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The quantum size and shape effects are often considered difficult to distinguish from each other because of
their coexistence. Essentially, it is possible to separate them and focus solely on the shape effect by considering
a size-invariant shape transformation, which changes the discrete energy spectra of strongly confined systems
and causes the quantum shape effects. The size-invariant shape transformation is a geometric technique of
transforming shapes by preserving the boundary curvature, topology, and the Lebesgue measure of a bounded
domain. The quantum shape effect is a quite different phenomenon from quantum size effects, as it can have
the opposite influence on the physical properties of nanoscale systems. While quantum size effects can usually
be obtained via bounded continuum approximation, the quantum shape effect is a direct consequence of the
energy quantization in specifically designed confined geometries. Here, we explore the origin of the quantum
shape effect by theoretically investigating the simplest system that can produce the same physics: quantum
particles in a one-dimensional box separated by a moving partition. The partition moves quasistatically from
one end of the box to the other, allowing the system to remain in equilibrium with a reservoir throughout the
process. The partition and the boundaries are impenetrable by particles, forming two effectively interconnected
regions. The position of the partition becomes the shape variable. We investigate the quantum shape effect on the
thermodynamic properties of confined particles considering their discrete spectrum. In addition, we applied an
analytical model based on dimensional transitions to predict thermodynamic properties under the quantum shape
effect accurately. A fundamental understanding of quantum shape effects could pave the way for employing them
to engineer physical properties and design better materials at the nanoscale.
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I. INTRODUCTION

The quantum size effect (QSE) phenomenon is one of
the pillars of nanoscience and nanotechnology that has been
shaping modern technology for at least the last two decades.
Reducing the sizes of materials to the nanoscale causes them
to exhibit size-dependent quantum-mechanical phenomena
that are unseen at the macroscale [1]. The existence of QSE
is initially predicted by Herbert Fröhlich in 1937 [2] and their
effects on thermal properties are examined by Ryogo Kubo in
1962 [3]. In nanoscale materials, infinite-size approximations
such as taking the thermodynamic limit fail [4–6]. Boundary
effects and the geometry in which the particles are confined
become significant when the sizes are reduced to nanoscale
[7–18]. Quantum confinement makes discrete energy spectra
to prominently reveal itself and, as a result, physical properties
such as electronic [19–24], phononic [25], magnetic [26–31],
mechanical [32], optical [33–35], thermal [36,37], thermody-
namic [38–44], thermoelectric [45–47], and superconducting
[48–50] properties of materials become size dependent at
nanoscale [51–54].

Considering the importance and impact of size-dependent
phenomena in today’s science and technology, it is intriguing
to ask about shape dependence and how shape affects the
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physical properties of materials at the nanoscale. While the
sizes of a geometric object are defined by Lebesgue measure
[55], the shape is not so easy to readily characterize. When
the phrase “shape effect” is used in the physics literature, usu-
ally variations in boundary curvatures, topology, anisometry
(i.e., different aspect ratios), simple geometric structure (e.g.,
cubic, spherical) etc. are considered indicators of the shape
characteristics of a domain [50,56–70]. For example, “going
from a sphere to a cube” could be considered as an intuitive
shape change. However, in those types of so-called “shape
effects”, the sizes (either bulk or low dimensional) of the ob-
jects also change along with shape because care has not been
taken to keep the geometric size variables constant during a
shape transformation. In such a case, size and shape effects
are inherently linked to and interfere with each other. While it
is also commonly associated that the curvature of a domain’s
boundaries is linked with the shape of the domain, this per-
spective may not capture the full complexity of the situation.
For instance, consider the scenario where we locally deform
the surface of an elastic balloon in such a way that the volume
remains unchanged. In such a case, along with the change
in curvatures, the surface area also alters inevitably (due to
isoperimetric inequality), demonstrating that the curvature of
the boundaries is directly related to the lower-dimensional
size parameters of the domain; see Appendix C for a more
detailed discussion. In fact, it is possible to represent the
D-dimensional size variable by the boundary curvature of
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the (D + 1)-dimensional size variable [71,72]. Hence, it is
not possible to examine the effect of pure shape dependence
without keeping the size parameters constant and preventing
them to interfere with size effects. In this sense, what we are
examining here is the pure shape effect.

A specific type of geometric transformation, the so-called
size-invariant shape transformation, provides a way to keep
the sizes of a domain fixed while continuously being able
to change its shape [73]. In this way, size and shape effects
can completely be separated from each other, allowing us to
focus on how shape alone changes the physical properties of
confined systems. For particles that are strongly confined (i.e.,
discrete energy spectrum becomes prominent) within a do-
main, any physical effect resulting from a size-invariant shape
transformation is called quantum shape effect [73,74]. While
the quantum shape effect (QShE) requires strong confinement
(in other words strong QSE) to appear in the first place, this
does not mean that QShE and QSE have the same origin, as
we will explore in this paper.

QShE is a direct consequence of the quantized energy
spectrum of the particles in confined space, and it has already
been applied to nanoscale materials and conceptual devices. It
has been shown that QShE can be used to design new devices
for energy harvesting with nanostructures [75]. QShE makes
it possible to construct quantum heat machines that are clas-
sically impossible [73,74]. Quantum oscillations induced by
QShE have been predicted in the thermodynamic properties
of core–shell nanostructures, providing a new mechanism for
changing the polarity of semiconductors and fine-tuning their
Fermi level [76]. QShE phenomenon has also implications in
quantum Szilard engines, where it modifies the values of heat
and work exchanges [77].

The aim of this article is to explicitly and comprehen-
sively explain the origin and the mechanisms of the QShE
phenomenon. To this end, we present the simplest possible
system that is able to exhibit QShE: particle in a box with
a moving partition. In particular, we consider noninteracting
particles obeying Maxwell-Boltzmann statistics confined in
a box with a movable partition. Note that we deliberately
simplified our system as much as we can by preserving the
roots of the effect. Besides the numerical calculations, we also
applied recently proposed analytical methods [73,78] both to
accurately calculate the partition function of the system and
to clarify the origin of the quantum shape effect. Finally, we
investigate the unconventional behaviors of thermodynamic
properties under the quantum shape effect.

II. THE DIFFERENCE BETWEEN QUANTUM SIZE
AND SHAPE EFFECTS

Quantum size and shape effects are generally considered
to coexist and in most systems, they are indeed. However, this
does not mean that their influence on the system properties
is similar, or they cannot be separated. In this section, we
introduce pure QShE and show how they are fundamentally
different from quantum size effects. Note that we do not con-
sider classical size effects, classical shape effects, or system
size effects (i.e., number of the constituents of the system)
in this article. Our attention is solely given to the quantum
confinement effects.

FIG. 1. The origin of quantum size effect, which is a prerequisite
for quantum shape effects to appear. (a) Domain length (L) is much
larger than the thermal de Broglie wavelength (λth) of particles so
that many wavelengths can fit into the domain. (b) Domain length
consists of a few thermal wavelengths so that the wave nature,
ground-state energy, and discrete energy spectrum of particles be-
come appreciable. (c) Boltzmann thermal probability (pi) of states i
for two different cases. For the smaller domain size, the discrete
spectrum becomes prominent and only a few low-lying states are ex-
cited. For larger domain size, the discrete spectrum starts to become
negligible and higher excited states contribute

A. Geometric size parameters

QSE arises from the fact that when the sizes of a system
are reduced to the order of the thermal de Broglie wavelength
of particles, the wave nature and discrete spectrum of the
particles become prominent, Fig. 1. A detailed exploration of
the origin of the QSE is given in Appendix A.

To be able to talk about distinguishing quantum size and
shape effects, we need to define what we mean by “size” in
the first place. As a matter of fact, size has a well-defined
meaning and description in mathematics. In measure theory,
the sizes of a geometric object are described by the Lebesgue
measure [55]. Sizes of a 3D object are determined by its
volume V , surface area A, periphery P , and the number of
vertices (i.e., any kind of boundary discontinuities such as
cusps, corners or dots in 1D) NV . These parameters are called
geometric size parameters. For lower-dimensional objects, the
same procedure applies with the reduction of dimensions,
see Fig. 2. Volume, surface area, and periphery of an object
might be more obvious, whereas the number of vertices can
be tricky to calculate especially for arbitrary domains [74].
Let us mention for clarity that the number of vertices of the
objects in column III of Fig. 2 are four, three, and three from
top to bottom respectively.

Geometric size parameters fully describe the sizes of ma-
terials. To change the size of a material, one needs to change
at least one of the geometric size parameters. On the other
hand, if all geometric size parameters are the same for two
materials, then their sizes are equal and QSE corrections on
material properties are exactly the same for both materials.
To see how geometric size variables appear in the expres-
sions of physical quantities, please see Appendix B, where
we discuss the analytical methods to obtain QSE corrections
to the statistical-mechanical quantities. Most of the time the
leading-order QSE correction is sufficient; however, lower-
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FIG. 2. Changing sizes in various dimensions. (Top row) Larger
cube, smaller cube, and tetrahedron; (middle row) larger square,
smaller square, and triangle; (bottom row) longer line, shorter line,
and a line with an additional inner boundary. Sizes are defined under
the standard Lebesgue measure. A 3D domain is characterized by
four different geometric size variables: volume V , surface area A,
peripheral lengths P , and the number of vertices NV . Similarly, 2D
domain is by A,P,NV and 1D by P,NV . The sizes of an object
can be changed while keeping its general shape constant by uniform
scaling (comparison of first and second columns). When the second
and third columns are compared, it can be seen that not only the size
but also the shape of the objects have changed.

order corrections can also become appreciable depending on
the size and geometry of the domain that is considered. Under
very strong confinements, none of the QSE corrections might
be sufficient to describe the system’s behavior accurately, in
which case the consideration of the full discrete spectrum is
inevitable, see the relevant discussion in Appendix D.

B. Size-invariant shape transformation

The shape is defined as the geometric information that is
encoded by the boundaries, and invariant under translation,
rotation, and uniform scaling [79,80]. QShE is a phenomenon
that is caused solely by changing the shape of the system
while keeping all other variables such as particle density,
temperature, size, and external fields (if applicable) constant.
In the previous subsection, we have explicitly stated the sizes
of an object by the Lebesgue measure. The question then is:
Is it possible to change the shape of a domain by keeping all
the geometric size parameters constant? It has been recently
shown that this is possible by what is called a size-invariant
shape transformation [73], which is illustrated in Fig. 3.

Consider nested domains (a domain within a domain), like
the ones in Fig. 3(a), where the outer domain is fixed and
the inner one is free to rotate. The outer domain (blue) is
the one that particles are confined within, whereas the inner
domain (gray) is impenetrable by the particles. Their initial

configuration is denoted by (I). Now let us perform a rotation
(top row) or translation (bottom row) to the inner domain.
The resulting configurations become the ones given in (II).
Once we compare the domains in (I) and (II), we can see
that the shape of the blue region where the particles are
confined changes under this transformation, while the sizes
(all geometric size parameters) stay constant. Note that the
boundary curvatures at all orders as well as the topology (i.e.,
number of holes and Euler characteristic) of the system is
also unchanged. Despite all the Weyl terms being constant
and the resulting spectrum having the same asymptote, the
spectrum becomes appreciably different leading to peculiar
thermodynamic effects. This is the essence of the process
called size-invariant shape transformation, which gives rise to
QShE in the physical properties of the system consisting of
particles confined within the blue region in between the inner
and outer domains.

Here it should also be mentioned that there exist domains,
isospectral domains, with distinct shapes having the same
sizes but giving rise to exactly the same spectrum [81]. Nat-
urally, these systems would not exhibit any QShE because
their energy spectrum is identical. One of the nicest things
about the size-invariant shape transformation is that it makes
it possible to transform domains from one form to another by
continuous boundary deformations while still preserving the
size-invariance and leading to different spectra.

One of the most useful aspects of this type of transforma-
tion is that it allows parametrizing the QShE and introduce
new geometric control variables on the thermodynamic state
functions and transport properties of the system [73,75,76]. In
this way, one can easily investigate the effects of pure shape
dependence on the physical properties of the system.

In Fig. 3(b), we plot the quantum thermal density profiles
of the particles confined in the considered domains. When
the original and the transformed domains are compared, it
can clearly be seen that the density profiles of particles differ
radically after making size-invariant shape transformations
(either via rotation or translation) on each domain. Due to
their wave nature, particles favor occupying the regions that
are far from the impenetrable boundaries of both inner and
outer domains. The equilibrium density distribution carefully
follows the characteristic shape of the domain before and after
any quasistatic change (it is called adiabatic in the quantum-
mechanical context but we will use the term quasistatic as
it is used in thermodynamic terminology). More importantly,
quantum boundary layers (QBLs) of inner and outer domain
boundaries start to overlap when they come close to each
other. We refer the reader to Appendix B 3 to read more about
the QBL concept and methodology. Such overlaps actually
carry information about the shape transformation and they
will be useful to understand QShE physically and characterize
them analytically, as we will discuss in the next section.

C. The simplest system exhibiting the quantum shape effect:
Particle in a box with a moving partition

In the previous subsection, we examine how QShE can
arise via a size-invariant shape transformation for particles
confined in 2D nested domains, which can straightforwardly
be extended into 3D. In order to understand and investigate the
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FIG. 3. Size-invariant shape transformation. (a) Consider two nested domains (e.g., square within a square in the top row or disk within a
square, bottom row) where the outer (blue) part is the confinement domain, i.e., the domain where the particles are confined, whereas the inner
(gray) part has infinite potential so that particles cannot penetrate into it. Applying rotation or translation to the inner object creates different
confinement domains without changing any of the geometric size variables. This type of shape change is both size and topological invariant
(i.e., both the number of holes and the Euler characteristic are preserved). Using this simple technique on nested domains, one can generate
arbitrarily many domains with distinct shapes but having exactly the same sizes. (b) Quantum thermal density distributions of particles taking
the shape of the domain that they are confined within. Quantum boundary layers (almost zero-density regions) form near the impenetrable
domain boundaries. (Rainbow color scheme is used: Red is higher, blue is lower density.) Red regions designate the effective domain that
particles can occupy at thermal equilibrium. We do not give a legend as the figures are for illustration purposes. Quantum boundary layers
of inner and outer boundaries overlap when they come close to each other. This overlap carries important as well as analytically extractable
information about the effective domain shape perceived by the particles.

fundamentals of this effect, we focus on the simplest system
that can exhibit the effect. The simplest possible size-invariant
shape transformation occurs in a 1D system via the translation
of an inner boundary that is imposed. Let us consider a quan-
tum particle in a 1D box that is separated by an impenetrable
and infinitesimally thin partition (p) at the center, see Fig. 4(a).
Here, the partition (blue dot) in 1D exactly corresponds to the
inner domain that we discussed in the case of 2D domains,
Fig. 3, and likewise, the two ends of the 1D box represent the
outer domain boundaries (gray dots). The partition could have
also been finite in thickness, but we choose the thickness to be
zero for simplicity. Complete separation of the domain into
two is also idealistic, in practice one can always think of a
large enough potential barrier to prevent tunneling.

Despite the partition having no actual thickness, because it
acts as a boundary for both the left and right sides of the box,
QBLs form an effective thickness of δ on both sides of the
partition giving it an effective thickness of 2δ. The partition, as
an inner boundary, reduces the effective length of the domain
by 2δ, unlike the outer boundaries, which have thicknesses of
δ each. This is the basic difference between inner and outer
boundaries in terms of how they reduce the effective length
of the system. Then the effective length of the box becomes
Le f f = L − 4δ.

Now let us contact the system with the particle and heat
reservoir (maintaining both thermal and chemical equilib-
rium), and consider moving the partition to either direction
(to left in the figure) by changing its distance l from the left
wall, Fig. 4(b). During such a movement, the domain sizes
(P = L and NV = 3) remain the same at all times, indicating
the variation could only be attributed to the shape variation. In

other words, the shape in that particles are confined on both
sides of the box clearly changes from Fig. 4(a) to Fig. 4(b).
Although this operation changes the shape of the domain,
the resulting QShE can be exponentially small when the par-
tition is far away from the boundaries. In order to have an
appreciable QShE, the partition needs to come close enough
to the domain boundaries so that their QBLs start to overlap
with each other, Fig. 4(c). Note that the actual overlap starts
earlier than 2δ distance, but as a zeroth-order approximation,
we consider the overlaps closer than 2δ [73]. Only in such a
case, the effective length of the domain changes with chang-
ing l . When the distance between the inner (blue dot) and
outer (gray dot) boundaries becomes less than 2δ, their QBLs
start to overlap with each other. QBLs are the regions where
particles are practically evacuated due to their wave nature
(completely evacuated in the zeroth-order approach). When
QBLs overlap, the effective length of the domain increases
because the total amount of evacuated region decreases with
the overlap. In other words, the size of the free domain that is
available for particle occupation increases with the overlap.
This is genuinely a QShE, and it cannot be explained by
quantum size effects.

A 2D analog of the case with no overlap between QBLs
would be nested square domains with an inner square that
is much smaller than the outer square. The rotation of the
inner square would still be considered as a size-invariant shape
transformation and therefore a shape effect, but QShE would
not emerge if the inner and outer boundaries are not close
enough to each other. So the principal condition for QShE to
emerge in the first place is already having strong confinement
so that QBLs of inner and outer boundaries can overlap and
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FIG. 4. Emergence of quantum shape effects in the simplest pos-
sible system: Quantum particle in a 1D box separated by a movable
partition. The system is in contact with a reservoir maintaining the
thermal and chemical equilibrium, with fixed temperature T and
chemical potential μ, during the movement of the partition. (a) An in-
finitesimally thin partition divides the box into half, l = L/2. Unlike
outer boundaries (the two edges), the inner boundary (the partition)
effectively evacuates a double amount of QBLs and so reduces the
effective length two times more than the usual outer boundary does.
(b) Moving the partition isothermally to left or right (changing l)
does not change the effective length as long as QBLs of inner and
outer boundaries do not overlap with each other. (c) Once QBLs of
inner and outer boundaries overlap (l < 2δ), QShE starts to become
appreciable. Effective length is no longer composed only of QBLs,
but also of the overlaps of QBLs (denoted by Lovr), which actually
has a positive contribution to the effective length because an effective
region equal in amount to Lovr is effectively created. Since sizes do
not change during the translation of the partition, effective length
changes due to the shape effect.

thereby creating an appreciable difference in the effective
sizes.

Note that although we make our analysis in one dimension,
the same problem could very well be designed in 3D or 2D
by keeping the other directions constant at a certain size. The
partition function will just be multiplied with the contributions
of the other directions, ought to the fact that the Boltzmann
factor preserves orthogonality. In fact, we will calculate ther-
modynamic properties by considering the same problem in
3D, in Sec. IV. However, it is convenient to simply study the
1D problem in this section, to investigate the characteristics of
the QShE without loss of generality.

FIG. 5. Difference between quantum size and shape effects.
(a) Demonstration of extreme quantum size effects in particle in a
box with changing length l with the range 0 � l � L. (b) Quantum
shape effects in particle in a box with fixed length L but moving parti-
tion with 0 � l � L. (c) Partition function changing with l . Quantum
size and shape effects give almost the same result after the box length
becomes larger than 2δ. Around and below 2δ, they considerably
differ. Below 2δ, there is effectively no space left for particles to
occupy within the box in QSE case (a), whereas quantum shape
effects increase the effective length and partition function increases
in QShE case (b). All processes are done under thermal and chemical
equilibrium with the reservoir.

D. Quantum shape effect is not just a stronger quantum
size effect

Now, let us consider the question: Can QShE be inter-
preted simply as a stronger quantum size effect? (See also
Appendix D.) To explicitly compare quantum size and shape
effects, we could examine them under the same parameter l ,
but corresponding to a different physical operation in each
case. We normalize the lengths in terms of δ for generality.

In a box with length l without any partition, changing the
length of the box corresponds to the size effect, Fig. 5(a),
which is parametrized by two size variables P = l and NV =
2. Note that when the box is shrunk to a length l < 2δ, QBLs
of the boundaries start to overlap. However, this is still a
size effect, simply because the operation of changing l only
changes the size variables of the domain. When we calculate
the partition function for a box with changing length from 0 to
L, we see that for L < 2δ the partition function effectively be-
comes zero, see the orange curve in Fig. 5(c). This is because
the confinement in the system is so extreme that the thermal
excitation probabilities are exponentially low. As a matter of
fact, the ground state has already much higher energy than the
thermal energy kBT . Another point why this type of overlap
cannot be interpreted as a QShE is because they do not lead
to an increment of the effective length of the domain, which
is a signature of QShE. To give more perspective on this,
let us consider the corners of a square domain in 2D, like
in Fig. 3(b). Perpendicular sides of the domain create a δ2

overlap of the QBLs of the outer boundaries. This type of
overlap is associated with the number of vertices correction,
see Fig. 2.14 in Ref. [74]. Overlaps of the QBLs of outer
boundaries give rise to lower-dimensional QSE contributions,
whereas overlaps of the QBLs of outer boundaries with the
QBLs of inner boundaries give rise to the QShE contributions.
The difference that is shown in Fig. 5(c) is a clear manifesta-
tion of this fact.
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In the case of QShE, l corresponds to the movement of
the inner boundary inside the domain from 0 to L, Fig. 5(b).
This operation does not change the size variables at all (both
the length and number of vertices stay constant). Any change
in the partition function is due to QShE, the purple curve
in Fig. 5(c). The effects of size and shape variation on the
partition function converge after l � 2δ, because l becomes
so close to L that the length of the right side of the box be-
comes effectively zero and does not contribute to the partition
function. In such a case moving the partition to the right only
corresponds to the extension of the left part of the box, which
basically happens to be a very similar operation to a size
effect. Nevertheless, it should be noticed that in the interval
where QSE and QShE give similar results, increasing l de-
creases QSE but increases QShE. Therefore, QSE and QShE
do not originate from the same mechanism. The difference
around l = 2δ might seem to be a small one, but in fact, it is
not. The influence of QShE becomes considerably important
in larger dimensions (where many local constrictions can ex-
ist) and for other thermodynamic properties derived from the
partition function.

To summarize, there are three main mechanisms separating
QShE from QSE: (1) QShE occurs under fixed sizes and
it is characterized by its own distinctive geometric coupling
parameters (in this example it is l , the distance of the partition
from the left boundary). (2) QShE appears when there are
inner boundaries inside a domain and the distance between
inner and outer boundaries is in the order of the thermal de
Broglie wavelength of particles. (3) The more QSE the less
effective volume, whereas the more QShE the more effective
volume. In other words, QShE has the exact opposite effect
on the system than QSE: the more QShE the system exhibit,
the more deconfined the system is. While QSE contributes
to the confinement of the domain, QShE contributes to its
deconfinement. These three points show that QShE is fun-
damentally different than QSE. Nevertheless, QShE is, in a
sense, an “additional” effect on QSE, so QSE is a prerequisite
for the observable existence of QShE. Both effects are single-
particle and statistical-mechanical effects caused by energy
quantization due to quantum confinement. Neither continuum
nor bounded continuum approximations alone can produce
QShE. In order for QShE to show up, the domain sizes should
be small enough so that inner and outer boundaries can be-
come close to each other around a few thermal wavelengths.
Therefore, QSE is the result of a global (overall) confinement,
whereas QShE is related to local confinement (narrow parts,
constrictions etc.), which effectively leads to the global de-
confinement of the domain. Consequently, QSE and QShE
have considerably different effects on the eigenspectra. For
instance, the size effect only scales the spectra whereas the
shape effect has a much more complicated influence, which is
investigated in another paper in detail [82].

III. ANALYTICAL APPROXIMATIONS FOR QUANTUM
SHAPE EFFECTS

We seek analytical methods to predict QShE, to understand
the underlying physics behind it as well as to get rid of cum-
bersome numerical calculations. The 1D partition function
for a single particle obeying Maxwell-Boltzmann statistics is

written in its exact summation form (based on discrete energy
spectrum)

ζ (L) =
∞∑

i=1

exp

[
−π

4

(
λth

L
i

)2
]

(1a)

= 1

2
ϑ3[0, exp(−α(L)2)] − 1

2
, (1b)

where α(L) = √
πλth/(2L) is defined as the confinement

parameter. As is shown in Eq. (1b), the exact partition function
based on discrete spectrum can also be analytically expressed
by the elliptic theta function of the third kind ϑ3. It should
be noted that Eq. (1b) is not an approximation, but a mathe-
matically exact, functional representation of the summation in
Eq. (1a). We deliberately emphasized that ζ is a function of L
[it is also a function of temperature via λth(T )]. Now that we
have a domain separated into two by a partition, we can write
the partition function for such a domain simply by separately
calculating the partition function for both parts of the box
and adding them together. Since the partition is impenetrable,
two parts of the domain can be thought of as two distinct
domains having length l and L − l , geometrically coupled to
each other (by design) via the constraint that their addition
should give L. In fact, the union of their separate eigenspectra
exactly gives the eigenspectrum of the whole domain, i.e.,
Ei(L, l ) = Ei′ (l ) ∪ Ei′ (L − l ). Then, the partition function for
the whole system can be written as

Z (L, l ) = ζ (l ) + ζ (L − l ). (2)

We shall denote this combined partition function with the
letter Z in order to distinguish it from the partition function
ζ for each side of the box. We stress that no approximation
has been done in the writing of this expression, i.e., exact.

The exact effective length can then be calculated directly
using the exact partition function from Eq. (2) as follows:

Le f f = Z (L, l )λth(T ). (3)

Now we would like to analytically express the partition
function under QShEs. To be able to do that we need to
quantify the overlaps of QBLs when they come close to each
other. Overlaps of QBLs can be interpreted and calculated in
several ways within the QBL approach. Here, we would like
to give the most useful one, which is the overlapped QBL
approach introduced in Ref. [73]. Next, we will apply a new
approach based on dimensional transitions, the first time in
this paper. Both approximations generate similar results by
different analytical expressions, but more importantly, they
provide a physical understanding of QShE from different per-
spectives.

A. Overlapped QBL approximation

We invoke QBL method to construct an approximation for
obtaining shape-dependent thermodynamic quantities. Over-
lapped QBL approximation is first introduced in Ref. [73]
to analytically predict and physically interpret QShE. The
approximation is illustrated in Fig. 4(c) where QBLs of inner
(partition) and outer boundaries overlap when the partition is
closer than 2δ from the boundary. Normally effective length
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is calculated by removing the QBLs from the actual domain
size, i.e., L0

e f f = L − Lqbl . However, in the case where QBLs
of inner and outer boundaries overlap, the amount of over-
lapped length has become oversubtracted. Overlapped QBL
approach approximates the effective length by adding the
excess removal of the overlap length. Then, effective length
in overlapped QBL approximation is written as

Lovr
e f f = L − Lqbl + Lovr, (4)

where Lqbl = 4δ is the length of the total QBLs inside the
domain and Lovr term quantifies the amount of length that is
constituted by the overlaps of inner and outer QBLs. Within
the overlapped QBL approximation, overlap length can be
calculated by the following piecewise function:

Lovr =
⎧⎨
⎩

2δ − l l � 2δ

2δ − (L − l ) L − l � 2δ

0 2δ < l < L − 2δ

. (5)

When l < δ, the left QBL of the partition outflows from
the left boundary. However, the overlap and outflow of QBLs
have the same effect on the effective length, so we treat both
under the same footing and do not distinguish the outflow con-
tribution from the overlap contribution to the effective length.
Then, within the overlapped QBL approximation, the total
single-particle partition function can be analytically written
as

Zovr = Lovr
e f f

λth
= Lovr

e f f

4δ
, (6)

which is functions of temperature T , size L, and shape l .
It has been shown previously that overlapped QBL approx-

imation is successful in predicting quantum shape-dependent
properties and capturing their functional behaviors. In addi-
tion to that, it provides a physical explanation for the increase
in effective sizes when QShE is prominent because overlap re-
gions contribute positively to the effective size of the domain.
It also transforms a complicated quantum mechanical problem
into a simple geometrical calculation.

B. Dimensional transition approximation

Another way of interpreting and predicting QShE can be
done by introducing the dimensional transition approxima-
tion. This time, rather than introducing the concept of effective
length, we focus on the dimensional change in the partition
function due to the movement of the partition. QSE and QShE
can trigger dimensional changes in the representation of the
system’s properties. For example, due to strong confinements
in one or more directions, it becomes possible to represent the
physical properties of the particles confined in these systems
via their lower-dimensional expressions, which is why they
are usually called lower-dimensional materials. We can take
advantage of these dimensional changes to calculate the QShE
even more precisely. When the partition moves from center to
left, the left domain becomes more and more confined so that
the partition function transitions from 1D to 0D representa-
tion. Under such extremely strong confinements ground state
takes over and 0D representation becomes sufficient [78,83].
In fact, as it has been shown in Ref. [78], this takeover occurs
at a specific point in confinement space, approximately at L =

FIG. 6. (a) Saturation of quantum thermal density towards the
ground-state density with reducing size. Dimensionless quantum
thermal density distribution of a particle in a box for different box
lengths measured by the QBL thickness δ. For L � L∗ ground-state
density takes over, which justifies the dimensional transition approx-
imation. (b) Comparison of the contributions of 0D and 1D partition
functions to the exact one. Ratios of ζ0/ζ and ζ1/ζ go to unity when
l � L∗ and l � L∗ respectively. (c) Illustration of the domain when
the partition is at l ≈ L∗ in which case, partition functions of the
left and right parts of the domain can be described by zero- and
one-dimensional partition functions respectively.

L∗ ≈ 0.7λth. For comparison, this transition occurs approxi-
mately at 2.8δ, which means that the dimensional transition
approximation can predict QShE behaviors more precisely,
even before the overlaps begin.

In Fig. 6(a) we calculate the quantum thermal density for
the left part of the domain with l changing from 4δ to δ. Quan-
tum thermal density [Eq. (B7) in Appendix B] is normalized
by the classical density ncl . It is seen that quantum thermal
density approaches the ground-state density after around L∗ ≈
0.7λth. This means for the left side of the box, it is enough
to consider only the ground state when l < L∗. The principal
quantity is the partition function, from which we can derive all
other thermodynamic properties. Therefore we can offer the
following piecewise function for the dimensional transition of
the partition function of the left side of the box:

ζDTA(L′) =
{

ζ0(L′) = exp
(
−π

4
λ2

th

L′2

)
L′ � L∗

ζ1(L′) = L′
λth

− 1
2 L′ > L∗ (7)

where we replace l with L′ to indicate that it is now a general
parameter, which can then be replaced by the proper lengths in
the calculation so that the partition function for either side of
the box can be defined by Eq. (7). For L′ � L∗ (0D represen-
tation) partition function approaches to its ground-state value
(i = 1). For L′ > L∗ (1D representation), it is represented by
the QSE corrected 1D partition function ζ1(L′).

The accuracy of Eq. (7) can be seen in Fig. 6(b) where
the ratios of the contributions of 0D and 1D representations
to the partition function. 0D and 1D representations quite
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FIG. 7. Comparison of the accuracies of overlapped QBL
(OQBL) and dimensional transition approximations (DTA) with the
results of exact summation based on the discrete energy spectrum.
(a) Partition function and (b) effective length changing with the
partition position that is moved from one end to the other end of
the box.

accurate when l < L∗ and l > L∗ respectively. Figure 6(c)
shows how different parts of the box are treated within dif-
ferent dimensional representations. Using Eq. (7), the total
partition function of the whole system can be calculated
as usual ZDTA(L, l ) = ζDTA(l ) + ζDTA(L − l ), which explicitly
shows both parts of the box treated within their own dimen-
sional representations.

In Fig. 7, we give comparisons of overlapped QBL and
dimensional transition approaches with the exact numerical
calculations (based on the discrete energy spectrum) in terms
of the partition function and effective length changing with
l . The functional behaviors of the partition function and ef-
fective length are the same as they are directly proportional
to each other via Eq. (B8) with the proportionality factor of
1/λth = 1/(4δ). From the perspective of overlapped QBL,
the overlaps of QBLs starts when the distance between the
box boundary and the partition is less than 2δ, producing
the increase in effective length. The lowest value (plateau) of
effective length is L − 4δ where 2δ is coming from QBLs of
left and right boundaries of the box and the other 2δ is coming
from the QBLs of the partition, which is formed left and right
sides of it. The maximum values of the effective length occur
when the partition is exactly at the domain boundaries, which
causes the left QBL of the partition to completely vanish
(since it outflows), giving the effective length L − 2δ, which is
basically the effective length of a box without partition. Even
though dimensional transition approximation does not rely on
defining effective length, we can calculate the correspond-
ing effective length within that approximation via LDTA

e f f =
ZDTA(L, l )4δ to compare with the overlapped QBL one. The
effective length (or volume in 3D) concept will be central to
the explanation of the behaviors of thermodynamic properties
in the next section. Figure 7 shows that dimensional transition
approximation gives remarkably accurate results for all values
of l with a negligible error around the transition point L∗.
Especially the errors of dimensional transition approximation
are negligible, and the difference is not distinguishable in the
figures. Since the analytical methods are extremely accurate in
representing the exact discrete spectrum results, we will use
the exact forms (based on summations over eigenvalues) of
thermodynamic quantities henceforward.

IV. THERMODYNAMIC PROPERTIES UNDER QUANTUM
SHAPE EFFECT

In this section, we calculate the thermodynamic properties
of noninteracting particles confined in a domain exhibiting the
QShE. Unlike in previous sections, this time we consider a 3D
box for the sake of including many particles. Two directions
(Lx and Ly) are chosen to be large and one direction (Lz) is
extremely confined. In particular, we choose Lx and Ly to be
1000δ and Lz to be 10δ as above. The partition is inserted
parallel to the macro directions and perpendicular to the nano
direction.

For N noninteracting particles, the total partition function
is written as Z = ZN

3D/N! where the single particle partition
function of the composite system is

Z3D = ζ3D(Lx, Ly, Lz = l ) + ζ3D(Lx, Ly, Lz = L − l ), (8)

and the single particle partition function for the 3D box is

ζ3D =
(

Lx

λth
− 1

2

)(
Ly

λth
− 1

2

)
ζ (Lz ). (9)

Note that in MB statistics we are able to write the 3D partition
function as the separate products of partition functions of
each direction. For increased accuracy, we also consider the
QSE corrections for Lx and Ly directions as well. In other
words, the first two brackets in Eq. (9) represent the bounded
continuum for the unconfined directions (Lx and Ly) and the
last factor represents the exact summation based on the dis-
crete energy spectrum for the confined direction (Lz). Since
Lx and Ly directions are unconfined, the bounded continuum
approximation is extremely accurate in representing the ac-
tual discrete spectrum for those directions with relative errors
under 10−11. The total number of particles inside the box
can be written as N = eμ/(kBT )Z3D. The number of particles
in the left and right compartments of the box is written as
NL = eμ/(kBT )ζ3D(Lx, Ly, l ) and NR = eμ/(kBT )ζ3D(Lx, Ly, L −
l ) respectively. Chemical potential μ can be straightfor-
wardly calculated from N . Now, using the total N-particle
partition function Z , we calculate Helmholtz free energy,
entropy, and internal energy respectively as F = −kBT lnZ ,
S = −∂F/∂T , and U = F + T S.

We investigate how thermodynamic properties change
when the partition is varied. We consider two cases for
thermodynamic analysis: fixed chemical potential and fixed
number of particles. In the first case, the box is in chemi-
cal equilibrium with the reservoir where we allow particle
exchange to keep the chemical potential constant. Particles
can also transfer between the compartments over the reservoir.
We set μ/(kBT ) = −5, ensuring the applicability of Maxwell-
Boltzmann statistics. In Fig. 8(a), we show the variation of
particle number with partition position l (normalized to δ).
The total particle number reduces when the partition moves
away from boundaries. This is correlated with the behavior
of effective volume [see Fig. 8(b)]. When the partition is
moved from the left boundary to the center, effective volume
decreases, making the system effectively more confined and
causing particles to escape into the reservoir. The smaller
the effective volume, the less particles there are inside the
box. When the partition is up to 2δ away from boundaries,
the particle number in the smaller compartment is effectively
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FIG. 8. Thermodynamic properties varying with the shape variable l . (Top row) The system is in thermal and chemical equilibrium with the
heat bath so that both the temperature T and the chemical potential μ are constant during the process. (Bottom row) The system is in thermal
equilibrium while the total number of particles N is constant. Particles are allowed to transfer between compartments through a permeable
partition. Variation of the number of particles in the left and right compartments of the box (NL and NR) is shown by red and blue curves
respectively. Background color codes in the plots of normalized thermodynamic properties are chosen as follows: Yellow: unchanged region
(no quantum shape effect), gray: ordinary behaviors (similar to the quantum size effect), pink: peculiar behaviors (special to the quantum shape
effect).

zero. Because of the imbalance between the lengths of the
compartments and the extremely high confinement of the
smaller compartment, all particles prefer to occupy the larger
compartment or to the reservoir. Chemical potential, normal-
ized by kBT , is constant, Fig. 8(b).

Transitions into thermodynamically more stable states are
dictated by the variations in Helmholtz free energy. The
behavior of normalized Helmholtz free energy per particle
[F/(NkT )] at fixed μ, varying N is shown in Fig. 8(c). It takes
the form of F/(NkT ) = μ/(kBT ) + (ln N! − N ln N )/N . The
increase in the total number of particles causes a slight
decrease (noticeable only at the third decimal) in the free
energy per particle when the partition is near the bound-
aries, denoted by the gray background color indicating the
ordinary/expected behaviors. Since the chemical potential
stays constant, the change in free energy per particle is solely
due to the change in the total number of particles during the
movement of the partition. Essentially, it is a consequence
of the classical indistinguishability of particles, since the in-
distinguishability correction in free energy brings additional
dependence on the total number of particles inside the system.
Hence, using the Stirling approximation is not appropriate in
this case, as it would give F/(NkT ) = μ/(kBT ) − 1 = −6,
which fails to capture the small variation in free energy per
particle. Free energy stays almost constant when the partition
is more than around L∗ away from the boundaries of the
domain, denoted by the yellow background color indicating
the unchanged region. The background color codings apply to
all other subfigures in Fig. 8. The unchanged regions having
no meaningful QShE can be explained via two different per-
spectives: (1) There is no overlap of QBLs until the distance
between the partition and the boundary is less than 2δ (over-
lapped QBL perspective). (2) Partition function of the smaller
domain consists only of the contribution of the ground state
after around L∗ distance (dimensional transition perspective).
Substantial change starts to occur when the partition is closer

to either side of the domain than around L∗. Since figures are
perfectly symmetric around the center L/2 = 5δ in x axis,
we shall focus on the left side of the figures and interpret
the behaviors of thermodynamic quantities considering the
partition moving from the center to the left.

Variation of normalized internal energy per par-
ticle [U/(NkT )] at fixed μ, varying N is shown
in Fig. 8(d). It takes the approximate form of
U/(NkT ) ≈ [u(l ) + u(L − l )]/Z (L, l ) + 1, where u(L′) =∑∞

i=1[α(L′)i]2 exp[−[α(L′)i]2]. Classically, the normalized
internal energy per particle is Ucl/(NkT ) = 3/2. Due to
quantum confinement, the internal energy is above 3/2
during the whole process of varying l . It is reduced near the
boundaries due to the existence of QShE, which decreases
confinement energy contribution by increasing the effective
volume of the domain. The more interesting part is the
noticeable change in the slope of internal energy per particle.
We labeled the sharper drop as the peculiar behavior and
the other one as the ordinary behavior, for reasons that
will become clearer below. The initial sharp decrease in the
peculiar region (denoted by the pink background color) occurs
because of the increase in effective volume, which makes the
system effectively less confined and reduces the confinement
energy. Since the rate of change in effective volume is larger
in the peculiar region due to overlaps [e.g., compare it with
Fig. 7(b)], reduction in internal energy is faster in this region.
In the ordinary region, on the other hand, the slope changes
because of the fact that when the partition gets closer to the
boundary, the contribution of the overlaps only consists of the
expansion of the larger compartment, as the region between
the boundary and the partition has already been evacuated
in the smaller part. There are almost no particles left in the
smaller compartment of the box and the system effectively
turns into the expansion of the larger compartment. Due
to this reason, the functional behaviors of thermodynamic
properties in this region are ordinary (in the sense that one
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expects from the isothermal expansion/compression of a
confined gas under QSE). The behavior of internal energy per
particle is completely independent of the variation in the total
number of particles.

One of the most interesting consequences of QShE is
seen in the peculiar behavior of entropy. In the classical
thermodynamics of gases, free energy and entropy behave
oppositely with respect to changes in volume in an isothermal
expansion/compression process. On the other hand, this is not
always the case for systems exhibiting QShE [73]. Variation
of normalized entropy per particle [S/(Nk)] at fixed μ, vary-
ing N is shown in Fig. 8(e). Due to a negligible change in
free energy, entropy mimics the behavior of internal energy.
Therefore, the decreases in entropy per particle are solely due
to the decreases in the confinement energy per particle. To
understand this behavior from the phenomenological thermo-
dynamics perspective, consider the entropy per particle of the
left and right compartments separately. During the variation
of the partition, the entropy of the smaller compartment de-
creases, while that of the larger one increases in accordance
with the expectations. Total entropy decreases both in the
peculiar and ordinary regions. Because in the peculiar region,
the decrease in entropy of the smaller compartment dominates
the total change in entropy. In the ordinary region, on the other
hand, the slope changes because the total number of particles
increases as there are effectively no particles in the smaller
compartment, whereas the particle number increases in the
larger one.

Now we proceed with our next analysis: keeping the total
number of particles fixed in the system by allowing particle
exchange through compartments via the permeable partition,
but not allowing particle exchange with the reservoir. Note
that despite the permeability, the Dirichlet condition can ef-
fectively be satisfied by creating tiny holes smaller than λth

on the partition wall. In this way, when confinement increases
the energy levels, particles with smaller wavelengths can pen-
etrate through the holes to the other compartment. In this case,
the reservoir acts only as a heat bath, keeping the temperature
fixed in the whole system. Particle numbers in the left and
right compartments behave similarly to the previous case,
Fig. 8(f), except this time they cannot escape into the reservoir
and all particles accumulate to the larger compartment when
the partition is too close to the boundaries. Fixing the total
number of particles causes the chemical potential of the sys-
tem to vary during the process, Fig. 8(g). Chemical potential
decreases because an increase in effective volume causes ef-
fective density to decrease. The decrease in chemical potential
near the boundaries is also correlated with the increase in the
total number of particles in the previous case, e.g., compare
with Fig. 8(a). Note that the chemical potentials of the left
and right compartments are equal to each other.

In Fig. 8(h), Helmholtz free energy per particle steadily
decreases from l = L∗ to l = 0 at constant T and fixed N .
Free energy tells the direction of the thermodynamic transi-
tion under the quasistatic process. Thus, when the system is
prepared in such a way that the partition is positioned at a
distance between 0 < l < L∗, it will spontaneously move to
the left boundary, assuming no friction and no other forces
acting. Occupiable modes in the larger compartment prevail
over the ones in the smaller compartment and a quantum force

emerges [73], bringing the inner and outer boundaries closer
to each other. In this sense, the quantum force that will act on
the partition is quite similar to the Casimir force. The reason
for this thermodynamic behavior is directly because of the fact
that effective volume of the system increases due to QShE,
when the partition moves from l = L∗ to l = 0 isothermally.
In other words, the existence of QShE causes effectively
more available domain for particles to occupy, which basically
amounts to expansion. In fact, such a spontaneous movement
of partition to the boundary is analogous to the isothermal
expansion of a confined gas, even though the actual volume
of the domain remains unchanged. Here, the expansion due to
QShE is an effective one, keeping the actual volume constant
and changing the effective volume only. The behavior of in-
ternal energy per particle at constant T and fixed N , shown
in Fig. 8(i), is identical to the previous case. This is because
internal energy per particle is independent of the variations in
chemical potential as well.

The behavior of entropy per particle is shown in Fig. 8(j).
When the partition is moved from l = L∗ to l = 0 isother-
mally, entropy first decreases and then increases, whereas
the free energy steadily decreases during the process. There
are two regions where entropy behaves differently during
a smooth variation of a thermodynamic control variable, l .
These regions are distinguished by the minimum of entropy,
which is a complicated function of δ and depends strongly on
the geometry of the system. In the ordinary region, thermo-
dynamic properties exhibit the usual behaviors as explained
above. Similar to the isothermal expansion of a gas, entropy
increases while free energy and internal energy are decreas-
ing. The behavior of entropy in the peculiar region is unseen in
classical thermodynamics. This peculiar behavior can be ex-
plained from two different perspectives. The first perspective
is associated with the temperature sensitivity of the effective
volume, which comes from the temperature dependence of
QBLs [73]. As it has been investigated in Ref. [74], there are
two terms determining the entropy behavior under QShE. De-
pending on the competition between these two terms, entropy
could either increase or decrease with respect to changes in
the shape of the system. Although the entropy decreases in
the direction of the spontaneous transition (dictated by free
energy minimization), this does not violate the second law,
because the total entropy of the system and the bath stays
constant in a reversible process. So the system essentially
exchanges heat with the bath to keep the temperature constant.
The second perspective is related to the distinct characteris-
tics of the eigenspectra under QShE and their influences on
the partition function via thermal probabilities. Normally, the
partition function linearly depends on the actual volume of the
system. However, in the peculiar region due to QShE, the par-
tition function exponentially increases (decays), see Fig. 7(a),
when the partition moves away from (closer to) the boundary.
The same behaviors are mimicked by the effective volume as
well. Whenever a substantial rise is observed in the thermal
occupation of ground and lower energy states relative to the
other states in the energy spectrum, there is an exponential in-
crease in both the partition function and effective volume. This
is primarily due to the fact that the ground state contributes
the most to the partition function. Our spectral analysis shows
that QShE causes a nonuniform change in the eigenvalues (see
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Figs 3.5 and 3.6 in Ref. [74]) and increase in the thermal
occupation probability of the ground state in the peculiar
region when partition moves towards the boundary. Increased
ground-state occupation causes partition function to exponen-
tially increase, as its first term, the ground state, dominates its
behavior. The Entropy of the system decreases exactly due to
the increase in the ground-state occupation probability, which
becomes dominant in the entropy. We investigate the conse-
quences of the spectral features of QShE in another paper
in detail [82]. Eventually, this is basically a competition of
two different mechanisms determining the behavior of entropy
(uniform and nonuniform scaling in eigenvalues), and which
one prevails depends on the exact geometrical configuration
of the system.

V. DISCUSSION AND CONCLUSION

In this paper, starting by revisiting quantum size effects, we
showed the origin of a distinct physical phenomenon called
the quantum shape effect appearing at the nanoscale. We
considered the simplest system exhibiting the characteristic
properties of the effect, namely noninteracting particles in
a box with moving partition under the quasistatic process.
We demonstrated how quantum size and shape effects are
different from each other and how they are similar in some
aspects. Furthermore, we applied an analytical method based
on the dimensional transition of partition function [78] and
accurately predicted the QShE. Finally, we investigated the
changes in thermodynamic properties due to the QShE under
various equilibrium conditions. We find that thermodynamic
properties, especially the entropy per particle, exhibit peculiar
behaviors that are unseen in classical thermodynamics.

Originally, QShE are introduced in a core-shell quantum
wire [73] and characterized by the rotation angle of the core
wire. It was due to a rotational size-invariant shape trans-
formation. Here, we characterized it by the position l of the
partition in the box, originating due to a translational size-
invariant shape transformation. From a different perspective,
QShE can appear in the case of strongly confined multiple
systems (double here) geometrically coupled via the param-
eter l (here). In that sense, QShE (changing the position of
the partition l) actually mediates the coupling between two
“separate” boxes. If you move the partition to left, for in-
stance, the left part of the box will contract and the right
part of the box will extend at the same amount. QShE is
basically an effect caused by the inner and outer boundaries
of a domain getting substantially close to each other. Other
less confined parts of the domain are also affected by this
congestion, creating a global coupling over the relevant shape
parameter. The spectrum of the system is affected in a unique
fashion by the QShE, which is the deeper cause of the ob-
served peculiar behaviors in thermodynamic quantities [82].
Furthermore, this emerged coupling also implies that QShE
cannot be explained by any form of QSE as QSE cannot repro-
duce the effects of QShE generated by these additional shape
parameters. One could also insert more than one partition
to create additional shape parameters and more complicated
couplings.

Despite the fact that the nature of this so-called coupling
is classical, its consequences at the nanoscale are quantum

FIG. 9. Formation of quantum boundary layers and their vari-
ation with respect to changes in domain size or equilibrium
temperature of particles. Green lines are actual domain lengths re-
stricted by impenetrable domain boundaries denoted by grey dots.
Dotted black arrowed lines show the effective length perceived by
the particles as a consequence of quantum size effects. Solid black
curves represent the quantum thermal density distributions of par-
ticles inside a 1D domain in an arbitrary scale (for the upper row,
x axis is the position coordinate and y axis is the quantum thermal
density). Dashed red curves indicate the approximation carried out by
QBL method to represent the exact density distributions. Grey areas
denote the thickness of QBL, δ, which is a function of temperature.
From (a) to (b) the domain size is reduced. δ remains the same;
however, quantum size effects increase because QBLs comprise a
larger portion of the actual domain size in (b) compared to (a). From
(a) to (c) the domain size is kept constant whereas the temperature
is decreased. δ increases with decreasing temperature, which again
leads to an increase in quantum size effects due to the same reason
with a different cause. The second row illustrates the same in a 2D
domain where x and y axes are coordinates and the rainbow color
scheme denotes the density so that the darkest blue and red represent
zero and maximum densities respectively.

mechanical due to the energy quantization via quantum con-
finement. In fact, constructing quantum thermal machines by
taking advantage of the discrete energy spectrum has become
quite popular in the last decade [41,73,84–90]. In a nutshell,
both quantum size and shape effects are inherently quantum
effects as they are direct consequences of the prominence of
the discrete spectrum and the wave nature of particles. Also
from the QBL perspective, when Planck’s constant goes to
zero, QBL disappears so that both quantum size and shape
effects vanish (i.e., particles would occupy the space homo-
geneously in Fig. 9). Note that our conclusions are specific
to size-invariant shape transformations and should not be ex-
tended to simultaneous shape and size variations like “going
from a sphere to a cube”.

Besides fundamental importance, QShE provides a way
to manipulate the physical properties of materials at the
nanoscale. By considering QShE in the design of nanostruc-
tures, it could be possible to suppress the unwanted effects and
enhance the useful ones. Its size counterpart, QSE, has already
been studied on many exotic systems such as topological
insulators and superconductors [49,91]. We may expect QShE
to appear and make possibly important differences in many
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exotic systems from topological materials to superconductors
as long as they are geometrically designed in an appropriate
way. In particular, nonuniform scaling of energy levels, a cru-
cial property of systems exhibiting QShE, can provide ways to
engineer the physical properties of nanoscale materials [82].

QShE is a newly emerging field and is open to further
research. In addition to the exploration of various exotic mate-
rials under QShE, fundamental investigations about its theory
could be extended. Mode analysis in systems exhibiting QShE
could also be worth to consider, as earlier studies on various
typical systems reveal the importance of bound states in planar
regions [92] and quantum waveguides [93–95]. The research
and models developed for the QShE may also have implica-
tions for the Casimir effect.
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APPENDIX A: ORIGIN OF THE QUANTUM SIZE EFFECT

Discreteness of (or spacing between) the quantized energy
levels of particles for quadratic dispersion relation is given by
the relation 	E ∼ h̄2/(mL2) where h̄ is Planck constant, m is
the mass of a particle, and L is the characteristic size of the
material. Similarly, the typical thermal energy scale of parti-
cles is Eth ∼ kBT ∼ h̄2/(mλ2

th) where λth = h̄
√

2π/
√

mkBT
is the thermal de Broglie wavelength of particles (corresponds
to the average size of the space that particles occupy), which
is in the order of nanoscale for practical temperatures. At the
macroscale, the discreteness of energy levels becomes negligi-
ble compared to the thermal energy of particles, i.e., 	E <<

Eth. Therefore, energy levels of particles in bulk materials at
the macroscale can safely be considered as a continuum. In
other words, one can fit many thermal wavelengths into a large
domain (L/λth 	 1), so that a huge number of modes can be
thermally excited.

Reducing the sizes of the materials to the order of the
thermal de Broglie wavelengths of particles, L ≈ λth, causes
energy level spacings to increase (	E ∼ 1/L2), which makes
the discrete energy levels reveal themselves, 	E ≈ Eth. Ther-
mal energy can only excite a few lower-energy levels. From
another perspective, only a few thermal wavelengths can fit
into such a small space, (L/λth ∼ 1), see the comparison in
Figs. 1(a) and 1(b). Due to this reason, QSE is also called
size quantization. When the size of a domain is that small,
particles can no longer be treated as point particles as their
wave nature becomes prominent. Discreteness of the spectrum
plays an important role since only a few low-lying energy
levels can be thermally occupied. A comparison of the thermal
occupation probabilities of quantum states can be seen for two
domains with different lengths in Fig. 1(c). Revelation of the
degree of discreteness (or quantization) of energy levels due
to the prominent wave nature of particles makes the physical
quantities dependent on additional functions of the system
sizes, which is the origin of the quantum size effect. As a
matter of course, both wave nature and discrete spectrum are
the properties of particles even at the macroscale. But QSE

is actually related to the fact that these properties becoming
prominent at the nanoscale due to the increased influence
of the ground and low-lying states, which dominates the
behaviors of the physical properties and cause nanoscale sys-
tems to exhibit considerably different behaviors than the bulk
materials.

While the discrete spectrum becomes prominent at the
nanoscale, considering a continuous spectrum bounded from
the below will be practically enough to generate all the QSE
corrections, except for the case of strong QSE [96]. As we
mentioned, when the sizes of the system become close to
the thermal de Broglie wavelength of particles, the system
could be accurately described by fewer and fewer modes that
are thermally populated. Due to this “soft cutoff” provided
by the relevant thermal distribution, ground-state contribution
becomes appreciable. This makes it possible to obtain QSE
corrections by neglecting the discreteness of the spectrum and
just by correctly accommodating the ground-state contribu-
tion, see Appendix B.

Quantum confinement giving rise to QSE is basically an
inverse measure of how many thermal wavelengths can fit
into a given domain length. Due to this, it is sometimes also
called size quantization (size itself is not quantized like the
energy is). In this regard, QSE can be quantified by defining
confinement parameters [97], which are basically the ratios
of two characteristic length scales of the system, e.g., α ∼
λth/L. Then many physical properties, such as mechanical,
electrical, optical, and thermal properties, of materials become
explicit functions of confinement parameters. Additionally,
strong confinement in one or more directions introduces the
aspect of dimensionality (e.g., low-dimensional structures)
and materials start to exhibit drastically different behaviors as
a result of radical variations in the behavior of the density of
states [1,52].

APPENDIX B: ANALYTICAL METHODS TO OBTAIN
QUANTUM SIZE EFFECTS

There are several convenient methods to get QSE cor-
rection terms to the usual statistical-mechanical expressions.
Here, we present them using a simple example. Consider non-
relativistic quantum particles confined in a one-dimensional
box with length L. The boundaries are assumed to be impen-
etrable, i.e., the potential is zero within the box and infinite
on the boundaries. The domain length L determines the quan-
tized energy levels of particles confined inside the box. One
can write down the partition function and then calculate the
thermodynamic quantities for the particles confined in the box
within the standard statistical mechanical framework.

For a canonical ensemble, the exact form of the partition
function contains the summation of Boltzmann factors over
the discrete energy spectrum Ei with state variable i. If the
domain length L is large enough, one can use continuum
approximation (CA) for energy levels and replace the sum-
mation operator with integral to get the textbook expressions
of the single-particle partition function as

ζ =
∑

i

exp(−βEi )
CA−→ ≈

∫
exp(−βEi )di, (B1)
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where β = 1/(kBT ) with Boltzmann constant kB and tem-
perature T . For a particle confined in a 1D domain, f (i) =
exp[−π

4 ( λth
L i)2], continuum approximation gives

ζ =
∞∑

i=1

f (i) ≈
∫ ∞

0
f (i)di = L

λth
. (B2)

In 1D, the volume of the system is basically its length L
and the partition function is just the ratio of domain size and
thermal de Broglie wavelength of particles. In that sense, the
partition function tells us how many thermal wavelengths we
can fit into our domain. In the contrary case, if L is small
enough so that the thermal de Broglie wavelength of particles
is in the order of L, QSE (or finite-size effects) becomes im-
portant and conversion from summation to integration should
be avoided. The summation over discrete energy levels fully
takes any QSE into account; however, their analytical relations
with size are implicit within the sum. It is worthwhile to
notice that the single-particle partition function itself serves
as a measure of QSE and size quantization. When ζ ≈ 1,
QSE and quantization are strong, whereas if ζ 	 1, QSE
and quantization are negligible. This fact is also reflected in
the definition of confinement parameters, which up to some
numerical factor is the inverse of the single-particle partition
function.

In order to explicitly (i.e., analytically) examine QSE, one
needs to make better approximations than the continuum one.
There are three effective ways of obtaining the analytical
QSE corrections to the continuum expressions: (1) Poisson
summation formula, (2) Weyl density of states, and (3) quan-
tum boundary layer method. While all of them give the same
correct answers, each method contributes to the mathematical
and physical understanding of QSE in its own way. In order to
distinguish quantum shape effects from the size effects, it is
essential to mention these methods, which help to understand
where the QSE comes from.

1. Poisson summation formula

Replacing the summation directly with the integration is
a coarse approach. One can represent the summation more
precisely by applying the Poisson summation formula (PSF)
[4,98,99] or other summation formulas like Euler–Maclaurin
formula [100,101], and Abel-Plana formula [102]. The full
form of PSF for even functions reads
∞∑

i=1

f (i) =
∫ ∞

0
f (i)di − f (0)

2
+ 2

∞∑
s=1

∫ ∞

0
f (i) cos(2πsi)di.

(B3)
The first two terms of PSF are enough to generate the QSE
terms, which give the following result:

ζ =
∞∑

i=1

f (i) ≈
∫ ∞

0
f (i)di − f (0)

2
= L

λth

(
1 − λth

2L

)
.

(B4)

The first term (integration) is the bulk term, which is basically
the continuum expression. The second term [− f (0)/2], on the
other hand, generates the QSE correction term [the second
term within the parenthesis in Eq. (B4)]. Approximating the
sum with the first two terms of PSF is also called the bounded

continuum approximation, because it takes into account the
finiteness of the boundaries while still approximating energy
levels as a continuum. As it happens, this operation is not
only a convenient mathematical approach for a summation but
also has a well-defined physical meaning as well. In other
words, the second term in Eq. (B3) corrects the false con-
tribution of the zeroth quantum state in the integral, which
does not exist in a quantum mechanical energy spectrum.
Remarkably, QSE corrections are directly determined by the
correct treatment of the ground-state contributions, which is
basically removing the false contribution of zero ground-state
energy in the continuum approximation. This happens be-
cause the ground-state mode of a confined direction represents
the (D − 1)-dimensional contribution in a D − dimensional
domain. For example, here in 1D system, the contribution
of the boundary in a 1D domain represents 0D, i.e., number
of vertices contributions. QSE, therefore, can be understood
as the lower-dimensional boundary corrections to the higher-
dimensional bulk terms. This will become much more clear in
the next subsection. The third term of PSF, on the other hand,
is called the discrete correction term as it fully recovers the
discrete summation by correcting the miscalculations for each
state in the continuum representations of the actual summa-
tion.

Note that when L 	 λth, QSE correction becomes neg-
ligible compared to unity [see Eq. (B4)] and the classical
expression can be recovered. QSE corrections lose their mean-
ing after L � λth/2, since one cannot use λth beyond that limit
as it is defined based on a full wavepacket in an unbounded do-
main. For references on the usage of PSF or related formulas
in QSE, see [11,12,97].

2. Weyl density of states

Another method to obtain QSE corrections is using the
Weyl density of states (WDOS) [4,96,103–105]. WDOS is a
concept based on the Weyl law (also called Weyl conjecture),
which describes the asymptotic behavior of the eigenvalues of
a Laplacian [106,107].

Based on Weyl law, WDOS in energy space can be derived
in its D-dimensional general form as [74]

WD(E ) = V
λ3

th

2
√

βE√
π

�(D − 3) + (−1)D A
λ2

th

1

4D−2
�(D − 2)

+ (−1)D−1 P
λth

1

4D−1

1√
π

√
βE

�(D − 1)

+ (−1)D−2 NV
4D

δDrc(βE ), (B5)

where D is the dimensionality, � is right-continuous Heavi-
side step function, δDrc is Dirac delta function, decorated with
subscript Drc in order to prevent confusion with the parameter
that will be introduced in the next subsection.

Instead of using the usual density of states expressions,
one can use WDOS inside the integration, which generates
lower-dimensional geometric corrections to the expressions in
addition to the bulk term. An example of the usage of WDOS
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to obtain the QSE in the partition function is given below:

ζ =
∞∑

i=1

f (i) ≈
∫ ∞

0
f (E )W1(E )dE = P

λth

(
1 − λth

4

NV
P

)
,

(B6)

where P is the periphery of the domain, which is actually the
length of the domain in 1D, so P = L and NV is the number of
vertices, which is 2 (left and right boundaries) and WDOS in
1D is W1(E ) = (L/λth)/(1/

√
πβE ) − (NV/4)δDrc(βE ). As

is seen, Eqs. (B4) and (B6) are equivalent to each other. At
nanoscale systems, WDOS gives much more accurate results
than conventional DOS. Note that the domains that are de-
signed to give QShE would have exactly the same asymptotic
Weyl spectrum since all Weyl parameters are exactly the
same up to the lowest order. Therefore, WDOS cannot predict
QShE. For references on the explicit usage of WDOS, see
[96,105].

3. Quantum boundary layer method

The quantum boundary layer (QBL) method provides an-
other (physically more intuitive) way that can effectively be
used to analytically derive the correct forms of QSE correc-
tions to the continuum expressions [108–110]. In addition,
QBL method reduces a quantum mechanical problem, QSE,
to a geometrical problem.

The essence of QBL method relies on the quantum-
mechanical particle density distribution profile, which carries
crucial information regarding the confinement. At thermal
equilibrium, the local density distribution of particles confined
in a domain is described by ensemble-averaged quantum-
mechanical particle number density, or in short quantum
thermal density, which is given by

n(r) =
∑

k

f (Ek )|ψk(r)|2, (B7)

where k represents the generalized quantum state variable and
ψk(r) is the eigenfunction corresponding to the eigenvalue k.
For a particle in a 1D box, ψi(x) = √

2/L sin(iπx/L) where
i is the quantum state variable. Due to the wave nature of
particles, the density distribution profile of the particles is
nonuniform even at thermal equilibrium, see the black curves
in Fig. 9. This nonuniformity is a direct consequence of the
fact that a few low-lying eigenstates are thermally occupied
so that low-lying eigenfunctions dominate the local density
behaviors. For macroscopic systems, nonuniform density dis-
tribution is negligible, whereas at the nanoscale it becomes
appreciable. It turns out that the degree of nonuniformity
is directly related to the magnitude of QSE, which we can
exploit to analytically obtain QSE corrections.

As is seen from the black curves in Fig. 9, the density
distribution of particles has two distinct regions, the central
plateau (flat density region) and boundary layers (the decay
of density near the boundaries). Also see the second row
in Fig. 9 for the same physics in 2D domain. QBL method
approximates this density distribution by considering a uni-
form maximal density region in the center and completely
empty regions near the boundaries, see dashed red curves in
Fig. 9. In other words, within the QBL approach, particles are

assumed to only occupy an effective region that is described
by the uniform density part, rather than occupying the whole
domain L. The uniform density region is called the effective
size (e.g., effective volume in 3D, or effective length Le f f

here in 1D) and empty regions are called quantum boundary
layers. The height of the plateau region (maximum density
value) determines the thickness of the QBL, since the domain
integral of dimensionless density (n/ncl where ncl = N/V , the
number of particles divided by the apparent volume) has to
be equal to unity due to probability conservation. For the
Maxwell-Boltzmann distribution function, the thickness of
QBL has been found as δ = λth/4, which is independent of
geometry and dimensionality [109]. Then the effective length
can be expressed as Le f f = L − 2δ.

Now, QSE corrections can be obtained just by replacing
the length L with the effective one Le f f in the bulk expression.
Then using QBL method, the same expression can immedi-
ately be recovered as

ζ =
∞∑

i=1

f (i) ≈ Le f f

L

∫ ∞

0
f (i)di (B8a)

≈ Le f f

λth
= L − 2δ

λth
= L

4δ

(
1 − 2δ

L

)
.

(B8b)

The QBL thickness is δ = λth/4 for particles obeying
Maxwell-Boltzmann statistics, so Eqs. (B8) are also equiv-
alent to Eqs. (B4) and (B6). We want to stress that this
representation is not just a conventional trick that happens
to work by chance. Recall that partition function can be in-
terpreted as the number of thermal wavelengths that can fit
into a domain. However, in order to fit thermal wavelengths
into a domain, those parts of the domain must be available for
particles to occupy in the first place. In strong confinements,
the wave nature of particles and the impenetrable nature of the
boundaries cause a sharp decrease in the spatial occupation
probabilities near the boundaries. This near-zero occupation
space has an average thickness of δ and the effective length
concept basically amounts to removing these parts from the
actual length of the domain so that the partition function can
now be defined as the number of wavelengths that can fit into
the effective (occupiable) length of the domain.

QBL method provides additional physical insights into the
QSE phenomenon. For example, QSE increases when domain
sizes are reduced, because QBLs form a larger portion of the
whole domain, leaving effectively less space for particles to
occupy, Fig. 9. This can be achieved either by changing the
domain sizes [compare Figs. 9(a) and 9(b)] or by changing the
temperature [compare Figs. 9(a) and 9(c)] or using particles
with some other mass. QBL method also explains the reason
why correction terms add up with alternating signs or why
they appear in that form [74,108]. Furthermore, the necessary
work to evacuate QBL region exactly equals to the QSE term
appearing in the free energy expression. In this way, QBL
provides physical explanations for each QSE term in thermo-
dynamic properties as well as explains their mathematical and
geometrical origins.

Besides providing physical understanding, QBL method
generates the QSE corrections without needing to explicitly
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solve the Schrodinger equation and practically leaves out the
burden of calculating the summations. It has been also shown
that QBL method gives accurate estimates even in arbitrary-
shaped domains [74]. For references on the usage of QBL
method in QSE, see [108–110]. For a more detailed analysis
of the method, see Sec. 2.3 of Ref [74].

It should be noted that we used 1D results and Maxwell-
Boltzmann statistics to simply demonstrate the methods.
Further details and the generality of the methods are beyond
the scope of this article. Nonetheless, all three methods are
directly applicable to and work well in any dimension as well
as in Fermi-Dirac and Bose-Einstein statistics.

APPENDIX C: TOPOLOGY AND CURVATURE
CORRECTIONS

In addition to the Weyl terms associated with the Lebesgue
measure, which we have already investigated, there are in
fact additional Weyl terms related to the topology and cur-
vature of the boundaries of the confinement domains. Such
corrections are derived and discussed in the context of the
asymptotic expansions of the heat kernel [111–114] and for
spectral counting functions [115]. Heat kernel for a Laplace
operator on a domain  with Dirichlet boundary conditions
is written as K (t ) = ∑

n exp(−λnt ) where λn are the Dirichlet
eigenvalues of the Laplacian. By making the transformation
of 4πt ⇒ λ2

th, the conversion from heat kernel to the partition
function can be performed. In this section, for the sake of
simplicity, we give a 2D example of such terms appearing in
the partition function. For a simply connected region bounded
by a smooth curve �, the asymptotic expansion of the heat
kernel is given by [111,114]

ζ2D ≈ A
λ2

th

− P
4λth

+ 1

12π

∫
�

k(s)ds + O(λth), (C1)

where k(s) is the curvature of the boundary � at the point s.
The first two terms are the usual Weyl terms due to Lebesgue
measure (NV term is zero for smooth boundaries) and the
third term is a curvature correction. Higher-order curvature
correction terms are omitted.

For multiply connected regions like the ones considered
in this paper, the third term can be calculated by invoking the
Gauss-Bonnet theorem and following the method presented in
[114]. The Gauss-Bonnet theorem links the curvature (a local
property) of a bounded domain  to its topology (a global
property) and it reads [116,117]

∑
i

(π − ai ) +
∫

�

k(s)ds +
∫∫



Kdσ = 2πχ, (C2)

where ai is the interior angle of a vertex, and χ is the Euler
characteristic. For a flat 2D surface the Gaussian curvature K
is zero. A multiply connected region can be converted into
a simply connected region by the method in [114], which
adds 2π as the sum of the vertex angles for each hole in the
domain. Therefore, the first term in Eq. (C2) gives 2πh, where
h denotes the number of holes. Then, Eq. (C2) becomes∫

�

k(s)ds = 2π (χ − h). (C3)

Putting it into Eq. (C1) gives

ζ2D ≈ A
λ2

th

− P
4λth

+ χ − h

6
. (C4)

Hence the curvature correction is linked to the topology of the
domain. Although such additional corrections provide more
insights regarding the geometry of the domain, they cannot
predict QShE. The reason is that the size-invariant shape
transformation protects the topology and boundary curvatures
as well. As is seen from Fig. 3, all the boundary curvatures
(both for outer and inner boundaries) stay exactly the same
under size-invariant shape transformation. Omitted curvature
terms are also invariant under QShE. In other words, the
size-invariant shape transformation is a topologically invariant
transformation as well.

This analysis, however, provokes an important thought
about questioning what changes inside a domain under a size-
invariant shape transformation. A closer inspection of Fig. 3
shows that it is not the boundaries themselves but a shape
characteristic distance (like the Hausdorff distance between
the inner and outer boundaries), due to the relative rotation
or translation of inner and outer boundaries of the domain,
that changes under QShE [82]. Therefore, generalizing the
Weyl result to include such terms will not only provide a more
complete Weyl-law expansion but also could predict both QSE
and QShE with great accuracy. Such an extension would be
extremely valuable for future works.

APPENDIX D: QUANTUM SIZE EFFECTS BEYOND WEYL
TERMS: STRONG CONFINEMENTS

Under stronger confinements, none of the Weyl terms
might be sufficient to represent the correct physical behaviors
of a confined system of particles. After all, all three methods
that are presented in the Appendix B contain certain approxi-
mations within them. In the first method, the third term of PSF
is neglected. Likewise in the second method, the error terms in
the infinite expansion of the Weyl law are omitted. The third
method relies on the zeroth-order (stepwise) approximation
of the QBL approach. Although, for the third method, in
principle, it should be possible to obtain arbitrarily accurate
results by considering the higher-order QBLs, this has not
been accomplished yet due to the complexity of the geometric
problem, especially in higher dimensions [73,74].

Indeed, all three methods manifest the bounded continuum
approximation and still do not take the discreteness of en-
ergy levels into account. Therefore, they are only applicable
to weakly or moderately confined systems. Under stronger
confinements, one cannot use these approximate methods and
in most cases, there is nothing to do but calculate the sum-
mations directly (where truncating after a few terms would
be suitable). Nevertheless, in recent years, new approaches
have been developed and some efforts have been done on
getting analytical results even under strong confinements
[73,118–120]. These strong confinement effects also give rise
to interesting results such as discrete density of states [96], di-
mensional transitions [78,83], and the intrinsic discrete nature
of thermodynamic properties in Fermi gases [97].

Here one can ask whether these neglected terms can be
attributed to QShE rather than QSE. Although it is true that

024105-15



ALHUN AYDIN AND ALTUG SISMAN PHYSICAL REVIEW E 108, 024105 (2023)

QShE cannot be represented by the first two terms in the
analytical approximations (because they are invariant under

QShE), this does not mean that QShE is just due to the ne-
glected terms, as we have discussed in Sec. II D.
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