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Rectangular multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and
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In this paper, we develop a general rectangular multiple-relaxation-time lattice Boltzmann (RMRT-LB)
method for the Navier-Stokes equations (NSEs) and nonlinear convection-diffusion equation (NCDE) by ex-
tending our recent unified framework of the multiple-relaxation-time lattice Boltzmann (MRT-LB) method [Chai
and Shi, Phys. Rev. E 102, 023306 (2020)], where an equilibrium distribution function (EDF) [Lu et al., Philos.
Trans. R. Soc. A 369, 2311 (2011)] on a rectangular lattice is utilized. The anisotropy of the lattice tensor on
a rectangular lattice leads to anisotropy of the third-order moment of the EDF, which is inconsistent with the
isotropy of the viscous stress tensor of the NSEs. To eliminate this inconsistency, we extend the relaxation
matrix related to the dynamic and bulk viscosities. As a result, the macroscopic NSEs can be recovered from the
RMRT-LB method through the direct Taylor expansion method. Whereas the rectangular lattice does not lead
to the change of the zero-, first- and second-order moments of the EDF, the unified framework of the MRT-LB
method can be directly applied to the NCDE. It should be noted that the RMRT-LB model for NSEs can be
derived on the rDdQq (q discrete velocities in d-dimensional space, d � 1) lattice, including rD2Q9, rD3Q19,
and rD3Q27 lattices, while there are no rectangular D3Q13 and D3Q15 lattices within this framework of the
RMRT-LB method. Thanks to the block-lower triangular relaxation matrix introduced in the unified framework,
the RMRT-LB versions (if existing) of the previous MRT-LB models can be obtained, including those based on
raw (natural) moment, central moment, Hermite moment, and central Hermite moment. It is also found that when
the parameter cs is an adjustable parameter in the standard or rectangular lattice, the present RMRT-LB method
becomes a kind of MRT-LB method for the NSEs and NCDE, and the commonly used MRT-LB models on the
DdQq lattice are only its special cases. We also perform some numerical simulations, and the results show that
the present RMRT-LB method can give accurate results and also have a good numerical stability.
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I. INTRODUCTION

The lattice Boltzmann (LB) method, as an effective meso-
scopic numerical approach based on kinetic theory, has
attained increasing attention and also gained great success
in the modeling and simulation of complex fluid flows,
heat and mass transfer described by the Navier-Stokes
equations (NSEs), and nonlinear convection-diffusion equa-
tions (NCDEs) [1–4]. Although many different LB models
have been developed in the past three decades, most of them
can be viewed as special forms of the multiple-relaxation-time
lattice Boltzmann (MRT-LB) model [5], except those with
nonlinear collision operators (e.g., the cumulant LB model
[6]). The MRT-LB model uses a linear collision operator,
i.e., a collision matrix with multiple relaxation parameters,
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which extends the commonly used single-relaxation-time LB
(SRT-LB) model or lattice Bhatnagar-Gross-Krook (LBGK)
model so that the numerical stability and accuracy can be im-
proved by adjusting the free relaxation parameters. Actually,
some previous works have shown that the MRT-LB model
is superior to the SRT-LB model in terms of accuracy and
stability, but only slightly inferior to the SRT-LB model in
computational efficiency [5,7,8]. As we know, in the standard
LB method for fluid flows, the evolution process is carried
out in a highly symmetric lattice space through two steps:
collision and propagation. This makes the computational grid
and lattice space coupled, resulting in that the standard LB
model is generally only implemented on a uniform grid, e.g.,
the square lattice in two-dimensional space and the cubic
lattice in three-dimensional space. It should be noted that this
restriction is caused by the requirement on the isotropy of
the commonly used standard discrete velocity set, and also
limits the applications of the standard LB models. In fact,
the nonuniform lattice structure may be more desirable for
the problems commonly observed in many fields of science
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and engineering, for example, fluid flows with different scales
in different coordinate directions, and anisotropic diffusion in
porous media.

Historically, there are mainly four ways to design the LB
method on a nonuniform grid:

(1) The method in which the computational grid and lat-
tice space are decoupled [9,10] combines the LB approach
with some other numerical schemes (e.g., the finite volume
scheme, finite difference scheme, and finite element scheme)
for the discrete velocity Boltzmann equation (DVBE), and
thus both the nonuniform and uniform (isotropic) lattices can
be used.

(2) The interpolation-supplemented LB method [11,12]
uses the spatial and temporal interpolation schemes to map
the information on an inherent grid to a computational grid
where the hydrodynamic variables are obtained. Such imple-
mentations preserve the main advantages of the standard LB
method, and are more flexible in selecting the computational
grid. However, to retain the second-order accuracy of the LB
method, a second- or higher-order interpolation must be used,
which results in additional computational cost. In addition,
some undesirable errors and numerical dissipation may be in-
troduced by the interpolation, which in turn brings numerical
stability concern.

(3) The LB method with local grid refinement [13–15]
divides the whole computational domain into several subdo-
mains, and the standard LB model is used in each subdomain
which has its own uniform lattice. Two adjacent subdomains
with different lattices may share a common ghost boundary,
and the distribution functions (DFs) and/or physical quanti-
ties on the ghost boundary need to be determined by some
suitable interpolation schemes from both sides of the ghost
boundary. Generally, the domain-decomposition technique
can be utilized in dividing the domain, and each subdomain
can use its own coordinate system and regular lattice [14].
However, the shortcomings caused by interpolation also re-
main in this method.

(4) The LB method on the rectangular lattice, unlike the
above methods, is expected to be a natural and direct extension
of the standard LB method on a uniform lattice, and also keeps
the collision-propagation characteristics of the latter. For
NCDE, the anisotropy of the lattice tensor in the LB method
on a rectangular lattice does not influence the derivation pro-
cess of the macroscopic NCDE since the third-order moment
of the equilibrium distribution function (EDF) does not appear
in the asymptotic analysis [16], and some more discussion on
the LB models for NCDEs can be found in previous works
[17–21]. Compared to the rectangular LB (RLB) model for
NCDE, there is an inconsistency between the anisotropy of the
lattice tensor caused by the rectangular lattice and the isotropy
of the viscous stress tensor in the NSEs, which brings more
difficulties in the development of the RLB models for NSEs.
The key to solve the problem is to preserve the isotropy of
the lattice tensor or to eliminate the inconsistency caused by
the anisotropy of the rectangular lattice tensor. On the one
hand, we can improve the isotropy of the lattice tensor by
introducing more discrete velocities, while it will bring more
computational cost. On the other hand, we can adopt the MRT-
LB model such that the inconsistency mentioned above can be
eliminated by adjusting the relaxation factors. In fact, when

the SRT collision operator is used, the degrees of freedom of
the standard D2Q9 lattice and D3Q19 lattice, and even the
D3Q27 lattice, are not enough to remove the anisotropy [22].
As far as we know, Koelman [23] first proposed a SRT-LB
model on a rectangular lattice where a low-Mach-number
expansion of the Maxwell-Boltzmann distribution is used to
obtain the equilibrium distribution function. However, this
model fails to recover the correct NSEs with isotropic vis-
cosity when the grid aspect ratio is different from 1. Then, to
derive the correct NSEs, several modified rectangular SRT-LB
models were proposed. For example, Hegeler et al. [22] devel-
oped a rectangular SRT-LB model that can derive the correct
macroscopic equations by adding discrete velocity directions
to increase degrees of freedom. Peng et al. [24] and Saa-
dat et al. [25] respectively proposed another SRT-LB model
on a rectangular grid that can reproduce the correct NSEs
by introducing an extended equilibrium distribution function.
Besides, Wang and Zhang [26] constructed a SRT-LB model
through including some artificial counteracting forcing terms,
which are used to remove the anisotropy caused by the rect-
angular lattice. We note that these SRT-LB models mentioned
above can be regarded as some modifications to the standard
SRT-LB model by introducing additional discrete velocities,
extended equilibrium distribution functions, or force terms,
which may bring more computational cost.

Consider the fact that, compared to the SRT-LB model, the
MRT-LB model can provide additional degrees of freedom,
which can be used to remove this inconsistency between the
anisotropy of lattice tensor and the isotropy of viscous stress
tensor. Under the framework of the MRT-LB method, Bouzidi
et al. [27] constructed the first MRT-LB model on a two-
dimensional rectangular grid. Although this model can obtain
satisfactory results in some numerical tests, the anisotropy
problem cannot be overcome completely when the grid aspect
ratio is not equal to one [28]. A similar attempt has been
made by Zhou [29]; however, this MRT model on the rect-
angular lattice cannot correctly recover the NSEs. Through
an inverse design analysis based on the Chapman-Enskog
expansion, Zong et al. [28] proposed another MRT-LB model
on the D2Q9 rectangular grid, in which an additional ad-
justable parameter that governs the relative orientation in the
energy-normal stress subspace is introduced. By adjusting
this parameter, their model can correctly recover the macro-
scopic equations. However, this model is complicated, and it
is difficult to extend it to other lattice structures. After that,
Peng et al. [30] designed an alternative MRT-LB model on a
rectangular grid by incorporating stress components into the
equilibrium moments to remove the anisotropy in the viscous
stress tensor. Based on the work of Peng et al. [30], Wang et al.
[31] developed a D3Q19 MRT-LB model on a general cuboid
grid. However, these two models require a relatively com-
plex quasiequilibrium collision step. In addition, Yahia et al.
[32] developed a rectangular central-moment MRT-LB model
based on a nonorthogonal moment basis, and then extended it
to three-dimensional central-moment LB model on a cuboid
lattice [33]. The equilibrium to which the central moments
relax under collision in this approach is obtained from those
corresponding to the continuous Maxwell distribution. These
two models involve a relatively complicated computation of
the equilibrium moments.
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Although the correct macroscopic equations can be derived
by introducing artificial source terms [26], additional ad-
justable parameter [28], or extended equilibrium distribution
function [24,25], these treatments are not necessary. Actually,
the correct NSEs can be obtained by exploiting the proper-
ties of the rectangular MRT-LB (RMRT-LB) model without
adding any additional terms. Based on this idea, Zecevic et al.
[34] presented a RLB method on two- and three-dimensional
lattices. They adopted a different set of basis vectors that
allows hydrodynamic behavior to be restored through ad-
justing relaxation parameters. We note that the RMRT-LB
model of Zecevic et al. [34] still has some certain limitations.
For instance, as stated in Ref. [34], there is no orthogo-
nal transformation matrix for the rD3Q19 lattice; thus the
RMRT-LB model with rD3Q19 lattice cannot be given [34].
However, the RMRT-LB model with rD3Q19 lattice actually
exists. In addition, the equilibrium distribution function and
the bulk viscosity in the NSEs are also not considered in
Ref. [34].

In this work, we intend to construct a general RMRT-LB
method for the Navier-Stokes and nonlinear convection-
diffusion equations by extending the recent unified framework
of the standard MRT-LB method [16], and derive a general
rectangular equilibrium distribution function proposed by Lu
et al. [35] in detail. Here we would like to point out that in
most of the RMRT-LB models, the collision process is carried
out in the moment space rather than the velocity (distribution
function) space; thus the analysis method (e.g., the Chapman-
Enskog expansion) is very complicated and often depends on
the specified lattice structure or discrete velocity set. Consid-
ering these problems, we will construct a unified framework
for the modeling and analysis of the RMRT-LB method in
the velocity space, following the previous work [16]. This
modeling and analysis approach maintains the simplicity, gen-
erality, and efficiency similar to that for the SRT-LB model.
For simplicity, we only give some basic elements in the im-
plementation of the RMRT-LB method, including the velocity
moments, the weight coefficients of different lattice models
(e.g., rD2Q9, rD3Q19, and rD3Q27 lattices), the equilibrium,
and auxiliary and source distribution functions. Through the
direct Taylor expansion method, the NSEs can be correctly
recovered through properly selecting the relaxation submatrix
S2, which is related to kinetic and bulk viscosities. In addition,
the present RMRT-LB model would reduce to the unified
framework of the MRT-LB method [16] with the grid aspect
ratio being 1 and sound speed c2

s = c2/3. However, if c2
s �=

c2/3 and the standard lattice is used, the present RMRT-LB
method can be considered as a kind of MRT-LB method for
the NSEs and convection-diffusion equations (CDEs) [17,36–
38]. We would also like to point out that the present RMRT-LB
method is a natural extension to the previous work [16], and
it does not introduce any assumptions or additional compu-
tational steps. What is more, compared to the available RLB
models, the present one is very simple and easy to implement.

The rest of this paper is organized as follows. In Sec. II,
the rectangular multiple-relaxation-time lattice Boltzmann
method is presented, and the direct Taylor expansion analysis
of the present RMRT-LB method is conducted to recover the
macroscopic equations in Sec. III. After that, we present the
structure of the collision matrix and some special cases of the

RMRT-LB method in Sec. IV. Finally, some conclusions are
summarized in Sec. V.

II. RECTANGULAR MULTIPLE-RELAXATION-TIME
LATTICE BOLTZMANN METHOD

The evolution equation of the RMRT-LB method with the
rectangular DdQq (rDdQq) lattice has the same form as that
of the MRT-LB method [16]:

f j (x + c j�t, t + �t )

= f j (x, t ) − � jk f ne
k (x, t )

+ �t

[
Gj (x, t ) + Fj (x, t ) + �t

2
D̄ jFj (x, t )

]
, (1)

where f j (x, t ) is the distribution function at position x
in d-dimensional space and time t along the velocity c j ,
f ne

j (x, t ) = f j (x, t ) − f eq
j (x, t ) is the nonequilibrium distribu-

tion function (NEDF), and f eq
j (x, t ) is the EDF. Fj (x, t ) is the

distribution function of a source or forcing term, Gj (x, t ) is
the auxiliary distribution function, and � = (� jk ) is a q × q
invertible collision matrix. �t is the time step, D̄ j = ∂t +
γ c j · ∇ with γ = 1 for NSEs and γ ∈ {0, 1} for the NCDE.
In the evolution equation (1), the key elements, c j, f eq

j , Fj, Gj

and �, must be given properly.
The unknown macroscopic conserved variable(s), φ(x, t )

for the NCDE, or ρ(x, t ) and u(x, t ) for NSEs, can be com-
puted by

φ(x, t ) =
∑

j

f j (x, t ), (2a)

ρ(x, t ) =
∑

j

f j (x, t ),

u(x, t ) =
∑

j

c j f j (x, t )/ρ(x, t ). (2b)

The evolution equation (1) can be divided into two substeps,
i.e., collision,

f̃ j (x, t ) = f j (x, t ) − � jk f ne
k (x, t )

+ �t

[
Gj (x, t ) + Fj (x, t ) + �t

2
D̄ jFj (x, t )

]
, (3a)

and propagation,

f j (x + c j�t, t + �t ) = f̃ j (x, t ), (3b)

where f̃ j (x, t ) is the postcollision distribution function.
As pointed out in Ref. [16], in almost all of the MRT-LB

models, the collision process in Eq. (1) is carried out in the
moment space, and the analysis method (e.g., the popular
Chapman-Enskog analysis) is usually more complicated and
often depends on the specified lattice structure or discrete
velocity set [3,37,39–41]. In this work, we will extend the
unified framework of the MRT-LB method [16] to that of the
RMRT-LB method.

In the implementation of the RMRT-LB method, there
are two popular schemes that can be used to discretize the
term D̄ jFj (x, t ) on the right-hand side of Eq. (1). Actually, if
γ = 0, the first-order explicit difference scheme ∂t Fj (x, t ) =
[Fj (x, t ) − Fj (x, t − �t )]/�t is adopted for NCDEs [39,42].
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For the case of γ = 1, however, we can use the first-order
implicit difference scheme (∂t + c j · ∇)Fj (x, t ) = [Fj (x +
c j�t, t + �t ) − Fj (x, t )]/�t for both NCDE and NSEs, and
take the transform f̄ j = f j − �t

2 Fj as in Refs. [39,43,44]; then
Eq. (1) becomes

f̄ j (x + c j�t, t + �t )

= f̄ j (x, t ) − � jk f̄ ne
k (x, t )

+ �t[Gj (x, t ) + (δ jk − � jk/2)Fk (x, t )], (4)

where f̄ ne
j (x, t ) = f̄ j (x, t ) − f eq

j (x, t ). Additionally, we also
have the following relations [36,45,46]:∑

j

f j (x, t ) =
∑

j

f̄ j (x, t ) + �t

2

∑
j

Fj (x, t ), (5a)

∑
j

c j f j (x, t ) =
∑

j

c j f̄ j (x, t ) + �t

2

∑
j

c jFj (x, t ). (5b)

It follows from Eqs. (2) and (5) that for the NCDE,

φ(x, t ) =
∑

j

f̄ j (x, t ) + �t

2

∑
j

Fj (x, t ), (6)

or for NSEs,

ρ(x, t ) =
∑

j

f̄ j (x, t ) + �t

2

∑
j

Fj (x, t ), (7a)

u(x, t ) =
[∑

j

c j f̄ j (x, t ) + �t

2

∑
j

c jFj (x, t )

]/
ρ(x, t ).

(7b)

III. THE ANALYSIS OF THE RMRT-LB METHOD:
DIRECT TAYLOR EXPANSION

There are four basic analysis methods that can be used
to recover the macroscopic NSEs and NCDE from the LB
models, i.e., the Chapman-Enskog (CE) analysis [21,47,48],
the Maxwell iteration (MI) method [49,50], the direct Taylor
expansion (DTE) method [51–53], and the recurrence equa-
tion (RE) method [20,54,55]. In Ref. [16], these four methods
have been compared, and it is shown that they can give the
same equations at the second order of expansion parameters,
while the DTE method is much simpler. In what follows, only
the DTE method is used to analyze the RMRT-LB model
for NSEs; a similar analysis for the NCDE can be found in
Appendix B.

Applying the Taylor expansion to Eq. (1), one can get
N∑

l=1

�t l

l!
Dl

j f j + O(�tN+1) = −� jk f ne
k + �t F̃j, N � 1, (8)

where F̃j = Gj + Fj + �t D̄ jFj/2, Dj = ∂t + c j · � .
Based on f j = f eq

j + f ne
j and Eq. (8), the following equa-

tions can be obtained:

f ne
j = O(�t ), (9a)

N−1∑
l=1

�t l

l!
Dl

j

(
f eq

j + f ne
j

)+ �tN

N!
DN

j f eq
j

= −� jk f ne
k + �t F̃j + O(�tN+1), N � 1. (9b)

Then from Eq. (9b), we can derive the equations at first and
second orders of �t ,

Dj f eq
j = −� jk

�t
f ne
k + Gj + Fj + O(�t ),

(10a)

Dj
(

f eq
j + f ne

j

)+ �t

2
D2

j f eq
j = −� jk

�t
f ne
k + Gj + Fj

+ �t

2
D̄ jFj + O(�t2). (10b)

According to Eq. (10a), we have

�t

2
D2

j f eq
j = −1

2
Dj� jk f ne

k + �t

2
Dj (Gj + Fj ) + O(�t2).

(11)
Substituting Eq. (11) into Eq. (10b), one can obtain the fol-
lowing equation:

Dj f eq
j + Dj

(
δ jk − � jk

2

)
f ne
k + �t

2
DjGj

= −� jk

�t
f ne
k + Gj + Fj + �t

2
(D̄ j − Dj )Fj + O(�t2).

(12)

Based on Eqs. (10a) and (12), the related macroscopic
equation (NSEs and NCDE) can be recovered with some
proper constraints on the collision matrix � and the moments
of f eq

j , Gj , and Fj . For NSEs, if we take γ = 1, then Eq. (12)
can be simplified by

Dj f eq
j + Dj

(
δ jk − � jk

2

)
f ne
k + �t

2
DjGj

= −� jk

�t
f ne
k + Gj + Fj + O(�t2). (13)

For the sake of convenience, we introduce the following
matrices:

e = (1, 1, . . . , 1) = (ek )1×q, (14a)

E = (c0, c1, . . . , cq−1) = (ck )d×q, (14b)

〈EE〉 = (c0c0, c1c1, . . . , cq−1cq−1) = (ckck )d2×q, (14c)

where ek , ck , and ckck are the kth column of e, E, and 〈EE〉,
respectively.

A. The derivation of Navier-Stokes equations using DTE method

As pointed out in Ref. [16], the third-order moment of
the EDF for the NCDE does not appear in the direct Taylor
expansion; therefore, the anisotropy of the lattice tensor on
a rectangular lattice would not affect the relevant derivation
process for the NCDE. For this reason, we will focus on the
RMRT-LB model for NSEs, and the RMRT-LB model for the
NCDE is given in Appendix B.

We now consider the following d-dimensional NSEs with
the source and forcing terms,

∂tρ + ∇ · (ρu) = S̄, (15a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · σ + F̄, (15b)
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where the viscous shear stress σ is defined by

σ = μ[∇u + (∇u)T ] + λ(∇ · u)I

= μ

[
∇u + (∇u)T − 2

d
(∇ · u)I

]
+ μb(∇ · u)I, (16)

where μ is the dynamic viscosity, and λ = μb − 2μ/d with
μb being the bulk viscosity [56,57].

To recover NSEs from the MRT-LB method [Eq. (1)], we
need to put some constraints on �, f j , f eq

j , Gj , and Fj . In ad-
dition, compared to the NCDE [see Eq. (B2) in Appendix B],
there is another requirement on the high-order moments of the
distribution function for NSEs. Here the following conditions
should be satisfied:

ρ =
∑

j

f j =
∑

j

f eq
j ,

ρu =
∑

j

c j f j =
∑

j

c j f eq
j , (17a)

∑
j

c jc j f eq
j = c2

s ρI + ρuu,

∑
j

c jc jc j f eq
j = ρ(c2

s � + δ̄(4) ) · u, (17b)

∑
j

Fj = S̄,
∑

j

c jFj = F̄,
∑

j

c jc jFj = 0, (17c)

∑
j

G j = 0,
∑

j

c jG j = 0,

∑
j

c jc jG j = M2G, (17d)

∑
j

e j� jk = s0ek,
∑

j

c j� jk = S10ek + S1ck,

∑
j

c jc j� jk = S20ek + S21ck + S2ckck, (17e)

where cs is an adjustable lattice sound speed, �αβγ θ =
δαβδγ θ + δαγ δβθ + δβγ δαθ , and δ̄(4) is caused by the

anisotropy of the lattice tensor, and is given by

δ̄
(4)
αβγ θ = c2

α − 3c2
s , α = β = γ = θ, δ̄

(4)
αβγ θ = 0, else.

(18)

cα = �xα/�t (α = 1, 2, . . . , d) in d-dimensional space with
�xα being the spacing step in the α axis. M2G is a second-
order tensor to be determined below, S10 is a d × 1 matrix,
S1 is an invertible d × d relaxation submatrix, S20 and S21

are two d2 × 1 and d2 × d matrices, and S2 is an invertible
d2 × d2 relaxation submatrix corresponding to the dynamic
and bulk viscosities. Additionally, Eq. (17a) gives the follow-
ing conditions: ∑

j

f ne
j =

∑
j

(
f j − f eq

j

) = 0,

∑
j

c j f ne
j =

∑
j

c j
(

f j − f eq
j

) = 0, (19)

which are the mass and momentum conservation.
Summing Eq. (13) and adopting Eqs. (17) and (19), one

can obtain

∂tρ + ∇ · (ρu) = S̄ + O(�t2), (20)

which indicates that the continuity equation (15a) is recovered
correctly at O(�t2).

Multiplying c j on both sides of Eqs. (10a) and (13), and
through a summation over j, we have

∂t (ρu) + ∇ · (c2
s ρI + ρuu

) = F̄ + O(�t ), (21a)

∂t (ρu) + ∇ · (c2
s ρI + ρuu

)+ ∇ · (I − S2/2)
∑

k

ckck f (ne)
k

+ �t

2
∇ · M2G = F̄ + O(�t2), (21b)

where Eqs. (17) and (19) have been used. In addition, from
Eqs. (10a), (17), and (20) we get

∑
k

ckck f ne
k = −�tS−1

2

∑
k

ckck
(
Dk f eq

k − Gk − Fk
)+ O(�t2)

= −�tS−1
2

[
∂t

∑
k

ckck f eq
k + ∇ ·

∑
k

ckckck f eq
k − M2G

]
+ O(�t2)

= −�tS−1
2

[
∂t
(
c2

s ρI + ρuu
)+ ∇ · (ρ(c2

s � + δ̄(4)
) · u

)− M2G
]+ O(�t2)

= −�tS−1
2

[
∂t (ρuu) + c2

s (∇ρu + (∇ρu)T ) + ∇ · (ρδ̄(4) · u) + c2
s S̄I − M2G

]+ O(�t2). (22)

Based on Eqs. (20) and (21a), the following equations can be obtained:

∂t (ρuu) = uF̄ + F̄u − c2
s [u∇ρ + (u∇ρ)T ] − ∇ · (ρuuu) − uuS̄ + O(�tMa), (23a)

c2
s [∇ρu + (∇ρu)T ] = c2

s ρ[∇u + (∇u)T ] + c2
s [u∇ρ + (u∇ρ)T ], (23b)

∇ · (ρδ̄(4) · u) = ρ∇ · (δ̄(4) · u) + O(Ma3), (23c)

then we can rewrite Eq. (22) as∑
k

ckck f ne
k = −�tS−1

2

[
ρc2

s (∇u + (∇u)T ) + ρ∇ · (δ̄(4) · u) + uF̄ + F̄u + (
c2

s I − uu
)
S̄ − M2G

]+ O(�t2 + �tMa3), (24)
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where Ma is the Mach number, and the relations ∇ρ =
O(Ma2), u = O(Ma), and ∇ · (ρuuu) = O(Ma3) have been
used.

Substituting Eq. (24) into Eq. (21b) and using Eq. (17), we
can obtain

∂t (ρu) + ∇ · (c2
s ρI + ρuu

)
= �t∇ · [ρ(S−1

2 − I/2
)(

c2
s

(∇u+ (∇u)T
)+ ∇ · (δ̄(4) · u)

)]
+ F̄ + �t∇ · RH2 + O(�t2 + �tMa3), (25)

where

RH2 = (
S−1

2 − I/2
)(

uF̄ + F̄u + (
c2

s I − uu
)
S̄
)− S−1

2 M2G.

(26)
To obtain the correct NSEs, RH2 = 0 should be satisfied,

which gives the following equation:

M2G = (I − S2/2)
(
uF̄ + F̄u + (

c2
s I − uu

)
S̄
)
. (27)

Then Eq. (25) can be rewritten as

∂t (ρu)+ ∇ · (c2
s ρI+ ρuu

) = ∇ · τ + F̄+ O(�t2+ �tMa3),
(28)

where

τ = �tρ
(
S−1

2 − I
/

2
)[

c2
s

(∇u + (∇u)T
)+ ∇ · (δ̄(4) · u)

]
,

(29)
which needs to be determined as a viscous term through se-
lecting the proper relaxation matrix S−1

2 .
Let

S−1
2 =

(
S(1)

2 0

0 S(2)
2

)
, (30)

with

S(1)
2 = diag

(
s−1

sα

)+ abT
/

d, S(2)
2 = diag

(
s−1
αβ

)
α �=β

, (31)

where a = (aα ), b = (bβ ) with aα = (s−1
bα − s−1

sα )(c2
α − c2

s )
and bβ = 1/(c2

β − c2
s ). Then substituting Eq. (30) into

Eq. (29), one can obtain the viscous shear stress,

τ = μ

[
∇u + (∇u)T − 2

d
(∇ · u)I

]
+ μb[(∇ · u)I], (32)

where μ and μb are dynamic and bulk viscosities,

μ =
(

s−1
αβ − 1

2

)
ρc2

s �t, α �= β,

μ = 1

2

(
s−1

sα − 1

2

)
ρ
(
c2
α − c2

s

)
�t, (33a)

μb = 1

d

(
s−1

bα − 1

2

)
ρ
(
c2
α − c2

s

)
�t . (33b)

When p = ρc2
s and the truncation error O(�t2 + �tMa3) is

neglected, Eq. (28) becomes

∂t (ρu) + ∇ · (pI + ρuu)

= ∇ · μ

[
∇u + (∇u)T − 2

d
(∇ · u)I

]
+ ∇ · μb[(∇ · u)I] + F̄, (34)

which are NSEs (15) with dynamic and bulk viscosities de-
fined by Eq. (33).

From Eq. (33a) one can find that there is no any SRT
version of the RMRT-LB model since at least two different
relaxation parameters are needed for the rDdQq lattice with
different cα .

Remark 1. We note that one can obtain the following gen-
eralized viscous shear stress from Eq. (29),

τ = Kμ

[
∇u + (∇u)T − 2

d
(∇ · u)I

]
+ Kμb[(∇ · u)I], (35)

with Kμ and Kμb being dynamic and bulk viscosity tensors,

Kμ,αβ =
(

s−1
αβ − 1

2

)
ρc2

s �t, α �= β,

Kμ,αα = 1

2

(
s−1

sα − 1

2

)
ρ
(
c2
α − c2

s

)
�t, (36a)

Kμb,αα = 1

d

(
s−1

bα − 1

2

)
ρ
(
c2
α − c2

s

)
�t . (36b)

Then the following generalized NSEs can be obtained:

∂t (ρu) + ∇ · (pI + ρuu)

= ∇ · Kμ

[
∇u + (∇u)T − 2

d
(∇ · u)I

]
+ ∇ · [Kμb[(∇ · u)I] + F̄. (37)

The physical meaning and applications of this equation need
to be considered in the future.

It should be noted that, due to its inherent characteristics,
the present RMRT-LB model can correctly recover the NSEs
[Eq. (15)], while it is only suitable for incompressible or
weakly compressible fluid flows since the third-order term
in the Mach number has been omitted, as discussed above.
Finally, we also present a local scheme to calculate the viscous
shear stress or strain rate tensor in the framework of the LB
method [40,58,59]. From Eqs. (24), (32), and (33), one can
obtain different approximate formulas for the viscous shear
stress,

τ = −(I − S2/2)

[∑
k

ckck f ne
k + �t

2

(
uF̄ + F̄u + (

c2
s I − uu

)
S̄
)]+ O(�t2 + �tMa3)

= −(I − S2/2)

[∑
k

ckck f ne
k + �t

2

(
uF̄ + F̄u + c2

s S̄I
)]+ O(�t2 + �tMa3)

= −(I − S2/2)

[∑
k

ckck f ne
k + �t

2
c2

s S̄I

]
+ O(�t2 + �tMa2), (38)
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where uuS̄ = O(Ma3) and uF̄ + F̄u = O(Ma2) are used.
For incompressible fluid flows, the term O(�t2 + �tMa3) in Eq. (38) can be neglected; then the following local scheme for

viscous stress with a second-order accuracy in time can be obtained from Eq. (38):

μ(∇u + (∇u)T ) = −(I − S2/2)

[∑
k

ckck f ne
k + �t

2

(
uF̄ + F̄u + c2

s S̄I
)]

, (39)

where S2 is a diagonal matrix with S2,αα = ssα , and S2,αβ = sαβ (α �= β).
Based on Eq. (39), one can also give an expression of strain rate tensor with a second-order accuracy in time,

∇u + (∇u)T

2
= −(μ−1/2)(I − S2/2)

[∑
k

ckck f ne
k + �t

2

(
uF̄ + F̄u + c2

s S̄I
)]

. (40)

It should be noted that if the term uF̄ + F̄u in Eqs. (27), (39), and (40) is neglected, the much simpler formulas can be obtained
with the truncation error O(�t2 + �tMa2).

In addition, from Eqs. (38) and (39) we obtain∑
k

ckck f ne
k = −(I − S2/2)−1τ − �t

2

(
uF̄ + F̄u + c2

s S̄I
)+ O(�t2 + �tMa3)

= −(I − S2/2)−1τ − �t

2
c2

s S̄I + O(�t2 + �tMa2), (41)

∑
k

ckck f ne
k = −(I − S2/2)−1μ(∇u + (∇u)T ) − �t

2

(
uF̄ + F̄u + c2

s S̄I
)+ O(�t2 + �tMa3)

= −(I − S2/2)−1μ(∇u + (∇u)T ) − �t

2
c2

s S̄I + O(�t2 + �tMa2). (42)

If we introduce mne
2 = ∑

k ckck f ne
k and utilize Eqs. (19), (41), (42), and (44) with csα = cs for all α, one can derive a useful

formula to approximate f ne
j ,

f ne
j = geq

j

(
0, 0, mne

2

) = ω jQ̃ j : mne
2 = ω j

⎡
⎣∑

α

mne
2,αα

(
c2

jα − c2
s

)
c2

s

(
c2
α − c2

s

) +
∑
ᾱ �=α

mne
2,αᾱ (c jαc jᾱ )

2c4
s

⎤
⎦, (43)

where ᾱ denotes the index γ with γ �= α. Equation (43) is an
extension of the formula given by Guo and Zhao in Ref. [10]
when � = S = I/τ (τ is the relaxation time), cα = c, and
c2

s = c2/3, and it can also be used for the initialization of f j .

B. The equilibrium, auxiliary, and source distribution functions
of the RMRT-LB method for NSEs

From the above analysis, one can clearly observe that to
recover the macroscopic NSEs (15) from RMRT-LB method
(1), the equilibrium, auxiliary, and source distribution func-
tions should satisfy some necessary requirements, as depicted
by Eq. (17). In this work, we would consider the common
quadratic form of the EDF. Actually, the EDF is not unique
[18,21,38], but it must satisfy some basic moment conditions.

Based on the previous work [35], we first present the
following EDF with a general quadratic form on the rDdQq
lattice, which can be viewed as an extension of the commonly
used one,

geq
j (A, B, M) = ω j (A + c̃ j · B + Q̃ j : M), (44)

where ω j is the weight coefficient (see Appendix A), and

c̃ jα = c jα
/

c2
sα, Q̃ jαα = Q jαα

/(
c2

sα

(
c2
α − c2

sα

))
,

Q̃ jαβ = Q jαβ

/(
2c2

sαc2
sβ

)
(α �= β ), Q j = c jc j − �(2).

(45)

Here �(2) is given by Eq. (A6) in Appendix A. We would also
like to point out that, strictly speaking, csα is direction depen-
dent; while it is usually taken to be a direction-independent
form with csα = cs, cs is an adjustable parameter [17,36–
38,60].

According to the properties of rDdQq lattice models, and
after some algebraic manipulations, we can obtain the basic
moments of geq

j on the rDdQq lattice [35],

∑
j

geq
j = A,

∑
j

c jg
eq
j = B,

∑
j

c jc jg
eq
j = A�(2) + M, (46a)

∑
j

c jc jc jg
eq
j = �(4) · B̃, (46b)

where B̃α = Bα/c2
sα , �(4) = 〈�(2)�(2)〉 + δ(4), which is de-

fined by Eq. (A19).
With the help of Eq. (A19), we can rewrite Eq. (46b) as

∑
j

c jαc jβc jγ geq
j = �

(2)
αβBγ + �(2)

αγ Bβ + �
(2)
βγ Bα + δ

(4)
αβγ θ B̃θ .

(47)
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For a rDdQq lattice model, to satisfy the moment condi-
tions in Eq. (17), the explicit expressions of f eq

j , Gj , and Fj

with csα = cs for all α can be given by

f eq
j = geq

j (ρ, ρu, ρuu) = ρgeq
j (1, u, uu)

= ω jρ

[
1 + c jαuα

c2
s

+ u2
α

(
c2

jα − c2
s

)
c2

s

(
c2
α − c2

s

) + uαuᾱ (c jαc jᾱ )

2c4
s

]
,

(48)

Gj = geq
j (0, 0, M2G)

= ω j

[
M2G,αα

(
c2

jα − c2
s

)
c2

s

(
c2
α − c2

s

) + M2G,αᾱ (c jαc jᾱ )

2c4
s

]
, (49)

Fj = geq
j

(
S̄, F̄,−c2

s S̄I
) = ω j

[
S̄ + c jαF̄α

c2
s

− S̄
eα

(
c2

jα − c2
s

)
c2
α − c2

s

]
,

(50)

where M2G is determined by Eq. (27), and can also be com-
puted by

M2G = (I − S2/2)
(
uF̄ + F̄u + c2

s S̄I
)
, (51)

where uuS̄ = O(Ma3) has been used to derive Eq. (51).
From the above discussion, one can find that the NSEs and

NCDE can be recovered correctly from the RMRT-LB method
through the DTE method. In other words, the present RMRT-
LB method not only can be used to study fluid flow problems
governed by the NSEs, but also can be adopted to investigate
the heat and mass transport problems depicted by the coupled
NCDE(s) and NSEs.

Remark 2. The second-order moment of f ne
j , i.e.,

〈EE〉fne = ∑
k ckck f ne

k in Eqs. (39) or (40), can be computed
by its counterpart (〈EE〉fne = mne

〈EE〉 = m〈EE〉 − meq
〈EE〉) in the

moment space [see Eqs. (53) or (54)].
Remark 3. It can be seen from Eq. (36) that the RMRT-LB

model on a rectangular or standard lattice with c2
s �= c2/3

does not have the versions of the SRT-LB model and two-
relaxation-time lattice Boltzmann (TRT-LB) model [38,61];
this is because there are at least two different relaxation factors
related to the second-order moment of f eq

j (or to the dynamic
viscosity μ). Keeping this in mind, we can find that the
RMRT-LB model in Ref. [27] has only one relaxation factor
sμ related to the viscosity μ; thus it cannot recover NSEs (15)
correctly.

Remark 4. For the standard lattice, if c2
s �= c2/3, we can

obtain the forms of f eq
j , Gj , and Fj defined by Eqs. (48)–(50)

for NSEs, which gives a kind of MRT-LB model with the
sound speed cs as an adjustable parameter.

Remark 5. Inserting ρ = ρ0 + δρ with δρ = O(Ma2) into
Eq. (48), and omitting the terms of O(Ma3), one can obtain the
previous LB model [62] from the present RMRT-LB model
with f eq

j = geq
j (ρ, ρ0u, ρ0uu).

Remark 6. Under the assumption of low Mach number, we
can take a = 0 or s−1

bα = s−1
sα for all α in Eq. (31); thus S−1

2 can
be simplified by a diagonal matrix.

IV. STRUCTURE OF COLLISION MATRIX AND SOME
SPECIAL CASES OF THE RMRT-LB METHOD

A. Structure of collision matrix

As we know, the MRT-LB model can also be analyzed and
implemented in moment space. When the discrete velocity
set Vq = {c j, 0 � j � q − 1} or the rDdQq lattice model is
given, we can construct different forms of collision matrix �

in the RMRT-LB method [Eq. (1)]. In general, the commonly
used collision matrix � satisfying the constraints in Eq. (17)
or Eq. (B2) has the following form [16]:

� = M−1SM, (52a)
S = (Sk j ), Sk j = 0 (k < j), Skk = Sk, (52b)

where M ∈ Rq×q is an invertible transformation matrix, whose
rows are composed of discrete velocities in Vq, S is a
block-lower-triangle matrix, Sk ∈ Rnk×nk is a relaxation ma-
trix corresponding to the kth-order (0 � k � m) moment of
discrete velocity.

Given a transformation matrix M, let f = ( f0, f1, . . . ,

fq−1)T , feq = ( f eq
0 , f eq

1 , . . . , f eq
q−1)T , then one can execute the

transformation between velocity space and moment space,

m = Mf, meq = Mfeq, (53)

or equivalently,

f = M−1m, feq = M−1meq. (54)

Using Eqs. (52)–(54), the evolution equation of the RMRT-
LB method [Eqs. (3)] can be written in a matrix form, for
collision in moment space,

m̃(x, t ) = m(x, t ) − Smne(x, t )

+ �t

[
mG(x, t ) + mF (x, t ) + �t

2
D̃mF (x, t )

]
,

(55a)

and propagation in velocity space,

f (x + c j�t, t + �t ) = M−1m̃(x, t ), (55b)

where f (x + c j�t, t + �t ) = ( f0(x + c0�t, t + �t ), f1(x +
c1�t, t + �t ), . . . , fq−1(x + cq−1�t, t + �t ))T , mne = m −
meq, mG = MG, mF = MF, G = (G0, G1, . . . , Gq−1)T , F =
(F0, F1, . . . , Fq−1)T , and D̃ = M−1diag(D̄ j )M. On the other
hand, one can also implement the RMRT-LB method
[Eqs. (3)] in the velocity space, for collision,

f̃ (x, t ) = M−1(m(x, t ) − Smne(x, t ))

+ �t

[
G(x, t ) + F(x, t ) + �t

2
diag(D̄ j )F(x, t )

]
,

(56a)

and propagation,

f (x + c j�t, t + �t ) = f̃ (x, t ). (56b)

Similarly, the RMRT-LB method [Eq. (4)] can also be
conducted as

f̄ (x + c j�t, t + �t ) = M−1[m̄(x, t ) − Sm̄ne(x, t )

+ �t (mG(x, t )+ (I− S/2)mF (x, t ))],
(57)

where f̄ = f − �tF/2, m̄ = Mf̄ , and m̄ne = m̄ − meq.
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From Eqs. (1), (3), and (55)–(57), we can see that there are
two ways to analyze and implement the RMRT-LB method:
the first one in velocity space and the other in moment space.
To recover the NSEs (15) or NCDE (B1) from the RMRT-LB
method, one only needs the basic constraints on the functions
f eq

j , Gj , and Fj and the collision matrix � given in Eqs. (17)
or (B2). Therefore, using the first way we can analyze the LB
models under a unified framework, as shown in Ref. [16].
Compared to the first way, the second one depends on the
choice of rDdQq lattice model and the form of the transfor-
mation matrix M, and additionally, the equilibrium moment
meq also needs to be given properly, which leads to the fact
that the modeling and analysis of the MRT-LB models are
usually limited to the specified space dimension and lattice
structure. This may be one of the main reasons why the
RMRT-LB model has not been developed well for a long
time. However, the analysis method in moment space enables
us to design the equilibrium moment meq (e.g., the inverse
design of the LB model as in Refs. [24]) more flexibly by
selecting the appropriate transformation matrix M, and the
high-order moments which do not influence the recovery of
the macroscopic equation(s). If necessary, one can obtain the
corresponding EDF f eq

j by taking the inverse transformation
(54). It should be noted in this case that the obtained f eq

j may
not have the same form as Eqs. (48) or (C1).

Actually, there are still some key questions in the RMRT-
LB method. For example, what are the relationships among
different forms of collision matrices? How do we choose a
proper one? Thanks to the form of the collision matrix in
Eq. (52), one can answer the first question, while the second
one needs to be further studied.

It is worth noting that the collision matrices in the com-
monly used MRT-LB method are of the form in Eq. (52)
[16], including the raw (natural) moment, cascaded (central-
moment), Hermite-moment, and central-Hermite-moment LB
models [63,64] with orthogonal and nonorthogonal basis vec-
tors. In fact, any two of the transformation matrices M and M̄
in these MRT-LB models have the relation,

M̄ = NM, (58)

and one can write the collision matrices with the form in
Eq. (52),

� = M̄−1S̄M̄ = (NM)−1S̄(NM) = M−1SM, (59)

where N is a block-lower-triangle matrix, S = N−1S̄N, which
means that S̄ is a block-lower-triangle matrix if and only if
S is of the same form. Therefore, the existing MRT-LB mod-
els mentioned above can be considered special cases of the
present RMRT-LB method. Furthermore, the present RMRT-
LB method includes three kinds of MRT-LB models: (1) the
popular MRT-LB models on the standard DdQq lattice with
c2

s = c2/3 [65,66], (2) the MRT-LB models on the standard
DdQq lattice with c2

s �= c2/3, and (3) the MRT-LB models on
the rectangular rDdQq lattice.

Due to the construction of the relaxation matrix S in
Eq. (52b), and based on Eqs. (58) and (59), we only use
the transformation matrix M related to the raw or natural
moments in the analysis and implementation of the RMRT-LB

method,

mnmp =
∑

j

cm
jxcn

jycp
jz f j,

meq
nmp =

∑
j

cm
jxcn

jycp
jz f eq

j , m, n, p ∈ {0, 1, 2}, (60)

where mmn = mmn0 and meq
mn = meq

mn0 for the two-dimensional
case. The transformation matrix M related to the natural mo-
ments in Eq. (60) is composed of {cm

jxcn
jycp

jz, 0 � j � q − 1}.
Denoting M with the following form,

M = (
MT

0 , MT
1 , MT

2 , . . . , MT
m

)T
, Mk ∈ Rnk×q, 0 � k � m,

(61)
then from Eq. (52) we have

Mk� =
k∑

j=0

Sk jM j, 0 � k � m, (62)

with the rows corresponding to the zero-, first-, and second-
order moments,

M0 = e = (1, 1, . . . , 1),

M1 = E = (c0, c1, . . . , cq−1), (63a)

M2 =
(

M(1)
2

M(2)
2

)
,

S0 ∈ R, S1 ∈ Rd×d ,

S2 ∈ Rd̄×d̄ , d̄ = d (d + 1)/2, (63b)

where M(1)
2 = (c0αc0α, c1αc1α, . . . , cq−1αcq−1α ) and M(2)

2 =
(c0αc0β, c1αc1β, . . . , cq−1αcq−1β )α<β . According to Eqs. (30)
and (31), we can determine the relaxation submatrix S2 as

S2 =
(

S̄(1)
2 0
0 S̄(2)

2

)
, (64)

with

S̄(1)
2 = (

S(1)
2

)−1 = A − AābT A
1 + bT Aā

,

S̄(2)
2 = (

S(2)
2

)−1 = diag(sαβ )α<β, (65)

where A = diag(ssα ), ā = a/d , and a and b are defined by
Eq. (31). Note that the elements {sαβ}α>β are not contained in

S̄2 or (S(2)
2 )

−1
since sαβ = sβα for α �= β.

For a particular case Sk j = 0 (k > j), one can obtain

S = diag(S0, S1, . . . , Sm), (66)

and Eq. (62) would reduce to

Mk� = SkMk, 0 � k � m, (67)

which can be used to derive the commonly used MRT-LB
model [3,4].

B. Some special cases of the RMRT-LB method

1. Natural-moment-based RMRT-LB method on rD2Q9 lattice

It should be noted that for the rDdQq lattice, the matrix
M in Eq. (60) can be expressed as M = DM̃ with D being a
diagonal matrix. When the discrete velocity set Vq is given,
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one can obtain the matrix M and the other basic components
of the RMRT-LB method, such as the collision matrix with
proper relaxation matrix, the distribution functions f eq

j , Gj ,
and Fj , and their moments. We now take the rD2Q9 lattice
model [see Eq. (A1)] with the weight coefficients defined by
Eqs. (A9) and (A10) as an example, and M̃, D, and meq

g can
be given by

M̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(68a)

D = diag
(
1, c1, c2, c2

1, c2
2, c1c2, c1c2

2, c2
1c2, c2

1c2
2

)
, (68b)

meq
g = Mgeq = (

A, Bx, By, c2
s1A + Mxx, c2

s2A

+ Myy, Mxy, c2
s2Bx, c2

s1By, c2
s1c2

s2A

+ c2
s2Mxx + c2

s1Myy
)T

. (69)

The distribution function geq
j defined by Eq. (44) can be

written as

geq
j (A, B, M) = ω j

[
A + c jαBα

c2
sα

+ Mxx
(
c2

jx − c2
s1

)
c2

s1

(
c2

1 − c2
s1

)
+Myy

(
c2

jy − c2
s2

)
c2

s2

(
c2

2 − c2
s2

) + Mxy(c jxc jy)

c2
s1c2

s2

]
. (70)

If we consider the NSEs and take cs1 = cs2 = cs in Eqs. (69)
and (70), one can obtain f eq

j , Gj , Fj , and their moments from
Eqs. (69) and (70),

f eq
j = geq

j (ρ, ρu, ρuu) = ρgeq
j (1, u, uu)

= ω jρ

[
1 + c jαuα

c2
s

+ u2
x

(
c2

jx − c2
s

)
c2

s

(
c2

1 − c2
s

)
+ u2

y

(
c2

jy − c2
s

)
c2

s

(
c2

2 − c2
s

) + uxuyc jxc jy

c4
s

]
, (71)

Gj = geq
j (0, 0, M2G)

= ω j

[
M2G,xx

(
c2

jx − c2
s

)
c2

s

(
c2

1 − c2
s

)
+M2G,yy

(
c2

jy − c2
s

)
c2

s

(
c2

2 − c2
s

) + M2G,xy(c jxc jy)

c4
s

]
, (72)

Fj = geq
j

(
S̄, F̄,−c2

s S̄I
)

= ω j

[
S̄+ c jαF̄α

c2
s

− S̄

(
c2

jx − c2
s

c2
1 − c2

s

+ c2
jy − c2

s

c2
2 − c2

s

)]
, (73)

where M2G is determined by Eqs. (27) or (51), and

meq = Mfeq = ρ
(
1, ux, uy, c2

s + u2
x, c2

s

+ u2
y, uxuy, c2

s ux, c2
s uy, c2

s

(
u2

x + u2
y + c2

s

))T
,

(74)

mG = MG = (
0, 0, 0, M2G,xx, M2G,yy, M2G,xy,

0, 0, c2
s (M2G,xx + M2G,yy)

)T
, (75)

mF = MF = (
S̄, F̄x, F̄y, 0, 0, 0, c2

s F̄x, c2
s F̄y,−c4

s S̄
))T

. (76)

For the He-Luo model [17] with f eq,HL
j = geq

j (ρ, ρ0u, ρ0uu),
we have

meq,HL = Mfeq,HL

= (
ρ, ρ0u, ρ0v, c2

s ρ + ρ0u2, c2
s ρ

+ ρ0v
2, ρ0uv, c2

s ρ0u, c2
s ρ0v,

c2
s (ρ0(u2 + v2) + c2

s ρ)
)T

, (77)

where u = ux, v = uy.
The relaxation submatrix S2 in Eq. (64) and its inverse S−1

2
in Eq. (30) are of the following forms:

S2 =

⎛
⎜⎜⎝

sby+ssy

sbys−1
bx +ssys−1

sx

sbx−ssx

sbxs−1
by +ssxs−1

sy

c2
1−c2

s

c2
2−c2

s
0

sby−ssy

sbys−1
bx +ssys−1

sx

c2
2−c2

s

c2
1−c2

s

sbx+ssx

sbxs−1
by +ssxs−1

sy
0

0 0 sxy

⎞
⎟⎟⎠, (78a)

S−1
2 =

⎛
⎜⎜⎜⎝

1
2

(
s−1

bx + s−1
sx

)
1
2

(
s−1

bx − s−1
sx

) c2
1−c2

s

c2
2−c2

s
0

1
2

(
s−1

by − s−1
sy

) c2
2−c2

s

c2
1−c2

s

1
2

(
s−1

by + s−1
sy

)
0

0 0 s−1
xy

⎞
⎟⎟⎟⎠.

(78b)

In addition, it follows from Eq. (33) that(
s−1

bx − s−1
sx

)(
c2

1 − c2
s

) = (
s−1

by − s−1
sy

)(
c2

2 − c2
s

)
, (79a)(

s−1
bx + s−1

sx − 1
)(

c2
1 − c2

s

) = (
s−1

by + s−1
sy − 1

)(
c2

2 − c2
s

)
.

(79b)

Then S−1
2 in Eq. (78b) becomes

S−1
2 =

⎛
⎜⎜⎝

1
2

(
s−1

bx + s−1
sx

)
1
2

(
s−1

bx − s−1
sx

) c2
1−c2

s

c2
2−c2

s
0

1
2

(
s−1

bx − s−1
sx

)
1
2

(
s−1

bx + s−1
sx

) c2
1−c2

s

c2
2−c2

s
+ 1

2
c2

2−c2
1

c2
2−c2

s
0

0 0 s−1
xy

⎞
⎟⎟⎠.

(80)
Note that to recover correct macroscopic equation(s), only
some basic constraints are needed, which means that for
NSEs, the fourth-order moment of f eq

j , the third- and fourth-
order moments of Gj , and the second- to fourth-order
moments of Fj can be taken as any values. Once these mo-
ments are specified, the distribution functions can be obtained
by feq = M−1meq, G = M−1mG, and F = M−1mF .

2. Hermite-moment-based RMRT-LB method on the rD2Q9 lattice

Based on the transformation matrix M related to the nat-
ural moment, given the matrix N = NH as in Eq. (58) such
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that MH = NH M, one can obtain the Hermite-moment-based
RMRT-LB model with collision matrix � = M−1

H SH MH =
M−1SM with S = N−1

H SH NH . For the rD2Q9 lattice model,
the matrix NH can be given by

NH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

−c2
s1 0 0 1 0 0 0 0 0

−c2
s2 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
0 −c2

s2 0 0 0 0 1 0 0
0 0 −c2

s1 0 0 0 0 1 0
c2

s1c2
s2 0 0 −c2

s2 −c2
s1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (81)

From the expression of NH , it is easy to find that the diagonal elements in the relaxation matrices SH and S are the same as each
other. With the help of the transformation matrix MH , the moments of geq

j in Eq. (70) can be determined by

meq,H
g = MH geq = NH meq

g = (
A, Bx, By, Mxx, Myy, Mxy, 0, 0, 0

)T
. (82)

3. Central-moment-based RMRT-LB method for NSEs on rD2Q9 lattice

Similarly, one can obtain the central-moment-based RMRT-LB model with collision matrix � = M−1
C SCMC = M−1SM with

MC = NCM, S = N−1
C SCNC . For the rD2Q9 lattice model, the expression of NC can be given as

NC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
−u 1 0 0 0 0 0 0 0
−v 0 1 0 0 0 0 0 0
u2 −2u 0 1 0 0 0 0 0
v2 0 −2v 0 1 0 0 0 0
uv −v −u 0 0 1 0 0 0

−uv2 v2 2uv 0 −u −2v 1 0 0
−u2v 2uv u2 −v 0 −2u 0 1 0
u2v2 −2uv2 −2u2v v2 u2 4uv −2u −2v 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (83)

Furthermore, the central-Hermite-moment-based RMRT-LB model with collision matrix � = M−1
HCSHCMHC = M−1SM can

be obtained by the combination of Hermite-moment- and central-moment-based RMRT-LB models in which MHC = NHCM,
S = N−1

HCSHCNHC , and NHC = NH NC . From the forms of NC and NH one can also find that the relaxation matrices SC , SHC , and
S have the same diagonal elements.

4. The RMRT-LB model for NSEs in Reference [34]

It can also be found that the orthogonal transformation matrix MZKA based on the rD2Q9 and rD3Q27 lattices in Ref. [34]
have the form of MZKA = NZKAM with NZKA being a lower-triangular matrix, and meq

ZKA in Ref. [34] can also be obtained,

meq
ZKA = MZKAfeq = NZKAmeq, (84)

with parameters γ2 = γ5 = γ7 = c4
s , γ3 = γ4 = c2

s , γ6 = c6
s . Then we have

NZKA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

−2c2
1 0 0 3 0 0 0 0 0

−2c2
2 0 0 0 3 0 0 0 0

0 0 0 0 0 1 0 0 0
0 −2c2

2 0 0 0 0 3 0 0
0 0 −2c2

1 0 0 0 0 3 0
4c2

1c2
2 0 0 −6c2

2 −6c2
1 0 0 0 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (85)

meq
ZKA = ρ

(
1, u, v, 3

(
c2

s + u2
)− 2c2

1, 3
(
c2

s + v2
)− 2c2

2, uv, u
(
3c2

s − 2c2
2

)
, v
(
3c2

s − 2c2
1

)
,C
)T

, (86)

where C = 9c2
s (c2

s + u2 + v2) + 4c2
1c2

2 − 6c2
2(u2 + c2

s ) − 6c2
1(v2 + c2

s ) is the fourth-order moment of equilibrium, while the first
term of C has a more general form 9[γ2 + γ3(u2 + v2)] in Ref. [34], and the parameters γ2 and γ3 can be set by any values, which
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does not affect the correct recovery of the NSEs. NZKA has the same structure as NH in Eq. (81), and the diagonal elements in
the relaxation matrices SZKA and S are the same; thus Eqs. (33) or (36) is satisfied for the transformation matrices of the natural
moment and the orthogonal one in Ref. [34]. However, SZKA is diagonal, which means that the bulk viscosity is not considered
in Ref. [34]. In addition, due to the fact that there is no orthogonal transformation matrix for rD3Q19, as stated in Ref. [34], the
RMRT-LB model with rD3Q19 lattice cannot be given [34], while the present RMRT-LB model with rD3Q19 lattice is ready at
hand.

5. RMRT-LB models for the NSEs in References [27,28]

The relationship between the matrix M in Eq. (60) and those in Refs. [27,28] is interesting. Let c1 = 1 and c2 = a in Eq. (68b).
The matrix M determined by Eq. (68) becomes

Ma = DaM̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 1 0 1 0 1 1 1 1
0 0 a2 0 a2 a2 a2 a2 a2

0 0 0 0 0 a −a a −a
0 0 0 0 0 a2 −a2 −a2 a2

0 0 0 0 0 a a −a −a
0 0 0 0 0 a2 a2 a2 a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (87a)

Da = diag(1, 1, a, 1, a2, a, a2, a, a2), (87b)

and the orthogonal transformation matrix used in Ref. [27] can be written as

MBHLL = NBHLLMa =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 a 0 −a a a −a −a

−2r1 r2 r3 r2 r3 r1 r1 r1 r1

−2r4 r5 r6 r5 r6 r4 r4 r4 r4

0 0 0 0 0 a −a a −a
0 −2 0 2 0 1 −1 −1 1
0 0 −2a 0 2a a a −a −a
4 −2 −2 −2 −2 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (88a)

where

r1 = 1 + a2, r2 = 1 − 2a2, r3 = −2 + a2, r4 = −1 + a2, r5 = 2 + a2, r6 = −1 − 2a2, (88b)

NBHLL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

−2a2 − 2 0 0 3 3 0 0 0 0
−2a2 + 2 0 0 3a2 −3/a2 0 0 0 0

0 0 0 0 0 1 0 0 0
0 −2 0 0 0 0 3/a2 0 0
0 0 −2 0 0 0 0 3 0
4 0 0 −6 −6/a2 0 0 0 9/a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (89)

In addition, the related equilibrium moments can be obtained,

meq
BHLL = MBHLLfeq = NBHLLMfeq = ρ

(
1, u, v, ēeq, p̄eq

xx, uv,C1u/2,C2v/2,C3
)T

,

ēeq = 3(u2 + v2) + 2
(
3c2

s − r1
)
, p̄eq

xx = r4
(
3r1c2

s − 2a2
)/

a2 + 3(a2u2 − v2/a2), (90)

with

C1 = 2
(
3c2

s − 2a2)/a2, C2 = 2
(
3c2

s − 2
)
, C3 = (

9c4
s + 9c2

s u2 + 9c2
s v

2 − 6c2
s − 6v2)/a2 − (

6u2 + 6c2
s − 4

)
. (91)
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Note that C1 and C2 satisfy the relation

C1 = [C2 + 4(1 − a2)]/a2, (92)

which is the same as that in Ref. [27]. When C1 and C2 are
taken by Eq. (91), one can find that the equilibrium moments
in Eq. (90) are the same as those in Ref. [27] except for the
fourth-order moment εeq which does not affect the correct
recovery of the NSEs. This implies that for the RMRT-LB
model in Ref. [27], one can correctly recover the NSEs (15)
when the relaxation submatrix S−1

2 in Eqs. (78b) or (80) is
adopted. In other words, if the diagonal relaxation subma-
trix S−1

2,BHLL = diag(s̄−1
4 , s̄−1

5 , s̄−1
6 ) in Ref. [27] is modified by

S̄−1
2 = N2,BHLLS−1

2 N−1
2,BHLL, the NSEs can be recovered cor-

rectly from the RMRT-LB model in Ref. [27]. Here N2,BHLL is
the diagonal subblock of NBHLL corresponding to the second-
order moment,

N2,BHLL =
⎛
⎝ 3 3 0

3a2 −3/a2 0
0 0 1

⎞
⎠, (93)

and s̄4, s̄5, and s̄6 are s2, s8, and s9 in Ref. [27]. One can also
easily obtain

S̄−1
2 = N2,BHLLS−1

2 N−1
2,BHLL

= 1

1 + a4

⎛
⎝A1 A2 0

A3 A4 0
0 0 (1 + a4)s−1

xy

⎞
⎠, (94)

where

A1 = (a1 + a2)(1 + a4A) + a4(1 − A)/2,

A2 = a2(1 − A)(a1 + a2 − 1/2), (95a)

A3 = a2(1 − A)(a1 − 1/2) + (Aa8 − 1)a2/a2,

A4 = a1(A + a4) − a2(1 + Aa4) + (1 − A)/2, (95b)

with

a1 = 1

2
(sbx + ssx ), a2 = 1

2
(sbx − ssx ),

A = c2
1 − c2

s

c2
2 − c2

s

= 1 − c2
s

a2 − c2
s

. (96)

It is clear that due to a1 + a2 = s−1
bx > 1/2, S̄−1

2 is diagonal
if and only if A = 1 and a = 1, which means that S̄−1

2 =
S−1

2,BHLL holds only on the square lattice with sbx = sby = s̄4,
ssx = ssy = s̄5, and sxy = s̄6. Therefore, if we use the diagonal
subrelaxation matrix S−1

2,BHLL instead of S̄−1
2 in Eq. (94), the

RMRT-LB model in Ref. [27] cannot correctly recover the
NSEs unless a = 1. It should be noted that S̄−1

2 in Eq. (94) has
a complicated form when using the orthogonal transformation
matrix MBHLL. However, if we take sbx = ssx and sby = ssy

in Eq. (78b) for the incompressible or weakly compressible
NSEs, S−1

2 = diag(s−1
sx , s−1

sy , s−1
xy ) becomes diagonal, and then

one can obtain a simpler S̄−1
2 form of Eqs. (79b) and (94),

S̄−1
2 = N2,BHLLS−1

2 N−1
2,BHLL = 1

1 + a4

⎛
⎜⎝ s−1

sx + a4s−1
sy a2

(
s−1

sx − s−1
sy

)
0

a2
(
s−1

sx − s−1
sy

)
a4s−1

sx + s−1
sy 0

0 0 (1 + a4)s−1
xy

⎞
⎟⎠, (97)

which is not diagonal for the case a �= 1 due to ssx �= ssy on
the rD2Q9 lattice. Furthermore, one can transform S̄−1

2 in
Eq. (97) into a diagonal matrix by changing NBHLL or N2,BHLL.
Following the idea in Ref. [28], we modified NBHLL as NZPGW ,

NZPGW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 θ 0 0 0 0
0 0 0 −θ 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

NBHLL,

(98)
with

N2,ZPGW =
⎛
⎝ 1 θ 0

−θ 1 0
0 0 1

⎞
⎠

N2,BHLL =
⎛
⎝3(1 + a2θ ) 3(1 − θ/a2) 0

3(a2 − θ ) −3(θ + 1/a2) 0
0 0 1

⎞
⎠, (99)

where θ is a parameter to be determined, and
MZPGW = NZPGW M is still orthogonal. It can be

easily shown that θ = a2 or θ = −a−2 if and only
if N−1

2,ZPGW S−1
2 N2,ZPGW = diag(s−1

sx , s−1
sy , s−1

xy ) = S−1
2 or

N−1
2,ZPGW S−1

2 N2,ZPGW = diag(s−1
sy , s−1

sx , s−1
xy ). The RMRT-LB

model for the NSEs similar to that in Ref. [28] is directly
obtained in a much simpler way from our general framework
where there are no any limitations on θ .

V. NUMERICAL RESULTS AND DISCUSSIONS

To test the present RMRT-LB method, a two-dimensional
(2D) convection-diffusion equation (CDE) and a 2D lid-driven
cavity flow are considered in this section. In the simulations,
we use the collision matrix � = M−1SM with the transforma-
tion matrix M related to the natural moments, the relaxation
matrix S = diag{s0, s1, s2, s3, s4, s5, s6, s7, s8} is diagonal for
both the CDE and NSEs, and the distribution function f j

is initialized by its equilibrium distribution function f eq
j . In

addition, some parameters are set to be c1 = 1, c2/c1 = a, and
c2

s = c2
1d01 = c2

2d02 = d01.

A. The 2D convection-diffusion equation

Here we consider a two-dimensional isotropic CDE with a
constant velocity, which is given by

∂tφ + ux∂xφ + uy∂yφ = κ (∂xxφ + ∂yyφ) + S, (100)
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FIG. 1. Profiles of scalar variable φ at different times and Pe =
1000. The solid lines and symbols represent analytical solutions and
numerical results, respectively.

where ux and uy are constants and ux = uy. κ is the diffu-
sion coefficient with κ = c2

s (τ − 0.5)�t . S is the source term
which can be expressed as

S = exp[(1 − 2π2κ )t]{sin[π (x + y)]

+ π (ux + uy) cos[π (x + y)]}. (101)

In our simulations, the Péclet number (Pe = Lux/κ , L = 2.0
is characteristic length, ux is characteristic velocity) is chosen
as Pe = 100, 1000, and the relaxation parameters are set to be
s1 = s2 = 1/τ , s0 = s3 = s4 = s5 = s6 = s7 = s8 = 1.0. The
computational domain is [0, 2] × [0, 2], the periodic bound-
ary condition, and the following initial condition are adopted:

φ(x, y, t = 0) = sin[π (x + y)]. (102)

In addition, Eqs. (1) or (56) with γ = 0 is used for solving
Eq. (100), where f eq

j = φgeq
j (1, u, uu), M1G = (1 − s1/2)Su,

u = (ux, uy) in Eqs. (C1) and (C2). For this problem, one can
derive the following analytical solution:

φa(x, y, t ) = exp[(1 − 2π2κ )t] sin[π (x + y)]. (103)

Here, the following global relative error (GRE) is used to
test the accuracy of the present RMRT-LB method:

Err =
∑

x |φa(x, y, t ) − φn(x, y, t )|∑
x |φa(x, y, t )| , (104)

where the subscripts a and n denote the analytical and numeri-
cal solutions. As seen from Fig. 1, the numerical results are in
good agreement with analytical solutions at t = 1, 2, 3, and 4.
To give a more detailed comparison, we also performed some
simulations with different times (t1 = 2 and t2 = 10), different
meshes, and different parameters a and c2

s (or d01 and d02), and
presented the results in Tables I and II. From these two tables,
one can observe that global relative errors are about O(10−4),
which is very close to the results in Ref. [39]. It is also found
that the choice of cs could affect the numerical results. We
noted that, even for a small grid aspect ratio a = 0.1, the
present method can produce accurate results. In addition, we
would like to point out that when Pe is sufficiently large, e.g.,
Pe = 109, τ is very close to 0.5, and the GRE remains on
the order of 10−4, which indicates that the present RMRT-LB
method has good numerical stability and accuracy.

B. The 2D lid-driven cavity flow

To demonstrate the capability of the current RMRT-LB
method in the study of fluid flows, we carried out some
simulations of the two-dimensional lid-driven cavity flows.
Although the geometry of the problem is very simple, the
lid-driven cavity flow is of great scientific interest because it
displays rich fluid mechanical phenomena, especially com-
plex vortex dynamics. We consider a square cavity of side
H = 1.0 and top wall with a constant velocity U , and this
problem is characterized by the dimensionless Reynolds num-
ber which can be defined as Re = UH/ν. In this test, we first
carried out simulations with Re = 1000 and a wide range of
grid aspect ratios of 4, 2, 0.5, and 0.2. The relaxation param-
eters are set to be s0 = s1 = s2 = 1.0, s3 = 1/τx, s4 = 1/τy,
s5 = 1/τ , and s6 = s7 = s8 = 1.0, and the other parameters
are given in Table III. In addition, the nonequilibrium extrapo-
lation scheme is adopted to treat physical boundary conditions
[67]. Figure 2 shows the velocity profiles along the vertical
and horizontal centerlines at Re = 1000 and a = 4, 2, 0.5, and
0.2. From this figure, one can observe that the present results
agree well with those reported in Ref. [68], which means that
the present RMRT-LB method can give accurate results for a
wide range of grid aspect ratios.

TABLE I. The global relative errors at different parameters and Pe = 100.

a Nx × Ny ux κ c2
s d02 τ = 1/s1 Err−t1(×10−4) Err−t2(×10−4)

2 100 × 50 0.1 2 × 10−3 0.333 0.083 0.8 8.3104 8.2754
0.2 0.05 1.0 5.2749 5.4581

1 100 × 100 0.1 2 × 10−3 0.333 0.333 0.8 8.7246 8.8302
0.2 0.2 1.0 4.4420 4.5940

0.8 100 × 125 0.1 2 × 10−3 0.333 0.52 0.8 8.0818 8.9251
0.2 0.3125 1.0 4.7135 4.8751

0.5 50 × 100 0.1 2 × 10−3 0.05 0.2 1.5 4.0012 4.7679
0.2 50 × 250 0.01 2 × 10−4 0.005 0.125 1.5 5.8079 6.0628
0.1 50 × 500 0.01 2 × 10−4 0.005 0.5 1.5 5.0802 6.0537
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TABLE II. The global relative errors (GREs) with different parameters at Pe = 1000.

a Nx × Ny ux κ c2
s d02 τ = 1/s1 Err t1(×10−4) Err t2(×10−4)

2 100 × 50 0.1 2 × 10−4 0.333 0.083 0.53 9.5243 9.8073
0.05 0.0125 0.7 2.4966 2.5395

1 100 × 100 0.1 2 × 10−4 0.333 0.333 0.53 8.6231 8.6742
0.05 0.05 0.7 2.5548 2.6274

0.8 100 × 125 0.1 2 × 10−4 0.333 0.52 0.53 8.5365 8.5587
0.05 0.078 0.7 2.5701 2.6465

0.2 50 × 250 0.01 2 × 10−5 0.005 0.125 0.6 6.0960 6.9829
0.1 50 × 500 0.01 2 × 10−5 0.005 0.5 0.6 6.0951 6.9822

0.01 1.0 0.55 6.5144 7.4039

TABLE III. The parameters adopted in the simulation of lid-driven cavity flow at Re = 1000.

a Nx × Ny U c2
s d02 τ = 1/s5 τx = 1/s3 τy = 1/s4 ν

4 200 × 50 0.1 1/3 1/48 0.56 0.56 0.5026 0.0001
2 200 × 100 0.1 1/3 1/12 0.56 0.56 0.5109 0.0001
0.5 200 × 400 0.05 1/12 1/3 0.62 0.5218 0.62 0.00005
0.2 100 × 500 0.02 0.02 0.5 0.6 0.5041 0.7 0.00002

(a) (b)

FIG. 2. Velocity profiles along centerlines at different aspect ratios: (a) u along the vertical centerline and (b) v along the horizontal
centerline.

TABLE IV. The parameters adopted in the simulation of lid-driven cavity flow.

Re a Nx × Ny U c2
s d02 τ = 1/s5 τx = 1/s3 τy = 1/s4 ν

1000 0.5 200 × 400 0.05 1/12 1/3 0.62 0.5218 0.62 0.00005
3200 0.5 300 × 600 0.05 0.08 0.32 0.5586 0.5102 0.5551 0.000016
5000 0.5 300 × 600 0.05 0.05 0.2 0.56 0.5063 0.53 0.00001
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(a) (b)

FIG. 3. A comparison of velocity profiles along the centerlines between the present work and Ghia et al. [68]: (a) u along the vertical
centerline and (b) v along the horizontal centerline.

We note that although some rectangular LB models based
on either SRT or orthogonal MRT formulations have been
used to simulate this problem [24,27–29], they are usually
subjected to a numerical instability issue when Re is increased
to a moderate value [32]. To test the numerical stability of the
present RMRT-LB model, we conducted some simulations at
Re = 1000, 3200, and 5000 and a = 0.5. The parameters are
shown in Table IV. Figure 3 depicts the velocity profiles along
the vertical and horizontal centerlines at Re = 1000, 3200,
and 5000, from which we can see that the present results agree
well with those of Ghia et al. [68]. This example also shows
that the current RMRT-LB method still has good numerical
stability at relatively large Reynolds numbers.

VI. CONCLUSIONS

Following recent work [16], we developed a general frame-
work of the RMRT-LB method on the rDdQq lattice for
the NSEs and NCDE, in which a block-lower-triangular-
relaxation matrix is used. The modeling and analysis ap-
proaches adopt the same idea as those for the SRT-LB model
in which only the distribution function space and some basic
moment conditions of distribution function are considered;

thus the current RMRT-LB method is more natural. We con-
ducted a detailed DTE analysis on the present RMRT-LB
method, and the NSEs can be correctly recovered, while the
analysis of the RMRT-LB method for NCDE is omitted since
it is the same as that in Ref. [16]. Then the rectangular
rDdQq lattice models, the properties of velocity moments,
and the expression of weight coefficients are discussed, and
a general quadratic EDF is obtained based on the previ-
ous work [35]. After that, the EDFs satisfying the basic
moment conditions for NSEs and NCDE are given, respec-
tively. Furthermore, the structure of the collision matrix in
the RMRT-LB method is analyzed, and it is found that some
existing MRT-LB models can be viewed as special cases of the
present RMRT-LB method, including the classical MRT-LB
model, central-moment LB model, and Hermite-moment and
central-Hermite-moment LB models. In addition, two ver-
sions of those MRT-LB models with third-order anisotropic
moments, one on a standard DdQq lattice with c2

s �= c2/3
[17,36–38] and the other on a rectangular rDdQq lattice [34],
are also two special cases of the present RMRT-LB method.
Two examples, including a convection-diffusion equation and
a lid-driven cavity flow, are used to test the present RMRT-LB
method, and the results indicate that the present method has
good numerical accuracy and stability.

ACKNOWLEDGMENT

This work was financially supported by the National Natural Science Foundation of China (Grants No. 12072127, No.
51836003, and No. 12202130).

APPENDIX A: LATTICE MODELS OF THE RMRT-LB METHOD ON A RECTANGULAR LATTICE

In this Appendix, we focus on the rDdQq lattice models. To simplify the following analysis, we introduce cα = �xα/�t
(α = 1, 2, . . . , d) in d-dimensional space with �xα being the spacing step in the α axis. In this case, the discrete velocities and
weight coefficients in the common rDdQq lattice models can be given as follows.

For the rD2Q9 lattice,

{c j, 0 � j � 8} =
(

0 c1 0 −c1 0 c1 −c1 −c1 c1

0 0 c2 0 −c2 c2 c2 −c2 −c2

)
,

ω j � 0, ω1 = ω3, ω2 = ω4, ω5 = ω6 = ω7 = ω8, ω0 = 1 −
∑
j>0

ω j . (A1)
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There are two lattice models that can be obtained as the subsets of the rD2Q9 lattice by setting some weight coefficients to be
zero and removing some velocities in the rD2Q9 lattice. The first one is the rD2Q5I lattice, in which ω j = 0 ( j > 4) and the
discrete velocities c5–c8 are removed. The second is the rD2Q5II lattice where ω j = 0 (1 � j � 4) and the discrete velocities
c1–c4 are removed.

For the rD3Q27 lattice,

{c j, 0 � j � 6} =
⎛
⎝0 c1 0 0 −c1 0 0

0 0 c2 0 0 −c2 0
0 0 0 c3 0 0 −c3

⎞
⎠, (A2a)

{c j, 7 � j � 18} =
⎛
⎝c1 −c1 −c1 c1 c1 −c1 −c1 c1 0 0 0 0

c2 c2 −c2 −c2 0 0 0 0 c2 −c2 −c2 c2

0 0 0 0 c3 c3 −c3 −c3 c3 c3 −c3 −c3

⎞
⎠, (A2b)

{c j, 19 � j � 26} =
⎛
⎝c1 c1 c1 −c1 −c1 −c1 −c1 c1

c2 c2 −c2 c2 −c2 −c2 c2 −c2

c3 −c3 c3 c3 −c3 c3 −c3 −c3

⎞
⎠,

ω j � 0, ω1 = ω4, ω2 = ω5, ω3 = ω6, ω7 = ω8 = ω9 = ω10, ω11 = ω12 = ω13 = ω14,

ω15 = ω16 = ω17 = ω18, ω j = ω19( j > 19), ω0 = 1 −
∑
j>0

ω j . (A2c)

Similarly, we can obtain the following subsets of the rD3Q27 lattice:
(i) For the rD3Q19 lattice, ω19 = 0 and the discrete velocities c j ( j � 19) are removed.
(ii) For the rD3Q15 lattice, ω7 = ω11 = ω15 = 0 and the discrete velocities c j ( j = 7–18) are removed.
(iii) For the rD3Q13 lattice, ω1 = ω2 = ω3 = ω19 = 0 and the discrete velocities c j ( j = 1–6, 19–26) are removed.
(iv) For the rD3Q9 lattice, ω j = 0 (1 � j � 18) and the discrete velocities c j ( j = 1–18) are removed.
(v) For the rD3Q7 lattice, ω j = 0 ( j > 6) and the discrete velocities c j ( j = 7–26) are removed.
We note that the weight coefficient ω j in the rDdQq lattice model can be determined by the velocity moment tensors. Let

�(m) be the mth-order moment of velocity set {c j, 0 � j � q − 1},
�(m) =

∑
j

ω j c jc j · · · c j︸ ︷︷ ︸
m

. (A3)

We can show that all of the odd-order moments are zero due to the lattice symmetry, and the even-order moments �(0), �(2),
and �(4) are used to determine the expression of the EDF f eq

j . Actually, based on the weighted orthogonality between the zero-
to second-order discrete Hermite polynomials c0

j , c j and Q j = c jc j − �(2), we have the following results for the quadratic EDF
(44): ∑

j

ω jc j = 0,
∑

j

ω jQ j = 0,
∑

j

ω jc jQ j = 0, (A4)

∑
j

ω jc jαc jβ = 0,
∑

j

ω jQ jααQ jββ = �
(4)
ααββ − �(2)

αα�
(2)
ββ = 0, α �= β. (A5)

Then we have

�(0) =
∑

j

ω j = 1, (A6a)

�(1) =
∑

j

ω jc j = 0, �(3) =
∑

j

ω jc jc jc j = 0, (A6b)

�
(2)
αβ =

∑
j

ω jc jαc jβ = 0, α �= β, (A6c)

�(2)
αα =

∑
j

ω jc2
jα = c2

sα > 0, (A6d)

�
(4)
ααββ =

∑
j

ω jc2
jαc2

jβ = �(2)
αα�

(2)
ββ = c2

sαc2
sβ, α �= β, (A6e)

where the lattice speed csα is taken as a parameter along the α axis, as those in Refs. [17,19,36,37,60]. In the following, we
present some details to determine the weight coefficients from Eqs. (A6a), (A6d), and (A6e).
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For the rD2Q9 lattice [Eq. (A1)], it is easy to obtain the following results,

�(2)
αα =

∑
j

ω jc2
jα = 2c2

α (ωα + 2ω5) = c2
sα, (A7)

�
(4)
ααββ = 4c2

αc2
βω5 = c2

sαc2
sβ, α �= β, (A8)

and then one can derive

ω5 = c2
s1c2

s2

4c2
1c2

2

, ωα = c2
sα

2c2
α

− 2ω5 = c2
sα

2c2
α

− c2
s1c2

s2

2c2
1c2

2

, α = 1, 2, ω0 = 1 −
∑
j>0

ω j . (A9)

Letting d0α = c2
sα/c2

α , α = 1, 2, we have

ω0 = (1 − d01)(1 − d02), ω1 = d01(1 − d02)/2, ω2 = (1 − d01)d02/2, ω5 = d01d02/4, (A10)

where d01, d02 ∈ (0, 1), or equivalently, 0 < cs1 < c1 and 0 < cs2 < c2.
Similarly, for the rD3Q27 lattice [Eq. (A2)], we have

�
(2)
11 = 2c2

1(ω1 + 2(ω7 + ω11) + 4ω19) = c2
s1, (A11a)

�
(2)
22 = 2c2

2(ω2 + 2(ω7 + ω15) + 4ω19) = c2
s2, (A11b)

�
(2)
33 = 2c2

3(ω3 + 2(ω11 + ω15) + 4ω19) = c2
s3, (A11c)

�
(4)
1122 = 4c2

1c2
2(ω7 + 2ω19) = c2

s1c2
s2, (A12a)

�
(4)
1133 = 4c2

1c2
3(ω11 + 2ω19) = c2

s1c2
s3, (A12b)

�
(4)
2233 = 4c2

2c2
3(ω15 + 2ω19) = c2

s2c2
s3, (A12c)

which can be used to obtain

ω7 = c2
s1c2

s2

4c2
1c2

2

− 2ω19 = d01d02/4 − 2ω19, (A13a)

ω11 = c2
s1c2

s3

4c2
1c2

3

− 2ω19 = d01d03/4 − 2ω19, (A13b)

ω15 = c2
s2c2

s3

4c2
2c2

3

− 2ω19 = d02d03/4 − 2ω19, (A13c)

ω1 = c2
s1

2c2
1

− 2(ω7 + ω11) − 4ω19 = d01(1 − d02 − d03)/2 + 4ω19, (A13d)

ω2 = c2
s2

2c2
2

− 2(ω7 + ω15) − 4ω19 = d02(1 − d01 − d03)/2 + 4ω19, (A13e)

ω3 = c2
s3

2c2
3

− 2(ω11 + ω15) − 4ω19 = d03(1 − d01 − d02)/2 + 4ω19, (A13f)

ω0 = 1 −
26∑
j=1

ω j = 1 − (d01 + d02 + d03) + d01d02 + d01d03 + d02d03 − 8ω19, (A13g)

where d0α = c2
sα/c2

α (α = 1, 2, 3) and ω19 is a free weight coefficient.
From Eqs. (A13) and (A2), we can derive

0 < 2ω1 + 4(ω7 + ω11) + 8ω19 = c2
s1/c2

1 = d01 < 1

0 < 2ω2 + 4(ω7 + ω15) + 8ω19 = c2
s2/c2

2 = d02 < 1

0 < 2ω3 + 4(ω11 + ω15) + 8ω19 = c2
s3/c2

3 = d03 < 1. (A14)

Then one can obtain 0 < ω19 < d0α/8 (α = 1, 2, 3), while for some other lattice models, such as the rD3Q19 lattice, ω19 can be
equal to zero.
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Taking ω19 = d01d02d03/8 in Eq. (A13), we have

ω0 = (1 − d01)(1 − d02)(1 − d03), (A15a)

ω1 = d01(1 − d02)(1 − d03)/2, ω2 = d02(1 − d01)(1 − d03)/2, ω3 = d03(1 − d01)(1 − d02)/2, (A15b)

ω7 = d01d02(1 − d03)/4, ω11 = d01d03(1 − d02)/4, ω15 = d02d03(1 − d01)/4, (A15c)

where d0α = c2
sα/c2

α ∈ (0, 1) or 0 < csα < cα (α = 1, 2, 3).
From Eq. (A13), we can derive some special cases of the rD3Q27 lattice model:
(1) If we take ω19 = 0, the weight coefficients in the rD3Q19 lattice model are obtained.
(2) If we take ω7 = ω11 = ω15 = 0, the weight coefficients in the rD3Q15 lattice model and the following relation can be

obtained:

c2
s1

c2
1

= c2
s2

c2
2

= c2
s3

c2
3

. (A16)

(3) If we take ω1 = ω2 = ω3 = ω19 = 0, the weight coefficients in the rD3Q13 lattice model and the following condition
can be derived:

c2
s1

c2
1

= c2
s2

c2
2

= c2
s3

c2
3

= 1

2
. (A17)

It can be found from Eqs. (A16) and (A17) that when cs1 = cs2 = cs3, one can get c1 = c2 = c3, which implies that there are
no rD3Q15 a rD3Q13 lattice models.

From Eqs. (A8), (A11), and (A12), we can give some constraints on the fourth-order moment �(4) of discrete velocities for
the rDdQq lattice model,

�(4)
αααα =

∑
j

ω jc
4
jα = c2

α�2
αα = c2

αc2
sα, �

(4)
ααββ = �(2)

αα�
(2)
ββ = c2

sαc2
sβ (α �= β ), �

(4)
αβγ θ = 0 (else), (A18)

which indicates that it no longer satisfies the isotropic condition on a rectangular lattice or on a standard lattice with c2
sα = c2

s �=
c2/3. Here we present its natural expression as the extension to that on the standard lattice:

�(4) = 〈�(2)�(2)〉 + δ(4), (A19)

where

〈�(2)�(2)〉αβγ θ = �
(2)
αβ�

(2)
γ θ + �(2)

αγ �
(2)
βθ + �

(2)
βγ �

(2)
αθ , (A20a)

δ
(4)
αβγ θ = c2

sα

(
c2
α − 3c2

sα

)
, α = β = γ = θ, δ

(4)
αβγ θ = 0, else. (A20b)

When the relations csα = cs and c2
α = c2 = 3c2

s are satisfied for all α, one can obtain δ(4) = 0 and �(4) = c4
s � with �αβγ θ =

δαβδγ θ + δαγ δβθ + δβγ δαθ , which means that the fourth-order isotropy can be achieved.
Remark 7. For the rD2Q5I, rD2Q5II, rD3Q7, and rD3Q9 lattice models, �

(4)
ααββ = c2

sαc2
sβ (α �= β) does not hold. For the

rD2Q5I lattice, ω5 = 0. Then we have ωα = c2
sα

2c2
α

(α = 1, 2), while for the rD2Q5II lattice, ω1 = ω2 = 0, and we can obtain

ω5 = c2
sα

4c2
α

(α = 1, 2) and also c2
s1

c2
1

= c2
s2

c2
2

. For the rD3Q9 lattice, ωα = 0 (1 � α � 18), we have ω19 = c2
sα

4c2
α

(α = 1, 2, 3) and c2
s1

c2
1

=
c2

s2

c2
2

= c2
s3

c2
3

. For the rD3Q7 lattice, ωα = 0 (α > 6), we derive ωα = c2
sα

2c2
α

(α = 1, 2, 3). Usually, the linear EDF geq
j (A, B, 0) is used,

which satisfies Eq. (46) with M = 0, while �(4) does not satisfy Eqs. (A18) or (A19) since �
(4)
ααββ = c2

sαc2
sβ (α �= β) does not

necessarily hold.
Remark 8. From Eqs. (A10), (A13), and (A15) and Remark 7, we can find that there is no limitation to the aspect range of

the present RMRT-LB method on a rDdQq lattice since only d0α = c2
sα/c2

α or c2
s /c2

α ∈ (0, 1) and the non-negativity of weight
coefficients is required.

Remark 9. If we take ω0 = 0 or remove the rest velocity c0 = 0 in the rDdQq lattice model mentioned above, a rDdQ(q − 1)
lattice model can be obtained.

APPENDIX B: DERIVATION OF THE NONLINEAR CONVECTION-DIFFUSION EQUATION FROM THE PRESENT
RMRT-LB METHOD

The d-dimensional NCDE with a source term considered in this work can be expressed as [16,39]

∂tφ + ∇ · B = ∇ · [K · (∇ · D)] + S, (B1)

where φ is an unknown scalar function of position x and time t , and S is a scalar source term. B = (Bα ) is a vector function,
K = (Kαβ ) and D = (Dαβ ) are symmetric positive definite matrices, and they can be functions of φ, x, and t . It should be noted
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that Eq. (B1) can be considered a general form of NCDE, and many different kinds of NCDEs considered in some previous work
[35,38,42,69] are its special cases.

To recover Eq. (B1) from the RMRT-LB method [Eq. (1)], the unknown function φ can be calculated by φ = ∑
j f j with the

mass conservation
∑

j f ne
j = ∑

j ( f j − f eq
j ) = 0, and the collision matrix � and moments of f eq

j , Gj , and Fj should satisfy the
following relations [16]:

∑
j

e j� jk = s0ek,
∑

j

c j� jk = S10ek + S1ck, ∀k, (B2a)

∑
j

f eq
j = φ,

∑
j

c j f eq
j = B,

∑
j

c jc j f eq
j = βc2

s D + C, (B2b)

∑
j

Fj = S,
∑

j

c jFj = 0,
∑

j

G j = 0,
∑

j

c jG j = M1G, (B2c)

where S10 is a d × 1 matrix, S1 is an invertible d × d relaxation matrix corresponding to the diffusion matrix K, β is a parameter
for adjusting the relaxation matrix S1 in Eq. (B3), C is an auxiliary moment, and M1G is the first-order moment of Gj .

We note that Eq. (B2) is the same as that of the standard MRT-LB model for NCDE (B1) in Ref. [16]. Here we omit the same
process in recovering the macroscopic NCDE through the DTE analysis, and only give some useful results below, including the
diffusion tensor K, M1G, and the diffusion flux −K · (∇ · D):

K = �tβc2
s

(
S−1

1 − I/2
)
, (B3)

M1G = (I − S1/2)(∂t B + ∇ · C) =
{

(I − S1/2)B′S if B = B(φ) and C = ∫
B′B′dφ

(I − S1/2)∂t B if C = 0,
(B4)

−K · (∇ · D) =
{

(I − S1/2)(Efne + �tB′S/2) if B = B(φ) and C = ∫
B′B′dφ

(I − S1/2)(Efne + �t∂t B/2) if C = 0,
(B5)

where B′ = dB
dφ

, fne = ( f ne
0 , f ne

1 , . . . , f ne
q−1)T . Additionally, if D is only a function of φ, we can also obtain a local scheme for ∇φ

from Eq. (B5).
Actually, Eq. (B5) can be written as

Efne =
{−(I − S1/2)−1(K · (∇ · D)) − �tB′S/2 if B = B(φ) and C = ∫

B′B′dφ

−(I − S1/2)−1(K · (∇ · D)) − �t∂t B/2 if C = 0.
(B6)

In addition, if we denote mne
1 = Efne, and consider Eq. (B6) and the mass conservation efne = ∑

j f ne
j = 0, one can obtain a

useful formula to approximate f ne
j ,

f ne
j = geq

j

(
0, mne

1 , 0
) = ω j

c j · mne
1

c2
s

= ω j
c jαmne

1,α

c2
s

, (B7)

which can be used to initialize the distribution function f j .

APPENDIX C: THE EQUILIBRIUM, AUXILIARY, AND SOURCE DISTRIBUTION FUNCTIONS OF THE RMRT-LB
METHOD FOR THE NCDE

As discussed above, it can be found that to recover NCDE (B1) correctly, some proper requirements on the equilibrium,
auxiliary, and source distribution functions should be satisfied. Based on Eqs. (44), (45), and (B2) for a rDdQq lattice model, we
can obtain the following expressions of f eq

j , Gj , and Fj with csα = cs for all α:

f eq
j = geq

j

(
φ, B, βc2

s D + C − c2
s φI

)
= ω j

[
φ + c jαBα

c2
s

+
(
βc2

s D + C − c2
s φI

)
αα

(
c2

jα − c2
s

)
c2

s

(
c2
α − c2

s

) +
(
βc2

s D + C − c2
s φI

)
αᾱ

(c jαc jᾱ )

2c4
s

]
, (C1)

Gj = geq
j (0, M1G, 0) = ω j

c jαM1G,α

c2
s

, Fj = geq
j (S, 0, 0) = ω jS, (C2)

where ᾱ denotes the index γ with γ �= α, and M1G is given by Eq. (B4).
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We note that if D = φI, NCDE (B1) would become

∂tφ + ∇ · B = ∇ · (K · ∇φ) + S. (C3)

If we further take β = 1 and C = 0, f eq
j , Gj , and Fj defined by Eqs. (C1) and (C2) can be simplified as

f eq
j = geq

j (φ, B, 0) = ω j

[
φ + c jαBα

c2
s

]
, (C4a)

Gj = geq
j (0, (I − S1/2)∂t B, 0) = ω j

[
c jα ((I − S1/2)∂t B)α

c2
s

]
, Fj = geq

j (S, 0, 0) = ω jS, (C4b)

where the term ∂t B can be computed by the first-order explicit difference scheme, i.e., ∂t B = [B(x, t ) − B(x, t − �t )]/�t . In
this case, the simpler rDdQ2d or rDdQ(2d + 1) lattice model can be adopted.

In addition, we would also like to point out that at the diffusive scaling, the present RMRT-LB model can be further simplified
[16]; i.e., the term �t2

2 D̄ jFj (x, t ) in the evolution equation [Eq. (1)] can be removed, and Eqs. (C1) and (C2) would reduce to

f eq
j = geq

j

(
φ, B, βc2

s D − c2
s φI

)
, Gj = 0, Fj = ω jS. (C5)

Remark 10. The first-order moment of f ne
j , i.e., Efne in Eq. (B5), can also be computed by its counterpart (Efne = mne

E =
mE − meq

E ) in the moment space.
Remark 11. When K and D are diagonal matrices, the term βc2

s D in Eq. (B2b) can also be replaced by diag(βαc2
sαDα ), and

Eq. (B3) becomes

κα = �t (τ − 1/2)βαc2
sα, (C6)

where S−1
1 = τ I has been used. In this case, the SRT-RLB model can be used for NCDE (B1), as shown in Ref. [35].

[1] S. Chen and G. Doolen, Lattice Boltzmann method for fluid
flows, Annu. Rev. Fluid Mech. 30, 329 (1998).

[2] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics
and Beyond (Oxford University Press, Oxford, 2001); The Lat-
tice Boltzmann Equation for Complex States of Flowing Matter
(Oxford University Press, Oxford, 2018).

[3] Z. Guo and C. Shu, Lattice Boltzmann Method and Its
Applications in Engineering (World Scientific, Singapore,
2013).

[4] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva,
and E. M. Viggen, The Lattice Boltzmann Method: Principles
and Practice (Springer, Switzerland, 2017).

[5] D. d’Humières, Multiple-relaxation-time lattice Boltzmann
models in three dimensions, Philos. Trans. R. Soc. London A
360, 437 (2002).

[6] M. Geier, M. Schönherr, A. Pasquali, and M. Krafczyk,
The cumulant lattice Boltzmann equation in three dimen-
sions: Theory and validation, Comput. Math. Appl. 70, 507
(2015).

[7] C. Pan, L.-S. Luo, and C. T. Miller, An evaluation of lat-
tice Boltzmann schemes for porous medium flow simulation,
Comput. Fluids 35, 898 (2006).

[8] L.-S. Luo, W. Liao, X. Chen, Y. Peng, and W. Zhang, Numerics
of the lattice Boltzmann method: Effects of collision models
on the lattice Boltzmann simulations, Phys. Rev. E 83, 056710
(2011).

[9] Z. Guo, K. Xu, and R. Wang, Discrete unified gas kinetic
scheme for all Knudsen number flows: Low-speed isothermal
case, Phys. Rev. E 88, 033305 (2013).

[10] Z. Guo and T. Zhao, Explicit finite-difference lattice Boltzmann
method for curvilinear coordinates, Phys. Rev. E 67, 066709
(2003).

[11] X. He, L.-S. Luo, and M. Dembo, Some progress in lattice
Boltzmann method. Part I. Nonuniform mesh grids, J. Comput.
Phys. 129, 357 (1996).

[12] X. D. Niu, Y. T. Chew, and C. Shu, Simulation of flows
around an impulsively started circular cylinder by Taylor series
expansion- and least squares-based lattice Boltzmann method,
J. Comput. Phys. 188, 176 (2003).

[13] O. Filippova and D. Hänel, Grid refinement for lattice-BGK
models, J. Comput. Phys. 147, 219 (1998).

[14] Z. Guo, C. Zheng, and B. Shi, Domain-decomposition tech-
nique in lattice Boltzmann method, Int. J. Mod. Phys. B 17,
129 (2003).

[15] D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, Advances
in multi-domain lattice Boltzmann grid refinement, J. Comput.
Phys. 231, 4808 (2012).

[16] Z. Chai and B. Shi, Multiple-relaxation-time lattice Boltzmann
method for the Navier-Stokes and nonlinear convection-
diffusion equations: Modeling, analysis and elements, Phys.
Rev. E 102, 023306 (2020).

[17] I. Ginzburg, Generic boundary conditions for lattice Boltzmann
models and their application to advection and anisotropic-
dispersion equations, Adv. Water Resour. 28, 1196 (2005).

[18] I. Ginzburg, Variably saturated flow described with the
anisotropic lattice Boltzmann methods, Comput. Fluids 35, 831
(2006).

[19] I. Ginzburg and D. d’Humières, Lattice Boltzmann and
analytical modeling of flow processes in anisotropic and hetero-
geneous stratified aquifers, Adv. Water Resour. 30, 2202 (2007).

[20] I. Ginzburg, Truncation errors, exact and heuristic stability
analysis of two-relaxation-times lattice Boltzmann schemes for
anisotropic advection-diffusion equation, Commun. Comput.
Phys. 11, 1439 (2012).

015304-21

https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1016/j.camwa.2015.05.001
https://doi.org/10.1016/j.compfluid.2005.03.008
https://doi.org/10.1103/PhysRevE.83.056710
https://doi.org/10.1103/PhysRevE.88.033305
https://doi.org/10.1103/PhysRevE.67.066709
https://doi.org/10.1006/jcph.1996.0255
https://doi.org/10.1016/S0021-9991(03)00161-X
https://doi.org/10.1006/jcph.1998.6089
https://doi.org/10.1142/S0217979203017205
https://doi.org/10.1016/j.jcp.2012.03.015
https://doi.org/10.1103/PhysRevE.102.023306
https://doi.org/10.1016/j.advwatres.2005.03.009
https://doi.org/10.1016/j.compfluid.2005.11.001
https://doi.org/10.1016/j.advwatres.2007.05.001
https://doi.org/10.4208/cicp.211210.280611a


CHAI, YUAN, AND SHI PHYSICAL REVIEW E 108, 015304 (2023)

[21] I. Ginzburg, Multiple anisotropic collisions for advection-
diffusion lattice Boltzmann schemes, Adv. Water Resour. 51,
381 (2013).

[22] L. A. Hegele, Jr., K. Mattila, and P. Philippi, Rectangular
lattice-Boltzmann schemes with BGK-collision operator, J. Sci.
Comput. 56, 230 (2013).

[23] J. Koelman, A simple lattice Boltzmann scheme for Navier-
Stokes fluid flow, Europhys. Lett. 15, 603 (1991).

[24] C. Peng, Z. L. Guo, and L.-P. Wang, A lattice-BGK model
for the Navier-Stokes equations based on a rectangular grid,
Comput. Math. Appl. 78, 1076 (2019).

[25] M. H. Saadat, B. Dorschner, and I. Karlin, Extended lattice
Boltzmann model, Entropy 23, 475 (2021).

[26] Z. Wang and J. Zhang, Simulating anisotropic flows with
isotropic lattice models via coordinate and velocity transforma-
tion, Int. J. Mod. Phys. C 30, 1941001 (2019).

[27] M. Bouzidi, D. d’Humières, P. Lallemand, and L.-S. Luo, Lat-
tice Boltzmann equation on a two-dimensional rectangular grid,
J. Comput. Phys. 172, 704 (2001).

[28] Y. Zong, C. Peng, Z. Guo, and L.-P. Wang, Designing correct
fluid hydrodynamics on a rectangular grid using MRT lattice
Boltzmann approach, Comput. Math. Appl. 72, 288 (2016).

[29] J. G. Zhou, MRT rectangular lattice Boltzmann method, Int. J.
Mod. Phys. C 23, 1250040 (2012).

[30] C. Peng, H. Min, Z. Guo, and L.-P. Wang, A hydrodynamically-
consistent MRT lattice Boltzmann model on a 2D rectangular
grid, J. Comput. Phys. 326, 893 (2016).

[31] L.-P. Wang, H. D. Min, C. Peng, N. Geneva, and Z. Guo,
A lattice-Boltzmann scheme of the Navier-Stokes equation on
a three-dimensional cuboid lattice, Comput. Math. Appl. 78,
1053 (2019).

[32] E. Yahia and K. N. Premnath, Central moment lattice Boltz-
mann method on a rectangular lattice, Phys. Fluids 33, 057110
(2021).

[33] E. Yahia, W. Schupbach, and K. N. Premnath, Three-
dimensional central moment lattice Boltzmann method on a
cuboid lattice for anisotropic and inhomogeneous flows, Fluids
6, 326 (2021).

[34] V. Zecevic, M. Kirkpatrick, and S. Armfield, Rectangular lat-
tice Boltzmann method using multiple relaxation time collision
operator in two and three dimensions, Comput. Fluids 202,
104492 (2020).

[35] J. Lu, Z. Chai, B. Shi, Z. Guo, and G. Hou, Rectangular lattice
Boltzmann model for nonlinear convection-diffusion equations,
Philos. Trans. R. Soc. A 369, 2311 (2011).

[36] A. J. C. Ladd, Numerical simulations of particulate suspensions
via a discretized Boltzmann equation. Part 1. Theoretical foun-
dation, J. Fluid Mech. 271, 285 (1994).

[37] D. d’Humières, Generalized lattice-Boltzmann equations, in
Rarefied Gas Dynamics: Theory and Simulations, Progress in
Astronautics and Aeronautics Vol. 159 (AIAA, Washington,
DC, 1992), pp. 450–458.

[38] I. Ginzburg, Equilibrium-type and link-type lattice Boltzmann
models for generic advection and anisotropic-dispersion equa-
tion, Adv. Water Resour. 28, 1171 (2005).

[39] Z. Chai, B. Shi, and Z. Guo, A multiple-relaxation-time lattice
Boltzmann model for general nonlinear anisotropic convection-
diffusion equations, J. Sci. Comput. 69, 355 (2016).

[40] Z. Chai and T. S. Zhao, Effect of the forcing term in the
multiple-relaxation-time lattice Boltzmann equation on the

shear stress or the strain rate tensor, Phys. Rev. E 86, 016705
(2012).

[41] H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice
Boltzmann model for the convection and anisotropic diffusion
equation, J. Comput. Phys. 229, 7774 (2010).

[42] B. Shi and Z. Guo, Lattice Boltzmann model for nonlin-
ear convection-diffusion equations, Phys. Rev. E 79, 016701
(2009).

[43] X. He, S. Chen, and G. D. Doolen, A novel thermal model
for the lattice Boltzmann method in incompressible limit, J.
Comput. Phys. 146, 282 (1998).

[44] R. Du and B. Shi, A novel scheme for force term in the lattice
BGK model, Int. J. Mod. Phys. C 17, 945 (2006).

[45] I. Ginzbourg and P. M. Adler, Boundary flow condition analy-
sis for three-dimensional lattice Boltzmann model, J. Phys. II
France 4, 191 (1994).

[46] A. Kuzmin, Z. Guo, and A. Mohamad, Simultaneous incor-
poration of mass and force terms in the multi-relaxation-time
framework for lattice Boltzmann schemes, Philos. Trans. R.
Soc. A 369, 2219 (2011).

[47] S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-uniform Gases (Cambridge University Press, Cambridge,
UK, 1970).

[48] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y.
Pomeau, and J.-P. Rivet, Lattice gas hydrodynamics in two and
three dimensions, Complex Syst. 1, 649 (1987).

[49] E. Ikenberry and C. Truesdell, On the pressures and the flux
of energy in a gas according to Maxwell’s kinetic theory, I, J.
Ration. Mech. Anal. 5, 1 (1956).

[50] W.-A. Yong, W. Zhao, and L.-S. Luo, Theory of the lattice
Boltzmann method: Derivation of macroscopic equations via
the Maxwell iteration, Phys. Rev. E 93, 033310 (2016).

[51] D. J. Holdych, D. R. Noble, J. G. Georgiadis, and R. O. Buck-
ius, Truncation error analysis of lattice Boltzmann methods, J.
Comput. Phys. 193, 595 (2004).

[52] A. Wagner, Thermodynamic consistency of liquid-gas lat-
tice Boltzmann simulations, Phys. Rev. E 74, 056703
(2006).

[53] G. Kaehler and A. J. Wagner, Derivation of hydrody-
namics for multi-relaxation time lattice Boltzmann using
the moment approach, Commun. Comput. Phys. 13, 614
(2013).

[54] D. d’Humières and I. Ginzburg, Viscosity independent nu-
merical errors for lattice Boltzmann models: From recurrence
equations to “magic” collision numbers, Comput. Math. Appl.
58, 823 (2009).

[55] I. Ginzburg and L. Roux, Truncation effect on Taylor-Aris
dispersion in lattice Boltzmann schemes: Accuracy towards
stability, J. Comput. Phys. 299, 974 (2015).

[56] P. K. Kundu, I. M. Cohen, and D. Dowling, Fluid Mechanics
(Academic Press, San Diego, CA, 2016).

[57] P. J. Dellar, Bulk and shear viscosities in lattice Boltzmann
equations, Phys. Rev. E 64, 031203 (2001).

[58] T. Krüger, F. Varnik, and D. Raabe, Second-order convergence
of the deviatoric stress tensor in the standard Bhatnagar-Gross-
Krook lattice Boltzmann method, Phys. Rev. E 82, 025701(R)
(2010).

[59] W.-A. Yong and L.-S. Luo, Accuracy of the viscous stress in the
lattice Boltzmann equation with simple boundary conditions,
Phys. Rev. E 86, 065701(R) (2012).

015304-22

https://doi.org/10.1016/j.advwatres.2012.04.013
https://doi.org/10.1007/s10915-012-9672-x
https://doi.org/10.1209/0295-5075/15/6/007
https://doi.org/10.1016/j.camwa.2016.05.007
https://doi.org/10.3390/e23040475
https://doi.org/10.1142/S0129183119410018
https://doi.org/10.1006/jcph.2001.6850
https://doi.org/10.1016/j.camwa.2015.05.021
https://doi.org/10.1142/S0129183112500404
https://doi.org/10.1016/j.jcp.2016.09.031
https://doi.org/10.1016/j.camwa.2016.06.017
https://doi.org/10.1063/5.0049231
https://doi.org/10.3390/fluids6090326
https://doi.org/10.1016/j.compfluid.2020.104492
https://doi.org/10.1098/rsta.2011.0022
https://doi.org/10.1017/S0022112094001771
https://doi.org/10.1016/j.advwatres.2005.03.004
https://doi.org/10.1007/s10915-016-0198-5
https://doi.org/10.1103/PhysRevE.86.016705
https://doi.org/10.1016/j.jcp.2010.06.037
https://doi.org/10.1103/PhysRevE.79.016701
https://doi.org/10.1006/jcph.1998.6057
https://doi.org/10.1142/S0129183106009461
https://doi.org/10.1051/jp2:1994123
https://doi.org/10.1098/rsta.2011.0018
https://content.wolfram.com/uploads/sites/13/2018/02/01-4-7.pdf
https://www.jstor.org/stable/24900244
https://doi.org/10.1103/PhysRevE.93.033310
https://doi.org/10.1016/j.jcp.2003.08.012
https://doi.org/10.1103/PhysRevE.74.056703
https://doi.org/10.4208/cicp.451011.260112s
https://doi.org/10.1016/j.camwa.2009.02.008
https://doi.org/10.1016/j.jcp.2015.07.017
https://doi.org/10.1103/PhysRevE.64.031203
https://doi.org/10.1103/PhysRevE.82.025701
https://doi.org/10.1103/PhysRevE.86.065701


RECTANGULAR MULTIPLE-RELAXATION-TIME LATTICE … PHYSICAL REVIEW E 108, 015304 (2023)

[60] I. Ginzburg and D. d’Humières, Multi-reflection boundary con-
ditions for lattice Boltzmann models, Phys. Rev. E 68, 066614
(2003).

[61] I. Ginzburg, F. Verhaeghe, and D. d’Humières, Two-relaxation-
time lattice Boltzmann scheme: About parametrization, ve-
locity, pressure and mixed boundary conditions, Commun.
Comput. Phys. 3, 427 (2008).

[62] X. He and L.-S. Luo, Lattice Boltzmann model for the incom-
pressible Navier-Stokes equation, J. Stat. Phys. 88, 927 (1997).

[63] M. Geier, A. Greiner, and J. G. Korvink, Cascaded digital lattice
Boltzmann automata for high Reynolds number flow, Phys.
Rev. E 73, 066705 (2006).

[64] C. Coreixas, B. Chopard, and J. Latt, Comprehensive compar-
ison of collision models in the lattice Boltzmann framework:
Theoretical investigations, Phys. Rev. E 100, 033305 (2019).

[65] L. Talon, D. Bauer, N. Gland, S. Youssef, H. Auradou, and I.
Ginzburg, Assessment of the two relaxation time lattice Boltz-

mann scheme to simulate Stokes flow in porous media, Water
Resour. Res. 48, W04526 (2012).

[66] S. Khirevich, I. Ginzburg, and U. Tallarek, Coarse- and fine-grid
numerical behavior of MRT/TRT lattice-Boltzmann schemes in
regular and random sphere packings, J. Comput. Phys. 281, 708
(2015).

[67] Z.-L. Guo, C.-G. Zheng, and B.-C. Shi, Non-equilibrium
extrapolation method for velocity and pressure boundary con-
ditions in the lattice Boltzmann method, Chin. Phys. 11, 366
(2002).

[68] U. Ghia, K. N. Ghia, and C. Shin, High-Re solutions
for incompressible flow using the Navier-Stokes equa-
tions and a multigrid method, J. Comput. Phys. 48, 387
(1982).

[69] Z. Chai, H. Liang, R. Du, and B. Shi, A lattice Boltzmann model
for two-phase flow in porous media, SIAM J. Sci. Comput. 41,
B746 (2019).

015304-23

https://doi.org/10.1103/PhysRevE.68.066614
https://www.global-sci.com/intro/article_detail/cicp/7862.html
https://doi.org/10.1023/B:JOSS.0000015179.12689.e4
https://doi.org/10.1103/PhysRevE.73.066705
https://doi.org/10.1103/PhysRevE.100.033305
https://doi.org/10.1029/2011WR011385
https://doi.org/10.1016/j.jcp.2014.10.038
https://doi.org/10.1088/1009-1963/11/4/310
https://doi.org/10.1016/0021-9991(82)90058-4
https://doi.org/10.1137/18M1166742

