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Role polarization and its effects in the spatial ultimatum game
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Human society is believed to be becoming increasingly polarized, yet it remains unclear how role polarization
influences the evolution of fairness. In addition, little is known about role adaptation, despite the fact that
altering the roles of players can often change the outcome of the ultimatum game. Unlike earlier static, random,
symmetric role assignment, here I suggest a succeed-reinforce–fail-slacken role adaptation rule that encourages
successful proposers in the present round to propose again in the next round and vice versa. The results
demonstrate that this simple rule can tip the scales in favor of fair strategies when it comes to the proposer
advantage, and therein lies the key to promoting fairness. Depending on its pace, notably, role adaptation can
direct the system to equilibrium states that bear variable degrees of role polarization, with two consequences
incidentally. Not only does it favor fairness, it also fosters empathy. Noise associated with role adaptation
often reduces role polarization and thus has a negative impact on fairness and empathy. The comparison of
experiments with various networks validates the substantial resilience of role polarization to structural changes.
These findings add to the evidence for role polarization and highlight the centrality of role adaptation in the
evolution of fairness.
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I. INTRODUCTION

Human civilization is a long process of development
advancing towards fairness. In our ancestral past, fairness
preference was found in collective hunting [1] and food shar-
ing [2]. In contemporary life, it is more needed than ever
to address climate change [3] and maintain the international
trade order [4]. Determining why social animals display fair-
ness to others, especially to unrelated strangers, is a daunting
challenge that spans several academic areas [5]. An economic
game experiment called the ultimatum game has been used re-
peatedly to address this issue ever since Güth et al. published
their experimental results [6]. The game puts forward a task
in which two players allocate a free resource; therein lies a
role constraint that one acts as the proposer and the other as
the responder. The proposer first initiates a proposal on how
to divide the money, while the responder must respond to it.
Depending on the responder’s response, there are two possible
outcomes: Either the responder acknowledges the proposal
and they share the money as agreed or the responder rejects
the proposal and they end up with nothing [7].

For the one-shot ultimatum game, the game-theoretic solu-
tion is twofold, due to the role imbalance between the two
players involved in this game. The best choice is for the
proposer to make the minimum possible proposal while the re-
sponder accepts any nonzero proposal. Despite the soundness
of the solution, it is far from satisfactory from a fairness per-
spective [8]. Not only that, it also fails to align with empathy,
the ability to put oneself in another’s place [9–11]. Conversely,
recent years have witnessed a shift in the equilibrium towards
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an ideal split, as evidenced by data from both the field and
the laboratory [12]. This mismatch thus raises questions as
to what drives proposers to offer much more than previously
predicted and why vetoing unfair proposals can nevertheless
be solidly endorsed even if there is no clue that doing so would
confer immediate benefits on the player.

Prior work has made great progress in mitigating this mis-
match. Research showed that the fate of fair strategies in
latticed games is usually better than that in nonspatial games
[13]. Likewise, the status of network metrics, such as the
clustering coefficient, disorder, degree distribution, and the
like, as determinants of fairness was underlined [14]. Rather
than static structure, the coevolutionary ultimatum games on
mini dynamic networks demonstrated that fairness can prevail
as long as partner optimization occurs frequently enough,
either for profit maximization [15] or due to the failure of re-
source sharing [16]. Beyond networks, insights may have been
gained from the way natural selection operates on the strat-
egy [17]. In this instance, high rejection willingness was still
observed under individual selection, despite the absence of
group selection and cultural selection. Additionally, the study
of assortment patterns contended that positive assortment has
limited effect on fairness, whereas negative assortment might
reinforce fairness in a way that allows spite to evolve [18].

The answer to the fairness dilemma also touched on how
fairness is entangled with other norms. One such norm is
empathy, and the belief that empathetic people may be less
unfair is a central hypothesis of this stream of research.
Rethinking the game in a perspective-taking fashion, the prior
work defined a class of empathetic strategies [19]. Its findings
reflected a dramatic enhancement to a fair split even if a
tiny percentage of players stick to such strategies. Latter, a
similar goal was achieved in the grouped population [20]. In
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particular, it was elucidated that the use of a strategy space
with discretization and empathy can instantiate a kind of
defense effect in favor of fairness [21].

Nonetheless, it remains interesting to see how roles and
strategies coevolve and to what extent this coevolution re-
shapes fairness, especially in light of the fact that a successful
split in this game depends not only on the strategies of the two
players involved, but also on which of them assumes the posi-
tion of proposer [9,10,22–24]. In earlier ultimatum games and
dictator games, however, attention was concentrated predom-
inantly on static, random, and symmetric role assignments.
This focus may lead to a neglect of asymmetry and an un-
derestimation of the adaptive nature of living things. Further,
there is substantial evidence to support this assertion in real
life, such as the inherent ability of cells to adapt morpholog-
ically and functionally to their ever-changing surroundings in
order for proper development and function of central nervous
systems [25]. In this sense, these approaches sometimes fail to
provide a realistic perspective. It is thus urgent to clarify how
a player’s role evolves in this game and to what extent role
evolution affects fairness. In this article, I frame my investi-
gation by raising two primary hypotheses. First, I hypothesize
that each player has an independent aspiration as to whether
or not to act as a proposer, reflecting social diversity. Second,
I hypothesize that players are free to fine-tune their aspirations
according to the outcome of the game, like biological adapta-
tion. In doing so, I suggest a feedback-based rule to improve
the role assignment of ultimatum games. The results show that
role adaptation can lead to role polarization in favor of fairness
and empathy. Frequently, the faster the role adaptation, the
higher the role polarization and the fairer the split. It is worth
emphasizing that the generation of role polarization as well as
its impact is not influenced by network structure.

II. MODEL

The population structure is characterized by Barabási-
Albert scale-free networks [26], L × L lattices with von
Neumann neighborhood and periodic boundary conditions
[27], and Erdős-Rényi random graphs [28], respectively. Let
me briefly describe how to create a Barabási-Albert scale-free
network. I first establish a fully connected graph of m0 nodes.
Second, a preferential attachment growth method is used to
link a new node to m (m � m0) existing nodes. So the total
number of edges M and the total number of nodes N meet
M = (N − m0)m + m0(m0−1)

2 . Specifically, the probability that
a newly added node would choose an existing node x as its
neighbor is given by the formula kx/

∑
y∈� ky, where kx is the

degree of node x and � is the set of all existing nodes. As
for constructing a random graph, I directly use M links to pair
N nodes at random.

Each player occupies a node and is assigned two initial
parameters pi and qi, uniformly and randomly extracted from
the range of [0, 0.5] like in Refs. [7,16,23]. The subscript
represents the ith player. Here pi is the portion that i supplies
to their opponent when in the role of proposer and qi is i’s
acceptance threshold when in the role of responder. The pair
(pi, qi ) represents i’s strategy in the ultimatum game. The
sum divided in each game is specified to be 1. As for role
allocation, a parameter �i is added to represent i’s aspiration

for being a proposer. This value is randomly chosen from the
unit interval. Here �i → 1 (0) implies that i is becoming more
(less) eager to assume the position of proposer. Importantly,
players are free to modify their aspirations in accordance with
the success or failure of resource allocation.

Three essential components make up a typical Monte Carlo
simulation: playing the game, adjusting aspirations, and up-
dating strategies. An agent i is first chosen at random from
the population and initiates a resource allocation. If i has no
neighbors, another agent is chosen again. Otherwise, i picks
out one of their neighbors at random, j, and they engage in
an ultimatum game. In this game, i is assumed to take the role
of proposer with a probability given by �i. Specifically, a real
number is drawn at random from the unit interval. If it is less
than �i, i ( j) is designated as the proposer (responder). If not,
the roles are assigned in the opposite way. It is easy to see that
even without role adaptation, this role assignment is different
from the previous symmetric method. The payoffs ψi that
i harvests in an ultimatum game can be calculated by either

ψi =
{

1 − pi, pi � q j

0, pi < q j
(1)

when in the role of proposer or

ψi =
{

p j, p j � qi

0, p j < qi
(2)

when in the role of responder
The iteration moves to the following step after the game

and fitness calculation, where the actual proposer of i and j is
allowed to revise their aspiration as follows:

�x =
{
�x + λ, px � qy

�x − λ, px < qy.
(3)

Here x, y ∈ {i, j}. The parameter λ measures the sensitivity of
adaptation. The larger the value of λ, the faster the adaptation
of aspiration. This formula tells a straightforward logic, which
says if a player succeeds (fails) in proposing, it will raise
(lower) their morale for subsequent proposals. In this way, an
in-game feedback is established between role allocation and
resource allocation, as in Ref. [29]. Hereafter, it is referred to
as the succeed-reinforce–fail-slacken (SRFS) rule. Note that
�i ∈ [0, 1], so whenever �i hits the extreme value 0 or 1, it
can only change in the other direction.

When it comes to the strategy update section, player i
renews their strategy by learning a randomly chosen neighbor
j with the probability specified by the Fermi function [30,31]

T (s j → si ) = 1

1 + exp[−(� j − �i )/K]
, (4)

where �i (� j) is the total payoff of i ( j) and K is the selec-
tion intensity; K → ∞ means random drift, whereas K → 0
indicates that high-yielding strategies are more likely to pre-
vail. The learning error enters the strategy update to mimic a
trembling hand effect [7,13,14] as follows:

pi = p j + ξp,

qi = q j + ξq. (5)
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FIG. 1. Average proposal level p̄ (black squares) and average
acceptance threshold q̄ (red circles) by the pace of role adaptation
λ with regard to (a) the Erdős-Rényi random graph, (b) the square
lattice, and (c) the scale-free network. The other parameters are
N = 1000, M = 2000, L = 40, K = 0.1, and μ = 0.01.

Without losing generality, the values of ξp and ξq are
drawn uniformly and independently from the interval
[−0.005, 0.005] in this investigation. In addition, with prob-
ability μ independently in each time step, �i is reset to a
value uniformly and randomly drawn from the interval [0, 1]
to simulate a noise in adaptation, when player i updates their
strategy.

Each player is chosen on average once each full iteration to
set up a game, update aspiration, and update strategy. After a
sufficient transition time (typically 10 000 full time steps), the
average proposal level p̄ and the average acceptance threshold
q̄ are determined by averaging an additional 10 000 iterations
for 50 independent runs.

III. RESULTS AND DISCUSSION

A. Coevolution of fairness and empathy

I first review the relationship between strategy evolution
and role evolution with regard to three different kinds of
networks. Figure 1 demonstrates how the average proposal
level p̄ and the average acceptance threshold q̄ relate to the
pace of role adaptation. Note first that when role adaptation
accelerates, players tend to share more resources in the role
of proposer and simultaneously they grow less tolerant of
unfair offers as well in the role of responder. Here a fair
split like half-to-half can never come true unless players adapt
their roles with a relatively fast SRFS adaptation. For lattices,
Erdős-Rényi graphs, and scale-free networks, the value of
p̄ can be increased by 38.15%, 164.31%, and 279.49%, re-
spectively, when λ grows from 0 to 0.03. The same pull-up
effect also applies to the value of q̄, with the ratios of improve-
ment for the above three networks being 77.81%, 368.50%,
and 645.15% respectively. The SRFS rule thus provides an
alternative approach to achieve a fair split in the ultimatum
game from the perspective of role evolution. In addition, the
upward trend of λ most of the time results in a narrowing gap
between the p̄ curve and the q̄ curve in this plot. This means

FIG. 2. Average proposal level p̄ (black squares) and average
acceptance threshold q̄ (red circles) by the pace of role adaptation
λ under the mean-field-like interaction. In each time step, everyone
plays against four other randomly selected players and updates the
strategy by learning the strategy of another randomly selected player.
The results are by the (a) average and (b) additive payoff. The other
parameters are N = 1000, K = 0.1, and μ = 0.01.

that, aside from promoting fairness, the SRFS rule instantiates
an enhancement to empathy too. It is worth noting that this is
not trivial, although there is already some evidence for the
coevolution of fairness and empathy, because most likely it
points to a new symbiosis of fairness and empathy, in the
sense that the two norms have successfully coevolved under
the premise that they had no prior connection as opposed to
the previous hypothesis that one was pre-positioned to have a
specific effect on the other in advance [19–21].

The topology of the interactions plays a crucial role in
how cooperation and fairness evolve [32,33]. Note that the
game dynamics in Fig. 1 may have been disentangled from
the topology of the interactions because of the current payoff
calculation method. So it remains necessary to see how the
game dynamics shifts when considering the mean-field-like
interaction (see Fig. 2) and other types of payoff such as
the average payoff [34] [see Figs. 2(a) and 3(a)–3(c)] and the
additive payoff [33] [see Figs. 2(b) and 3(d)–3(f)]. Although
role adaptation still enhances fairness in Fig. 2, the values of p̄
and q̄ are lower than those in networked games, highlighting
the role of the topology of the interactions in facilitating
fairness in this context. Under the average payoff, moreover,
the game dynamics readily shares great similarity across dif-
ferent networks. Under the additive payoff, however, the game
dynamics of the scale-free network shows a remarkable dis-
crepancy from that under the average payoff. This means that
the scale-free network has a greater impact on the way fairness
emerges than other networks in this study due to its significant
degree of heterogeneity. Unless otherwise stated, subsequent
analyses are based on Erdős-Rényi random graphs.

B. Role polarization

To shed light on how the SRFS rule affects players’ aspi-
rations to assume the proposer role, Fig. 4 depicts how the
average aspiration of the population changes with the pace
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FIG. 3. Average proposal level p̄ (black squares) and average
acceptance threshold q̄ (red circles) by the pace of role adaptation
λ with regard to (a) and (d) the Erdős-Rényi random graph, (b) and
(e) the square lattice, and (c) and (f) the scale-free network. The
results are by the (a)–(c) average and (d)–(f) additive payoff. The
other parameters are N = 1000, M = 2000, L = 40, K = 0.1, and
μ = 0.01.

at which players adapt their roles. I observe an intriguing
and infrequently occurring role polarization. I attribute this
phenomenon to the long-standing intertwining between role
evolution and strategy evolution. Under the guidance of the
present method, evolutionary dynamics often drives players
to take on more proposer roles in their games. Further, it is
interesting to see that this trend is linked to how fast players
adjust their roles. Generally, �̄ converges to a different level
provided λ takes distinct values. The initial baseline �̄ = 0.5
means that the population is neutral about whether to act as
a proposer in the game, like the random rule [9,10] or in
Ref. [21] where each player acts once as a proposer and once
as a responder. In contrast to the absence of SRFS adaptation
and slow SRFS adaptation, rapid SRFS adaptation usually
results in a unanimous desire for the position of the proposer
that is making players’ roles more divided. Especially when λ

is remarkably larger than 0, �̄ can reside at a point strikingly
above the baseline. In this sense, the spontaneous consensus
of the players’ willingness to propose can be interpreted as
a manifestation of role polarization, precisely, a kind of role
unipolarization. It always arises when a larger λ value is

FIG. 4. Representative role polarization induced by role adap-
tation at various speeds. The other parameters are N = 1000, M =
2000, K = 0.1, and μ = 0.01.

considered, independent of the network. Hence, the SRFS
adaptation in this study instantiates a solid pathway to role
polarization for the ultimatum game, hidden behind the co-
evolution of roles and strategies of this game.

Next I examine how the SRFS rule influences players’
proposing behavior. For the sake of analysis, I divide the
strategy space into five different intervals and use s1, s2, s3,
s4, and s5 to denote the strategies whose offers fall in (0, 0.1),
(0.1, 0.2), (0.2, 0.3), (0.3, 0.4), and (0.4, 0.5), respectively.
Figure 5 shows how the average fraction of strategies, the
average aspiration of the population, the average fraction of
successful proposals from different strategies, the average
offer, and the average acceptance threshold in each time step
vary with the pace of role adaptation. Note first that there are
two different kinds of equilibrium states. One is the coexisting
state where two or more types of strategies coevolve and the
other is the absorbing state where only one type of strategy
predominates. Which state the system will eventually stabilize
in depends precisely on the pace of role adaptation. When
role adaptation speeds up, there exists a transition of the
equilibrium state from the coexisting state to the absorbing
state. In fact, being appointed as a proposer may sometimes
be a good sign in a one-shot ultimatum game. If a proposer
fails to satisfy a responder, neither player loses more than the
other because they both get nothing in this case. If not, the
proposer may build a fitness advantage by keeping more of the
money for themself. Nevertheless, this role-related advantage
does not favor one strategy over another under the symmetric
and random role assignment settings because of near-equal
proposal probabilities among players at this point.

In the backdrop of role adaptation, the situation is spec-
ulated to change. The information provided by Fig. 5 lends
credence to this speculation. Recall that fair players are al-
ways willing to transfer more shares to their opponents, so
they are statistically more likely to succeed than unfair ones
when making proposals. As a result, under the direction of
the SRFS rule, the aspirations of high-proposal strategies tend
to increase, while those of low-proposal strategies tend to
decrease. This difference will cause an imbalance between
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(a)

(b) (c) (d) (e)

(g)(f) (h) (i) (j)

(l)(k) (m) (n) (o)

(q)(p) (r) (s) (t)

FIG. 5. Time series of (a)–(e) the average fraction of strategies, (f)–(j) the average aspiration of players with different strategies, (k)–(o)
the average fraction of successful proposals from different strategies, and (p)–(t) the average offer and the average acceptance threshold, with
regard to different values of λ. In columns from left to right the values of λ are 0, 0.0005, 0.001, 0.005, and 0.01, respectively. The s1, s2, s3, s4,
and s5 label the strategies whose proposals fall in (0, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), and (0.4, 0.5), respectively, regardless of the values
of q and �. The other parameters are N = 1000, M = 2000, K = 0.1, and μ = 0.01.

fair and unfair strategies at the level of grasping the proposer
edge. Not only that, as role evolution and strategy evolu-
tion intertwine frequently with each other, such imbalance is
prepared to persist and even be amplified. In addition, role
reshuffling will not stop throughout this process unless role
polarization emerges eventually. As shown in Figs. 5(f)–5(o),
the more quickly the role evolves, the more lopsided the
proposer’s advantage grows. To summarize, role evolution in
its suitable entanglements with strategy evolution can confer
a compounding advantage akin to the Matthew effect [35] on
fair strategies, thereby reversing the original competitive or-
dering of strategies in this game and leading resource sharing
to a near-fair division.

C. Impact of noise associated with role adaptation

Real systems suffer from noise and interference from time
to time. In view of this, a kind of noise is taken into account to
simulate uncertainty in role adaptation as detailed in Sec. II.
Next I focus on its influences. Owing to its potential negative
impact, especially with respect to the precision and effective-
ness of role adaptation, it may be a key element pertaining
to the progression to role polarization. Regardless of network
structure, as demonstrated by Fig. 6, the values of p̄ and q̄

generally drop monotonically with steep-descent slopes as
this noise gradually grows stronger. Not only that, it inhibits

FIG. 6. Average proposal level p̄ (black squares) and average
acceptance threshold q̄ (red circles) by noise μ with regard to
(a) the Erdős-Rényi random graph, (b) the square lattice, and (c) the
scale-free network. The other parameters are N = 1000, M = 2000,
L = 40, K = 0.1, and λ = 0.01.
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FIG. 7. Typical role polarization by noise μ. Note that slow role
adaptation at low noise can outperform fast role adaptation at high
noise in enhancing role polarization. The other parameters are N =
1000, M = 2000, and K = 0.1.

empathy too as revealed by the widening gap between the
two curves, especially for the lattice structure. Meanwhile,
the square lattice exhibits the least overall downregulation of
p̄ and q̄ across the considered noise range among the three
networks. Figure 7 explains why such noise impairs fairness
and argues that it has to do with the noise-induced reduction
in role polarization. In this regard, noise in role adaptation
therefore goes against the observation obtained in Figs. 1
and 5 that the stronger the role polarization, the better the
evolution of fairness and empathy.

D. Expansion of fair alliances

The cluster effect [36], a dynamical process associated
with pattern formation [21], is one of the most important
survival strategies for altruists. Next I further account for
how role adaptation works from a micro perspective. Before
looking into this issue, it is necessary to introduce the concept
of near-fair players. They refer to those with relatively high
offers and acceptance thresholds (for instance, greater than
0.4). The survival of such players prior to the population
becoming significantly polarized will be illustrated to have a
great deal to do with the equilibrium state’s fairness level in
this article. Figure 8 displays characteristic invasions in the
square lattice with and without role adaptation. In either case,
locally dominant players immediately engulf adjacent ones by
disseminating their strategies to them at the onset of evolution,
resulting in the emergence of numerous small strategy clus-
ters. Inside these patches, players bear similar strategies and
the proposal level exceeds the acceptance threshold, a basic
feature of networked ultimatum games [13]. It is generally
assumed that the analysis of the predations chain between
these clusters can shed light on the resulting pattern formation
as well as its function in evolution, thereby illuminating how
the mechanism plays its role.

I start by going through what occurs when the players’
roles become polarized. From this stage on, near-fair alliances
start to expand quickly because they usually take the lead

(a) (b) (c) (d) (e) (f)

(l)(k)(j)(i)(h)(g)

FIG. 8. Evolution of proposals when (a)–(f) λ = 0.01 and (g)–
(l) λ = 0 in the square lattice. Prior to the onset of evolution, the
proposal of each player is randomly drawn from the interval [0, 0.5],
with their acceptance threshold being randomly chosen from the
interval [0, 0.5]. The other parameters are L = 40, K = 0.1, and
μ = 0.01.

in competition against others if players’ roles are frozen by
the SRFS rule. This view is supported by two points. First,
near-fair proposers on the cluster boundary are predicted to
be successful proposers since their pretty high proposals can
frequently meet the expectations of responders from another
cluster. Given the iterative effect of evolution, they will ben-
efit a great deal from this even though the edge in a single
round may be marginal owing to their high proposals. Yet
in a reversal of roles, second, near-fair players are prepared
to reject their rivals in most cases, thus depriving the latter
of the original proposer advantage. By this logic, under the
SRFS hypothesis, it can be said that players on the frontiers of
the aforementioned near-fair clusters are more evolutionarily
viable than those from other clusters. Consequently, the main
obstacle to fairness now becomes how to keep these near-fair
strategies alive, before the population exhibits considerable
role polarization. In addition, the results from earlier in this
article show that the key to resolving this obstacle is directly
linked to the pace at which players adapt their roles. As
shown in Fig. 5, evolutionary dynamics usually renders these
near-fair strategies unviable when role adaptation is absent
or occurs at a sluggish pace. By comparing the results in
Figs. 8(l) and 8(f), it is not difficult to find that the stationary
level of fairness at this point is often lower than that of fast
SRFS adaptation.

To better understand the story behind this mechanism,
Fig. 9 illustrates a typical intrusion of a near-fair cluster into
an unfair population. Figures 9(a)–9(h) describe how players’
strategies evolve, while Figs. 9(i)–9(p) trace how players’
roles adapt. Although a player can reap more payoff by behav-
ing selfishly or unfairly in the early game, at the same time, the
player is also faced with the risk of losing the opportunity to
act as a proposer in the future game. Conversely, players with
higher proposals will win more chances to be the proposer,
just as players with a good reputation will win more chances
to be the dictator [24]. The snapshots convey that under the
guidance of the SRFS rule, fair players are becoming more
aspirational, while unfair players are suffering a persistent
aspiration slump. So it suggests a Matthew effect, where
ambitious players, often fair, are prepared to propose more
frequently and grow more ambitious. As discussed above,
this pattern of mutual adaptation between roles and strategies
turns out to be in great favor of the evolution of fairness and
empathy in ultimatum games.
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(a) (b) (c) (d) (e) (f)

(l) (m) (n) (o) (p)(k)(j)(i)

(h)(g)

FIG. 9. Expansion of fair alliances through the coevolution of roles and strategies under the influence of the SRFS rule in the square lattice.
The evolution of proposal is traced in (a)–(h), whereas the evolution of aspirations is captured in (i)–(p). Before the evolution starts, a 6 × 6
fair cluster is seeded in the lattice, with p = q = 0.5 within the cluster. The other parameters are L = 40, K = 0.01, λ = 0.01, and μ = 0.01.

IV. SUMMARY

Role splitting plays an important part in shaping the evolu-
tion of fairness in the ultimatum game [9,10,22–24,37]. This
article studied a spatial ultimatum game with role adapta-
tion to understand how role polarization arises and how it
influences the evolution of fairness. In order to bridge the
gap between role splitting and resource sharing in this game,
a SRFS role adaptation rule was recommended. The results
showed that the coevolution of fairness and empathy can be
dramatically enhanced if players follow this straightforward
rule to adapt their roles in response to in-game feedback.
Different from prior static, random, and reputation-based role
assignment [9,10,23,24], role adaptation has been shown to be
able to induce role polarization depending on its pace. Further,
role polarization has been revealed to underpin fairness in a

way that allows fair players to exploit more proposer advan-
tage. Under the role adaptation hypothesis, the solution to this
dilemma can be transformed into answering how to sustain
near-fair strategies before the population grows highly polar-
ized. This relies much on how quickly players adapt their roles
in evolution. Finally, it indicates that the generation of role
polarization and its effects are pretty robust to the population
structure. These results create a strong connection between
role evolution and strategy evolution of ultimatum games.
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