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Real-time broadening of bath-induced density profiles from closed-system correlation functions
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The Lindblad master equation is one of the main approaches to open quantum systems. While it has been
widely applied in the context of condensed matter systems to study properties of steady states in the limit
of long times, the actual route to such steady states has attracted less attention yet. Here, we investigate the
nonequilibrium dynamics of spin chains with a local coupling to a single Lindblad bath and analyze the transport
properties of the induced magnetization. Combining typicality and equilibration arguments with stochastic
unraveling, we unveil for the case of weak driving that the dynamics in the open system can be constructed
on the basis of correlation functions in the closed system, which establishes a connection between the Lindblad
approach and linear response theory at finite times. In this way, we provide a particular example where closed and
open approaches to quantum transport agree strictly. We demonstrate this fact numerically for the spin-1/2 XXZ
chain at the isotropic point and in the easy-axis regime, where superdiffusive and diffusive scaling is observed,
respectively.
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I. INTRODUCTION

Understanding the dynamics of many-body quantum sys-
tems has seen remarkable progress in recent years [1],
including the origin of thermalization and hydrodynamics un-
der unitary time evolution [2–5], the possibility of weak and
strong forms of ergodicity breaking [6,7], and the emergence
of universality far from equilibrium [8–12]. In addition to
theoretical breakthroughs, these and related areas have also
profited immensely from experiments such as seminal quan-
tum simulators, where both closed and open systems can be
probed [13–15]. The competition of internal quantum dynam-
ics, dissipation, and external driving opens up a vast landscape
of exotic nonequilibrium phenomena [16,17].

In systems with a conservation law, e.g., spin models with
conserved total magnetization, a key role is played by the
slow relaxation of the corresponding hydrodynamic modes
[18]. While chaotic systems are typically expected to ex-
hibit diffusion [19–21], anomalous transport can occur, e.g.,
in the presence of long-range interactions [22–24], in disor-
dered and kinetically constrained systems [25–27], or in the
case of integrable models [28]. For the latter, the concept
of generalized hydrodynamics provides a powerful frame-
work to predict the emerging transport behavior [29,30]. In
generic systems, in contrast, extracting quantitative values of
transport coefficients such as diffusion constants remains a
formidable challenge even for sophisticated numerical tech-
niques [31–34].
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A canonical approach to quantum transport in closed spin
or Hubbard-type models is given by linear response theory
(LRT) in the form of equilibrium correlation functions [18].
A number of efficient numerical methods have been used
to evaluate such correlation functions either in real time
or in the frequency domain, including exact diagonalization
[35], matrix-product-state techniques [36,37], Lanczos meth-
ods [38], dynamical quantum typicality [39–43], semiclassical
approximations [44], or quantum Monte Carlo [45].

An alternative approach to transport is to consider an open-
system setting, where the model is connected at its ends to
reservoirs, which drive a current through the bulk [46–49].
The time evolution is often described by a Lindblad mas-
ter equation which induces a nonequilibrium steady state at
long times. State-of-the-art algorithms to solve the Lindblad
equation are based on a matrix-product-operator formulation,
which gives access to huge system sizes, e.g., on the order of
hundreds of spin-1/2 degrees of freedom [50–54]. Especially
for systems in the thermodynamic limit, it is expected that
the specific form and strength of the system-bath coupling
become irrelevant for the steady state. However, the involved
Lindblad operators in practice often have to be chosen heuris-
tically. Moreover, extra care has to be taken in the case of finite
systems to reproduce the correct behavior of the actual closed
system of interest [55]. While agreement between boundary-
driven transport and LRT has numerically been observed for
selected examples [56,57], there is no general proof that both
approaches need to agree [18,58–61], also at weak driving.

In this paper, we make a significant step forward to
bridge the conceptual gap between closed-system and open-
system numerical approaches to quantum transport. Focusing
on the case of weak driving and relying on typicality and
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FIG. 1. (a) Sketch of our setup. (b) Magnetization dynamics
〈Sz

r (t )〉 in the spin-1/2 XXZ chain coupled to a single Lindblad bath,
obtained from the full stochastic unraveling for anisotropy � = 1.5,
small coupling γ /J = 0.1, weak driving μ = 0.1, and N = 20 sites.
(c) Corresponding spatial variance �2(t ) for � = 1.0 and � = 1.5.
Additionally, a curve for large γ /J = 1.0 is depicted for � = 1.5.
The dashed (dotted) fits indicate superdiffusive (diffusive) scaling.
The saturation of �2(t ) at long times is due to finite N .

equilibration arguments, we establish a connection between
LRT and the finite-time dynamics of an open quantum sys-
tem in a simple setting introduced below and sketched in
Fig. 1(a). Specifically, we unveil that open-system dynamics
can be constructed from closed-system correlation functions.
This connection entails both physical implications regarding
the transport properties and consequences regarding efficient
numerical simulations of open systems. We also note that
Green-Kubo-type relations connecting equilibrium correla-
tion functions to open-system transport have been obtained
before in classical systems (see, e.g., Refs. [58,62]). We
stress that our results and our framework are distinct from
such approaches. Rather, we provide a means to understand
individual trajectories in the unraveling of Lindblad master
equations from the dynamics of the closed system.

II. SETUP

While our theoretical framework applies more generally to
other systems, we here demonstrate its validity for the spin-
1/2 XXZ chain as a timely example,

H = J
N∑

r=1

(
Sx

r Sx
r+1 + Sy

r Sy
r+1 + �Sz

rSz
r+1

)
, (1)

where Sx,y,z
r are spin-1/2 operators at site r, J > 0 is the anti-

ferromagnetic coupling constant, � denotes the anisotropy in
the z direction, and Sx,y,z

N+1 ≡ Sx,y,z
1 . The high-temperature spin-

transport properties of the integrable XXZ chain have been
in the focus of intense theoretical and experimental efforts
in recent years. While normal diffusion emerges for � > 1
[18], transport is superdiffusive at � = 1 with spatiotemporal

correlations following the Kardar-Parisi-Zhang (KPZ) scaling
function (see, e.g., Refs. [28,37,63,64]).

In this paper, we consider a nonequilibrium situation,
where the system of interest is coupled to an external bath,
as described by the Lindblad equation

ρ̇(t ) = L ρ(t ) = i[ρ(t ), H] + D ρ(t ), (2)

which consists of a coherent time evolution of the density
matrix ρ(t ) and an incoherent damping term

D ρ(t ) =
∑

j

α j

(
Ljρ(t )L†

j − 1

2
{ρ(t ), L†

j L j}
)

, (3)

with non-negative rates α j , Lindblad operators Lj , and the
anticommutator {•, •}. While the derivation of Eqs. (2) and
(3) can be a subtle task for a given microscopic model [47,65]
(and might not always be justified [66,67]), it is the most
general form of a time-local quantum master equation, which
maps a density matrix to a density matrix [68]. Here, we focus
on arguably the simplest possible setup [see Fig. 1(a)], where
H is coupled to the bath at a single lattice site,

L1 = S+
r0
, α1 = γ (1 + μ), (4)

L2 = L†
1 = S−

r0
, α2 = γ (1 − μ), (5)

where γ is the system-bath coupling, μ is the driving strength,
and L1 and L2 are local Lindblad operators at site r0 = N/2.
(This site is arbitrary due to periodic boundaries.) Note that
throughout our work and consistent with the literature on
transport [18], we refer to the influence of Lindblad operators
as driving. This type of incoherent driving should not be
confused with a coherent driving by a time-dependent Hamil-
tonian.

Considering a homogeneous initial state ρ(0) and choosing
μ > 0, excess magnetization is induced at the bath site and
then transported through the chain. Specifically, we study
the time evolution of local densities 〈Sz

r (t )〉 = tr[ρ(t )Sz
r ] [see

Fig. 1(b)], which depends on the parameters of the system
H , but also on the bath parameters γ and μ. The emerging
transport behavior reflects itself in the growth of the spatial
variance [18]

�2(t ) =
∑

r

〈
Sz

r (t )
〉

〈
Sz(t )

〉 r2 −
[∑

r

〈
Sz

r (t )
〉

〈
Sz(t )

〉 r
]2

, (6)

with 〈Sz(t )〉 = ∑
r〈Sz

r (t )〉. Importantly, as shown in Fig. 1(c),
we find that at weak driving μ = 0.1 � 1, the transport
behavior of the isolated XXZ chain carries over to the be-
havior of the open system with diffusive scaling [�2(t ) ∝ t]
at � = 1.5 and superdiffusive KPZ scaling [�2(t ) ∝ t4/3] at
� = 1.0. A key contribution of the present work is to show
how this result can be understood by connecting the Lindblad
setting to the dynamics of correlation functions in the closed
system.

III. TRAJECTORIES AND WEAK LINDBLAD DRIVING

One possibility to solve the Lindblad equation is given by
the concept of stochastic unraveling, which relies on pure
states |ψ〉 rather than density matrices [69,70]. It consists
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of an alternating sequence of stochastic jumps and deter-
ministic evolutions with respect to an effective Hamiltonian
Heff = H − (i/2)

∑
j α j L†

j L j . Given Eqs. (4) and (5), Heff

here takes on the form

Heff = H − i

2
γ (1 + μ) + iγμnr0 ≈ H − i

2
γ , (7)

where nr0 = S+
r0

S−
r0

= Sz
r0

+ 1/2, and the approximation in the
last step applies for weak driving μ � 1. In particular, for
μ � 1, the deterministic evolution exp(−iHefft ) |ψ (0)〉 sim-
plifies,

|ψ (t )〉 ≈ e−γ t/2 e−iHt |ψ (0)〉, (8)

i.e., apart from the scalar damping term, the dynamics is gen-
erated by the closed system H only. This simplification will
be central to derive our analytical prediction below. However,
in our numerical simulations, we always take into account the
full expression of Heff for the stochastic unraveling without
approximation.

Since Heff is non-Hermitian, exp(−iHefft ) |ψ (0)〉 does
not conserve the state’s norm. As a consequence, for a
given ε drawn at random from a uniform distribution ]0, 1],
there is a time where the condition ‖ψ (t )〉‖2 � ε is first
violated. At this time, a jump with one of the Lindblad
operators occurs, |ψ (t )〉 → |ψ ′(t )〉 = Lj |ψ (t )〉/‖Lj |ψ (t )〉‖,
where the specific jump is chosen with probability
pj = α j‖Lj |ψ (t )〉‖2/

∑
j′ α j′ ‖Lj′ |ψ (t )〉‖2. Thereafter, the

next deterministic evolution with respect to Heff takes
place. This sequence of stochastic jumps and deterministic
evolutions leads to a particular trajectory. By averaging over
trajectories, Eq. (2) can be approximated and expectation
values follow as

〈
Sz

r (t )
〉 ≈ 1

Tmax

Tmax∑
T =1

〈ψT (t )|Sz
r |ψT (t )〉

‖|ψT (t )〉‖2 , (9)

where the subscript in |ψT (t )〉 labels a random sequence of
jumps and deterministic evolutions.

IV. DYNAMICAL TYPICALITY

In a nutshell, quantum typicality asserts that a random
pure quantum state can faithfully reproduce properties of the
full statistical ensemble [71–75]. For instance, a homoge-
neous magnetization distribution at t = 0 [cf. Fig. 1(b)] can
be readily realized by a Haar-random initial state, |ψ (0)〉 =∑

j (a j + ib j )|φ j〉, where the coefficients a j and b j in some
basis |φ j〉 are drawn at random from a Gaussian distribution
with zero mean, and |ψ (0)〉 mimics the maximally mixed state
ρ ∝ 1 [71–75]. It is further instructive to consider, for the
moment, an artificial scenario with a quantum jump imme-
diately at t = 0, i.e., |ψ (0)〉 → |ψ ′〉 ∝ L1 |ψ (0)〉. This results
in a random superposition over a subset of pure states with
a spin-up at r0 = N/2, which mimics ρ ∝ 1 + Sz

r0
. Then, the

deterministic evolution dr (t ) at weak driving [cf. Eq. (8)],

dr (t ) ≡ 〈ψ ′(t )|Sz
r |ψ ′(t )〉

‖|ψ ′(t )〉‖2 ≈ 〈ψ ′|eiHt Sz
re−iHt |ψ ′〉, (10)

can be rewritten as dr (t )/2 ≈ 〈Sz
r (t )Sz

r0
(0)〉 via typicality, with

Sz
r (t ) = eiHt Sz

re−iHt and 〈•〉 = tr[•]/2N denoting the infinite-
temperature average [76]. Thus, the dynamics of expectation

FIG. 2. Test setting with artificial jump times τk = 0, 10, . . . .
(a) Magnetization dynamics dr0 (t ) at r0 = N/2 for a single trajectory
with Haar-random initial state |ψ (0)〉 and weak driving μ � 1. We
here consider only the single Lindblad operator L1. (b) Average over
all possible trajectories with jump operators L1 and L2, weighted
with the respective probabilities for μ = 0.1. In each case, numerical
data (circles) are found to agree convincingly with the prediction in
Eqs. (11) (curves) and (12) (crosses). Other parameters: � = 1.5 and
N = 20. The dashed line indicates the long-time equilibration value
of the correlation function, i.e., 0.5/N

values dr (t ) during the deterministic process are generated by
equilibrium correlation functions of the closed system H . We
numerically demonstrate the validity of this finding in a test
setting, where we consider for simplicity only the single jump
operator L1 and artificially fix the jump times to τk = kδτ with
δτJ = 10. As shown in Fig. 2(a), 〈Sz

r (t )Sz
r0

(0)〉 indeed repro-
duces the deterministic dynamics after the first and before the
next jump, 0 < t < 10. Furthermore, Fig. 2(a) already high-
lights that we can actually predict open-system trajectories
even with many jumps, which is a main result of this work. As
explained in the following, such a description of trajectories
with multiple jumps is achieved by superimposing closed-
system correlation functions 〈Sz

r (t )Sz
r0

(0)〉 appropriately. We
should stress that the accuracy of the typicality approximation
used so far increases exponentially with N [76].

V. CONNECTING LRT AND QUANTUM TRAJECTORIES

To proceed, we now take into account also the jump
operator L2, but still use jump times τk = kδτ for illustra-
tion. Averaging over trajectories weighted according to the
jump probabilities of L1 and L2 with their different prefac-
tors γ (1 + μ) and γ (1 − μ) [cf. text above Eq. (9)], one
finds d̄r (t )/2 = μ〈Sz

r (t )Sz
r0

(0)〉 for the initial time evolution
after the first jump, 0 < t < 10 [see Fig. 2(b)]. While this
idealized prediction cannot hold exactly at later stages of
the trajectory, one can make further progress by assuming
a sufficiently small value of γ . Then, within the determin-
istic evolution, the system has enough time to equilibrate
and expectation values approach d̄r (t )/2 → μ〈Sz

r0
(0)2〉/N [cf.

Fig. 2(b)], which approaches zero for large N and thus

024102-3



TJARK HEITMANN et al. PHYSICAL REVIEW E 108, 024102 (2023)

FIG. 3. Analogous setup as in Fig. 2(b), but now for the full
site dependence d̄r (t ) at various fixed times (a)–(d), which all lie in
the middle of two jumps. Numerical data (circles) are in convincing
agreement with the prediction in Eq. (11) (crosses). A Gaussian is
also indicated in (a) for comparison. The striped area indicates the
equilibrium background of the already induced magnetization.

becomes close to the local magnetizations before the ini-
tial jump at t = 0. Eventually, another jump must occur at
some time τ and, given the above equilibration, a reason-
able expectation for the subsequent deterministic evolution is
d̄r (t )/2 = μ〈Sz

r0
(0)2〉/N + (μ − μ/N )〈Sz

r (t − τ )Sz
r0

(0)〉. Re-
iterating this procedure, we end up with a prediction for the
entire trajectory with jump times τk ,

d̄r (t )/2 = μ
∑

k

Ak�(t − τk )
〈
Sz

r (t − τk )Sz
r0

(0)
〉
, (11)

where � is the Heaviside function. The amplitudes Ak read
Ak/2 = 1/2 − d̄r0 (τk − 0+)/μ and measure the remaining
deviation from the long-time equilibrium value, where we
implicitly assumed full equilibration towards zero, via the bal-
ance ‖L1|ψ (t )〉‖2 = ‖L2|ψ (t )〉‖2. Equation (11) is the central
result of this paper. It predicts that the open-system dynamics
can be described by superimposing closed-system correlation
functions at different times. Taking into account also an imbal-
ance, i.e., ‖L1|ψ (t )〉‖2 �= ‖L2|ψ (t )〉‖2, the Ak can be further
refined (see Appendix A for details),

Ak

2
= ak − d̄r0 (τk − 0+)

μ
, ak = μ − 2d̄r0 (τk − 0+)

2 − 4μ d̄r0 (τk − 0+)
,

(12)

with Ak → 1 if d̄r0 (τk − 0+) → 0. In our numerics, we find
Eqs. (11) and (12) to be well fulfilled even if full equilibration
is not reached [see Fig. 2(b)]. Importantly, Eq. (11) not only
applies at the bath site r0 = N/2, but actually describes the
full site dependence d̄r (t ) accurately (see Fig. 3), albeit with
slight deviations at later times.

VI. FROM WEAK TO STRONG DRIVING

While we have chosen artificial τk in Figs. 2 and 3 for
illustrative reasons, we now turn to the actual solution of
the Lindblad equation. Our analytical prediction for 〈Sz

r (t )〉

FIG. 4. Magnetization dynamics 〈Sz
r (t )〉 at different sites r =

r0 + l (curves), as generated by the full stochastic unraveling pro-
cedure (averaged over 105 or more trajectories) for � = 1.5 and
N = 20. This procedure is performed for the full Heff without any
approximation. (a) Small γ /J = 0.1 and (b) strong γ /J = 1.0, both
for weak μ = 0.1. (c) Strong μ = 1.0 and small γ /J = 0.1. In all
cases, we compare to the prediction (11) for N = 20 and N = 36
(circles).

follows from averaging Eq. (11) over trajectories with random
jump times (τ1, τ2, . . .), i.e., 〈Sz

r (t )〉 ≈ (1/Tmax)
∑

T d̄r,T (t ).
Specifically, given the exponential damping in Eq. (8) for
μ � 1, the τk are given by τk+1 = τk − ln ε/γ , where a
new ε is drawn at random from ]0, 1] after each jump.
Hence, if the correlation function 〈Sz

r (t )Sz
r0

(0)〉 is known, it
is rather straightforward to construct the prediction (11) and
the average numerically. Crucially, the computational costs
of this procedure are significantly lower compared to the full
stochastic unraveling such that we are able to generate dy-
namics for system sizes N = 36 (see Fig. 4 and Appendix B),
which is approximately the maximum size reachable for
typicality-based calculations of correlation functions. Note,
however, that even larger system sizes might be reached when
calculating correlation functions from matrix-product-state
techniques.

In Figs. 4(a)–4(c), we summarize our numerical results
for 〈Sz

r (t )〉, where we consider (i) weak driving μ = 0.1 and
weak coupling γ /J = 0.1, (ii) strong coupling γ /J = 1, and
(iii) strong driving μ = 1. We compare our prediction to the
numerically exact stochastic unraveling which is performed
for the full Heff and a homogeneous initial state. We find
that the prediction and the exact dynamics agree perfectly
for (i), while the agreement becomes worse for (ii) and (iii),
as expected. The convincing agreement in Fig. 4(a) con-
firms our initial observation that the transport behavior of the
closed system carries over to the open system (cf. Fig. 1).
Specifically, superpositions of correlation functions with
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diffusive (superdiffusive) scaling at � = 1.5 (� = 1) accord-
ing to Eq. (11) yield a dynamics with the same scaling (see
also Appendix D).

VII. CONCLUSION

In summary, we have studied nonequilibrium dynamics
and transport in spin chains with a local coupling to a Lindblad
bath. For weak driving, we have unveiled that the open-system
dynamics can be constructed on the basis of closed-system
correlation functions, which establishes a connection between
LRT and the Lindblad setting. For this specific setting, from
a conceptual point of view, our results confirm the common
assumption that closed-system and open-system approaches
to transport should agree if the relevant parameters are chosen
appropriately. From a practical point of view, our framework
sheds light on the efficient stochastic unravelings of Lind-
blad equations for large system sizes and long timescales.
While we have chosen the XXZ chain as a timely example,
our framework can be applied also to other spin or Hubbard
models.

Promising directions of future research are, e.g., the gen-
eralization of our results to boundary-driven situations with
a bath at each end of the system, which seems to be feasible
[77]. Another interesting avenue is to study the role of inte-
grability in more detail. In particular, our finding of persisting
superdiffusive transport even in the presence of a system-bath
coupling appears related to recent works that explored effect
of weak integrability-breaking perturbations [78,79].
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APPENDIX A: AMPLITUDES

One possibility to derive the amplitudes in Eq. (12) is based
on typicality arguments. To this end, consider a maximally
random pure state |ψ (τ j − 0+)〉 under the constraint

dr0 (τ j − 0+) = x, (A1)

before a jump occurs at time τ j . Then, we have

y1 = ‖L1|ψ (τ j − 0+)〉‖2 = 1
2 − x (A2)

and

y2 = ‖L2|ψ (τ j − 0+)〉‖2 = x + 1
2 , (A3)

with y1 + y2 = 1. The corresponding jump probabilities read

p1 = (1 + μ)y1

(1 + μ)y1 + (1 − μ)y2
(A4)

FIG. 5. Time evolution of the magnetization 〈Sz
r0

(t )〉 at the po-
sition r0 = N/2 of the local Lindblad operators, as given for weak
driving μ = 0.1 by Eq. (11) with amplitudes according to Eq. (12).
Curves for various values of the bath coupling γ are obtained from
the average over 10 000 different trajectories. The other model pa-
rameters are the same as in Figs. 2 and 3. A bath coupling γ /J = 0.1
is comparable to the jump times in Fig. 2. (a) and (b) correspond
to an initial state with and without local magnetization, respectively.
In each case, data for N = 36 sites are also depicted. (c) Full site
dependence for γ /J = 0.1 in (b).

and

p2 = (1 − μ)y2

(1 − μ)y2 + (1 + μ)y1
, (A5)

with p1 + p2 = 1 again. Consequently, a straightforward cal-
culation yields

p1

2
− p2

2
= μ − 2x

2 − 4μx
, (A6)

i.e., the expression in Eq. (12).

APPENDIX B: DEPENDENCE ON γ AND N

Since we have mostly discussed the case of a small bath
coupling γ /J = 0.1, we depict in Fig. 5 the prediction ac-
cording to Eq. (11) for various values of γ . We do so for the
magnetization 〈Sz

r0
(t )〉 at the position r0 = N/2 of the local

Lindblad operators and random initial states |ψ (0)〉 with and
without local magnetization. Moreover, to demonstrate that
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FIG. 6. Dynamics of the magnetization 〈Sz
r (t )〉 at various sites

r = r0 + l for anisotropies (a) � = 1.0 and (b) � = 8.0, as gener-
ated by the full stochastic unraveling procedure and as predicted by
Eq. (11). Remaining model parameters: Small coupling γ /J = 0.1,
weak driving μ = 0.1, and system size N = 20.

this prediction does not depend on system size, we also show
the corresponding prediction for N = 36 sites.

APPENDIX C: OTHER ANISOTROPIES

In Fig. 4, we have provided a detailed comparison of the
dynamics for anisotropy � = 1.5, as generated by the full
stochastic unraveling procedure and as predicted by Eq. (11).
To demonstrate that an agreement of similar quality can be
obtained for other anisotropies as well, we show in Fig. 6 a
comparison for � = 1.0 and � = 8.0, in both cases for small
coupling γ /J = 0.1 and weak driving μ = 0.1.

APPENDIX D: DIFFUSION COEFFICIENT

Let us, for simplicity, estimate the expansion velocity of
the open system by

vopen

Dclosed
= Dclosed(t − τ̄ )

Dclosed t
(D1)

with the average injection time

τ̄ = − 1

γ

∫ 1

0+
dε ln ε, (D2)

which is τ̄J ≈ 10 for γ /J = 0.1. By taking into account
Dclosed/J ≈ 0.6 for � = 1.5, one would expect at t = 2τ̄ the
expansion velocity

vopen

J
≈ 0.6

2
= 0.3. (D3)

Thus, a reasonable expectation is

�2(t ) = 2 vopent ≈ 0.6tJ. (D4)

FIG. 7. Time-dependent spatial variance �2(t ), as predicted by
Eq. (11) for Dclosed/J = 0.6.

And indeed, this number is chosen as the prefactor of the
power law in Fig. 1.

An alternative and kind of better way to estimate the expan-
sion velocity in the open system is provided by Eq. (11) and
the assumption of perfectly diffusive behavior in the closed
system (with a zero mean free path). Then, the equilibrium
correlation functions take on the simple form〈

Sz
r (t )Sz

r0
(0)

〉 = 1
4 exp(−2Dclosedt )Ir (2Dclosedt ), (D5)

where Ir (t ) is the modified Bessel function of the first kind
and of the order r. By the use of this assumption, the cal-
culation of the time-dependent variance �2(t ) in the open
system can be done numerically. As depicted in Fig. 7 for
Dclosed/J = 0.6, one finds

�2(t ) ≈ 0.66tJ (D6)

over a wide range of time, which is consistent with the simple
argument above. Note that the calculation can be easily carried
out for N = 100 of lattice sites.

APPENDIX E: OTHER INITIAL STATES

The derivation of the prediction in Eq. (11) has relied on
an initial pure state |ψ (0)〉, which is fully random and corre-
sponds to an equilibrium density matrix at formally infinite
temperature. In Fig. 8, we demonstrate that this prediction
does not apply to other initial states. To this end, we choose
the specific initial pure state

|ψ (0)〉 ∝ (|↑〉 + |↓〉) ⊗ · · · ⊗ (|↑〉 + |↓〉), (E1)

which is known to be untypical.

FIG. 8. Analogous comparison as the one in Fig. 4(a), but now
the initial pure state |ψ (0)〉 is not drawn at random.
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