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Liquid-hexatic transition for soft disks
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We study the liquid-hexatic transition of soft disks with massively parallel simulations and determine the
equation of state as a function of system size. For systems with interactions decaying as the inverse mth power of
the separation, the liquid-hexatic phase transition is continuous for m = 12 and m = 8, while it is of first order
for m = 24. The critical power m for the transition between continuous and first-order behavior is larger than pre-
viously reported. The continuous transition for m = 12 implies that the two-dimensional Lennard-Jones model
has a continuous liquid-hexatic transition at high temperatures. We also study the Weeks-Chandler-Andersen
model and find a continuous transition at high temperatures that is consistent with the soft-disk case for m = 12.
Pressure data as well as our implementation are available from an open-source repository.
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I. INTRODUCTION

Two-dimensional melting transitions are observed in mul-
tiple settings, including adatoms on metal surfaces [1,2],
colloids in confined geometries [3–5], skyrmions in mag-
netic materials [6,7], and trapped electrons on the surface of
4He [8,9]. Unlike their three-dimensional counterparts that
generically feature first-order liquid-crystal transitions, the
nature of the phase transitions of two-dimensional particle
systems depends on the details of interaction potentials and
particle shapes [10–12]. In systems with short-range interac-
tions, crystalline phases with long-range density correlations
do not exist since phonon excitations imply diverging fluctu-
ations [13–15]. This mirrors the physics of two-dimensional
O(n) spin models where phase transitions are absent for
n � 3 [16]. For n = 2 (the XY model) the low-temperature
phase behavior is characterized by power-law spin-spin corre-
lations and the presence of pairs of topological vortices. The
Kosterlitz-Thouless phase transition between the two phases
is now solidly established [17–20].

Particle systems in two dimensions sustain two types of
topological defect [17,21–23], disclinations and dislocations.
The Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
theory proposes that high-density solids melt into a liquid via
two successive Kosterlitz-Thouless transitions, correspond-
ing to the successive unbinding of dislocations, and then
of disclinations. Between these two transitions, the inter-
mediate hexatic phase has a short-range positional order
and a quasi-long-range orientational order. In an alterna-
tive scenario [24,25], the solid melts directly into a liquid
via a first-order transition due to the formation of grain
boundaries. Most of the theories of two-dimensional melting
worked within these two frameworks. For the special case
of hard disks, however, decades of numerical studies going
back to the dawn of Monte Carlo and molecular dynam-
ics simulations [26–28], finally concluded [29] that nature

chooses a first-order liquid-hexatic transition, and a continu-
ous Kosterlitz-Thouless hexatic-solid transition. These results
were confirmed in recent experiments [5], and they contradict
the historic scenarios [29,30].

The nature of the melting transition of soft disks with,
for example, Lennard-Jones or (inverse) power-law poten-
tials, may depend on model parameters, such as temperature
and density. In Lennard-Jones systems, a number of conflict-
ing transition scenarios have been reported [12,31–36]. The
Lennard-Jones phase diagram can also be related to the case of
power-law potentials of the form U (r) = (σ/r)m [10,34,35],
which interpolate between the hard disks m = ∞ and the soft
potential with m = 3, for which the KTHNY scenario is well
established [37].

The debate and controversies as to the order of the liquid-
hexatic transition in two-dimensional soft-disk systems are
due to remarkably strong finite-size effects. The determina-
tion of the order of the transition has largely relied on the
presence or absence of a Mayer-Wood loop in the equation of
state [10,11,35,38]. The major difficulty is that the equation of
state of finite systems may have a Mayer-Wood loop even
when a transition is continuous. The loop then vanishes at a
very large system size [39]. It is thus impossible to conclude
on the nature of the transition with simulations on a single
system size. Careful analysis of finite-size effects must be
performed to reach a definitive conclusion.

In this paper, we revisit the liquid-hexatic transition for
soft disks with large-scale parallel algorithms implemented
on high-performance graphics processing units (GPUs). We
generate high-precision Monte Carlo data on multiple system
sizes up to N = 10242 particles to better distinguish between
the different scenarios. Following Ref. [40], we implement a
massively parallel Metropolis algorithm and determine equa-
tions of state to high precision for the power-law potentials
with m = 8, 12, 24, together with the Weeks-Chandler-
Andersen (WCA) potential [41] at two different temperatures.
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We focus on the equation of state and carefully analyze the
finite-size scaling of the free-energy barrier to determine the
nature of the liquid-hexatic transition.

This paper is organized as follows. In Sec. II, we introduce
the potentials that we study, together with the observables that
we measure. We present our Monte Carlo results for inverse
power-law models in Sec. III and for the WCA model in
Sec. IV. Using the equation of state, we perform a detailed
finite-size analysis and discuss the liquid-hexatic transition. In
Sec. V, we summarize the results and present our conclusions
as to the order of the liquid-hexatic transition.

II. MODELS AND METHOD

We consider N disks in a square periodic box of volume V
with two different interaction potentials. We are interested in
the generic soft-disk model,

U m
∞(r)/ε = (r/σ )−m (r > 0), (1)

where σ , a diameter, provides a length scale. Its phase behav-
ior depends on the single parameter � = βε(φσ )m/2, where β

is the inverse temperature and φ = N/V is the number density.
Soft-disk systems with the infinite-range potential U m

∞ can be
simulated with a computational complexity of O(1) per move
(that is per event) using the cell-veto event-chain Monte Carlo
algorithm [42]. Nevertheless, for computational convenience,
a cutoff rc is often introduced in studies of long-range po-
tentials [43,44]. Simply restricting U m

∞ to separations smaller
than a value rc complicates the calculation of virial pressures
because of the discontinuity [45,46] in the potential at r = rc.
These corrections in the pressure are absent in a continuous
shifted potential,

U (m)
rc

(r)/ε =
{

(r/σ )−m − (rc/σ )−m (r < rc)

0 (r > rc).
(2)

This potential was studied in Ref. [42] with a cutoff rc/σ =
1.8, which we again use in this paper. The exact scaling in
temperature and density, via �, does not strictly hold with
a cutoff. However, we change only the number density and
fix βε = 1 for this family of potentials (see Sec. III for a
discussion of the effects of the cutoff on the melting).

Our second model is the WCA model that features a
Lennard-Jones potential with a cutoff at its minimum shifted
for continuity [41],

UWCA(r)/ε =
{

4[(σ/r)12 − (σ/r)6] + 1, r
σ

< 21/6,

0 r
σ

> 21/6.
(3)

The WCA potential is purely repulsive (the additional factor
of 4 in Eq. (3) compared to Eq. (2) comes from the usual
definition of the Lennard-Jones model and is not taken into
account in our discussions). We study it as a function of
temperature and of number density. The system was studied
previously at βε = 1 where it has a first-order liquid-hexatic
transition [47]. Because of their identical potential for small
r/σ , the WCA model, the Lennard-Jones model, and the m =
12 model have the same phase behavior at high temperatures
and pressures.

We have implemented a massively parallel Metropolis
algorithm on GPUs [28,40]. Our implementation reaches

1.7 × 1013 individual Monte Carlo trials per hour for the
power-law model with m = 12 with N = 10242 on a NVIDIA
GeForce RTX 3090 GPU, which is more than 1000 times
faster than a sequential implementation. Our code thus re-
quires some 4 days for 1.6 × 109 sweeps for 10242 disks.

We measure the equilibrium pressure from the virial,

P = φ

β
− 1

2V

〈∑
i> j

ri j
∂U (ri j )

∂ri j

〉
, (4)

where ri j = |ri − r j |. For each system, we produce a single
time series for the pressure and estimate its correlations using
the stationary bootstrap method [48–51].

For hard disks as well as soft disks with large m, the equa-
tion of state has a loop, that is a nonmonotonic variation of the
pressure as a function of (inverse) density, close to the liquid-
hexatic phase transition. The equation of state then becomes
flat over a finite range of inverse density when N → ∞. The
existence of a loop in the equation of state of a finite system
has been taken to indicate a first-order transition. However, the
loop does not necessarily mean a first-order transition [38,52]
as we will show below. In order to determine the nature of the
transition, it is essential to observe the finite-size dependence
of the equation of state.

The Mayer-Wood loop in the equation of state (with the
pressure being the derivative of the free energy with respect
to the volume) results from a nonconvex free energy as a
function of the volume. In the presence of a first-order tran-
sition, that is, of coexistence of two phases of two distinct
specific volumes, the free-energy F (v) as a function of spe-
cific volume v = (φσ 2)−1 has two minima separated by a
free-energy barrier �F . Then, the free-energy barrier scales
as �F = O(Ld−1) goes to 0 and f (v) = F (v)/N is convex
when N → ∞.

Nevertheless, � f can be nonzero and positive in finite
systems [39]. The scaling of � f as a function of N depends
on the nature of the transition. For a first-order transition, the
barrier comes from the surface free energy of a single com-
pact droplet and thus � f = O(Ld−1/N ) = O(L−1) in spatial
dimension d , where L is the size of the simulation box. The
free-energy barrier � f should decay faster than 1/L for a
continuous transition. We expect that the free energy becomes
strictly convex and � f = 0 at large finite N for a continuous
liquid-hexatic transition. Practically, we numerically integrate
the equation of state (as a function of the specific volume) to
obtain the free energy and the specific volumes for the liquid
and hexatic phases vliq and vhex, respectively, using a spline
interpolation, and the bootstrap method to estimate the errors
of � f , vliq, and vhex.

III. POWER-LAW MODELS

In this section, we study soft disks with potential U (m)
rc

for
m = 24, 12, and 8. The equilibrium pressure of the system is
computed using Eq. (4). We show, in Fig. 1, the equation of
state, plotting the dimensionless pressure βPσ 2 as a function
of specific volume v = (φσ 2)−1.

For m = 24, we observe a Mayer-Wood loop for small
numbers of disks. Although the loop amplitude decreases
with N , it survives up to N = 10242, Fig. 1(a). A similar N
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FIG. 1. Equation of state of the power-law model of Eq. (2) for
N = 642, 1282, 2562, 5122, and 10242. (a) For m = 24, the loop is
pronounced for all system sizes. (b) For m = 12, the loop is tiny
for N = 5122, and 10242 and is expected to disappear for larger N .
(c) m = 8. The loop disappears for N = 2562, and the transition is
clearly continuous. Data labeled as Kapfer et al. [10] is for N ≈ 2552.
Filled symbols for each system size indicate the specific volumes of
the liquid and hexatic phases vliq and vhex (vliq > vhex).

dependence of the equation of state has been observed in hard
disks, equivalent to the m → ∞ limit of the inverse power law
model [28–30]. We quantify the decay of the loop amplitude
by the free-energy barrier � f , Fig. 2(a). � f decreases with
increasing N . The barrier � f asymptotically scales as � f ∼
N−1/2 ∼ 1/L for large N , similar to hard disks [29]. This
is a strong indication of a first-order transition. The specific
volumes of the liquid and hexatic phases vliq and vhex are well
separated and do not merge, meaning the coexisting phase
over a finite range of specific volume, see Fig. 2(b).

The case m = 12 also has a clear loop in the equation of
state from v � 1.005 to 0.992 when N = 642, Fig. 1(b). In
Ref. [10], it was concluded that the liquid-hexatic transition
is first order. However, with increasing N , the loop shrinks
too rapidly. Note that for N = 2562, our Monte Carlo results

FIG. 2. (a) Free-energy barrier � f as a function of N1/2 for the
power-law model of Eq. (2) with m = 24 and m = 12. For m = 24,
� f asymptotically scales as N−1/2, indicating a first-order transition.
For m = 12, it decays faster, indicating a continuous transition. Spe-
cific volumes vliq and vhex as functions of N1/2, for (b) m = 24 and
(c) m = 12. For m = 24, the specific volumes are well separated,
consistent with the first-order transition. For m = 12, on the other
hand, vliq and vhex approach each other and eventually merge at
N = 10242 as seen in the monotonic equation of state Fig. 1(b).

are consistent with Ref. [10] for N = 6.5 × 104 ≈ 2552. � f
decays faster than the scaling � f ∼ N−1/2 expected when
the transition is of first order, and vliq and vhex merge at
N � 10242, see Figs. 2(a) and 2(c). We thus conclude that for
m = 12, the liquid-hexatic transition is continuous so that the
hexatic melts into the liquid via a Kosterlitz-Thouless transi-
tion, following the conventional two-step scenario [21–23,53].

We observe similar finite-size effects for m = 8 where
the equation of state of the system for N = 1282 is almost
monotonic; the continuous nature of the liquid-hexatic tran-
sition is clear. The conclusion drawn in Ref. [10] was thus
correct qualitatively but not quantitatively: The nature of the
liquid-hexatic transition indeed changes from first order to
continuous at finite m but not at m � 6. Our results show that
the critical value of mc separating the two regimes lies be-
tween m = 12 and 24, and the m = 12 model is already in the
regime of a continuous liquid-hexatic transition as pointed out
in Ref. [34]. Nevertheless, the system size N � 5122 to have
the equation of state monotonic for m = 12 is significantly
larger than N � 1282 for the m = 8 model. We expect this
system size to have the equation of state monotonic depends
on m and grows approaching the critical mc from below,
eventually diverging at mc.

We now comment on the effect of the cutoff on the tran-
sition. When the cutoff rc is too small, the model defined
by the interaction potential Eq. (2) behaves differently from
the original power-law model, and the melting scenario could
change. When m is large, the interaction potential is shifted
by only a small amount. With rc = 1.8σ , the shift in Eq. (2) is
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FIG. 3. Equation of state of the WCA model at (a) βε = 0.125
and (b) βε = 0.0004. Each inset shows the equation of state close
to the liquid-hexatic transition. Filled symbols for each system size
indicate the specific volumes of the liquid and hexatic phases vliq and
vhex (vliq > vhex).

(σ/rc)24 < 10−6. However, the shifts for m = 12 and m = 8
are larger. We estimate the change in pressure due to the cutoff
in a single phase system as

�P = +φ2

4

∫ ∞

rc

r
dU m

∞(r)

dr
2πg(r)r dr, (5)

where g(r) is the radial distribution function of the model with
interaction potential U m

∞(r). If g(r) ∼ 1 beyond the cutoff,
then �P ∼ −φ2. In the case of a monotonically decreasing
equation of state, this correction lowers the pressure most
strongly for small φ−1, on the left of Fig. 1, pushing a tran-
sition towards first order. We confirmed for m = 12 that a
cutoff at rc = 1.12σ enhances the loop in the equation of state.
For rc = 1.8σ , the liquid-hexatic transition is continuous for
m = 12 and 8, should not change our predictions as to the
nature of the transition.

IV. WCA MODEL

In Sec. III, we confirmed that the m = 12 power-law po-
tential has a continuous liquid-hexatic transition. Because
the Lennard-Jones model has the same behavior at small
separations, it must obey the same continuous liquid-hexatic
scenario at high enough temperatures. However, it was
recently claimed that the transition is first order at all tempera-
tures [12,36]. In this section, we investigate this point with the
help of the truncated Lennard-Jones model Eq. (3) which, at
high temperature or high density, is equivalent to the Lennard-
Jones and the m = 12 power-law model. We study the WCA

FIG. 4. (a) Free-energy barrier � f as a function of N1/2 for the
WCA model at βε = 0.125 and βε = 0.0004. At βε = 0.125, the
free-energy barrier � f crosses over to scaling in N−1/2 for large N ,
suggesting a first-order transition. � f decays faster at βε = 0.0004,
implying that the transition is continuous. Specific volumes vliq and
vhex as functions of N1/2, at (b) βε = 0.125 and (c) βε = 0.0004. At
βε = 0.125, the specific volumes do not merge, whereas, at βε =
0.0004, they converge to almost the same value at N = 10242.

model at βε = 0.125 and 0.0004. At low temperatures, effects
due to the truncation should be strong. We expect that the
small value of the cutoff pushes the system to a first-order
liquid-hexatic transition. At high temperatures, the effect of
truncation is negligible, and the WCA model should agree
with what is observed in the power-law model for m = 12.

At low temperature βε = 0.125, the WCA equation of
state features a clear Mayer-Wood loop [see Fig. 3(a)], and
the amplitude decreases with increasing system size. The
free-energy barrier � f decays faster than the scaling of the
first-order transition � f ∼ N−1/2 when N is small, but it ap-
proaches this scaling when N � 2562, Fig. 4(a) (see also [47],
at βε = 1). The specific volumes vliq and vhex are well sepa-
rated [see Fig. 4(b)], and the coexisting phase appears between
vliq � 0.86 and vhex � 0.85, confirming a first-order transition
of the WCA model at low temperature.

At high temperature βε = 0.0004, the WCA-model equa-
tion of state features a loop at 0.34 � v � 0.342 for small
system sizes, but its amplitude decreases rapidly, and it van-
ishes for N � 5122, Fig. 3(b). The free-energy barrier � f
decays faster than the first-order scaling � f ∼ N−1/2. Con-
sistently, vliq and vhex merges at N � 10242, meaning that the
system does not have a coexisting phase, see Fig. 4(c). We
thus conclude that, at high enough temperatures, the transition
in the WCA model becomes continuous as expected from our
results of the m = 12 model, contrary to the phase diagram
shown in Refs. [12,36].

For the WCA model, the critical inverse temperature βc

separating the continuous and first-order liquid-hexatic transi-
tions lies in the range of βcε ∈ (0.0004, 0.125). These results
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are consistent with Refs. [12,36] who, for the Lennard-Jones
model, did not observe a continuous transition at inverse
temperature βε = 10, but are inconsistent with βcε � 0.91
claimed in Refs. [34,35].

V. SUMMARY AND DISCUSSION

We have studied the equation of state of two-dimensional
soft disks with power-law interactions and for the WCA model
with its specifically truncated Lennard-Jones interaction. A
massively parallel Metropolis algorithm allowed us to study
up to N = 10242 disks at densities around the liquid-hexatic
phase transition and to estimate the equilibrium pressure with
high precision. We identified the nature of the phase transition
by the scaling of the free-energy barrier with system size. Our
results show that the order of the phase transition depends on
the exact form of the potentials and for the WCA model on
temperature. We found that the power-law model with m = 24
has a first-order phase transition, consistent with the previ-
ous study [10]. For softer interactions, m = 12 and m = 8,
however, the phase transition is continuous. Whereas we find
easily that the m = 8 model has a continuous transition from
the monotonic equation of state, the m = 12 model requires a
careful analysis of the system-size dependence to demonstrate
its continuous nature: This model has a tiny but clear loop
up to N � 2562, and the equation of state becomes strictly
monotonic only for N � 5122. The continuous nature of the
m = 12 model is consistent with the conclusion in Ref. [34].
The difference between the cases m = 24 and m = 12 clearly
appears in the system-size dependence of the free-energy bar-
rier � f . We conclude that the parameter m of the power-law
model changes the nature of the transition, but the critical
value of m separating the two regimes is between m = 12 and
24, not m � 6 reported previously [10].

In the WCA model, temperature plays an analogous role to
m in the power-law model in changing the nature of the phase
transition. At low temperatures as for βε = 0.125, the scaling
of the free-energy barrier � f indicates a first-order transition.
At high temperatures, on the other hand, the transition be-
comes continuous with finite-size effects that resemble those
of the power-law model with m = 12. A remaining puzzle is
the value of the critical temperature Tc separating the first-
order and continuous liquid-hexatic transitions: Our Monte
Carlo data on the WCA model indicate the critical transition
between βε = 0.0004 and 0.125, while, in the conventional
Lennard-Jones model, it was claimed to be around βcε �
0.91 [34,35], in disagreement with Ref. [36], which states
that conventional Lennard-Jones at βε = 0.1 has a first-order
liquid-hexatic transition. This could be either because the
truncation in the WCA model shifts the critical temperature
or because tiny but finite loop amplitudes at high temperatures
were missed due to statistical noise in Refs. [34,35]. We will
address this issue in future work.

The controversy over the two-dimensional melting tran-
sition has originated in two difficulties. First, the very long
timescales needed to reach equilibrium at high density and

low temperature, and second, strong finite-size effects in
the equation of state. The former difficulty was partially
resolved through event-chain Monte Carlo and massively par-
allel Metropolis algorithms. The latter, however, is still a
source of difficulty. The strong finite-size effects usually orig-
inate from a large length scale. We expect the orientational
correlation length should not be responsible, although it di-
verges at the continuous liquid-hexatic transition. We have not
identified this length scale yet and will study this length scale
in future work.
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APPENDIX: SOFTWARE PACKAGE:
OUTLINE, LICENSE, ACCESS

The present paper is accompanied by the SoftDisks data
and software package, which is published as an open-source
project under the GNU GPLv3 license. SoftDisks is available
on GitHub as part of the JELLYFYSH organization [54]. The
package contains a C + + program, using Nvidia GPU exten-
sions, which implements the massively parallel algorithm of
the soft-disk model. This program is accompanied by PYTHON

scripts for the analysis of data. The package also provides
original pressure data for equations of state from Ref. [10],
together with those obtained in the present paperk.

The SoftDisks software package follows Ref. [40]. We
overlay the full 2D system with a four-color checkerboard of
cells, each containing a small number of disks. Different cells
of the same color are separated by more than the cutoff of
the potential so that the Metropolis algorithm runs indepen-
dently on each of them. Monte Carlo trials that move a disk
out of its cell are rejected. After a fixed number of cycles
(typically 16), the cell system is displaced randomly. This
permits disks to eventually move throughout the system, as
required for irreducibility. During simulations, we measure
physical quantities, such as the energy and the pressure, which
are calculated as sums within the local environment. We also
store snapshots of the system for later analysis. Our GPU-
based code will be useful for further study of two-dimensional
melting.

The PYTHON scripts read the data from a simulation, and
perform a detailed analysis of thermodynamic properties.
Snapshots are used to generate detailed movies of the time
evolution of the system. Our analysis code calculates spa-
tial correlations and Voronoi tessellations using NUMPY and
SCIPY. Equilibrium configurations obtained in this paper are
available from Ref. [55].
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[46] J. P. Wittmer, H. Xu, P. Polińska, C. Gillig, J. Helfferich, F.
Weysser, and J. Baschnagel, Compressibility and pressure cor-
relations in isotropic solids and fluids, Eur. Phys. J. E 36, 131
(2013).

[47] S. S. Khali, D. Chakraborty, and D. Chaudhuri, Two-step
melting of the Weeks–Chandler–Anderson system in two
dimensions, Soft Matter 17, 3473 (2021).

[48] D. N. Politis and J. P. Romano, The stationary bootstrap, J. Am.
Stat. Assoc. 89, 1303 (1994).

[49] D. N. Politis and H. White, Automatic block-length selection
for the dependent bootstrap, Econom. Rev. 23, 53 (2004).

[50] A. Patton, D. N. Politis, and H. White, Correction to “auto-
matic block-length selection for the dependent bootstrap” by D.
Politis and H. White, Econom. Rev. 28, 372 (2009).

[51] Y. Nishikawa, J. Takahashi, and T. Takahashi, Stationary boot-
strap: A refined error estimation for equilibrium time series,
arXiv:2112.11837.

[52] K. Binder, B. J. Block, P. Virnau, and A. Tröster, Beyond the
Van Der Waals loop: What can be learned from simulating
Lennard-Jones fluids inside the region of phase coexistence,
Am. J. Phys. 80, 1099 (2012).

[53] B. I. Halperin and D. R. Nelson, Theory of Two-Dimensional
Melting, Phys. Rev. Lett. 41, 121 (1978).

[54] https://github.com/jellyfysh/SoftDisks.
[55] https://doi.org/10.5281/zenodo.7844567.

024103-7

https://doi.org/10.1103/PhysRevE.94.031302
https://doi.org/10.1063/1.460477
https://doi.org/10.1063/1.462271
https://doi.org/10.1063/1.4790137
https://doi.org/10.1140/epje/i2013-13131-y
https://doi.org/10.1039/D0SM01484B
https://doi.org/10.2307/2290993
https://doi.org/10.1081/ETC-120028836
https://doi.org/10.1080/07474930802459016
http://arxiv.org/abs/arXiv:2112.11837
https://doi.org/10.1119/1.4754020
https://doi.org/10.1103/PhysRevLett.41.121
https://github.com/jellyfysh/SoftDisks
https://doi.org/10.5281/zenodo.7844567

