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Discrete unified gas-kinetic wave-particle method for flows in all flow regimes
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This work proposes a discrete unified gas-kinetic wave-particle (DUGKWP) method for simulation of flows
in all flow regimes. Unlike the discrete velocity method (DVM) and the direct simulation Monte Carlo (DSMC)
method which solve the governing equations by either the deterministic method or the stochastic method, the
DUGKWP combines the advantages of these two methods. In the DUGKWP, the information of microscopic
particles as well as macroscopic flow variables are both evolved. Specifically, the microscopic particles are
updated by the free-transport and resampling processes, while the macroscopic flow properties are evolved via
solving the macroscopic governing equations of conservation laws with the finite volume method. According
to the discrete characteristic solution to the Boltzmann-BGK equation utilized in the DUGKWP, in the highly
rarefied flow regime, the motion of microscopic particles greatly determines the fluxes for the macroscopic gov-
erning equations. Conversely, for the continuum flow, no microscopic particle exists in the computational domain
and the DUGKWP is degraded to the Navier-Stokes solver. Numerical studies validate that the DUGKWP can
accurately predict the flow properties in all flow regimes. Furthermore, compared with the deterministic method,
the DUGKWP enjoys superior efficiency with less memory consumption for both high-speed rarefied flows and
flows close to the continuum regime.
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I. INTRODUCTION

The rarefaction of fluid flows is characterized by the ratio
of the molecular mean-free path to the characteristic length,
namely, the Knudsen (Kn) number. In fact, the commonly
used Navier-Stokes (N-S) equations can be applied only for
the continuum flow (Kn < 0.001) due to the dependence on
the continuum assumption. Different from the N-S equations,
the Boltzmann equation is not limited to the continuum as-
sumption. It provides the possibility for simulation of fluid
flow problems from the free molecular to the continuum flow
regime by solving the Boltzmann equation. Generally, the
methods for solving the Boltzmann equation can be catego-
rized into two types: the stochastic methods [1–5] and the
deterministic methods [6–10]. Both have their strengths, but
also some weaknesses.

As one representative stochastic method, the direct sim-
ulation Monte Carlo (DSMC) approach was first proposed
by Bird [11], which uses a probabilistic simulation to solve
the Boltzmann equation. In this method, the real gas atoms
or molecules are represented by the simulation particles, and
the gas physics is described by the decoupling of the motion
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of particles from their collisions. Since the velocity of the
particle is correlated with the local mean flow velocity, it is
equivalent to the adaptive distribution in the molecular ve-
locity space. Given this, the DSMC method enjoys excellent
efficiency in the simulation of supersonic/hypersonic rarefied
flow problems [12,13], in which the variation range of the
mean flow velocity in the whole computational domain is
very large. However, due to the decoupling of the motion
and collision processes in the DSMC method, the typical cell
size and the time-step size are subject to values smaller than
the mean-free path and the mean collision time of the gas
molecules, respectively. These requirements limit the applica-
tion of DSMC method in the simulation of the continuum and
near-continuum flows where the mean-free path and collision
time of the gas molecules are particularly small. To overcome
this defect, the hybrid N-S/DSMC method was developed
[14–16]. This method divides the computational domain into
the continuum region and the rarefied region first based on the
local Kn number, then the N-S solver is utilized in the contin-
uum region while the DSMC method is applied in the rarefied
region. As a result, the efficiency of the DSMC simulation in
the continuum region can be improved. However, the hybrid
method usually needs to introduce a buffer zone, and the
numerical results are sensitive to the location of the division
plane between the two computational regions as commented
by Torre [17].
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Different from the DSMC method, the discrete velocity
method (DVM) solves the Boltzmann equation by discretizing
it in both the physical space and the molecular velocity space.
It belongs to the deterministic methods. To simplify the calcu-
lation of the DVM, the collisional integral term in the original
Boltzmann equation is generally replaced by some simplified
models, such as the BGK model [18] and BGK-Shakhov
model [19]. Within the DVM framework, various approaches
have been proposed to resolve the fluid flow problems in
all flow regimes [20–24]. By solving the discrete velocity
Boltzmann equation (DVBE) with the nonoscillatory nonfree
dissipative (NND) scheme, the gas-kinetic unified algorithm
(GKUA) was developed by Li and Zhang [25,26]. Xu and
Huang [27] developed the unified gas-kinetic scheme (UGKS)
by introducing the local integral solution to the Boltzmann-
BGK equation to calculate the numerical fluxes of the DVBE
and the corresponding macroscopic governing equations. Zhu
et al. [28] further extended the UGKS to the unsteady sce-
nario. Guo et al. [29,30] put forward the discrete unified
gas-kinetic scheme (DUGKS) which applies the local discrete
characteristic solution to the Boltzmann-BGK equation to
calculate the numerical fluxes of the DVBE, and then Liu
et al. [31] proposed the conserved DUGKS where both the
DVBE and the corresponding macroscopic governing equa-
tions are solved. In addition, Yang et al. [32,33] proposed the
improved discrete velocity method (IDVM) by considering
the collision effect in the calculation of numerical fluxes of
the macroscopic governing equations while using the local
solution to the collisionless Boltzmann equation to evaluate
the numerical fluxes of the DVBE. By virtue of the coupling
of the motion and collision processes, the UGKS, DUGKS,
and IDVM can provide accurate results from the continuum
to the free molecular flow regime without the limitations that
the sizes of the mesh and the time step should be smaller than
the mean-free path and the mean collision time of the gas
molecules. Nevertheless, the discretization in the molecular
velocity space will seriously increase the computational cost
and the required virtual memory of these DVMs, especially
when high-speed flows are considered.

Recently, to retain the high efficiency of the DSMC method
for simulation of supersonic or hypersonic rarefied flows and
the accuracy of the UGKS in all flow regimes, the unified
gas-kinetic wave-particle (UGKWP) method was proposed by
Liu et al. [34]. In the UGKWP, the gas physics is captured by
both the deterministic hydrodynamic waves and the stochastic
microscopic particles, and their respective contributions are
dependent on the ratio of time-step size to local collision
time. In the highly rarefied flow regime, the stochastic mi-
croscopic particles dominate the solution and the UGKWP
recovers nonequilibrium flow physics by the free-transport
process of particles. In the continuum flow regime, the de-
terministic hydrodynamic waves dominate the solution and
the UGKWP reduces to the gas-kinetic scheme (GKS) for
the N-S equations. Correspondingly, the evolution of dis-
crete distribution functions is avoided and the number of
microscopic particles is adaptively controlled by the ratio
of time-step size to local collision time. As a result, the
UGKWP provides efficient and accurate simulations not only
for the supersonic/hypersonic rarefied flows but also for the
continuum flows. Subsequently, Zhu et al. [35] extended the

UGKWP to the unstructured mesh for fluid flow problems
involving curved boundaries. Chen et al. [36] further extended
the UGKWP to the three-dimensional scenario and validated
its performance by simulating the hypersonic flow over a
space vehicle. Liu et al. [37] developed a simplified unified
wave-particle method with the quantified model-competition
mechanism based on the UGKWP.

In this paper, inspired by the idea of the UGKWP, a dis-
crete unified gas-kinetic wave-particle (DUGKWP) method
is proposed to effectively simulate flows in all flow regimes.
First, a modified DUGKS is developed by applying the dis-
crete characteristic solution to the Boltzmann-BGK equation
for evaluating the numerical fluxes of both the DVBE and
the corresponding macroscopic governing equations. Then
the discrete characteristic solution is further used to model
the contributions of the hydrodynamic waves and the micro-
scopic particles in the DUGKWP. Like the UGKWP, both
the information of microscopic particles and macroscopic
flow quantities are evolved in the DUGKWP. Specifically,
the microscopic particles are updated by the free-transport
and resampling processes, and the macroscopic flow variables
are evolved through solving the macroscopic governing equa-
tions of conservation laws with the finite volume method.
In particular, the macroscopic numerical fluxes at the cell
interface are calculated by both the hydrodynamic waves and
the microscopic particles. According to the discrete char-
acteristic solution to the Boltzmann-BGK equation, in the
highly rarefied flow regime, the macroscopic fluxes are mainly
attributed to the motion of microscopic particles, while in
the continuum flow regime, no microscopic particle exists in
the computational domain and the DUGKWP is reduced to
the N-S solver. The performance of the DUGKWP will be
investigated by several one-dimensional and two-dimensional
numerical tests from the continuum to the free molecular flow
regime, and the results will be compared with the modified
DUGKS as well as the UGKS.

II. MODIFIED DISCRETE UNIFIED
GAS-KINETIC SCHEME

Different from the original DUGKS [29], in which only the
DVBE is resolved, the modified DUGKS solves the DVBE as
well as the corresponding macroscopic governing equations.
In this work, we confine the study to the Boltzmann-BGK
equation for simplicity, which has the following form:

∂ f

∂t
+ ξ � ∇ f = � ≡ g − f

τ
, (1)

where ξ is the molecular velocity vector, � represents the
collision operator, and τ denotes the collision time. f is the
distribution function, and g is its equilibrium state, which is
defined by the Maxwellian distribution function

g = ρ

(2πRgT )3/2
exp

(
− c2

2RgT

)
, (2)

where ρ denotes the density, T denotes the temperature, c =
ξ − u represents the molecular thermal velocity vector, u de-
notes the mean flow velocity, c = |c| refers to the magnitude
of c, and Rg denotes the gas constant.
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According to the relationship between the distribution
function and the macroscopic flow variables, the correspond-
ing macroscopic governing equations to Eq. (1) can be
obtained as follows:

∂W
∂t

+ ∇ � F = 0 (3)

with the conservative flow variable vector W and the flux
vector F computed by

W = (ρ, ρu, ρE )T = 〈ψ f 〉, (4)

F = (Fρ, Fρu, FρE )T = 〈ξψ f 〉. (5)

Here ψ = (1, ξ, ξ 2/2)T is the moment vector and ξ = |ξ|
is the magnitude of ξ. The notation 〈 f 〉 = ∫

f dξ defines the
integral of the distribution function in the entire velocity
space. Note that the compatibility condition has been utilized
in Eq. (3).

A. Solution of discrete velocity Boltzmann equation

In the framework of the DVM, Eq. (1) is first discretized in
the velocity space

∂ fα
∂t

+ ξα � ∇ fα = �α = gα − fα
τ

, α = 1, . . . , NV , (6)

where NV and the subscript α are the total number of discrete
velocity points and the index in the discrete velocity space,
respectively. Integrating Eq. (6) over a control volume Vi and
a time interval [0,	t], we can obtain

f n+1
i,α − f n

i,α + 1

Vi

∑
j∈N (i)

Si j

∫ 	t

0
ni j � ξα fi j,a(t )dt

=
∫ 	t

0
�αdt . (7)

Here the superscripts n and n + 1 represent the current time
step and the new time step, respectively. N (i) is the set of
neighboring cells of the cell i. ni j denotes the outward unit
normal vector. Si j is the area of the interface shared by the
cells i and j. 	t is the time-step size, which is determined by
the Courant-Friedrichs-Lewy (CFL) condition. Applying the
trapezoidal law to the right-hand side of Eq. (7), we can ob-
tain the explicit evolution equation of the discrete distribution
function as follows:

f n+1
i,α = 2τ n+1

i

2τ n+1
i + 	t

⎡
⎣ f n

i,α− 1

Vi

∑
j∈N (i)

Si j

∫ 	t

0
ni j � ξα fi j,a(t )dt

+ 	t

2

(
gn

i,α − f n
i,α

τ n
i

+ ḡn+1
i,α

τ n+1
i

)⎤
⎦. (8)

As shown in Eq. (8), the evolution of the distribution func-
tion requires the calculation of the equilibrium state at the new
time level ḡn+1

i,α and the discrete distribution function at the
cell interface fi j,a(t ). ḡn+1

i,α is the function of the macroscopic
variables, which can be predicted from the solution of Eq. (3)
like the UGKS [27,28] and IDVM [32,33]. The calculation of
ḡn+1

i,α will be illustrated in Sec. II B. As for the discrete distribu-
tion function fi j,a(t ), it can be obtained from the characteristic

solution to the Boltzmann-BGK Eq. (1) at the cell interface

fi j (t ) ≡ f (xi j, t )

= f (xi j − ξt, 0) + t

2
[�(xi j − ξt, 0) + �(xi j, t )], (9)

where xi j represents the location at the cell interface. Equation
(9) can be rearranged as

f (xi j, t ) = 2τ − t

2τ + t
f (xi j − ξt, 0)

+ t

2τ + t
[g(xi j − ξt, 0) + g(xi j, t )]. (10)

Similar to the original DUGKS [29], the discretization
in the molecular velocity space is introduced into Eq. (10),
and the rectangular rule is adopted to calculate the numerical
fluxes in Eq. (8), which yields∫ 	t

0
ni j � ξα fi j,a(t )dt ≈ 	tni j � ξα fi j,a(h), (11)

fi j,a(h) = 2τ − h

2τ + h
fa(xi j − ξαh, 0)

+ h

2τ + h
[gα (xi j − ξαh, 0) + gα (xi j, h)], (12)

Here h = 	t/2 is the half-time-step size. The discrete
distribution function fa(xi j − ξαh, 0) and its equilibrium state
gα (xi j − ξαh, 0) at the surrounding point of the cell interface
at the current time level can be interpolated from those at the
cell center. To evaluate the discrete equilibrium state at the cell
interface gα (xi j, h), we first apply the compatibility condition
to Eq. (12), which yields

W(xi j, h) = 2τ − h

2τ
〈ψ fa(xi j − ξαh, 0)〉a

+ h

2τ
〈ψga(xi j − ξαh, 0)〉a. (13)

Then gα (xi j, h) can be obtained by substituting W(xi j, h)
into Eq. (2). Note that the integral in Eq. (13) should be
replaced by the numerical quadrature considering the dis-
cretization in the molecular velocity space. It has been
distinguished from the analytical integration with the sub-
script “α.”

B. Solution of macroscopic governing equations

To predict ḡn+1
i,α , the macroscopic governing equation (3)

should be solved. By explicitly discretizing Eq. (3) over a
control volume Vi, we have

W
n+1
i − Wn

i + 	t

Vi

∑
j∈N (i)

Si jni j � Fi j = 0. (14)

According to the definition of macroscopic fluxes (5) and
using the rectangular rule to approximate the time integration
over [0,	t], we can obtain

Fi j = 1

	t

〈∫ 	t

0
ξαψ fi j,a(t )dt

〉
α

≈ 〈ξαψ fi j,a(h)〉
α
. (15)
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Since fi j,a(h) has been determined by Eq. (12), W
n+1
i can

be obtained easily by Eq. (15). Then ḡn+1
i,α can be calculated by

substituting W
n+1
i into Eq. (2).

It can be seen from the above derivation that the modi-
fied DUGKS shares some common features with the original
DUGKS, such as the use of the trapezoidal law to approximate
the collision term and the rectangular rule to approximate
the time integral of numerical fluxes at the cell interface.
However, the modified DGUKS solves both the DVBE and
its corresponding macroscopic governing equations simul-
taneously, and the transformations of discrete distribution
functions used in the original DUGKS are avoided. As com-
mented by Liu et al. [38] and Chen et al. [39], the introduction
of the macroscopic governing equations to predict the equilib-
rium state at the new time level leads to better performance on
the conservativeness than the original DUGKS.

III. DISCRETE UNIFIED GAS-KINETIC
WAVE-PARTICLE METHOD

As we know, the conservation laws of the mass, momen-
tum, and energy in a control volume within a time step are
fundamental for resolving the fluid flow problems on the scale
of mesh size and time-step size. The multiscale flow evolution
in the above DUGKS relies on the reconstruction of numerical
fluxes at the cell interface by coupling the motion of particles
from their collisions. This is realized by the local characteris-
tic solution to the Boltzmann-BGK equation. The DUGKWP
will also be designed from this local solution, which can be
rewritten as

f (xi j, te) = 2τ − te
2τ + te

f (xi j − ξte, 0)︸ ︷︷ ︸
f f r
i j (te )

+ te
2τ + te

[g(xi j − ξte, 0) + g(xi j, te)]︸ ︷︷ ︸
f eq
i j (te )

, (16)

where te is the scale-dependent observation time. f f r
i j (te) and

f eq
i j (te) are related to the evolution of the initial distribu-

tion function and the local equilibrium state, respectively.
More specifically, f f r

i j (te) and f eq
i j (te) are contributed to the

free-streaming fluxes and the equilibrium fluxes, respectively.
Equation (16) shows that in a time interval [0, te], there is
a (2τ − te)/(2τ + te) portion of particles without suffering
collision, and the other particles suffer at least one collision.
If te = 2τ , all particles will collide with other particles in
a time interval [0, te] and the flow field can be regarded
as the continuous flow. When te > 2τ , the ratio of particles
without suffering collision becomes negative. This situation is
unphysical, and it can also be treated as the continuum flow
directly.

In the modified DUGKS, the distribution function is further
discretized in the molecular velocity space to calculate the
numerical fluxes and evolve the distribution function itself
as well as the macroscopic conservative variables. But, in
fact, the numerical fluxes for updating the macroscopic con-
servative variables can also be evaluated by the deterministic

hydrodynamic waves and the stochastic microscopic particles.
This strategy has been utilized in the UGKWP [34,35]. In
this section, a multiscale DUGKWP will be constructed by
applying Eq. (16).

A. Calculation of equilibrium fluxes

When introducing the microscopic particles to evaluate
the free-streaming fluxes, the discretization in the molecular
velocity space can be avoided and the nonequilibrium effect
can be captured by tracking the microscopic particles. In this
way the evolution of the macroscopic flow variables [Eq. (14)]
can be rewritten as

Wn+1
i = Wn

i − 	t

Vi

∑
j∈N (i)

Si jni j � Feq
i j + F f r

i

Vi
, (17)

where Feq
i j and F f r

i are the macroscopic fluxes attributed to

f eq
i j (te) and f f r

i j (te), respectively. In the DUGKWP, F f r
i are

calculated analytically from the hydrodynamic waves and by
counting the particles across the cell interface, which will be
elaborated in Sec. III B, and Feq

i j are computed by substituting
f eq
i j (te) into Eq. (5) and integrating over a time interval [0,	t]

directly. But in the calculation of Feq
i j , two circumstances need

to be considered according to the ratio of particles with-
out suffering collision, β = (2τ−	t )/(2τ + 	t ), where the
scale-dependent observation time te has been taken as the
time-step size 	t .

Case A: 	t < 2τ , the particle’s free transport needs to be
considered. In this case, the ratio of particles without suffering
collision is positive, both f eq

i j (te) and f f r
i j (te) contribute to the

evaluation of macroscopic fluxes. Thus, Feq
i j can be calculated

( )1 β−  β  

, 0h n=W  

,h nW  

, 1p n−W  

, 1h n+W  

,p nW  

,h nW  

, 1p n−W  

( )1 β−  β  

( )1 β−  β  

ft t< Δ  ft t= Δ  

(a) (b) 

(c) 
(d) 

FIG. 1. Time evolution of microscopic particles and macroscopic
flow variables in the DUGKWP method. (a) Initial field for the first
step; (b) initial field for the nth step; (c) classification of collision-
less (white circle) and collisional particles (solid circle) for Wp,n−1;
(d) update on both the microscopic and macroscopic levels.
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FIG. 2. Distributions of density, temperature, velocity, and number of simulation particles for Sod shock tube problem at μref = 10−5.
(a) Density; (b) temperature; (c) velocity; (d) number of simulation particles.

by integrating f eq
i j (te) over a time interval [0,	t] and substi-

tuting the resultant equation into Eq. (5) directly:

Feq
i j = 1

	t

〈
ξψ

∫ 	t

0
f eq
i j (te)dte

〉
, (18)

For ease of calculation of the above integration and to
achieve the second order of accuracy, the terms in f eq

i j (te) can
be expanded as

g(xi j − ξte, 0) =
{

gL(xi j, 0) − teξ � ∇g(xi, 0), ni j � ξ � 0

gR(xi j, 0) − teξ � ∇g(x j, 0), ni j � ξ < 0
,

(19)

g(xi j, te) = g(xi j, 0)+te∂t g(xi j, 0), (20)

where xi and x j represent the coordinates of cell centers of
the left and right cells, respectively. gL(xi j, 0) and gR(xi j, 0)

denote the interfacial states of the initial equilibrium distribu-
tion functions at the left and right sides. They can be computed
from the macroscopic flow variables at the corresponding
positions which are reconstructed from those at cell centers
with a slope limiter function. g(xi j, 0) is the equilibrium dis-
tribution function at the cell interface, which can be calculated
by the following compatibility condition:

W(xi j, 0) = 〈ψg(xi j, 0)〉
= 〈ψgL(xi j, 0)〉

>0+〈ψgR(xi j, 0)〉
<0. (21)

Here the notations 〈�〉>0 and 〈�〉<0 define the integrations
in the half left and half right velocity space, respectively.
In addition, the spatial derivatives of the initial equilibrium
distribution function at the cell centers of the left and right
cells (∇g(xi, 0) and ∇g(x j, 0)) and the time derivative of
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FIG. 3. Distributions of density, temperature, velocity, and number of simulation particles for Sod shock tube problem at μref = 10−4.
(a) Density; (b) temperature; (c) velocity; (d) number of simulation particles.

the equilibrium distribution function at the cell interface
∂t g(xi j, 0) can be obtained by the following micro-macro
relationships:

∇W(xi, 0) = 〈ψ∇g(xi, 0)〉, ∇W(x j, 0) = 〈ψ∇g(x j, 0)〉,
(22)

〈ψ∂t g(xi j, 0)〉 = −[〈ψξ � ∇g(xi, 0)〉>0+〈ψξ � ∇g(x j, 0)〉
<0].

(23)

The detailed expressions of Eqs. (22) and (23) can be
found in Ref. [40]. Note that the introducing of the discon-
tinuity of initial equilibrium distribution functions and their
derivatives at the cell interface is to enhance the numerical
stability.

Substituting Eqs. (19) and (20) into the expression of
f eq
i j (te) and using the rectangular rule to approximate the time

integration over [0,	t], we can get∫ 	t

0
f eq
i j (te)dte = c1{g(xi j, 0) + H (ni j � ξ)gL(xi j, 0)

+ [1 − H (ni j � ξ)]gR(xi j, 0)}
+ c2{∂t g(xi j, 0) − H (ni j � ξ)ξ � ∇g(xi, 0)

− [1 − H (ni j � ξ)]ξ � ∇g(x j, 0)} (24)

where

c1 = h	t

2τ + h
, c2 = hc1. (25)
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FIG. 4. Distributions of density, temperature, velocity, and number of simulation particles for Sod shock tube problem at μref = 10−3.
(a) Density; (b) temperature; (c) velocity; (d) number of simulation particles.

In addition, H (ni j � ξ) is the Heaviside function,
H (ni j � ξ) = 1 for ni j � ξ � 0 and H (ni j � ξ) = 0 for ni j � ξ <

0. Finally, Feq
i j can be calculated by substituting Eq. (24) into

Eq. (18) and integrating analytically in the velocity space.
Case B: 	t � 2τ , the particle’s free transport can be

ignored. In this case, the ratio of particles without suffering
collision is negative, indicating that the flow field can be
regarded as the continuous one, and the distribution function
at the cell interface f (xi j, te) can be written as

f (xi j, te) = g(xi j, te) − τDg(xi j, te)

≈ g(xi j, 0) − τDg(xi j, 0) + te∂t g(xi j, 0), (26)

where Dg(xi j, 0) = ∂t g(xi j, 0) + ξ � ∇g(xi j, 0) is the substan-
tial derivative of the equilibrium state. Substituting Eq. (26)
into Eq. (18), Feq

i j can be determined explicitly, and F f r
i can

be taken as zero. What’s more, since Eq. (26) is indeed the
expansion of the distribution function truncated to the N-S
level, Feq

i j can also be calculated directly by the gas kinetic
scheme [41,42] or the N-S solver [43].

B. Calculation of free-streaming fluxes

It can be seen from Sec. III A that the contribution of
microscopic particles to the macroscopic fluxes has to be eval-
uated in the DUGKWP when 	t < 2τ . According to Eq. (16),
the cumulative distribution for particles’ free transport time
can be written as

G(te) = 2τ − te
2τ + te

. (27)
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FIG. 5. Distributions of density, temperature, velocity, and number of simulation particles for Sod shock tube problem at μref = 10−2. (a)
Density; (b) temperature; (c) velocity; (d) number of simulation particles.

As a result, the free-transport time of a particle within a
time step 	t can be evaluated through inversing the above
cumulative distribution,

t f = min

(
1 − r0

1 + r0
2τ,	t

)
, (28)

where r0 denotes a random number generated from a uniform
distribution between (0, 1). Once the free-transport time is
determined, the particle can be accurately tracked by

xn+1
k = xn

k + ξkt f . (29)

Here the particle velocity ξk keeps unchanged during the
motion.

According to the free transport time t f assigned to each
particle, we can divide the microscopic particles into the
collisionless particle (t f = 	t) and the collisional particle
(t f < 	t). The collisionless particle will not collide with other

particles within the time-step size 	t , while at least one colli-
sion will occur for the collisional particle. After streaming of
all the particles, the free-streaming fluxes of cell i attributed
to the particles can be calculated by counting those particles
at the beginning and at the end of the time step inside the cell
i,

F f r,p
i =

∑
xn+1

k ∈Vi

φk −
∑
xn

k ∈Vi

φk, k ∈ P(i), (30)

Where the vector φk = (mk, mkξk,
1
2 mkξ

2
k + ek ) represents the

mass, momentum, and energy of the particle k, and P(i)
denotes the set of particles inside the cell i. mk , ξk , and
ek = (3−D)RgT /2 are the mass, velocity, and potential en-
ergy of the particle k, respectively; they can be sampled from
the Maxwellian distribution function. Since the contribution
of collisional particles to the free-streaming fluxes can be
calculated analytically, these particles will be deleted after
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FIG. 6. Distributions of density, temperature, velocity, and number of simulation particles for Sod shock tube problem at μref = 10−1. (a)
Density; (b) temperature; (c) velocity; (d) number of simulation particles.

the streaming. Thus, the total conservative flow variables of
collisionless part of particles in the cell i after streaming can
be calculated by counting those particles at the cell i,

Wp
i = 1

Vi

∑
xn+1

k ∈Vi

φk, k ∈ Pf (i), (31)

where Pf (i) is the set of collisionless particles in the cell i.
According to the conservation, the total conservative flow

variables of collisional particles that remained in the cell i
after streaming can be calculated by

Wh
i = Wn+1

i − Wp
i . (32)

In fact, Wh
i and Wp

i are the macroscopic flow variables
corresponding to the hydrodynamic waves and the collision-
less particles, respectively. At the beginning of each time
step, if we resample particles from Wh

i directly and classify
these particles into the collisionless one and the collisional

one, the free-streaming fluxes F f r,p
i calculated by Eq. (30)

are indeed the free-streaming fluxes F f r
i shown in Eq. (17).

This treatment is similar to that of the unified gas-kinetic
particle (UGKP) method. Since the total mass of particles
in the UGKP equals Wi consistently in all flow regimes, the
computational cost of the UGKP cannot degrade to the N-S
solver in the continuum flow regime.

As illustrated in Eqs. (31) and (30), during the free-
transport process, the free-streaming fluxes are attributed to
both the collisionless particles and the collisional particles,
whereas the end of each time step involves only the colli-
sionless particles for the recovery of the nonequilibrium gas
distribution function. Thus, we can just resample the collision-
less particle at the beginning of each time step and calculate
the contribution of collisional particles to the free-streaming
fluxes analytically. According to the cumulative distribution
Eq. (27), the expectation of the proportion of collisionless
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FIG. 7. Distributions of density, temperature, velocity, and number of simulation particles for Sod shock tube problem at μref = 10.
(a) Density; (b) temperature; (c) velocity; (d) number of simulation particles.

particles in the cell i can be evaluated at the beginning of each
time step from the updated hydrodynamic waves as follows:

Whp
i = 2τ − 	t

2τ + 	t
Wh

i = βWh
i . (33)

Equation (33) shows that the proportion of collisionless
particles goes to zero as τ approaching 	t/2, indicating that
the number of particles decreases as the weakening of the
rarefication effect. Then the macroscopic flow variables cor-
responding to unsampled particles can be calculated by

W∗
i = Wh

i − Whp
i . (34)

Similar to the numerical fluxes computed by the stochastic
method with free transport mechanics, the contribution of the
resampled collisionless particle to the free-streaming fluxes
can be calculated by Eq. (30). As for the free-streaming fluxes

contributed from W∗
i , it can be calculated analytically by

F f r,wave
i j (W∗) = F f r,DUGKWP

i j (Wh) − F f r,DVM
i j (Whp)

= 1

	t

〈
ξψ

∫ 	t

0

2τ − te
2τ + te

f h(xi j − ξte, 0)dte

〉

− 1

	t

〈
ξψ

∫ 	t

0
f hp(xi j − ξte, 0)dte

〉

= 1

	t

〈
ξψ

∫ 	t

0

2τ − te
2τ + te

[gh(xi j, 0)

− τDgh(xi j, 0) − teξ · ∇gh(xi j, 0)]dte

〉

− β

	t

〈
ξψ

∫ 	t

0
[gh(xi j, 0)
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FIG. 8. Distributions of density, temperature, velocity, and number of simulation particles for shock structure at Ma = 1.2. (a) Density; (b)
temperature; (c) velocity; (d) number of simulation particles.

− τDgh(xi j, 0) − teξ · ∇gh(xi j, 0)]dte

〉

= 1

	t
〈ξψ[c3gh(xi j, 0)

+ c4ξ · ∇gh(xi j, 0) + c5∂t g
h(xi j, 0)]〉. (35)

By using the rectangular rule to approximate the time inte-
gration over [0,	t], the coefficients c3, c4, and c5 in Eq. (35)
can be written as

c3 = 2τ − h

2τ + h
	t − β	t,

c4 = −2τ − h

2τ + h
(τ + h)	t + β(τ + h)	t,

c5 = −2τ − h

2τ + h
τ	t + βτ	t . (36)

In Eq. (35), gh is the equilibrium state determined from
Wh

i . For better numerical stability, the discontinuity of the
equilibrium distribution function and its derivatives at the cell
interface can be introduced into Eq. (35), which yields

F f r,wave
i j (W∗) = c3

	t
〈ξψ{H (ni j � ξ)gh,L(xi j, 0)

+ [1 − H (ni j � ξ)]gh,R(xi j, 0)}〉

+ c4

	t
〈ξψ{H (ni j � ξ)ξ � ∇gh(xi, 0)

+ [1 − H (ni j � ξ)]ξ � ∇gh(x j, 0)}〉

+ c5

	t
〈ξψ{H (ni j � ξ)∂t g

h(xi, 0)

+ [1 − H (ni j � ξ)]∂t g
h(x j, 0)}〉. (37)
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FIG. 9. Distributions of density, temperature, velocity, and number of simulation particles for shock structure at Ma = 3. (a) Density;
(b) temperature; (c) velocity; (d) number of simulation particles.

The spatial and temporal derivatives of the equilibrium dis-
tribution function at the cell centers of the left and right cells
can be calculated by the following micro-macro relationships

∇Wh(xi, 0) = 〈ψ∇gh(xi, 0)〉,
∇Wh(x j, 0) = 〈ψ∇gh(x j, 0)〉, (38)

〈ψ∂t g
h(xi, 0)〉 = −〈ψξ � ∇gh(xi, 0)〉,

〈ψ∂t g
h(x j, 0)〉 = −〈ψξ � ∇gh(x j, 0)〉. (39)

Finally, the evolution of the conservative flow variables in
the DUGKWP can be rewritten as

Wn+1
i = Wn

i − 	t

Vi

∑
j∈N (i)

Si jni j � Feq
i j

− 	t

Vi

∑
j∈N (i)

Si jni j � F f r,wave
i j + F f r,p

i

Vi
. (40)

It can be seen from Eq. (40) that the free-streaming
fluxes F f r

i in Eq. (17) have been divided into two parts in
the DUGKWP, F f r,wave

i j and F f r,p
i . This strategy makes the

DUGKWP efficient in the near continuum and continuum
flow regimes.

C. Computational sequence

In the DUGKWP, the conservation laws of the conservative
flow variables are the key to updating the flow field. For the
nonequilibrium flow, both the hydrodynamic waves and the
microscopic particles need to be considered since both of
them contribute to the calculation of macroscopic fluxes. The
interplay of the hydrodynamic waves and the microscopic par-
ticles is illustrated in Fig. 1. The summary of computational
processes in the DUGKWP is given as follows:
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FIG. 10. Distributions of density, temperature, velocity, and number of simulation particles for shock structure at Ma = 8. (a) Density;
(b) temperature; (c) velocity; (d) number of simulation particles.

(1) At the beginning of each time step, calculate
the ratio of particles without suffering collision β =
(2τ−	t )/(2τ + 	t ) from Wn

i .
Case A: If β < 0, the flow field can be regarded as the

continuous one. Thus, Feq
i j can be calculated by the N-S solver

directly and F f r
i can be taken as zero. Then the conservative

flow variables can be updated by Eq. (17). Go to step (7) for
checking the result.

Case B: If β > 0, the particle’s free transport has to
be considered. In this situation, Feq

i j can be calculated by
Eq. (18), where the time integration of f eq

i j (te) is determined
by Eq. (24).

(2) Get the initial state of particles, which includes the
collisionless particles evolved from the previous step Wp,n−1

i

and the collisionless particles resampled from the hydro-
dynamics waves at the current step Whp,n

i , as shown in
Fig. 1(b). For the first step, we can take Wp,n−1

i = 0 and
Whp,n

i = βWh,n
i = βWn=0

i , as shown in Fig. 1(a).
(3) Calculate the free-transport time t f by Eq. (28) and

classify the particles Wp,n−1
i into the collisionless particle

(hollow circle) and the collisional particle (filled circle). For
the particles resampled from Whp,n

i , their free transport time
is always taken as 	t , as shown in Fig. 1(c).

(4) Stream all particles according to Eq. (29) and calculate
the free-streaming fluxes F f r,p

i by Eq. (30). After streaming,
delete the collisional particles and update the total conserva-
tive flow variables of collisionless particles Wp,n

i by Eq. (31),
as shown in Fig. 1(d).
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FIG. 11. Distributions of density, temperature, velocity, and number of simulation particles for shock structure at Ma = 20. (a) Density;
(b) temperature; (c) velocity; (d) number of simulation particles.

(5) Calculate the free-streaming fluxes F f r,wave
i j attributed

to the hydrodynamic waves of the unsampled particles
Wh,n

i − Whp,n
i by Eq. (37).

(6) Compute the conservative flow variables Wn+1
i

through Eq. (40) and the hydrodynamic waves Wh,n+1
i through

Eq. (32). Calculate the proportion of collisionless particles for
the next time step Whp,n+1

i by Eq. (33) if β > 0.
(7) Repeat steps (1) to (6) until the convergence result is

obtained.

D. Analysis and discussion

As a numerical method for simulation of multiscale fluid
flow problems, the asymptotic behaviors of the DUGKWP in
the collisionless limit and the continuous limit are analyzed in
this section.

(1) Collisionless limit (τ → ∞). In this case, the collision
time τ is far larger than the time-step size 	t . Thus, we have

β = lim
τ→∞ (2τ − 	t )/(2τ + 	t ) → 1,

t f = lim
τ→∞

{
min

(
1 − r0

1 + r0
2τ,	t

)}
→ 	t . (41)

Equation (41) shows that the ratio of particles without
suffering collision approaches one, and all these particles will
be streamed with time step 	t , indicating that the DUGKWP
solves the collisionless Boltzmann equation in this situation.

(2) Continuous limit (τ → 0). As a multiscale approach,
the time-step size of the DUGKWP is not constrained by the
collision time τ . Thus, the collision time τ will be far less than
the time-step size 	t in the continuous limit. If τ < 	t/2, the
ratio of particles without suffering collision becomes negative
and the macroscopic fluxes are fully determined by the N-S
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FIG. 12. Comparison of velocity profiles along the vertical and horizontal central lines for lid-driven cavity flow at different Reynolds and
Knudsen numbers. (a) Kn = 1; (b) Kn = 0.075; (c) Re = 100; (d) Re = 1000.

solver. Consequently, the solution given by the DUGKWP in
this situation is indeed the result of the N-S equations.

In the critical state of τ = 	t/2, the collisionless particle
vanishes and Wh = W. According to Eqs. (24) and (37) with-
out considering the discontinuity of equilibrium distribution
functions and their derivatives, the macroscopic fluxes at the
cell interface can be written as

Feq
i j + F f r,wave

i j = 1

	t
{〈ξψ(2c1g − c2ξ � ∇g + c2∂t g)〉

+ 〈ξψ(c3g + c4ξ � ∇g + c5∂t g)〉}

=
〈
ξψ

[
g(xi j, 0) − τDg(xi j, 0)

+ 	t

2
∂t g(xi j, 0)

]〉
. (42)

Equation (42) shows that the macroscopic fluxes in the
critical state are actually the N-S fluxes given by the first-
order Chapman-Enskog expansion. It is confirmed that the
DUGKWP will reduce to the N-S solver at τ = 	t/2.

IV. NUMERICAL EXAMPLES

In this section a series of test cases, including the Sod
shock tube, the shock structure, the lid-driven cavity flow, and
the hypersonic flow around a circular cylinder, are simulated
to assess the performance of the DUGKWP. The results of
the DUGKWP will be compared with those of the UGKS
and/or the modified DUGKS (MDUGKS) shown in Sec. II.
For simplicity, the monatomic gas is assumed in all simula-
tions, where the specific heat ratio is taken as 5/3, the Prandtl
number is set as 1, and the gas constant is chosen as 208.13.
In addition, all computations are carried out on a PC with an
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FIG. 13. Comparison of density, u velocity, v velocity, and temperature contours for lid-driven cavity flow at Kn = 1 (DUGKWP: colored
background; MDUGKS: white dash line; UGKS: black solid line). (a) Density; (b) u velocity; (c) v velocity; (d) temperature.

Intel® Xeon® Gold 6226R CPU @2.9 GHz processor. For
the simplicity of comparing efficiency, we decided not to use
parallelization.

A. Case 1: Sod shock tube

The first test case is the Sod shock tube problem with
different Knudsen numbers. In the simulations, the compu-
tational domain of [0,1] is divided uniformly into 100 cells,
and the initial condition is taken as

(ρ1, u1, p1) = (1, 0, 1), 0 < x < 0.5

(ρ2, u2, p2) = (0.125, 0, 0.1), 0.5 � x < 1 (43)

The dynamic viscosity is calculated by

μ = μref

(
T

Tref

)w

, (44)

where Tref and μref are the reference temperature and refer-
ence dynamic viscosity, respectively. w is a constant related to

the intermolecular interaction models. In this work, the hard
sphere (HS) model with w = 0.5 is adopted for all simulations
by the DUGKWP, UGKS, and MDUGKS. As the Knudsen
number is proportional to the reference dynamic viscosity,
different values of μref will be simulated to evaluate the per-
formance of the DUGKWP in different flow regimes.

In this test case, the reference dynamic viscosity μref is
varied from μref = 10−5 to μref = 10, resulting in the cor-
responding Knudsen number defined by the left initial state
changes from Kn = 16

5
√

π
μref = 1.805 × 10−5 to 18.05, which

covers the flow regimes from the continuum to the free molec-
ular one. The simulation results of the present method will be
compared with the UGKS [27]. When using the UGKS, the di-
mensionless molecular velocity space truncated to [−15, 15],
which covers all possible distribution functions in the whole
physical space, is discretized uniformly by 201 points and the
Newton-Cotes quadrature is utilized for numerical integration.
The CFL number is set as 0.95 to guarantee the computational
stability, which results in a time-step size of 5 × 10−4. When
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FIG. 14. Comparison of density, u velocity, v velocity, and temperature contours for lid-driven cavity flow at Kn = 0.075 (DUGKWP:
colored background; MDUGKS: white dash line; UGKS: black solid line). (a) Density; (b) u velocity; (c) v velocity; (d) temperature.

using the DUGKWP, the mass of the simulation particle is
taken as mp = 5 × 10−6, the time-step size is set the same as
that of the UGKS, and 100 separate simulations are used to
obtain the averaged solutions.

Figures 2–7 show the distributions of the density, tem-
perature, velocity, and number of simulation particles at
μref = 10−5, 10−4, 10−3, 10−2, 10−1, and 10, respectively.
The averaged solutions calculated by the DUGKWP method
correspond well with the results of the UGKS, which validates
the effectiveness of the present method in all flow regimes.
In addition, it can be noticed from the distribution of the
number of simulation particles that the number of simulation
particles approaches zero in the continuum flow regime and
increases gradually as the increasing of reference dynamic
viscosity μref , namely, the enhancing of the rarefaction effect.
This observation indicates that the computational cost of the
DUGKWP method can be reduced to the N-S solver in the
continuum flow regime.

B. Case 2: Shock structure

The second test case is the shock structure with differ-
ent Mach numbers of 1.2, 3, 8, and 20. In the simulation,
the computational domain of x ∈ [−50λref , 50λref ] is divided
uniformly into 200 cells, where λref is the mean-free path at
the upstream condition. The initial condition is given by the
Rankine-Hugoniot condition. The reference dynamic viscos-
ity is calculated by

μref = 5
√

π

16
Kn. (45)

In the simulation, the Knudsen number is taken as Kn = 1.
Like the first test case, the simulation results of the present
method for this test case will also be compared with the UGKS
[27]. When using the UGKS to solve the cases of Ma = 1.2,
3, and 8, the molecular velocity space truncated to [−15, 15]
is discretized uniformly by 201 points, and the Newton-Cotes
quadrature is utilized for numerical integration. For the case of
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FIG. 15. Distribution of simulation particles for lid-driven cavity flow at different Reynolds/Knudsen numbers. (a) Kn = 1; (b) Kn =
0.075; (c) Re = 100; (d) Re = 1000.

Ma = 20, the truncation region is enlarged to [−30, 30] and
the number of discretization points in the molecular velocity
space is set as 401. The CFL number is set as 0.95, which
results in the time-step size about 2.5 × 10−2 for the cases of
Ma = 1.2, 3, and 8 and 1.25 × 10−2 for the case of Ma =
20. When using the DUGKWP, the mass of the simulation
particle is taken as mp = 2 × 10−4, 1 × 10−3, 2 × 10−3, and
5 × 10−3 for the cases of Ma = 1.2, 3, 8, and 20, respectively.
The time-step size of the DUGKWP method is set the same as
that of UGKS, and the last 2000 iterations are used to obtain
the averaged solutions.

The distributions of the density, temperature, velocity, and
number of simulation particles for shock structure at Ma =
1.2, 3, 8, and 20 are depicted in Figs. 8–11, respectively.
Basically, the present results agree well with those of the
UGKS. In addition, it can be seen that the thickness of the
shock wave at Mach number of 1.2 is larger than those of 3,
8, and 20. Thus, the stronger rarefied gas effect emerges in
the case of Ma = 1.2 as compared with those of Ma = 3, 8,

and 20. To resolve the shock structure at Mach number of 1.2,
more simulation particles are required.

C. Case 3: Lid-driven cavity flow

As a classic benchmark case for assessing the perfor-
mance of a newly developed method in different flow regimes,
the lid-driven cavity flow is studied. In this test case, the
top boundary of the cavity moves with a velocity of uW =
0.15

√
2RgTref , where Tref is the wall temperature as well as the

reference temperature, and the other boundaries are stationary.
Four test cases at different Reynolds and Knudsen numbers;
namely, Kn = 1, Kn = 0.075, Re = 100, and Re = 1000, are
considered here. For the cases of Kn = 1 and Kn = 0.075,
the dynamic viscosity μ is determined by Eq. (44), and the
reference dynamic viscosity μref is calculated by

μref

L
= 5ρref (2πRgTref )1/2

16
Kn, (46)
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TABLE I. Comparison of computational time (hr) and memory cost (MB) of different methods for lid-driven cavity flow at different
Reynolds and Knudsen numbers.

Scheme Kn = 1 Kn = 0.075 Re = 100 Re = 1000

Computational time MDUGKS 0.82 0.17 2.71 7.69
DUGKWP 9.02 8.75 4.05 0.64
Time ratio 0.09 0.02 0.67 12.02

Memory cost MDUGKS 2775 333 255 255
DUGKWP 1909 1909 216 18

Memory ratio 1.45 0.17 1.18 14.17

Note: All simulations were carried out using an in-house FORTRAN code on a PC with an Intel® Xeon® Gold 6226R CPU at 2.9 GHz processor
without the parallelization.

where ρref is the reference density and L is the edge length
of the cavity. For the cases of Re = 100 and Re = 1000, μ is
given by

μ = ρref uW L

Re
. (47)

In the simulation, the computational domain is discretized
uniformly by 50 × 50 cells for the first two test cases and by
150 × 150 cells for the last two test cases.

In this test example, we will compare the results of the
developed method with those of the UGKS, the MDUGKS,
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FIG. 16. Comparison of density, u velocity, v velocity, and temperature contours for flow around a circular cylinder at Ma = 5 and Kn =
0.1 (DUGKWP: colored background; MDUGKS: white dash line). (a) Density; (b) u velocity; (c) v velocity; (d) temperature.
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FIG. 17. Comparison of density, u velocity, pressure, and temperature profiles along the stagnation line for flow around a circular cylinder
at Ma = 5 and Kn = 0.1. (a) Density; (b) u velocity; (c) pressure; (d) temperature.

and the N-S solver. When using the UGKS and MDUGKS,
the Newton-Cotes quadrature with 81 × 81 points uniformly
distributed in [−4, 4] × [−4, 4] is utilized for the test case
of Kn = 1, the Gauss-Hermite quadrature rule with 28 × 28
points is used for the test case of Kn = 0.075, and the Gauss-
Hermite quadrature rule with 8 × 8 points is used for the last
two test cases. The CFL number is set as 0.95. When using
the DUGKWP, the mass of the simulation particle is taken
as mp = 1/(50 × 50 × 10000) for the first two test cases and
mp = 1/(150 × 150 × 400) for the last two test cases, and
the time-step size is set the same as that of the UGKS and
MDUGKS. The averaged solutions of the last 20 000 itera-
tions are output for comparison.

The velocity profiles along the vertical and horizontal
central lines at different Reynolds and Knudsen numbers
are compared in Fig. 12. Basically, the results obtained by
the DUGKWP agree well with those calculated by using

the UGKS and MDUGKS or by Ghia et al. [44] using the
N-S solver, validating the accuracy of the present method
for simulation of low-speed flows in both the rarefied and
continuous flow regimes. However, compared with the test
case of Kn = 0.075, the results at Kn = 1 calculated by
the DUGKWP involve some statistical noise due to the
stronger rarefied gas effect. This statistical noise can be
reduced by using more simulation particles and statistical
sampling times [45]. Figures 13 and 14 compare the den-
sity, u velocity, v velocity, and temperature for the cases at
Kn = 1 and 0.075 computed by different methods, respec-
tively. The results of the DUGKWP are in general consistent
with those of the UGKS and MDUGKS except for the
temperature distribution. The reason could be that the tem-
perature is calculated by the higher order of moment of
the distribution function as compared with the density and
velocity.

015302-20



DISCRETE UNIFIED GAS-KINETIC WAVE-PARTICLE … PHYSICAL REVIEW E 108, 015302 (2023)

X

Y

-5 0 5 10

-8

-6

-4

-2

0

2

4

6

8
RHO

17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

(a)

X

Y

-5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

U

4
3.5
3
2.5
2
1.5
1
0.5
0

(b)

X

Y

-5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

V

1.2
1
0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1
-1.2

(c)

X

Y

-5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

T

7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

(d)

FIG. 18. Comparison of density, u velocity, v velocity, and temperature contours for flow around a circular cylinder at Ma = 5 and Kn = 1
(DUGKWP: colored background; MDUGKS: white dash line). (a) Density; (b) u velocity; (c) v velocity; (d) temperature.

The efficiency and memory consumption of the DUGKWP
and MDUGKS are related to the number of simulation par-
ticles and discrete velocities, respectively. Figure 15 displays
the distribution of simulation particles for the lid-driven cavity
flow at different Reynolds and Knudsen numbers. Clearly,
the number of simulation particles reduces gradually with
the flow transitioning to the continuum flow. For the case of
Re = 1000, there is no simulation particle in the computa-
tional domain, which means that the DUGKWP reduces to
the N-S solver in this circumstance. But for the test cases of
Kn = 1 and 0.075, the number of simulation particles in each
cell is larger than the number of discrete velocities used for
the UGKS and MDUGKS. Correspondingly, the DUGKWP
is more efficient and has less memory consumption than the
UGKS and MDUGKS for the test case of Re = 1000, while
it is inefficient and has relatively high memory consumption
as the increasing of the Knudsen number for the simula-
tion of low-speed flows due to the requirement of a large

number of particles to reduce the statistical noise, as reported
in Table I.

D. Case 4: Flow around a circular cylinder

The last test example is the hypersonic flow around a cir-
cular cylinder with different Knudsen numbers of 0.1 and 1,
which is used to validate the present method for high-speed
flows. In the simulation, the free-stream Mach number is
taken as Ma = 5, and the wall temperature is fixed at the
free-stream temperature. The reference dynamics viscosity is
determined by Eq. (46), in which L is chosen as the radius
of the cylinder. A nonuniform mesh with 65 and 80 points
in the radial direction and circumferential direction, respec-
tively, is used to discretize the computational domain where a
far-field boundary is located at 15L away from the geomet-
rical center. When using the MDUGKS, the Newton-Cotes
quadrature with 101 × 101 points uniformly distributed in
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FIG. 19. Comparison of density, u velocity, pressure, and temperature profiles along the stagnation line for flow around a circular cylinder
at Ma = 5 and Kn = 1. (a) Density; (b) u velocity; (c) pressure; (d) temperature.

[−12, 12] × [−12, 12] is utilized for numerical quadrature in
the velocity space. When using the DUGKWP, the minimum
number of simulation particles in each cell is set as 2000
and the maximum mass of the simulation particle is taken
as mp = 1 × 10−3. The averaged solutions of the last 10 000
iterations are output for comparison.

The density, u velocity, v velocity, and temperature con-
tours for the test case of Kn = 0.1 obtained by different
methods are compared in Fig. 16, and the comparison of the
corresponding density, u velocity, pressure and temperature
profiles along the stagnation line is depicted in Fig. 17. Ba-
sically, the results obtained by the DUGKWP compare well
the those of the MDUGKS. Likewise, good agreements are
achieved for the test case of Kn = 1, as shown in Figs. 18 and
19. In addition, the comparisons of the computational time
and memory cost between the DUGKWP and the MDUGKS

for simulating this test example are reported in Table II. The
computational efficiency of the present scheme appears to be

TABLE II. Comparison of computational time (hr) and memory
cost (MB) of different methods for flow around a circular cylinder at
different Knudsen numbers.

Scheme Kn = 1 Kn = 0.1

Computational time MDUGKS 43.89 38.28
DUGKWP 4.51 2.71
Time ratio 9.73 14.13

Memory cost MDUGKS 8929 8929
DUGKWP 807 807

Memory ratio 11.06 11.06
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nearly an order of magnitude higher than the MDUGKS with
only about 1/11 memory consumption of the latter. These
observations verify the excellent accuracy and efficiency of
the DUGKWP for solving hypersonic rarefied flows.

V. CONCLUSIONS

Inspired by the idea of the UGKWP, a discrete unified
gas-kinetic wave-particle (DUGKWP) method is developed in
this work for the simulation of flows in all flow regimes. Like
the UGKWP, the information on both microscopic particles
and macroscopic flow variables is updated in the DUGKWP.
Specifically, the microscopic particles are updated by the free-
transport and resampling processes, and the macroscopic flow
variables are evolved by the macroscopic governing equa-
tions. But different from the UGKWP, which is designed
based on the local integral solution to the Boltzmann-BGK
equation, the DUGKWP constructs from the local discrete
characteristic solution to the Boltzmann-BGK equation. Ac-
cording to this local discrete characteristic solution, in the
highly rarefied flow regime, the macroscopic fluxes are mainly
attributed to the motion of microscopic particles, while in the
continuum flow regime, the macroscopic fluxes are dominated
by the macroscopic hydrodynamic waves. Analytical analysis
indicates that the DUGKWP solves the collisionless Boltz-
mann equation in the collisionless limit and reduces to the
N-S solver in the continuous limit, making it a multiscale
approach.

Four test examples, including the Sod shock tube prob-
lem, the shock structure, the lid-driven cavity flow, and the
hypersonic flow around a circular cylinder, are resolved to
comprehensively evaluate the performance of the DUGKWP
in all flow regimes. As compared with the deterministic ap-
proaches, such as the UGKS and MDUGKS, the DUGKWP
method can provide accurate results in all flow regimes. For
simulation of high-speed flows, the DUGKWP outperforms
the MDUGKS in both computational efficiency and memory
consumption. However, for simulation of low-speed flows, it
is more efficient and has less memory consumption only when
the flow goes to the continuum flow regime. As the Knudsen
number increases, the statistical noise would disturb the solu-
tion, especially for low-speed flows. Overall, the DUGKWP
is a multiscale method and appears to be a promising tool for
modeling high-speed flows in a wide variety of flow regimes.
Moreover, it is also expected to be applicable to the simulation
of gas mixtures and plasma flow problems [46].
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