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Lee-Yang zeros and quantum Fisher information matrix in a nonlinear system
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The distribution of Lee-Yang zeros not only matters in thermodynamics and quantum mechanics, but also in
mathematics. Hereby we propose a nonlinear quantum toy model and discuss the distribution of corresponding
Lee-Yang zeros. Utilizing the coupling between a probe qubit and the nonlinear system, all Lee-Yang zeros
can be detected in the dynamics of the probe qubit by tuning the coupling strength and linear coefficient of the
nonlinear system. Moreover, the analytical expression of the quantum Fisher information matrix at the Lee-Yang
zeros is provided and an interesting phenomenon is discovered. Both the coupling strength and temperature can
simultaneously attain their precision limits at the Lee-Yang zeros. However, the probe qubit cannot work as a
thermometer at a Lee-Yang zero if it sits on the unit circle.
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I. INTRODUCTION

The Lee-Yang zero is an interesting concept in thermody-
namics, which was first proposed and discussed by Lee and
Yang in 1952 [1,2]. In the study of the lattice gas and Ising
model, Lee and Yang wrote the partition function Z into a
polynomial form, i.e., Z = ∑

n pnzn, and extending z to the
complex plane via the analytic continuation, the roots of the
equation Z = 0 are always distributed on the unit circle. This
theorem and the roots are usually referred to as the Lee-Yang
unit circle theorem and Lee-Yang zeros nowadays. The Lee-
Yang theorem and zeros have been widely studied in many
fields, such as the field theory [3–5], condensed matter physics
[6–20], stochastic processes [21–25], and even pure mathe-
matics [26–28]. In 2012, Wei and Liu proposed a remarkable
scheme for the observation of Lee-Yang zeros via the dynam-
ics of a probe qubit [29], which is then experimentally realized
by Peng et al. [30] in 2015. In 2019, Kuzmak and Tkachuk
used a similar scheme to study the detection of Lee-Yang
zeros of a high-spin system [31]. Moreover, the behaviors
of quantum resources like spin squeezing and concurrence
at the points of Lee-Yang zeros have also been investigated
recently [32].

The quantum Fisher information matrix is another funda-
mental quantity in quantum mechanics [33–36]. It was first
provided by Helstrom in the field of quantum parameter es-
timation, which is the extension of parameter estimation in
quantum mechanics. In quantum parameter estimation, the
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quantum Fisher information matrix is the lower bound of
the covariance matrix for a set of unknown parameters. De-
note the covariance matrix as cov(�x, {�i}) with �x the vector
of unknown parameters and {�i} a set of positive operator-
valued measure, then cov(�x, {�i}) satisfies the inequality
cov(�x, {�i}) � F [33,34], where F is the quantum Fisher
information matrix for �x. The entry of F can be calculated
via the equation Fi j = Tr(ρ{Li, Lj})/2 with Li( j) the symmet-
ric logarithmic derivative for the unknown parameter xi( j), ρ

the density matrix, and {·, ·} the anticommutator. Li satisfies
the equation ∂xiρ = (ρLi + Liρ)/2. Nowadays, the quantum
Fisher information matrix has been widely considered as a
fundamental quantity in quantum mechanics due to its good
mathematical properties and wide connections to other as-
pects of quantum mechanics.

It is known that the long-range Ising model can be mapped
into the generalized one-axis twisting model and thus the
distribution of Lee-Yang zeros in this case are well studied.
As a matter of fact, all Lee-Yang zeros will be distributed on
the unit circle in this case as long as the coefficient of the
nonlinear part is negative. However, the distribution behaviors
of Lee-Yang zeros for a higher nonlinearity are still unknown,
even in the aspect of mathematics. To investigate it, in this
paper we propose a nonlinear toy model for quantum spins
and thoroughly discuss the distribution of corresponding Lee-
Yang zeros, especially whether they sit on the unit circle.

Furthermore, similar to the previous studies on the de-
tection of Lee-Yang zeros [29–31,37], we also discuss the
scenario that a probe qubit is coupled to the nonlinear system
and show how to detect all Lee-Yang zeros by tuning the
coupling strength and the coefficient of the linear part in
the nonlinear system. In the meantime, due to the fact that
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the density matrix of this probe qubit is dependent on the tem-
perature and coupling strength, the expression of the quantum
Fisher information matrix with respect to these two parame-
ters at the Lee-Yang zeros is analytically calculated. Through
the analysis of the quantum Fisher information matrix, some
interesting phenomena are discovered.

II. MODEL AND DISTRIBUTION OF LEE-YANG ZEROS

Consider the following nonlinear Hamiltonian:

γ Hk
0 + hH0, (1)

where γ and h are constant coefficients for the nonlinear and
linear parts. k is the nonlinearity. Denote |n〉 as the eigenstate
of H0 with the eigenvalue n. In the case that the Hamiltonian
is nondegenerate, the partition function Z = Tr(e−βH ) of this
Hamiltonian can be written in a polynomial form,

Z =
∑

n

pnzn, (2)

where z = e−βh and pn = e−βγ nk
. Here β = 1/(kBT ) with kB

the Boltzmann constant and T the temperature. In the case that
the Hamiltonian is degenerate, i.e., there exist dn eigenstates
|n1〉 , |n2〉 , . . . , |ndn〉 with respect to the eigenvalue n, then pn

becomes pn = dne−βγ nk
. Now consider a specific Hamiltonian

form

H = γ Jk
z + hJz. (3)

Here Jz = 1
2

∑N
i=1 σ z

j is the collective spin operator with σ z
j =

|↑〉 〈↑| − |↓〉 〈↓| the Pauli Z matrix for the jth spin. The state
|↑〉 (|↓〉) represents the spin up (down) state and N is the
number of spins. This Hamiltonian could be treated as the
generalized nonlinear collective spin system and, when k =
2, it is nothing but the generalized one-axis twisting model
[38–40]. The physical realization of this toy model for k � 3
is still an open question for now and requires further investiga-
tion. It is easy to see that the state

⊗N
j=1 |a j〉 (a j =↑,↓) is the

eigenstate of Jz with respect to the eigenvalue 1
2 (n↑ − n↓) with

n↑ (n↓) the number of spin-up (-down) states in
⊗N

j=1 |a j〉.
As a matter of fact, another well-known representation of the
eigenstate of Jz is the Dicke state |J, m〉 and the corresponding
eigenvalue is m. Here J is the total angular momentum. Fur-
ther defining n := m + J (n = 0, 1, . . . , 2J), the Dicke state
can be rewritten into |n〉 := |J, n − J〉 and the degeneracy of
|n〉 is

(N
n

) = N!
n!(N−n)! , the binomial coefficient. Utilizing the

basis {|n〉}, the partition function for the Hamiltonian (3) can
be expressed by

Z = e
1
2 βhN

N∑
n=0

(
N

n

)
e−βγ (n− N

2 )k

zn, (4)

with z := e−βh. Hence the partition function can be viewed
as an N th order polynomial function of z. Utilizing the roots
{zi}N

i=1 of the equation Z (z) = 0, the expression above can be
factorized to

Z = e
1
2 βhN−βγ (− N

2 )k
N∏

i=1

(z − zi ). (5)

A more interesting fact is that z can be extended to the
complex plane via the analytic continuation, which means the
solutions of Z (z) = 0 are also extended to the complex plane.
These roots on the complex plane are usually referred to as the
Lee-Yang zeros. Equation (5) indicates that the property of the
partition function can be reflected by the roots {zi}N

i=1. Now let
us study the behaviors of the distribution of {zi}N

i=1. One can
see from Eq. (4) that e

1
2 βhN is a global coefficient and does

not affect the solutions of Z (z) = 0, indicating that the dis-
tribution of {zi}N

i=1 is independent of βh. The distributions of
Lee-Yang zeros for different values of βγ for the nonlinearity
k = 3 (k = 4) in the case of N = 6, 7, and 10 are illustrated
in Figs. 1(a1)–1(a3) [Figs. 1(b1)–1(b3)].

In all cases, the distributions of Lee-Yang zeros for all val-
ues of βγ , including βγ = −0.05 (red circles), βγ = −0.01
(blue pentagrams), βγ = 0.01 (black triangles), and βγ =
0.05 (cyan squares), are all symmetric about the axis of Re[z].
Here Re[·] and Im[·] represent the real and imaginary parts.
A more interesting phenomenon is that the point (−1, 0) is
always a Lee-Yang zero in the case of k = 4. As a matter of
fact, this result can be generalized to the case with an odd
N and even nonlinearity k, as given in the theorem below.
Theorem 1. For the Hamiltonian (3), the point (−1, 0) in
the complex plane is always a Lee-Yang zero when the spin
number N is odd and the nonlinearity k is even.

This theorem can be proved by noticing that

N∑
n=0

(
N

n

)
e−βγ (n− N

2 )k

(−1)n

=
N−1

2∑
n=0

(
N

n

)[
e−βγ (n− N

2 )k

(−1)n + e−βγ ( N
2 −n)k

(−1)N−n
]
,

where the equality
(N

n

) = ( N
N−n

)
was applied. In the case that k

is even, the equation above further reduces to
N−1

2∑
n=0

(
N

n

)
e−βγ (n− N

2 )k

[(−1)n + (−1)N−n]. (6)

When N is odd, (−1)n + (−1)N−n is always zero. The theo-
rem is then proved. �

In the case of k = 2, all Lee-Yang zeros will be on the unit
circle as long as βγ is negative [29,30]. However, as shown in
Fig. 1, the situation becomes complex when k is larger than 2.
In the case that k is odd, we have the following theorem.

Theorem 2. For the Hamiltonian (3), the Lee-Yang zeros are
never all distributed on the unit circle when the nonlinearity k
is odd.

According to Vieta’s formulas, the Lee-Yang zeros {zi}
satisfy

N∏
i=1

zi = (−1)N eβγ [( N
2 )k−(− N

2 )k ]. (7)

In the case that k is odd, one can further have
∏N

i=1 |zi| =
e2βγ ( N

2 )k
. It is obvious that e2βγ ( N

2 )k
cannot be 1 as long as

βγ �= 0, indicating that the Lee-Yang zeros cannot be all
distributed on the unit circle when in this case. The theorem is
then proved. �
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FIG. 1. Distribution of Lee-Yang zeros for the nonlinearity k = 3 in the case of (a1) N = 6, (a2) N = 7, and (a3) N = 10 and for the
nonlinearity k = 4 in the case of (b1) N = 6, (b2) N = 7, and (b3) N = 10. The red circles, blue pentagrams, black triangles, and cyan squares
represent the Lee-Yang zeros for βγ = −0.05, −0.01, 0.01, and 0.05, respectively. The inset of (b3) shows the Lee-Yang zeros that are not
presented in (b3).

From the proof above, one can immediately obtain the
following theorem for an even nonlinearity.

Theorem 3. For the Hamiltonian (3), the Lee-Yang zeros
satisfy

∏N
i=1 |zi| = 1 when the nonlinearity k is even.

This theorem does not lead to the result that all Lee-Yang
zeros are distributed on the unit circle when k is even, which
is already exhibited in Fig. 1(b). In the case of k = 4, we
find an interesting phenomenon for N = 3, 4, 5, 6 that the
norms of all Lee-Yang zeros are 1, namely, all Lee-Yang zeros
are distributed on the unit circle, when βγ is smaller than
a critical value, as shown in Figs. 2(a) to 2(d) for N = 3,
N = 4, N = 5, and N = 6, respectively. As a matter of fact,
when k = 4, the Lee-Yang zeros will always be distributed on
the unit circle as long as βγ is small enough, regardless of
the value of N . This is due to the fact that, when k = 4, the
equation Z (z) = 0 reduces to

N∑
n=0

(
N

n

)
eβγ [ N4

16 −(n− N
2 )4]zn = 0. (8)

It is obvious that

N4

16
−

(
n − N

2

)4

= N4

16

[
1 −

(
2n

N
− 1

)4
]

� 0 (9)

for n ∈ [0, N] since n/N � 1. Hence, when βγ is small
enough, namely, βγ is negative and its absolute value is large

enough, eβγ [ N4

16 −(n− N
2 )4] ≈ 0 and the equation above approxi-

mates to

1 + zN = 0, (10)

which immediately gives |z| = 1, indicating that the Lee-Yang
zeros are distributed on the unit circle. As a matter of fact,
this result can be extended to the case of all even values of
nonlinearity. In this case, the equation Z (z) = 0 reduces to

N∑
n=0

(
N

n

)
eβγ [( N

2 )k−(n− N
2 )k ]zn = 0, (11)

FIG. 2. Norms of all Lee-Yang zeros in the case of k = 4 for
different spin numbers. The spin numbers are (a) N = 3, (b) N = 4,
(c) N = 5, and (d) N = 6. Zero 1 to zero 6 in the plots are the labels
of the Lee-Yang zeros.
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where ( N
2 )k − (n − N

2 )k � 0. Therefore, when βγ is small
enough, the equation above always approximates to 1 + zN =
0 and the Lee-Yang zeros are thus distributed on the unit
circle. Hence we have the following theorem.

Theorem 4. For the Hamiltonian (3), the Lee-Yang zeros are
always distributed on the unit circle for an even nonlinearity k
as long as βγ is small enough.

In Figs. 2(a) to 2(d), there exists a critical value of βγ for
all zeros to be simultaneously distributed on the unit circle.
Whether this critical point exists in general and how to an-
alytically obtain this critical point are not answered in the
theorem above and still remain open questions that require
further investigations.

III. DETECTION OF LEE-YANG ZEROS
WITH SINGLE QUBIT

The scheme of detecting Lee-Yang zeros with a probe
qubit is first proposed by Wei and Liu in 2012 [29] and was
further simulated in experiments by Peng et al. in 2015 [30].
Here we also consider the coupling between a probe state and
Hamiltonian (3) and discuss the detection of Lee-Yang zeros.
The total Hamiltonian is

Htot = H + 1
2ω0σz + λJzσz, (12)

where H is given in Eq. (3), ω0 is the frequency of the
probe qubit, and λ is the coupling strength between it and
the nonlinear system. Now denote the total Hilbert space as
Htot = Hq ⊗ H with Hq and H the Hilbert space of the probe
qubit and nonlinear system. In this way, Jz here actually repre-
sents 1q ⊗ Jz and σz represents (|↑〉 〈↑| − |↓〉 〈↓|) ⊗ 1 with 1q

and 1 the identity operators in Hq and H. Assume the initial
state is a product state

ρin = ρ0 ⊗ ρth, (13)

where ρ0 is the initial state of the probe qubit and ρth =
e−βH/Z is the thermal state of the nonlinear system.

The evolved state ρt for the probe qubit can be calculated
via the equation

ρt = TrH(e−iHtottρineiHtott ), (14)

where TrH(·) represents the partial trace on the nonlinear
system. Utilizing this equation and realizing that

e−iλtJzσz = cos(λtJz )1tot − i sin(λtJz )σz, (15)

with 1tot the identity operator in Htot, ρt can be solved analyt-
ically. In the basis {|↑〉 , |↓〉}, ρt can be expressed by

ρt =
(

[ρ0]00
Z̃
Z e−iω0t [ρ0]01

Z̃∗
Z eiω0t [ρ0]10 [ρ0]11

)
, (16)

where [ρ0]i j is the i jth entry of ρ0 and

Z̃ = Tr
(
e−βH−i2λtJz

)
. (17)

Similar to the partition function Z , Z̃ can also be expressed by

Z̃ = e( 1
2 βh+iλt )N

N∑
n=0

(
N

n

)
e−βγ (n− N

2 )k

z̃n, (18)

with z̃ := e−βh−i2λt . Compared to Eq. (4), it is not difficult to
see that the equations Z (z) = 0 and Z̃ (z̃) = 0 share the same
solutions. Hence Z̃ can also be factorized to

Z̃ = e( 1
2 βh+iλt )N−βγ (− N

2 )k
N∏

i=1

(z̃ − zi ). (19)

As shown in Eq. (16), the nonlinear system is responsible
for the evolution of the nondiagonal entries of ρt , indicating
that the information of the Lee-Yang zeros {zi} is hidden in the
dynamics of the probe qubit. Utilizing Eqs. (5) and (19), the
amplitude |Z̃e−iω0t/Z| = |Z̃/Z| reduces to∣∣∣∣ Z̃

Z

∣∣∣∣ =
∣∣∣∣∣
∏N

i=1 (z̃ − zi)∏N
i=1 (z − zi)

∣∣∣∣∣. (20)

From this expression, it can be seen that this amplitude above
vanishes when z̃ reaches the zeros {zi}. Hence the zeros can be
measured via the evolution of |Z̃/Z| as long as it can vanish.
The evolution of |Z̃/Z| for different nonlinearity in the case
of βh = 0 is given in Figs. 3(a1) to 3(a4) [Figs. 4(a1) to
4(a4)] for N = 4 (N = 5). It can be seen that the Lee-Yang
zeros can be easily detected via the amplitude |Z̃/Z| when the
nonlinearity k is even, as shown in Figs. 3(a1) and 4(a1) for
k = 2 and Figs. 3(a3) and 4(a3) for k = 4, especially when
βγ is negative. With the increase of βγ , it gets difficult for
|Z̃/Z| to vanish, indicating that the Lee-Yang zeros cannot
be detected via the amplitude |Z̃/Z| in this parameter region.
In the case that k is odd, as illustrated in Figs. 3(a2) and
4(a2) for k = 3 and Figs. 3(a4) and 4(a4) for k = 5, |Z̃/Z| can
hardly vanish, especially when the norm of βγ is large. These
phenomena indicate that some value regions of βγ could be
unfriendly for the detection of Lee-Yang zeros in this case.
Then how to detect the Lee-Yang zeros in these regions of
βγ becomes a serious problem. Luckily, the distribution of
Lee-Yang zeros {zi}N

i=1 does not rely on the values of h, yet the
amplitude |Z̃/Z| is dependent on it, which provides a method
to further detect the Lee-Yang zeros in these cases.

We demonstrate this detection strategy for the nonlinearity
k = 4 in both cases of N = 4, βγ = 1.0 and N = 5, βγ =
0.5, as given in Figs. 3(b) to 3(d) and Figs. 4(b) to 4(d).
From Fig. 3(b) [Fig. 4(b)], it can be seen that four vanishing
points of |Z̃/Z| are shown at the time λt = π/2 when the
values of βh are changed from around −20 to 20. These
vanishing points correspond to the four Lee-Yang zeros in
this case, as shown in Fig. 3(c) [Fig. 4(c)]. The reason why
the zeros always occur at the time π/2 is due to the fact that
all four Lee-Yang zeros are located on the negative axis of
Re[z]. To make sure e−βh−i2λt is real and negative, the only
available value of λt is λt = π/2. In the meantime, in this case
the proper values of βh for the detection of Lee-Yang zeros are
{− ln |zi|} and the evolution of |Z̃/Z| with βh ∈ {− ln |zi|} are
shown in Fig. 3(d) [Fig. 4(d)]. The vanishing points indeed
always occur at the time π/2 and the Lee-Yang zeros are then
detectable.

IV. QUANTUM FISHER INFORMATION MATRIX
AT THE LEE-YANG ZEROS

Quantum Fisher information matrix is another important
fundamental quantity in quantum mechanics and quantum
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FIG. 3. Detection of Lee-Yang zeros in the case of N = 4. (a1)–(a4) The evolution of |Z̃/Z| for (a1) k = 2, (a2) k = 3, (a3) k = 4, and (a4)
k = 5. The solid red, dashed blue, dash-dotted black, and dotted green lines represent the values of amplitudes for βγ = −1.0, −0.1, 0.1, and
1.0, respectively. βh is set to be zero in (a1)–(a4). (b) The values of |Z̃/Z| as a function of βh and λt . (c) The distribution of Lee-Yang zeros.
(d) The evolution of |Z̃/Z| for the values of βh to reach the Lee-Yang zeros. In (b)–(d) the nonlinearity k = 4 and βγ = 1.0.

information. In this section we discuss the behaviors of quan-
tum Fisher information matrix of the probe qubit at the
Lee-Yang zeros. For the evolved state in Eq. (16), the quantum
Fisher information matrix for the parameters {λ, β} can be
calculated via the equation [35,41]

Fab = 2 Tr[(∂aρt )(∂bρt )] (21)

for a pure ρt and

Fab = Tr[(∂aρt )(∂bρt )]

+ 1

det(ρt )
Tr[ρt (∂aρt )ρt (∂bρt )] (22)

for a mixed ρt . The subscripts a, b ∈ {λ, β}. Next, denoting
g = Z̃/Z , it can be seen that

∂λ(β )g = g�Eλ(β ) := g(Eλ(β ) − Ẽλ(β ) ), (23)

with Eλ(β ) = −∂λ(β ) ln Z and Ẽλ(β ) = −∂λ(β ) ln Z̃ . Here Eβ is
nothing but the thermodynamic energy for the Hamiltonian
(3). Eλ = 0 due to the fact that Z is independent of λ. Uti-
lizing Eqs. (21) and (23), the entries of the quantum Fisher
information matrix are of the form

Fλλ(ββ ) = 4|g|2|[ρ0]01|2|�Eλ(β )|2, (24)

Fλβ = 4|g|2|[ρ0]01|2Re[�Eλ(�Eβ )∗], (25)

FIG. 4. Detection of Lee-Yang zeros in the case of N = 5. (a1)–(a4) The evolution of |Z̃/Z| for (a1) k = 2, (a2) k = 3, (a3) k = 4, and (a4)
k = 5. The solid red, dashed blue, dash-dotted black, and dotted green lines represent the values of amplitudes for βγ = −1.0, −0.1, 0.1, and
1.0, respectively. βh is set to be zero in (a1)–(a4). (b) The values of |Z̃/Z| as a function of βh and λt . (c) The distribution of Lee-Yang zeros.
(d) The evolution of |Z̃/Z| for the values of βh to reach the Lee-Yang zeros. In (b)–(d) the nonlinearity k = 4 and βγ = 0.5.
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when ρt is pure. And when ρt is mixed, they are

Fλλ(ββ ) = 4|g|2|[ρ0]01|2
(∣∣�Eλ(β )

∣∣2

+ |g|2|[ρ0]01|2Re2[�Eλ(β )]

[ρ0]00[ρ0]11 − |g|2|[ρ0]01|2
)

, (26)

Fλβ = 4|g|2|[ρ0]01|2
(

Re[�Eλ(�Eβ )∗]

+|g|2|[ρ0]01|2Re[�Eλ]Re[�Eβ]

[ρ0]00[ρ0]11 − |g|2|[ρ0]01|2
)

. (27)

For the sake of investigating the general behaviors of the
quantum Fisher information matrix at the Lee-Yang zeros, its
general expression at these points should be provided. As a
matter of fact, the value of Z̃ is zero when the zero of g reaches
a Lee-Yang zero. Taking (|↑〉 + |↓〉)/

√
2 as the initial state of

the probe qubit and utilizing the condition Z̃ = 0, the entries
of the quantum Fisher information matrix for both pure and
mixed ρt at the Lee-Yang zeros can be written as

Fλλ(ββ ) = 1

Z2
|∂λ(β )Z̃|2, (28)

Fλβ = 1

Z2
Re[(∂λZ̃ )(∂β Z̃∗)]. (29)

Notice that the zero of g can only reach one Lee-Yang
zero with a group of specific values of h and λ, which al-
lows us to assume, without loss of generality, that Lee-Yang
zero is mth zero (zm), namely, e−βh cos(2λt ) = Re[zm] and
e−βh sin(2λt ) = Im[zm]. In the following we denote hm and
λm as the values of h and λ that satisfy these equations. In this
case, ∂λZ̃ can be expressed by

∂λZ̃ = −i2te( 1
2 βhm+iλmt )N−βγ (− N

2 )k ∏
i �=m

(z̃ − zi )zm,

∂β Z̃ = −hme( 1
2 βhm+iλmt )N−βγ (− N

2 )k ∏
i �=m

(z̃ − zi )zm.

Hence the entries of the quantum Fisher information matrix
can be rewritten into

Fλλ = 4t2e−2βhm

∏
i �=m |(zm − zi )|2∏N
i=1(|zm| − zi )2

, (30)

Fββ = h2
me−2βhm

∏
i �=m |(zm − zi )|2∏N
i=1(|zm| − zi )2

, (31)

Fλβ = 0. (32)

From the perspective of quantum parameter estimation,
Fλβ = 0 means that, in theory, the optimal measurement can
let the deviations of λ and β reach their precision limit si-
multaneously. Furthermore, when zm sits on the unit circle, h
has to be 0 and Fββ vanishes. This result indicates that the
probe qubit cannot work as the thermometer at the position of
a Lee-Yang zero if this zero is on the unit circle.

Next, let us discuss a more specific regime that βγ is small.
Theorem 4 shows that in this regime the Lee-Yang zeros are
always distributed on the unit circle for even nonlinearity. In

this case, Z and Z̃ can be approximated into

Z ≈ 2 e−βγ ( N
2 )k

cosh

(
1

2
βhN

)
, (33)

Z̃ ≈ 2 e−βγ ( N
2 )k

cosh

(
1

2
βhN + iλtN

)
. (34)

Utilizing Eqs. (33) and (34), |g|2 can be written as

|g|2 = 1 − sin2(λtN )

cosh2
(

1
2βhN

) . (35)

In the meantime, Ẽλ and Ẽβ read

Ẽλ = tN
sin(2λtN ) − i sinh(βhN )

cosh(βhN ) + cos(2λtN )
, (36)

Ẽβ = γ

(
N

2

)k

− 1

2
hN

sinh(βhN ) + i sin(2λtN )

cosh(βhN ) + cos(2λtN )
. (37)

Due to the fact that Eλ = 0 and

Eβ = γ

(
N

2

)k

− 1

2
hN tanh

(
1

2
βhN

)
, (38)

one can immediately have

�Eλ = −tN
sin(2λtN ) − i sinh(βhN )

cosh(βhN ) + cos(2λtN )
,

�Eβ = 1

2
hN

2 sin2(λtN ) tanh
(

1
2βhN

) + i sin(2λtN )

cosh(βhN ) + cos(2λtN )
.

Still taking the initial state of the probe qubit as (|↑〉 +
|↓〉)/

√
2, the entries of the quantum Fisher information matrix

for a pure ρt [Eqs. (24) and (25)] can be expressed by

Fλλ = t2N2

[
1 − cos2(λtN )

cosh2
(

1
2βhN

)
]
, (39)

Fββ = 1

4
h2N2 sin2(λtN )

cosh4
(

1
2βhN

) , (40)

Fλβ = 1

2
htN2 sin(2λtN ) sinh(βhN )

[1 + cosh(βhN )]2
. (41)

It is obvious that ρt can only be pure when |g|2 = 1, i.e.,
sin(λtN ) = 0, which means the expression of the quantum
Fisher information matrix for pure states is only valid for some
specific time points. And these points may not correspond to
the Lee-Yang zeros. Hence, in the following, we only discuss
the case that ρt is mixed. For a mixed ρt , the entries [Eqs. (26)
and (27)] read

Fλλ = t2N2, (42)

Fββ = 1

4
h2N2 sin2(λtN )

cosh2
(

1
2βhN

) , (43)

Fλβ = 0. (44)

The fact that both Fλλ and Fββ are proportional to N2 in-
dicates that, although the evolved state is mixed, both the
deviations of λ and β can beat the standard quantum limit,
1/

√
N in this case, and reach the scale of 1/N . Standard

quantum limit is an important precision limit and error scaling
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in quantum metrology. It usually represents the measurement
capability of a classical apparatus and beating it indicates that
the estimations of λ and β with this nonlinear system would
overperform, at least theoretically, many classical measure-
ment apparatuses.

Different from the behaviors of g, the dynamics of Fλλ does
not show any relevance with the Lee-Yang zeros since it does
not rely on the values of λ and h. When the zero of g reaches a
Lee-Yang zero, the value of Fλλ has no difference from other
points. With respect to Fββ , the phenomenon is the same as
the aforementioned general discussion. In this case, the probe
qubit cannot work as a thermometer at any Lee-Yang zero
since all zeros are distributed on the unit circle, as stated in
Theorem 4.

Although the probe qubit cannot be a thermometer at the
Lee-Yang zeros, the direction of the zeros may still benefit the
estimation of β. For example, Theorem 1 tells us that the point
(−1, 0) is always a Lee-Yang zero in this case as long as N is
odd. On the direction of (−1, 0), the value of λt is π/2 + mπ

with m a natural number. It is obvious that for these values
sin2(λtN ) is 1 since N is odd and Fββ reach its maximum
value with respect to the time.

V. CONCLUSION

In summary, in this paper we proposed a nonlinear quan-
tum spin model and discussed the distribution of the Lee-Yang
zeros in this model. Four observations are provided. For an
odd nonlinearity, not all the Lee-Yang zeros can be distributed
on the unit circle simultaneously. In the case of an even non-
linearity, the point (−1, 0) is always a Lee-Yang zero when
the spin number is odd. In the meantime, the production of the
norms of all Lee-Yang zeros is always 1 and, when βγ is small

enough, all Lee-Yang zeros will always be distributed on the
unit circle. Furthermore, the detection of these Lee-Yang zeros
via a probe qubit is thoroughly discussed. In the case that
the amplitude |Z̃/Z| has no zero point during the dynamics, a
detection scheme has been proposed via tuning the parameters
h and λ. Moreover, the quantum Fisher information matrix
for λ and β at the Lee-Yang zeros are calculated, including a
specific regime that βγ is very small, and the result reveals an
interesting phenomenon that both parameters can reach their
theoretical precision limit at the Lee-Yang zeros and the probe
qubit cannot work as a thermometer at a Lee-Yang zero if it
sits on the unit circle.

Apart from the Lee-Yang zeros and quantum Fisher in-
formation matrix, many other properties of the proposed
nonlinear model are also worth studying, such as the existence
of phase transitions or symmetries, and their connections with
Lee-Yang zeros, the potential physical realizations of this
model, and the generation and storage of spin squeezing with
it. We believe that the further investigations of this model
would help the community better understand the roles of non-
linearity in quantum spin models and its effect and potential
usage in quantum information science, especially in quantum
metrology.
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