
a function of λ. Both values meet at λ = 0 and λ � 1, i.e.,
when the two-body interaction is not present and when it
predominates, respectively. Then, in Fig. 4, we represent the
overlap |c〈zmax

i |ψi(λ)〉|2, which now attains values above 0.8
for all values of λ, thus improving the results of (72).
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FIG. 4. Maximum overlap or fidelity |c〈zmax
i |ψi(λ)〉|2 between

the c-DCATs |z〉c and the LMG numerical eigenvectors |ψi(λ)〉 of
different parity as a function of λ (ε units and logarithm scale) for
N = 20 particles.

VII. LOCALIZATION MEASURES OF THE GROUND
STATE IN PHASE SPACE THROUGHOUT

THE PHASE DIAGRAM

Now we are interested in analyzing the QPT of the three-
level atom LMG model by using the localization measures
(area in phase space) introduced in Sec. IV.

Let us start by analyzing the structure of the Husimi func-
tion Q|z(0)〉0 (z′) of the variational ground state |z(0)〉0 [see
Eq. (69)]. The variational Husimi function Q|z(0)〉0 (z′) depends
on the complex phase space coordinates z′ = (z′

1, z′
2) ∈ C2. It

also depends on the control parameter λ through the critical
point z(0) = (z(0)

1+, z(0)
2+) [we take ε energy units for simplicity,

see Eq. (66)]. In order to plot Q|z(0)〉0 (z′) in phases I, II, and III,
we shall separate “position” x1,2 = Re(z′

1,2) and “momentum”
p1,2 = Im(z′

1,2) coordinates (see, e.g., [71,72] for phase space
approaches to quantum mechanics and [29,31] for a justifica-
tion in other models, like quadratures of the electromagnetic
field).

In Fig. 5 we make contour plots of the variational Husimi
function in position (left panel) and momentum (right panel)
spaces for three different characteristic values λ1, λ2, λ3,

λ1 = 0 < λ
(0)
I↔II < λ2 = 1 < λ

(0)
II↔III < λ3 = 2.5, (74)

of the control parameter λ inside each phase for N = 20
particles. Contour plots of Q|z(0)〉0 (z) in position space give a
clear visual explanation of the delocalization of the ground
state in phase space as we move from phase I to phases II
and III. Indeed, the Husimi function is composed of a single
lump/hump/packet in phase I, which coincides with 2k = 1 for
k = 0, the number of nonzero components of z(0) = (z(0)

1+, z(0)
2+)

according to (66); similarly, we have 2k = 2 and 4 lumps
in phases II and III for k = 1 and 2 nonzero components
of z(0), respectively. The behavior of the Husimi function
in momentum space is a little bit more subtle, as it entails
some modulations which, in the large N limit, correspond to a
(Gaussian-type) packet modulated by a cosine function which

FIG. 5. Contour plots in phase space coordinates of the Husimi
function Q|z(0)〉0 (z′) of the variational ground state |z(0)〉0 of the LMG
U(3) model (66) and (69), for N = 20 particles and three different
values of the control parameter λ (ε units) inside the three phases I,
II, and III. The left and right columns correspond to “position” x1,2 =
Re(z′

1,2) and “momentum” p1,2 = Im(z′
1,2) coordinates, respectively.

oscillates rapidly for high N mainly in phase III (see [28]
for a similar behavior in the Dicke model in the superradiant
phase).

Additionally, in Fig. 6 we study the Husimi function
Q|z(0)〉c (z′) of variational excited states i = 1, 3, 5 of the LMG
U(3) model [already defined in Eqs. (66) and (70) and clas-
sified in Fig. 1]. We shall restrict the plot and discussion
to position coordinates x1,2 = Re(z′

1,2) for convenience. It
is interesting that, in the phase I at λ = 0 (left column
in Fig. 6), the variational ES Husimi functions have more
than a single hump, which was not the case of the GS in
Fig. 5. This is because the variational ES |z(0)〉c preserve

their parity c �= 0 even when z(0) λ→0−−→ (0, 0). Actually, this
limit was already given in Eq. (37). For instance, the varia-
tional first ES c = [1, 0] (top row in Fig. 6) transforms into

a Fock state |z(0)〉(N )
[1,0]

λ→0−−→ |n0=N−1, n1=1, n2=0〉. Having only
one particle in level 1, n1 = 1, implies odd-parity in x1 =
Re(z′

1) when plotting Qz(0)
[1,0]

(z′) [check Eqs. (16) and (40)].
Therefore, the variational first ES cannot be 0 at x1 = x2 =
0 and has two humps along the x1-axis direction (top left
panel in Fig. 6). The variational third ES c = [1, 0] (mid-
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FIG. 6. Contour plots in phase space position coordinates x1,2 =
Re(z′

1,2) of the Husimi function Q|z(0)〉c (z′), where |z(0)〉c are the
variational excited states (70) of the LMG U(3) model (66). We have
chosen N = 20 particles and three different values of the control
parameter λ (ε units) inside the three phases I, II, and III (columns
from left to right). Each row in the plot represents a variational
excited state of definite c-parity.

dle row) has a similar behavior at λ = 0 but along the x2

axis, |z(0)〉(N )
[0,1]

λ→0−−→ |n0=N−1, n1=0, n2=1〉. The fifth ES c = [1, 1]
(bottom row) has double odd parity in the axes x1 and x2

and presents four humps |z(0)〉(N )
[0,1]

λ→0−−→ |n0=N−2, n1=1, n2=1〉.
In the phase II at λ = 1 (middle column in Fig. 6), all
the Husimi functions of the variational ES have symmetric
humps along the x1 axis as the GS did in Fig. 5. How-
ever, the third and fifth ES also display symmetric humps
along the x2 axis, as both have c2 = 1 in c. Finally, in
the phase III at λ = 2.5 (right column in Fig. 6), the ESs
have four humps as the GS, demonstrating the degenera-
tion already shown in Fig. 1 at λ � 1. This result agrees
with Eq. (C6) in Appendix C (number of terms in the sum∑

b∈{0,1}2 ), but for relatively large finite (N = 20) number of
particles.

As a general rule, we propose that the number of humps (in
the phase space coordinates z′) of a c-DCAT Husimi function
is

#humps
(
Q|z〉c (z′)

) = 2‖z‖0+‖cL‖0 ∀ N � 1, (75)

where K = { j1, . . . , jk} and L = {i1, . . . , il} are the set of
indices of the nonzero and zero coordinates in z, respectively,
and k = ‖z‖0 and ‖cL‖0 are the number of nonzero compo-
nents in z and cL, respectively [see Eqs. (A3), (39), and (51)
to revisit the notation]. The proof of this proposition is based
on the thermodynamic limit of Q|z〉c (z′) and its ν moments
(51). The number of humps in the expression above cannot be
greater than 2D−1, as ‖z‖0 + ‖cL‖0 � D − 1, where ‖z‖0 =
k � D − 1 and ‖cL‖0 � l = D − 1 − k by construction. For
instance, in the case D = 3, we have a maximum of 22 = 4

FIG. 7. Wehrl entropy of the variational |z(0)〉0 and numerical
|ψ0〉 ground state of the LMG U(3) model for N = 20 and 50 par-
ticles. The gray dashed vertical lines represent the quantum critical
points at λ

(0)
I↔II = 1/2 and λ

(0)
II↔III = 3/2 (in ε units). The gray dashed

horizontal lines are the N → ∞ limits of the Wehrl entropy of the 0-
3CAT |z(0)〉0 (57), with k humps [the number of nonzero coordinates
in z(0)(λ)].

humps, like in Figs. 5 and 6. If we focus on Eq. (39), we real-
ize that 2‖z‖0 is the number of humps of the reduced cK -DCAT
|(zK , zL = 0L )〉(N−‖cL‖0 )

cK
in the thermodynamic limit, while the

Fock state |
nK =
0K ,
nL=cL〉 has 2‖cL‖0 humps by construction. The
reduced cK -DCAT coordinates zK are nonzero by definition,
so ‖z‖0 = k and we obtain the maximum number of humps
2k allowed in a reduced phase space with k coordinates. In
the case of the fully even DCAT, c = 0 and ‖cL‖0 = 0, we
recover the results of Fig. 5 and Eq. (C16). We shall also
highlight that 2‖z‖0+‖cL‖0 is also the rank of the M-particle
reduced density matrix of a c-DCAT, as it is shown in [55].
The connection of the two concepts is subject to further inves-
tigation.

The delocalization (area) of the Husimi function in phase
space, which is perceived in Figs. 5 and 6 across the different
phase transitions, can be quantified by using the Wehrl entropy
(53). In Fig. 7, we present the Wehrl entropy of the variational
(black curves) and numerical (red curves) ground state (GS) of
the LMG U(3) model, as a function of the control parameter λ

for different values of N . The entropy suddenly grows around
the quantum critical points λ

(0)
I↔II = 1/2 and λ

(0)
II↔III = 3/2,

which are represented with vertical dashed lines. This effect
is more abrupt with increasing N . In addition, the values
of the entropy in each phase tend to the thermodynamic
limit of the 3CAT entropy (57), with different number k of
nonzero components in z. In particular for D = 3, this limit is
2 + k log(2) with k = 0, 1, and 2 in the phases I, II, and III,
respectively, which corresponds to the gray dashed horizontal
lines in Fig. 7. When there is a QPT in the LMG U(3) model,
the GS Husimi function in the position space (left column in
Fig. 5) splits into two identical subpackets with negligible
overlap, so the Wehrl entropy experiences an increment of
ln(2) (see [29] for a similar result in the case of the Dicke
model of superradiance). This delocalization effect happens
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FIG. 8. Inverse participation ratio (IPR) of the variational |z(0)〉0
and numerical |ψ0〉 ground state of the LMG U(3) model for N = 20
and 50 particles. The gray dashed vertical lines represent the critical
points at λ

(0)
I↔II = 1/2 and λ

(0)
II↔III = 3/2 (in ε units). The gray dashed

horizontal lines are the N → ∞ limit of the IPR of the 0-3CAT
according to (50) for ν = 2 and D = 3, that is, limN→∞ M2(|z(0)〉0) =
2−k−2 = { 1

4 , 1
8 , 1

16 }, for k = 0, 1, 2 the number of nonzero compo-
nents in z(0)(λ).

twice from the phase I to the III, hence, the 22 subpackets of
the Husimi function in the phase III and the total growth of
2 log(2) in the Wehrl entropy.

The “numerical” red curves in Fig. 7 refer to the ground
state obtained by numerical diagonalization of the Hamilto-
nian (60). The eigenvectors are calculated in the Fock basis
(10), introduced in the Husimi function equation (40), and
then, the Wehrl function (53) is numerically integrated. The
change of entropy in the numerical (exact) case (red curves)
is less abrupt than in the variational one (black curves) around
the quantum critical points for a given number of particles N ,
although it becomes steeper and steeper as N increases.

Equivalently, one can also measure the localization of the
ground state in phase space with the IPR or the Husimi second
moment (43). This quantity is usually easier (and faster) to
calculate than the Wehrl entropy. That is why it is more com-
mon to focus on the IPR when studying localization [73–75].
The IPR of the ground state attains the thermodynamic limit
value presented in Eq, (50) for ν = 2 and k = 0, 1, 2. Varia-
tional calculations provide sharper results than the numerical
ones. For large values of the control parameter λ, the ground
state behaves as a 3CAT which is less localized than the
DSCS in phase space (check out Husimi function in Fig. 5)
and, therefore, Fig. 8 shows a decrease of the IPR when
increasing λ.

As the IPR numerical computation is faster than the Wehrl
entropy one, it is also feasible to reproduce Fig. 8 but for the
ESs of the LMG U(3) model. In particular, Fig. 9 shows the
IPR of the numerical ESs |ψi〉, i = 0, 1, 3, 5, and its associ-
ated variational ESs |z(0)〉c regarding Eq. (70), where we have
used N = 20 particles and the color code is the same as in
the energy spectrum in Fig. 1. In the top panel, the varia-
tional ESs approximate faster to the gray dashed horizontal

FIG. 9. Inverse participation ratio (IPR) of the variational |z(0)〉c
(top panel) and numerical |ψi〉 (bottom panel) excited states of the
LMG U(3) model for N = 50 particles. The gray dashed vertical
lines represent the critical points at λ

(0)
I↔II = 1/2 and λ

(0)
II↔III = 3/2 (in

ε units). The gray dashed horizontal lines are the N → ∞ limit of
the IPR of the c-3CAT according to (51) for ν = 2 and D = 3, that
is, limN→∞ M2(|z〉(0)

c ) = 2−k−‖cL‖0−2 = { 1
4 , 1

8 , 1
16 }, for k + ‖cL‖0 =

0, 1, 2 the possible number of humps of Q|z(0)〉c (z′) for N � 1 (75).

lines [Eq. (51) for ν = 2 and k + ‖cL‖0 = 0, 1, 2] than the
numerical ones in the bottom panel, as it happened in Fig. 8
for the GS. The three different phases of Fig. 9 are delimited
by the gray dashed vertical lines, so that in the phases I, II,
and III there are k = ‖z(0)(λ)‖0 = 0, 1, 2 nonzero coordinates
in z(0)(λ) [see Eq. (66)]. Therefore, the IPR of the ESs reaches
the gray dashed horizontal lines according the number of
humps displayed in Figs. 5 and 6, which depends on k and
‖cL‖0 as 2k+‖cL‖0 [see Eq. (75)]. That is, for example, for c =
[1, 0] or i = 1 (blue line), the ES has two (k = 0, ‖cL‖0 = 1),
two (k = 1, ‖cL‖0 = 0), and four (k = 2, ‖cL‖0 = 0) humps
in the three respective phases of Fig. 6 (top row); hence, it
attains the values k + ‖cL‖0 = 1, 1, 2 marked by gray dashed
horizontal lines in each phase of Fig. 9, respectively. This
result is in agreement with the general expression in Eq. (51)
for the thermodynamic limit of the c-DCAT Husimi moments
for ν = 2 and D = 3.

VIII. CONCLUSIONS

The concept of Husimi function in the canonical phase
space is extended to the complex projective space CPD−1 =
U(D)/[U(1) × U(D − 1)] using U(D)-spin coherent states
(DSCSs for short) for symmetric multiqudit systems. The ν

moments of the Husimi function and some localization mea-
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sures in phase space such as the inverse participation ratio
and the Wehrl entropy are accordingly extended with a proper
integration (Haar) measure. We prove that the Lieb conjecture
is fulfilled for the DSCSs in Eq, (44) and in Appendix B.
The parity ZD−1

2 	 c adaptations of DSCSs (called c-DCAT
states) turn out to be less localized than the DSCSs, which
exhibit maximum localization (minimum area in phase space)
according to Lieb’s conjecture. This becomes clear when we
calculate the thermodynamic limit of the Husimi function νth
moments and Wehrl entropy for DSCSs and c-DCAT states.

The previous study of the LMG U(3) ground state [14] is
then extended to the first excited states, which turn out to be
modeled by c-3CATs of different parities, as Figs. 1 and 2
show. In particular, we compare the numerical eigenstates of
the LMG U(3) model (for finite N) to different variational
c-3CATs states via fidelity (72), where the variational states
are evaluated at the critical points z(0) = (z(0)

1±, z(0)
2±) which

minimize the LMG U(3) energy surface in the thermody-
namic limit (66). The variational c-3CAT states turn out to
be fairly faithful to the low-lying excited Hamiltonian eigen-
states except in the vicinity of the critical points λ

(0)
I↔II = ε/2

and λ
(0)
II↔III = 3ε/2 separating quantum phases I, II, and III.

We believe this is a consequence of the growth of quantum
fluctuations at the critical points. However, this fidelity can
be improved by maximizing the corresponding overlap in the
complex projective phase space CP2 	 z, as we display in
Figs. 3 and 4.

The fact that the minimization of the energy surface in
the thermodynamic limit provides critical vectors z(0) with
some zero components in certain phases, makes it necessary
to revise the ZD−1

2 -parity adaptation |z(0)〉c of |z(0)〉c, and to
resolve some “0/0” indeterminacies. In the case when z has
l = D − 1 − k null coordinates, the corresponding c-DCAT
|z(0)〉c reduces to cK -DCATs with lower Zk

2 parity times a
Fock state with Z‖cL‖0

2 parity (39). This result permeates in the
majority of magnitudes (Husimi function, its moments, etc.)
calculated in this work.

The QPTs of the LMG U(3) model are visualized in
the phase space CP2 	 z′ across the phase diagram via
the Husimi function Q0(z′) of the variational ground state
|z(0)〉0. We draw contour plots of the Husimi function in
“position space” (x1, x2) = Re(z′) and in “momentum space”
(p1, p2) = Im(z′) in Fig. 5. In position space, the variational
GS Husimi function Q0(z′) displays several humps depend-
ing on the number of nonzero coordinates of z(0)(λ), which
changes in the different quantum phases I, II, and III. A similar
reasoning is followed in Fig. 6 with the Husimi function of the
other variational c-3CAT states |z(0)〉c mimicking low-lying
Hamiltonian eigenstates with parity c. We propose a general
expression (75) for the number of humps (in position phase)
of the Husimi function of general c-3CATs |z〉c, depending
on the number of zero components of z and the parity c. This
number also appears in the thermodynamic limit of the c-
DCAT Husimi moments (51) and in the rank of the M-particle
reduced density matrix of a c-DCAT [55].

Finally, we also characterize the QPTs via localization
measures in phase space since the Husimi fuction Q0 of the
ground state of the LMG model suddenly suffers delocaliza-
tion when passing through the quantum critical λ(0) points,

as shown in Wehrl entropy (Fig. 7) and IPR (Fig. 8) of Q0

as a function of the control parameter λ. More localization
implies less Wehrl entropy (less area) and more IPR. This
effect is more abrupt for the variational ground state than
for the numerical one, and gets sharper and sharper when
increasing N , approaching to the limits proposed in Sec. IV
and proved in Appendix C. The same analysis is extended
to the numerical excited states and variational c-3CATs in
Fig. 9, which also experience delocalization, but only when
its Husimi function number of humps changes according to
Fig. 6.
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APPENDIX A: REDUCED PARITY ADAPTED U(D)-SPIN
COHERENT STATES

We generalize the zi → 0 limits in (36) and (37) for a
general c-DCAT. First, in the fully even case c = 0, it is easy
to check that the 0-DCAT in Eq. (24) turns into a reduced
0i-DCAT,

lim
zi→0

|z〉(N )
0 = |zi〉(N )

0i
= 
0i

N (zi )0i

|zi〉(N ), (A1)

whose projective coordinates include zi = 0, zi =
(z1, . . . , zi−1, 0, zi+1, . . . , zD−1), but its parity string c does
not contain ci = 0, i.e., 0i = [0, (D−2). . . , 0] ∈ ZD−2

2 . That is,

0i only acts onto the nonzero coordinates of |zi〉. Note
that the reduced 0i-DCAT is not a (D − 1)CAT, as it is
the ZD−2

2 -parity adapted version of a DSCS with zi = 0,
i.e., |zi〉(N ) = limzi→0 |z〉(N ). The normalization constant
N (zi )0i is calculated as in (25) but using a reduced sum in
bi ∈ {0, 1}D−2, and with the new coordinates zi:

N (zi )
2
0i

= 22−D

∑
bi∈{0,1}D−2

(
1 + z†

i zbi
i

)N

(1 + z†
i zi )

N
. (A2)

The zero limit (A1) can be used repeatedly for a set of
l = D − 1 − k different coordinates zL = {zi1 , . . . , zil }, whose
indices are taken from the set L = {i1, . . . , il}, transforming
the totally even 0-DCAT into a reduced 0K -DCAT with a
parity symmetry given by Zk

2,

lim
zL→0L

|z〉(N )
0 = |(zK , zL = 0L )〉(N )

0K
, (A3)

where (zK , zL = 0L ) = limzL→0L z has only k nonzero coordi-
nates zK = {z j1 , . . . , z jk }, whose associated parity components
are 0K = [0, (k). . ., 0] ∈ Zk

2. That is, K = { j1, . . . , jk} is the set
including all the k nonzero coordinates of z. 0L denotes the
l coordinates (0, l. . ., 0). The existence and uniqueness of the
multiple limit (A3) can be derived using hyperspherical co-
ordinates with the moduli of |zi|. The norm of the reduced
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0K -DCAT in (A3) is calculated using an equivalent expression
of Eq. (A2).

In the case where all coordinates zi tend to 0 (k = 0), the
0-DCAT collapses to a Fock state,

lim
z→0

|z〉(N )
0 = |n0=N, n1=0, ..., nD−1=0〉, (A4)

which is the highest weight vector of the N-particle symmetric
irreducible representation of U(D) that we are considering.
This highest weight vector deserves our attention because it is
the ground state of the free (λ = 0) LMG U(D) Hamiltonian
(see Sec. V for a detailed discussion). The limit (A4) has
previously been calculated in [55] for a general c-DCAT,
giving the so called Fock-cat states.

APPENDIX B: ANALYTICAL CALCULATION OF THE ν

MOMENTS OF THE HUSIMI FUNCTION OF A DSCS

Here we show in detail the calculations that lead to the
expressions of the νth moments of the DSCSs [Eqs. (44) and
(45)], the DCATs [Eq. (46)], and its thermodynamic limit
[Eqs. (44), (49), and (50)].

First, the moments of the DSCSs are computed by
previously using the highest-weight state |ψ〉 = |z = 0〉 =
(a†

0)N/
√

N!|
0〉 (a boson condensate of N atoms in their lower
level i = 0) according to Eq. (15). Using the scalar product of
the DSCSs [Eq. (17)], we calculate the Husimi function (40)
of this state as

Q|0〉(z) = |〈z|0〉|2 = 1

(1 + z†z)N
. (B1)

It is straightforward to perform the integration in the ν-
moments formula (43) for the Husimi function Q|0〉(z) and
arbitrary ν. The integral in CD−1 is mapped to (R+ ×
[0, 2π ])D−1 using polar coordinates z j = ρ jeiθ j , d2z j =
ρ jdρ jdθ j for all j = 1, . . . , D − 1. Then, we integrate recur-
sively for all ρ j from j = 1 to j = D − 1, and Eq. (44) for
Mν (|0〉) is achieved. The extension (45) from |z = 0〉 to an
arbitrary DSCS |z〉 is direct using the U(D) invariance of the
Fubini-Study measure dμ(z) in CPD−1.

APPENDIX C: THERMODYNAMIC LIMIT OF THE ν

MOMENTS OF THE HUSIMI FUNCTION OF A c-DCAT

In Eq. (46) we have given the ν moments of the Husimi
function Q|zc〉 of a c-DCAT. This bulky expression acquires a
simpler form (50) in the thermodynamic limit. Let us prove it.

We shall initially give some auxiliary results and calculate
their Husimi function. First of all, the scalar product of the
DSCSs (17) has a Kronecker-delta-like thermodynamic limit,

lim
N→∞

〈z′|z〉 =
{

1 if z′ = z,
0 if z′ �= z, (C1)

which leads to

lim
N→∞

〈z′|zb〉〈zb′ |z′〉 =
{

1 if z′ = zb and z′ = zb
′
,

0 elsewhere,
(C2)

as (1 + z†zb) < (1 + z†z) for all b �= 0 and z with nonzero
components. The non-null condition of the last equation im-
plies that zb = zb

′
, what leads to b = b′ provided that zi �= 0

for all i = 1, . . . , D − 1. Therefore, we begin studying the
case where z does not have any null component.

The Husimi function of the c-DCAT (42) can also be
written using the Husimi function (40) and the c-DCAT (24)
definitions

Q|z〉c (z′) = |〈z′|z〉c|2

=
(

21−D

N (z)c

)2 ∑
b,b′

(−1)c·(b+b′ )〈z′|zb〉〈zb′ |z′〉. (C3)

Since the c-DCAT normalization N (z)c is nonzero for all
z (without any null component) and c, we take the limit of
the numerator and denominator of Q|z〉c (z′) separately. The
denominator is, according to Eq. (25),

lim
N→∞

N (z)2
c = lim

N→∞
21−D

∑
b(−1)c·b(1 + z†zb)N

(1 + z†z)N

= 21−D
∑
b

(−1)c·b lim
N→∞

(1 + z†zb)N

(1 + z†z)N
= 21−D.

(C4)

The numerator limit is performed using Eq. (C2) and its de-
rived condition b = b′,

lim
N→∞

∑
b,b′

(−1)c·(b+b′ )〈z′|zb〉〈zb′ |z′〉

= lim
N→∞

∑
b

(−1)c·(b+b)〈z′|zb〉〈zb|z′〉

= lim
N→∞

∑
b

Q|zb〉(z
′), (C5)

as (−1)c·(b+b) = 1. Therefore, the limit of the c-DCAT
Husimi function is

lim
N→∞

Q|z〉c (z′) = 21−D lim
N→∞

∑
b

Q|zb〉(z
′). (C6)

The number of humps of limN→∞ Q|z〉c (z′) in the phase space
z′ will be the number of terms in the sum

∑
b [right term in

Eq. (C6)], that is 2D−1, as shown in Figs. 5 and 6 for D = 3
and λ = 2.5.

The next step is to calculate the limit of the νth power of
the Husimi function of the c-DCAT, [Q|z〉c (z′)]ν , for all ν � 2.
We split again the limit in numerator and denominator, where
the last one is trivial using the same procedure as in (C4), that
is, limN→∞ N (z)2ν

c = (21−D)ν . The numerator limit is

lim
N→∞

⎛
⎝∑

b,b′
(−1)c·(b+b′ )〈z′|zb〉〈zb′ |z′〉

⎞
⎠

ν

= lim
N→∞

∑
b1,...,bν

∑
b′

1,...,b
′
ν

(−1)c·∑ν
i=1(bi+b′

i )

×
ν∏

i=1

〈z′|zbi〉〈zb′
i |z′〉, (C7)
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which reduces, with the auxiliary equation (C2), to

lim
N→∞

∑
b

(−1)c·2νb
ν∏

i=1

〈z′|zb〉〈zb|z′〉 = lim
N→∞

∑
b

[Q|zb〉(z
′)]ν .

(C8)

So we have

lim
N→∞

[Q|z〉c (z′)]ν = (21−D)ν lim
N→∞

∑
b

[Q|zb〉(z
′)]ν . (C9)

Eventually, we can calculate the ν moments of the c-DCAT
Husimi function, that is,

lim
N→∞

Mν (|z〉c) = lim
N→∞

∫
CD−1

[Q|z〉c (z′)]νdμ(z′). (C10)

Employing Eq. (C9), and commuting the integral and the
limit, the last expression turns into

lim
N→∞

Mν (|z〉c) = (21−D)ν
∫

lim
N→∞

∑
b

[Q|zb〉(z
′)]νdμ(z′)

= (21−D)ν lim
N→∞

∑
b

∫
[Q|zb〉(z

′)]νdμ(z′).

(C11)

The new integral is equal to the moment Mν (|zb〉) of the
DSCS |zb〉, which fulfills Mν (|zb〉) = Mν (|z〉) = Mν (|0〉) ac-
cording to Eq. (45) and the Fubini-Study measure invariance.
In the end, Eq. (49) of the moments of the c-DCAT in the
thermodynamic limit is reached,

lim
N→∞

Mν (|z〉c) = (21−D)ν lim
N→∞

∑
b

Mν (|z〉)

= (2D−1)1−ν lim
N→∞

Mν (|z〉). (C12)

When there are only k nonzero components in z, the even 0-
DCAT (with 0 ∈ ZD−1

2 ) reduces to a 0K -DCAT with a smaller
parity symmetry 0K = [0, (k). . ., 0] ∈ Zk

2 [see the notation of
Eq. (A3)]. Therefore, Eq. (C3) turns into

lim
zL→0L

Q|z〉0 (z′) = Q|zK 〉0K
(z′) = |〈z′|zK〉0K |2

=
(

2−k

N (zK )0K

)2 ∑
bK ,b′

K

(−1)0K ·(bK +b′
K )

× 〈z′|zbK
K 〉〈zb′

K
K |z′〉, (C13)

where zK = limzL→0L z [it would be more correct to write it
as (zK , zL = 0L )] and 0K ,bK ,b′

K ∈ Zk
2. As previously done

in the nonzero case (C4), the reduced normalization con-
stant of the denominator tends to limN→∞ N (zK )0K = 2−k ,
where we have used a generalization of the expression (A2).
Equation (C2) can be adapted to

lim
N→∞

〈
z′∣∣zbK

K

〉〈
zb

′
K

K

∣∣z′〉 =
⎧⎨
⎩1 if z′ = zbK

K and z′ = zb
′
K

K ,

0 elsewhere,

(C14)

where the non-null value is achieved when zbK
K = zb

′
K

K , which
implies bK = b′

K . This is true because all the coordinates in
zK [(zK , zL = 0L ) in fact] associated to bK are nonzero by con-
struction. Consequently, the numerator in (C13) transforms
into

lim
N→∞

∑
bK ,b′

K

(−1)0K ·(bK +b′
K )

〈
z′∣∣zbK

K

〉〈
zb

′
K

K

∣∣z′〉

= lim
N→∞

∑
bK

〈
z′∣∣zbK

K

〉〈
zbK

K

∣∣z′〉

= lim
N→∞

∑
bK

Q|zbK
K 〉(z

′), (C15)

using in the second line the property (29) of the parity group
characters. The thermodynamic limit of the 0̃-DCAT Husimi
function is finally

lim
N→∞

Q|zK 〉0K
(z′) = 2−k lim

N→∞

∑
bK

Q|zbK
K 〉(z

′). (C16)

From this moment on, it is straightforward to adapt the
procedure followed at the beginning for the moments of the
c-DCAT to the 0K -DCAT, arriving to the expression

lim
N→∞

Mν

(|zK〉0K

) = (2−k )ν lim
N→∞

∑
bK

∫
CD−1

[
Q|zbK

K 〉(z
′)
]ν

dμ(z′)

= (2−k )ν lim
N→∞

∑
bK

Mν

(∣∣zbK
K

〉)
= (2k )(1−ν) lim

N→∞
Mν (|z〉) (C17)

since Mν (|zbK
K 〉) = Mν (|z〉) [Eq. (45)], and using the parity

characters property (27) for the reduced parity group Zk
2. The

last equation ends the calculations to prove Eq. (50) for the
0-DCAT. The general case of zero coordinates in the c-DCAT
[see Eq. (51)] has been computed with a symbolic calculation
software, so the analytical calculations are devoted to future
research.
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