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Approach to determine nodal surfaces of some s-electron systems
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The paper is devoted to the study of the nodal surfaces of the wave functions for fermion systems. Using
the quantum Monte Carlo method, implicit equations of nodal surfaces for some s-electron systems containing
two–five electrons are numerically obtained. The obtained results are in agreement with the provisions of
other researchers. An original method for constructing nodal surfaces is proposed, which is convenient for the
implementation of quantum Monte Carlo.
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I. INTRODUCTION

The wave function describing a system of N fermions has
a well-known antisymmetry property, which is expressed in
the Pauli exclusion principle. The only way known to us
when antisymmetry is taken into account in applications is to
postulate the form of the wave function as a product or a linear
combination of products of Slater determinants [1]. Different
versions of the quantum Monte Carlo method (QMC) give an
exact solution for systems with a sign-constant wave function
in the sense that the error is determined only by statistics.
An additional approximation associated with the use of Slater
determinants introduces an uncontrollable error, and is very
inconvenient for the implementation of Monte Carlo methods.
QMC methods should basically converge to the exact solution
of the Schrödinger equation (SE) if they would allow integrat-
ing over the entire domain of the wave function. However, this
is not the case due to the fact that Monte Carlo methods cannot
work with sign-changing functions (the sign problem) [1].

In a sense, this paper can be seen as a development of
Ceperley’s ideas in Ref. [2]. Due to the properties of antisym-
metry, the wave function of N fermions with the same spin
projection divides the entire space into N! domains in each
of which the wave function is of constant sign. We propose a
method for constructing such domains and, using the Kurcha-
tov version of QMC (KQMC) [3] (which is similar to what is
known as Green’s function Monte Carlo from Ref. [4]), on one
hand, demonstrate the correspondence of the obtained results
to the known provisions for 3S He [5,6] and Li [5,7,8], on
the other hand, obtain new results for such systems as Be and
2S B. An original method to determine the nodal surface is pre-
sented, which is convenient for numerical implementation by
various variations of QMC. In addition, we note that only the
solution of the nonrelativistic SE is studied in the paper, there-
fore, relativistic effects, such as spin-orbit interactions, are not
considered.

*Corresponding author: danshin_aa@nrcki.ru

II. NODAL REGIONS

Let us consider a system of N electrons. Let N+ elec-
trons have a spin projection value of + 1

2 , and N− has a spin
projection value of − 1

2 , and N = N+ + N−. We number the
electrons so that for i = 1, N+ they have spin + 1

2 , and for
i = N+ + 1, N+ + N−—− 1

2 , respectively. Then, there is a
permutation group G = G+ × G− of N+!N−! elements acting
on the 3N-dimensional phase space. An element that swaps
i and j (both indices refer either to the first N+ numbers
or both to the last N− numbers) cause a permutation of the
coordinates of the ith and jth particles. Such a replacement
causes a change in the sign of the wave function.

It is possible to single out the so-called nodal region (NR)
in a large number of ways, i.e., domain �1 ∈ R3N with the
following properties:

∀ r ∈ �1, ∀ g �= 1, g ∈ G: g(r) /∈ �1,

∀ r ∈ R3N∃g ∈ G: g(r) ∈ �1,
(1)

where �1 means the closure of the domain �1.
One can always choose �1 in such a way that the wave

function on it is of constant sign. Indeed, if � on �1 is not of
constant sign, then,

�1 = �+
1 ∪ �−

1 ∪ �0
1, (2)

where the superscript is the sign of � on this set. Let us
consider any permutation from G, or any element g resulting
from the product of an odd number of permutations, then,

�(g(r)) = −�(r). (3)

Therefore, � is positive on g(�−
1 ), and, hence, the domain

�′ = �+ ∪ g(�−) is the NR on which � is positive. If we
consider the wave function to be analytic (in the real sense),
then, the domain �0 does not contain interior points and lies
completely on the boundaries of the other two. Therefore,
there is no need to consider it separately.

We need to highlight the following explanation. We con-
sider the solution of the SE for the entire space R3N . There
is an infinite number of NRs, defined only by symmetry. The
condition that the sign of the wave function is constant means
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that � must be equal to zero at the boundary of the NR. It is
possible to obtain a solution of the SE with a zero boundary
condition for any domain with a regular boundary. It may
seem that this makes it possible to extend such a solution con-
structed in any NR to the entire space, acting by the elements
of the group and taking into account antisymmetry. However,
it is not true. SE requires continuity not only of the wave
function itself, but also of its first derivative. The continuity
condition for the wave function on the boundaries of the NRs
will be, obviously, satisfied due to the boundary condition (�
is equal to zero at the boundary). However, the equality of
the left and right normal derivatives at the boundary is not
guaranteed (this is demonstrated by the example in Fig 1 in
Ref. [2]).

Thus, only those of the total number of NRs will give
the correct solution, on the boundary of which the condition
of continuity of the wave function and its first derivative is
satisfied. From now on, we will call such NRs right nodal
regions (RNRs).

III. EXTREMAL PROPERTY OF A NODAL REGION

If it were possible to uniquely determine the NR for any
system of electrons, then QMC methods would allow to solve
such a problem exactly since the function is of constant sign
in this domain, and a condition is set on its boundary that
allows to uniquely find a solution. A huge number of works
have been devoted to the permutation symmetry properties
of the wave function, beginning with the works of Fermi and
Dirac. However, most of them are devoted to the spin part of
the wave function, which is understandable: the structure of
spin and coordinate permutations is strongly related, but the
study of spin permutations is certainly simpler. This has led
to the fact that the coordinate structure has been studied much
less fully and mainly for specific systems with a small number
of electrons [9], and such knowledge is simply necessary for
constructing NRs.

It is intuitively clear that the boundary of a NR must have
a certain extremal property. The theorem on the extremal
property of the boundary is known [1,10], but its proof is
based on the variational principle and does not give an idea
of the reasons for the appearance of this extremality. Below is
a proof of this theorem based on the wave function continuity
property. The consequences from this seem to us more useful
for practical applications. In addition, we note that our proof
is valid not only for the ground state of the system, but also
for excited ones.

Theorem on the extremal property of a NR. The energy of
the system E has an extremal property with respect to the
variation of the boundary � of the RNR: δE

δ�
= 0.

Proof. Let � be the correct solution of SE in the RNR �

with the boundary �

−�� + E� = V �. (4)

Let �1 be a NR with the boundary �1, which is a small
distortion of � in a sense that for each point of the boundary
�1 there is a point of the boundary �, the distance to which
is less than a small number δ. Let �1 be the solution of the
equation in a new domain with a zero boundary condition,

extended to the entire space by antisymmetry,

−��1 + E1�1 = V �1. (5)

Wherein, the energies from the discrete spectrum are cho-
sen appropriately—they are close.

Then, multiplying (4) by �1 and (5) by �, subtracting one
from the other, and integrating over the entire space using the
normalization

∫
R3N ��1dV = 1,∫

R3N

div(�1∇� − �∇�1)dV = δE , (6)

where δE = E − E1. Let us apply the Gauss theorem and note
that the first term in brackets is a continuous function in R3N ,
and the second term is discontinuous at the incorrect boundary

due to the jump of ∂�1
∂n |�i

1
(here, �i

1 is a common boundary
element between the two images of the domains �1 under the
action of an element of the group),

δE = −
M∑

i=1

∫
�i

1

�

(
∂�1

∂n

∣∣∣∣
�i

1
+

− ∂�1

∂n

∣∣∣∣
�i

1
−

)
dS, (7)

where n is the normal to the surface and the sign index of
�i

1 indicates the derivative direction at the boundary; M is the
total number of boundaries between NRs.

Due to the proximity of the regions �1 and �, as well
as their boundaries, and the fact that �|� = 0, it could be
considered that � is a quantity of order δ at �1, and, hence,
also at �i

1. It could also be considered that the difference of
any derivatives of the functions �1 and � is a quantity of order
δ. But the derivative of the function � is continuous, and when
�1 and � are replaced, the derivative jump in integral (7) turns
into zero.

Thus, δE turns out to be a quadratic function proportional
to (δ�)2. Then from (7),

δE

δ�
= 0. (8)

This completes the proof.

IV. HYPOTHESES ABOUT THE CONSTRUCTION OF THE
NODAL REGION

Since the NRs are uniquely determined by the SE itself [2],
it would be logical to look for their structure in it. Let us write
the SE for N electrons with the same spin projection in the
following form:

N∑
i=1

εi(r)� = E�, (9)

where εi(r) = − 1
N

∑N
j=1 � j�

�
− Vi, r ∈ R3N .

This form of notation gives a partition of the entire space
into N! NRs naturally, but it is not yet known whether these
are RNRs. The NR with number 1 is determined by the follow-
ing condition: ε1 < ε2 < · · · < εN . The remaining domains
are obtained naturally by permutations. However, practical
implementation of this condition turns out to be difficult since
we are still dealing with a 3N-dimensional space. The next
assumption that we made, and which turned out to be success-
ful, at least, for s electrons, is replacement of εi with Vi, that
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is, the total partial energy with the potential one. This seems
also reasonable from the point of view of the Hohenberg-Kohn
theorem [11], which makes it possible to establish a one-
to-one correspondence between the potential and the exact
�. Hence, it is logical to assume that the structure of the
zeros of � is also determined by the potential. As follows
from the SE, in the place where � is equal to zero the total
kinetic energy is also equal to zero. Zero kinetic energy can
be observed either when the Laplacians of � at the boundary,
related to individual particles separately, are equal to zero, or
when the sum of Laplacians of � for a part of the electrons
has a positive sign, and the sum of Laplacians of � for the
remaining electrons has a negative sign of exactly the same
value. Both of these cases allow us to assume that the value of
the kinetic energy at the boundary is not important from the
point of view of determining the NR, and we can either assign
the N th part of the total kinetic energy at the boundary to each
particle, or ignore it altogether, which will be the same from a
practical point of view.

Let us designate the NR of SE solutions for s electrons
the domain �1 in R3N for which the following conditions are
satisfied:

V1 < V2 < · · · < VN+,

VN++1 < VN++2 < · · · < VN++N− ,
(10)

where Vi are the partial potentials introduced by the formula,

Vi = α
2Z

ri
− β

N∑
j = 1
j �= i

1

ri j
+ 1 − α

N

N∑
j=1

2Z

r j

−1 − β

N

N−1∑
j=1

N∑
k> j

2

r jk
. (11)

Here, α and β are any functions of particle coordinates
that are symmetric in permutations ri j = |ri − r j |. This is the
most general form of partial potentials under the conditions∑

i Vi = V and Vi → Vj when i is replaced by j.
The statement that this is the most general form is made

for the following reason. Partial potentials are considered as
an element of a two-dimensional space in the basis given by
the external potential, on one hand, and the interelectronic
potential, on the other. Thus, the entire set of representations
of potentials in the form of a sum of Vi is a two-dimensional
affine plane in space with coordinates α and β, which, in
the general case, are functions of all physical coordinates
symmetric in permutations.

The entire space R3N is
⋃

k �k , k = 1, N+!N−! of NRs,
which are obtained from (10) by all possible permutations.
The boundary of the �1 domain is �1 in R3N−1, which is
defined by the following equalities:

Vi = Vi+1, i = 1, N+ − 1;

Vi = Vi+1, i = N+ + 1, N − 1. (12)

After the introduction of partial potentials by formula (11),
one needs to determine the coefficients α and β. Although
any two permutation-symmetric functions α and β define a
NR, it is intuitively clear that the correct NR should not be
too complicated. Therefore, it is natural to assume that α and

FIG. 1. Analytical solution and solution obtained by the KQMC
method for 1s2s 3S He without interelectronic interaction depending
on r1 > r2 at (a) r2 = 0.5 a0, (b) r2 = 0.75 a0, (c) r2 = 1 a0, and
(d) r2 = 1.25 a0.

β are constants. It follows from (10) that only the first two
terms in (11) play a role when specifying the NR. Divide
inequalities (10) by α, then, taking into account γ = β

α
:

Vi = 2Z

ri
− γ

N∑
j = 1
j �= i

1

ri j
. (13)

By varying γ , we change the boundary of the NR. The
position of the boundary is very difficult to express explicitly
in terms of γ , but we do not need to. According to the theorem
on the extremal property of a NR, the total energy must be
stationary with respect to the variation of the boundary.

Using the proposed approach, many-electron systems con-
taining s electrons were calculated. For the calculation, we
used a program that implements KQMC [3], in which the
search for a solution is carried out inside one NR, and inequal-
ities (10) act as an indication that the state vector is inside the
domain. In Ref. [3] a detailed description of KQMC algorithm
is provided as well as preliminary calculation approaches.
Those early calculations differed from ones presented in this
paper because other values for γ (and, thus, essentially an-
other nodal structures) were used.

For two electrons that do not interact with each other in
the field of an atomic nucleus, the spins of which are directed
identically, the exact node r1 = r2 follows from (12), and the
solution is the following Slater determinant [12]:

�(r1, r2) = 4

∣∣∣∣R10(r1) R20(r1)
R10(r2) R20(r2)

∣∣∣∣, (14)

where R10(r) = 2(Z )
3
2 exp(−Zr), R20(r) = 1

2 ( Z
2 )

3
2 (1 − Zr

2 )
exp(− Zr

2 ).
Applying the KQMC method, a solution in close proximity

to the exact one was obtained (Fig. 1). When setting the
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FIG. 2. Integrated square of the Hartree-Fock wave function∫ ∞
0

∫ 1
−1 �HF

2r1
2r2

2dr2dμ and the solution of SE by the KQMC

method
∫ ∞

0

∫ 1
−1 �KQMC

2r1
2r2

2dr2dμ for 1s2s 3S He (μ is the cosine
of the angle between r1 and r2).

boundary conditions, we use a method that is often used in
the theory of neutron transfer, which is associated with setting
the boundary condition not on the real, but on the extrapolated
boundary [13].

For the simplest 1s2s 3S He system, from (12) the boundary
value r1 = r2 is automatically obtained, which was previ-
ously obtained analytically in Refs. [5,6]. The calculation
by the Hartree-Fock method gives a result that is only a
few hundredths of an electronvolt less than the experimen-
tal value [14]: 59.16(4) vs 59.18(5) eV. Therefore, from the
point of view of verification, we can reasonably consider the
Hartree-Fock solution as quite precise.

Figure 2 shows a comparison of the results of 3S He calcu-
lation by the Hartree-Fock method (with sufficient accuracy
by our program, described and verified in Ref. [15]) and the
KQMC method. In fact, we have obtained agreement of the
Monte Carlo solution with the quite precise one.

In Refs. [5,7,8], it was obtained numerically that the node
r1 = r2 is also correct for Li. By varying the parameter γ with
a step of 0.1, an extremum was obtained at γ = 0 on sufficient
statistics [Fig. 3(a)], which leads to the value of the boundary
r1 = r2 for Li. The same result was obtained for 1s22s3s 3S
Be [Fig. 3(b)].

According to (10), the NR for Be is given by the following
inequalities:

2Z

r1
− γ

4∑
j = 1
j �= 1

1

r1 j
<

2Z

r2
− γ

4∑
j = 1
j �= 2

1

r2 j
,

2Z

r3
− γ

4∑
j = 1
j �= 3

1

r3 j
<

2Z

r4
− γ

4∑
j = 1
j �= 4

1

r4 j
. (15)

By varying the parameter γ with a step of 0.1, an extremum
was obtained at γ = −0.2 on sufficient statistics (Fig. 4).
Based on this, the extremum is located in the range from
−0.3 to −0.1, which leads to a boundary different from that
specified by the equalities r1 = r2, r3 = r4.

A similar result was obtained for 1s22s2 B+, 1s22s23s 2S B,
1s22s23s 2S C+ (Fig. 5).

(a)

(b)

FIG. 3. Dependence of the solution E/|E0| for (a) Li atom,
(b) 1s22s3s 3S Be on the parameter γ , where E0 is the total energy
value at γ = 0.

In Refs. [5,16], the authors give the proof of the the-
orem that the ground state of the Be atom has only 2
NRs, and, accordingly, the boundary is not like Hartree-Fock
(r1 = r2, r3 = r4). Our results contradict the conclusions of
Refs. [5,16] from the point of view of connectivity. The
proof in Refs. [5,16] is constructed as follows: a point
R∗ = (r1,−r1, r3,−r3) is taken, which goes to the point
P12P34R∗ (Pi j is a permutation operator that permutes the
coordinates of the ith and jth particles) by rotating the sys-
tem as a whole by 180◦ around the axis r1 × r3. Since the
ground state of Be is an S state, the wave function �(R) is

FIG. 4. Dependence of the solution E/|E0| for the Be atom on
the parameter γ , where E0 is the total energy value at γ = −0.2.
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(a)

(b)

(c)

FIG. 5. Dependence of the solution E/|E0| for (a) 1s22s2 B+,
(b) 1s22s23s 2S B, (c) 1s22s23s 2S C+ on the parameter γ , where E0

is the total energy value at γ = −0.2.

invariant under the rotations of the system as a whole around
the axis r1 × r3. Therefore, if one can prove that the point
R∗ = (r1,−r1, r3,−r3) does not lie on the boundary of the
nodal region for the exact wave function of the Be atom
[that is, one proves that �(R∗) �= 0], this will mean that the
path connecting the point R∗ with the point P12P34R∗ lies
in one nodal region, and there are two of them in total. Our
boundary is also not the Hartree-Fock boundary, but it satisfies
�(R∗) = 0, which can be seen by substituting R∗ into (15). In
Refs. [5,16], the fulfillment of the condition �̃(R∗) �= 0 had
been proved for the approximate wave function �̃, which is
the first two terms of the expansion of the exact wave function
� in the configuration interaction basis. We are not aware of
any works that provide proof of �(R∗) �= 0 for the exact wave
function of Be. Therefore, we question the correctness of the
proof of the theorem in Refs. [5,16].

V. CONCLUSIONS

The paper proposes a method for constructing nodal sur-
faces, which is convenient for the implementation of QMC.
Implicit equations of nodal surfaces for some s-electron sys-
tems containing two–five electrons are numerically obtained.
In terms of single atoms, it is easy to imagine a generalization
of such an approach to atoms of all elements in case we could
separate the variables in the SE � = f × g where the function
g is responsible for the nonzero value of orbital angular mo-
mentum of the system and can be found analytically. Then, the
function f can be determined by the KQMC method using the
algorithm described in this article. And this will be the subject
of our further research.
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