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Dynamics of fluid bilayer vesicles: Soft meshes and robust curvature energy discretization
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Continuum models like the Helfrich Hamiltonian are widely used to describe fluid bilayer vesicles. Here we
study the molecular dynamics compatible dynamics of the vertices of two-dimensional meshes representing
the bilayer, whose in-plane motion is only weakly constrained. We show (i) that Jülicher’s discretization of
the curvature energy offers vastly superior robustness for soft meshes compared to the commonly employed
expression by Gommper and Kroll and (ii) that for sufficiently soft meshes, the typical behavior of fluid bilayer
vesicles can emerge even if the mesh connectivity remains fixed throughout the simulations. In particular, soft
meshes can accommodate large shape transformations, and the model can generate the typical �−4 signal for
the amplitude of surface undulation modes of nearly spherical vesicles all the way up to the longest wavelength
modes. Furthermore, we compare results for Newtonian, Langevin, and Brownian dynamics simulations of the
mesh vertices to demonstrate that the internal friction of the membrane model is negligible, making it suitable
for studying the internal dynamics of vesicles via coupling to hydrodynamic solvers or particle-based solvent
models.
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I. INTRODUCTION

Lipid bilayers are an essential ingredient of the membranes
surrounding cells, the basic structural and functional unit of
most life forms [1,2]. Many fundamental processes such as
shape transition, phase separation or budding can already be
studied in vesicles formed by closed lipid bilayers [3–13].
For atomistic [14–20] or particle-based coarse-grain mod-
els of the bilayer structure and dynamics [21–29] molecular
dynamics (MD) simulations are the method of choice. The
employed software packages (for example, LAMMPS [30],
GROMACS [31], and OpenMM [32]) allow the user to utilize
preprogrammed potentials, integrators, thermostats, etc., and
to perform calculations in parallel across multiple CPU and/or
GPU platforms and high performance computing clusters.

When the thickness of the bilayer is very small compared
to the length scale at which it is studied, it is convenient to
represent it with a two-dimensional surface that has a stretch,
shear, and curvature energy [4,33–37]. Such coarse-grained
models are used to study vesicles as small as 100 nm up to a
couple of tens of microns [7,38–41]. Shapes formed by simple
membranes can be described quite well with bending energy
[4] that is invariant under conformal shape transformations
[42,43]. More complicated membranes, such as red blood cell
membranes, require adding nonlinear area and shear strain to
adequately describe their shape transitions [37].

Studying the dynamics of vesicles on the continuum
level remains a theoretical [36,44–48] and computational
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[12,49–54] challenge. The present paper aims at developing
a molecular dynamics compatible implementation of contin-
uum models of fluid membranes, which faithfully represents
the static properties of fluid bilayer vesicles and whose vac-
uum dynamics is nondissipative. In the future, we hope to
couple our membrane model to explicit or implicit [55] mod-
els of the surrounding low Reynolds number medium, whose
Stokes flow controls the dynamics of actual vesicles. Ulti-
mately we are motivated by the idea of building a virtual cell
model [56–58], which uses the molecular dynamics frame-
work to integrate coarse-grained models of the various cell
components into a unified model to mimic living cell behavior.
Computational studies of continuum models of membranes
use triangulated surfaces. While their elastic and bending
energies can be rigorously defined [59–64], their evaluation is
nontrivial. Two general methods are available to define a dis-
cretized bending curvature at a vertex on a triangulated lattice.
In 1986, Itzykson [65] calculated an expression for the Lapla-
cian of a scalar field on a triangulated lattice, assuming that
vertices were homogeneously distributed and only connected
to their first nearest neighbors (in other words, a surface tiled
with acute triangles). A second method for discretizing the
bending curvature on a triangulated lattice was introduced in
1996 by Jülicher [66]. Jülicher estimated the bending at each
vertex by taking the average of the curvature of its surrounding
triangle pairs. As demonstrated by Ramakrishnan et al. [67],
this can be achieved by calculating the local curvature tensor
of all the edges protruding from a vertex and projecting them
on the tangential plane at the vertex.

Fluid membranes pose a particular challenge because they
do not have a shear modulus. Dynamic triangulation [68,69],

2470-0045/2023/108(1)/015301(29) 015301-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2283-954X
https://orcid.org/0000-0002-0515-0695
https://orcid.org/0000-0002-6843-2753
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.015301&domain=pdf&date_stamp=2023-07-10
https://doi.org/10.1103/PhysRevE.108.015301


FARNUDI, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E 108, 015301 (2023)

introduced in 1992, allows to adapt the mesh connectivity
within a Monte Carlo (MC) simulation and relax shear forces
while the surface continues to be tiled with triangles that have
relatively the same area. Budding and phase separation of
vesicles [70,71] and membrane tubulation [72] are just a few
examples of many problems studied using dynamically trian-
gulated network models [39,73,74]. While the technique can
be combined with molecular dynamics simulations [40], it has
the disadvantage that one frequently needs to “step” outside
the MD environment and use meshing techniques to redefine
the triangulated surface. This is also the issue when using MD
to model surfaces as coarse-grained particles interacting using
the Lenard-Jones (LJ) potential [75,76].

Unlike Itzykson, Jülicher made no particular assumptions
concerning triangle shapes and sizes in deriving his expression
for curvature. His method was probably not widely adopted
because it offers no advantages for the hard meshes employed
in conjunction with dynamic triangulation schemes. Here we
show that Jülicher’s method offers vastly superior robustness
and stability for dynamical simulations of soft meshes with
a more random distribution of vertices. In particular, we use
this insensitivity of the curvature energy to the distribution
of the vertices on the surface to perform molecular dynamics
simulations of continuum models of fluid bilayer membranes,
where the degrees of freedom are the vertices of a soft two-
dimensional mesh with fixed triangular connectivity whose
in-plane motion is only weakly constrained. The animations
provided in the Supplemental Material [77] probably better
convey the idea than a thousand words.

Our approach shares aspects with simulations that model
vesicles with LJ particles, where particle coordinates can
be used to reconstruct a triangular mesh to calculate the
curvature energies [75]. Here we do not discretize the con-
tinuum model on a length scale comparable to the membrane
thickness and as we treat the conservation of the membrane
area globally and not locally, there is no coupling between
the unresolved in-plane flow of lipids and the in-plane mo-
tion of the vertices of our soft mesh. Our approach shares
with the fluctuating finite element analysis (FFEA) method
[78] the interest in modeling fluctuating macromolecules
or macromolecular assemblies on the mesoscale between
atomistic or particle-based mildly coarse-grain models and
finite-element descriptions of macroscopic matter. But while
FFEA introduces thermal fluctuations into three-dimensional
finite-element representations of macromolecules, we employ
a molecular dynamics engine to simulate the standard contin-
uum model of two-dimensional fluid bilayers.

The article is structured as follows. The theory sec-
tion (Sec. II) summarizes the continuum theory of vesicle
shapes and the statistical mechanics of triangulated surfaces
before introducing mesh dynamics simulations as a method
for simulating continuum models of fluid bilayer vesicles
in a molecular dynamics framework. The Methods sec-
tion (Sec. III) describes the implementation of mesh dynamics
simulations into VCM and OpenMM, and provides details on
the various sets of simulation runs. Our results are presented
in Sec. IV. We establish the numerical foundations of mesh
dynamics simulations (control of the mesh softness, precision,
and robustness of different discretizations of the bending en-
ergy, time step, and stability) and present first quantitative and

then qualitative validations of the method. In particular, we
present a quantitative comparison of theoretical predictions
for the excitation [45] and dynamical correlation of bend-
ing modes for nearly spherical vesicles to mesh dynamics
simulation results for Newtonian, Langevin, and Brownian
dynamics. Our results suggest (i) that despite the fixed mesh
connectivity, the method can generate fluid behavior even
for the longest wavelength bending modes and (ii) that the
model’s internal friction is negligible, making it suitable for
studies of the internal dynamics of vesicles via coupling to
particle-based solvent descriptions or hydrodynamic solvers.
We discuss our findings in Sec. V before we present a sum-
mary and conclusions in Sec. VI.

To be complete while keeping the main article to a man-
ageable length, we have consigned significant parts of the
material to the Appendix and the Supplemental Material [77].
Appendix A summarizes the theory of surface undulations for
nearly spherical vesicles, including our derivation of dynam-
ical correlation functions for the Newtonian, Langevin, and
Brownian dynamics of vertices. Appendix B provides the nec-
essary theoretical background on the calculation of curvature
energies for triangulated surfaces, while the Supplemental
Material [77] contains details on the implemented many-body
potentials. Finally, Appendix C contains a detailed discussion
of the energy landscape surrounding individual vertices in
mesh dynamics simulations as a means of understanding the
origin of the superior robustness of curvature discretizations
based on barycentric estimates of the plaquette area.

II. THEORY

To set the stage, we summarize in Sec. II A the continuum
description of vesicle shapes, particularly Helfrich’s sponta-
neous curvature model. Section II B briefly introduces the
notion of surface modes for nearly spherical vesicles; details
can be found in Appendix A. Section II C deals with the sta-
tistical mechanics of triangulated surfaces. We define meshes
as being characterized by the positions and the connectivity
of the vertices, discuss the calculation of the associated area,
volume, and curvature energies (see Appendix B for details),
define ensemble averages corresponding to the two types of
disorder defining a mesh, introduce the notion of soft and
hard meshes, as well as dynamic triangulation as the means of
sampling different mesh connectivities. Finally, we introduce
in Sec. II D mesh dynamics simulations as a complementary
mesh adjustment method for simulating continuum models of
fluid bilayer vesicles in a molecular dynamics framework that
keeps the mesh’s connectivity fixed and allows for variable
triangle shapes and areas. We formulate the general mesh
Hamiltonian, derive the resulting effective interactions and
equations of motion, and justify the constant vertex mass
approximation employed throughout the present work.

A. Continuum description

When the thickness of the membrane is very small com-
pared to the length scale at which it is studied, it is convenient
to represent it as a two-dimensional surface of a given area, A,
which encompasses a certain volume, V . The local curvature
energy density at each point of the surface is a function of the
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principle curvatures [79]. By definition, the two eigenvalues
of the curvature tensor, C1 and C2, remain unchanged under
coordinate rotation.

1. Area and volume

The surface S of a membrane is under tension, �st =
kA

A−A0
A0

, when the total area, A, is different from the equilib-
rium area, A0 [13]. kA denotes the compression modulus of
the surface. The energy cost of changing the surface area of a
membrane is described as the surface integral,

EA(S ) =
∫

dA �st = 1

2
kA

(A − A0)2

A0
, (1)

which is a quadratic function of the area difference.
For closed vesicles without holes, the energy cost of chang-

ing the enclosed volume is given by

EV (S ) = 1

2
kV

(V − V0)2

V0
, (2)

where kV is the bulk compressibility and V0 is the volume of
the fluid enclosed by the vesicle [80].

2. Curvature energy

Helfrich described the curvature energy [4] using two in-
dependent bending moduli, the bending rigidity, κ , and the
Gaussian curvature modulus, κG,

Ecur(S ) =
∫

dA

[
1

2
κ (C1 + C2 − C0)2 + κGC1C2

]
. (3)

Helfrich’s bending energy also contains a characteristic cur-
vature (or the spontaneous curvature), C0 = 2/rs, a function
of the spontaneous curvature radius, rs. In the case of most
biological membranes, the chemical and protein composition
of the enclosed fluid is different from the surrounding fluid.
For example, proteins attached to the surface of a vesicle wall
can induce a spontaneous curvature [81] and cause the lipid
bilayer to favor bending toward the encapsulated fluid (rs > 0)
or the environment it is submerged in (rs < 0).

Equation (3) is the sum of the bending energy, Eb(S ), and
the Gaussian energy, EG(S ),

Eb(S ) =
∫

dA

[
1

2
κ (C1 + C2 − C0)2

]
, (4)

EG(S ) = ∫
dA[κGC1C2]. (5)

The bending energy, Eb(S ), describes the energy cost of local
deviations from the spontaneous curvature due to thermal
fluctuations and constraints imposed on the membrane. The
Gaussian curvature energy, EG(S ), describes the energy of
saddle points and is calculated using the Gauss-Bonnet theo-
rem [11]. The surface integral results in a constant determined
by the genus (Euler characteristic), χ , of the surface,∫

dAκGC1C2 = 4πκG(1 − χ ). (6)

χ counts the number of handles/holes in a closed geometry.
For example, χ = 0 for the surface of a sphere and χ = 1
for the surface of a torus. Suppose we assume the membrane
is a closed surface without tears and holes (and remains as
such). In that case, the Gaussian energy will be equal to 4πκG

for any deformation, including ones that originate from the
area difference between the inner and outer leaflet of the
bilayer [82]. Since the genus does not change for the vesicles
considered in the present work, we can disregard EG(S ).

3. Statistical mechanics

We are interested in the statistical mechanics of surfaces,
S , representing vesicle shapes. Expectation values of physical
observables for vesicles are defined as ensemble averages over
the all possible configurations of the vesicle surface,

〈X 〉 =
∫
DS X (S ) exp [−βE (S )]∫

DS exp [−βE (S )]
, (7)

where the energy E (S ) denotes the sum of the above area,
volume, and bending energies.

B. Surface modes of nearly spherical vesicles

The properties of nearly spherical vesicles can be explored
by expanding the surface undulations,

r(θ, φ) = r0[1 + g(θ, φ)], (8)

into a sum of orthonormal modes,

g(θ, φ) =
�max∑
�=0

�∑
m=−�

u�,mY�,m(θ, φ), (9)

where Y�,m(θ, φ) denotes spherical harmonics, Eq. (A3). In
particular, one can calculate [34,44,45] the corresponding
area [Eq. (A8)], volume [Eq. (A10)], and curvature energy
[Eq. (A15)], from which Eqs. (A16) and (A17) for the mode
fluctuation amplitudes, 〈|u�,m|2〉, follow via equipartition. In
addition, we derive in Appendix the mode autocorrelation
functions, 〈u�,m(t )u�,m(0)〉, for Newtonian, Langevin, and
Brownian dynamics, Eqs. (A35), (A37), and (A39).

C. Statistical mechanics of triangulated surfaces

Numerical calculations for general shapes rely on the dis-
cretized representation of a surface via a mesh, M, which is
in turn defined by a connectivity graph, G, and the vertex posi-
tions, q = {q1, q2, . . . , qN } ∈ S . In particular, a vesicle shape
can be triangulated by distributing vertices on the surface and
connecting them. If the triangle edges defining the connectiv-
ity graph G are restricted to nearest-neighbor vertices, then the
triangles tiling the surface will not overlap.

1. Two types of disorder

Triangulated surfaces can be categorized as ordered, ran-
dom, fluctuating ordered, and fluctuating random meshes
(Fig. 1). We define ordered meshes as triangulated surfaces
with a highly regular distribution of vertices with the mini-
mum possible number of degrees other than 6. For example,
an ordered mesh on the surface of a perfect sphere can be
triangulated with vertices with degree 6 and 12 vertices with
degree 5 (N5 = 12 and N7 = 0). The locations of the vertices
with degree 5 can be mapped on the corners of an Icosahedron
[83].

Random meshes also have an almost homogeneous distri-
bution of vertices on the surface, but they are populated with
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FIG. 1. Snapshots of the four different mesh types: Ordered (top
left), random (top right), fluctuating ordered (bottom left), and fluc-
tuating random (bottom right).

vertices with degrees 5,6,7,.... If the vertex distribution on
the surface is nearly homogeneous, then one could limit the
degree of vertices that appear at disclination and dislocation
points to 5 and 7.

Fluctuating meshes can have an ordered or random connec-
tivity but with an irregular vertex distribution. A configuration
of mesh vertex coordinates is acceptable if (a) the triangles
tiling the mesh surface do not overlap, and (b) a lower limit
exists on the triangle area.

2. Area, volume and curvature energy of triangulated surfaces

In Appendix B, we summarize the calculation of the area,
the enclosed volume, and the curvature energy of triangulated
surfaces. As we have already stated in the Introduction, the
calculation of the curvature energy is nontrivial. It can be
discretized in terms of the mean curvature at each vertex
Hi = C1 + C2, and the area associated with the vertex, ai,

Eb ≡ 1

2
κ
∑

i

ai[Hi − C0]2

= 1

2
κ
∑

i

ai
[
H2

i − 2HiC0 + C2
0

]
. (10)

The two available formulas for the local mean curvature,
Eq. (B7), due to Itzykson [65] and Gompper and Kroll [84],
and Eq. (B11), due to Jülicher [66], express Hi as ratios of
two different estimates of the plaquette curvature and two
different estimates of the plaquette area. For our numerical
tests, we have actually considered all four combinations of the
curvature and area estimates, Eqs. (B10), (B13), (B15), and
(B16). The relative merits of the Voronoi and the barycentric
area estimate (Fig. 14) will play a prominent role in this work.

FIG. 2. Representation of (a) a regular square, (b) an elongated
rectangle, and (c) two irregularly shaped surfaces of equal total area
(340 triangles) via meshes containing equal numbers of equilateral
triangles.

3. Ensemble averages

For discretized vesicles, ensemble averages over all possi-
ble configurations of the vesicle surface, Eq. (7), are replaced
by corresponding traces over the mesh degrees of freedom,

〈X 〉 =
∑

G
∫

dq X (G, q) exp [−βU (G, q)]∑
G
∫

dq exp [−βU (G, q)]
, (11)

where the energy

U (M) = E (M) + Eaux(M) (12)

of a mesh configuration M = (G, q) is defined as the sum of
(i) the sum of the discretized expressions for the area, vol-
ume, and bending energies of the represented surface, S (M),
E (M) ≈ E [S (M)], and (ii) the sum of auxiliary potentials,
Eaux(M), controlling the triangle areas and shapes, bond
lengths and angles, etc.

4. Hard versus soft meshes

The statistical weight of a mesh M(G, q) representing a
given surface S is given by

w(G, q|S ) = exp [−βU (G, q)]
∏

i

δ(qi ∈ S ). (13)

In the equation above, δ(qi ∈ S ) should be interpreted sim-
ilarly to Dirac’s δ, where meshes with coordinates at an
appropriate distance with the surface are accepted. In the
following, we refer to meshes as “hard,” when the auxiliary
potentials constrain the triangles to nearly uniform shapes
and areas. Similarly, we refer to meshes as “soft,” when said
auxiliary potentials allow for a large variety of triangle shapes.

Most vesicle simulations employ hard meshes because the
standard Gompper and Kroll discretization of the bending
energy requires relatively regular triangulations. For a hard
mesh, exp[−βEaux(G, q)] becomes vanishingly small for sub-
optimal tilings of a given surface S . For example, a hard
mesh in Fig. 2(a) needs to be rewired completely if the
represented surface undergoes the area-conserving uniaxial
elongation indicated in Fig. 2(b). As a consequence, simu-
lations of dynamically evolving surfaces with hard meshes
require frequent updates of the connectivity graph, G.

For a soft mesh, realizations for a single connectivity graph
G can represent a large variety of surfaces equally well. For
example, the soft mesh representing the square in Fig. 3(a) can
accommodate the uniaxial transformation of the rectangular
shape in Fig. 3(b) by a simple affine transformation of the
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(a) (b) (c)

FIG. 3. Representation of (a) a regular square and (b) an elon-
gated rectangle via meshes of equal connectivity and equal total
triangle area. (c) Illustrates a square mesh with the same connectivity
as (a) and (b) but a larger area due to an overlap of the orange triangle.

vertex positions. In particular,

〈X 〉 ≈ 〈X 〉G =
∫

dq X (G, q) exp [−βU (G, q)]∫
dq exp [−βU (G, q)]

, (14)

provided G is reasonably adapted to the shapes S with the
largest statistical weights, exp[−βE (S )].

D. Simulating dynamically evolving meshes

1. Dynamic triangulation

The dynamic triangulation algorithm [68,69] allows to
sample different mesh connectivities, G, and is the most
widely known and efficient remeshing technique used to
represent vesicle surfaces. Generalizations [39] of the stan-
dard algorithm permit exploration of all possible shapes of a
discretized two-dimensional fluid [Fig. 2(c)]. However, this
generality comes at a price when the connectivity changes of
a hard mesh are the main driver for shape evolution. Even
a simple elongation [Figs. 2(a) and 2(b)] is slow and risks
introducing dissipation into a dynamical scheme because it
requires the local diffusive transport of triangles representing
fixed amounts of bilayer area.

2. A molecular dynamics compatible mesh dynamics

As a complement to dynamic triangulation and the usual
single vertex Monte Carlo moves, we propose to follow some
of the earliest studies in the field [60,85,86] and to perform
dynamical simulations of soft two-dimensional meshes with
fixed triangular connectivity where the in-plane motion of the
vertices is only weakly constrained. The idea is that individual
vertices can move freely in 2D parallel to the surface under
the condition [to be enforced via suitable auxiliary potentials,
Eaux(M)] that the mesh cells tiling the surface do not overlap
[Fig. 3(c)]. In general, the triangles or the plaquettes associ-
ated with individual vertices (Fig. 14) represent not a fixed
amount of lipid bilayer but a fraction of the total mass corre-
sponding to the ratio of the triangle or plaquette area and the
(instantaneous) total area, mi = Mai/A, which simplifies to
mi ≈ ρai for a nearly constant total area. The collective vertex
motion allows the mesh to dynamically evolve the surface, S ,
in response to the stresses acting on it. In 3D, mesh dynamics
simulations thus provide a semi-Lagrangian description of
the evolution of curved surfaces. They are Lagrangian in the
transverse direction (where the bilayer follows the motion of
the mesh vertices), while the coupling between the in-plane
dynamics and the flow of lipids depends on the auxiliary mesh
potentials.

3. General Mesh Hamiltonian for variable vertex masses

As there is no coupling between the unresolved in-plane
flow of lipids and the in-plane motion of the vertices of our
soft mesh, the general expression for the Hamiltonian of the
system is

H = 1

2

N∑
i

p2
i

mi(q)
+ U (q) (15)

= A(q)

2M

N∑
i

p2
i

ai(q)
+ U (q) (16)

≈ 1

2ρ

N∑
i

p2
i

ai(q)
+ U (q), (17)

where p = {p1, p2, . . . , pN } and q = {q1, q2, . . . , qN } denote
the vertex momenta and positions, mi(q) = Mai(q)/A(q) the
vertex mass, A(q) the instantaneous total area, and U (q) the
mesh potential energy including terms related to the total
surface area, the enclosed volume, and the curvature energy.

4. Effective in-plane interactions between vertices

The conformation-dependent vertex inertia, mi(q), influ-
ences the vertex distribution on the surface. Integrating out
the momenta, the statistical weight of a mesh configuration q
is given by

w(q) = exp [−βU (q)]
∫

d p exp

(
−β

A(q)

2M

N∑
i=1

p2
i

ai(q)

)

=
N∏

i=1

[
2πM

β

ai(q)

A(q)

] 3
2

exp [−βU (q)]. (18)

As expected, w(q) is proportional to the Boltzmann weight
exp[−βU (q)] related to the shape of the surface. The prefactor
is maximal when all plaquettes have the same area, ai = A/N ,
and can be rewritten in the form of a Boltzmann factor for an
effective potential,

w(q) = exp

[
3

2

N∑
i=1

log

(
2πM

β

ai(q)

A(q)

)
− βU (q)

]
. (19)

To understand its effect, we focus on the deviations of the in-
dividual plaquette areas from the average, ai(q) = A(q)/N +
δi(q):

log

(
2πM

β

ai(q)

A(q)

)
= log

(
2πm

β

)
+ log

(
1 + Nδi(q)

A(q)

)

≈ log

(
2πm

β

)
+ Nδi(q)

A(q)
− 1

2

(
Nδiq)

A(q)

)2

.

Substituting this expression in Eq. (19), the sum of the zeroth-
order terms is a constant, while the first-order terms add up to
zero by definition. Retaining only the second-order terms,

w(q) ∝ exp

(
−β

{
3

2
kBT

N∑
i=1

1

2

[
N

A0
δi(q)

]2

+ U (q)

})
,

(20)
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we see that a harmonic potential restrains the plaquette areas
to their average value.

5. General equations of motion

Neglecting the small variations in the total area, the general
mesh equations of motion follow from Hamilton’s equation of
motion. From q̇i = ∂

∂ pi
H follows pi = ρai(q)q̇i. In a second

step, d
dt pi = − ∂

∂qi
H implies

d

dt
[ρak (q)q̇k] = −∂U (q)

∂qk
− 1

2

∂

∂qk

N∑
i=1

p2
i

ρai(q)
(21)

or

ρak (q)q̈k = −∂U (q)

∂qk
+ 1

2
ρ

N∑
i=1

q̇i
2 ∂ai(q)

∂qk

− ρq̇k

N∑
i=1

∂ak (q)

∂qi
q̇i. (22)

Solving these coupled equations of motion is challenging but,
in principle, necessary to obtain the correct dynamics for
systems like soap bubbles, where inertial effects are impor-
tant and sensitive to the mass distribution on the triangulated
surface.

6. Constant vertex mass approximation

Here we are interested in lipid bilayer vesicles in aqueous
solutions, whose dynamics are controlled by the Stokes flow
of the enclosed and the surrounding fluid [44,45]. In partic-
ular, inertial effects are irrelevant at low Reynolds numbers.
We, therefore, study mesh dynamics in the much simpler
constant vertex mass approximation,

H = 1

2

N∑
i

p2
i

mi
+ U (q), (23)

where the standard Boltzmann weight gives the statistical
weight of a mesh conformation,

w(q) ∝ exp [−βU (q)], (24)

and where the equations of motion reduce to Newton’s equa-
tions of motion,

miq̈k = −∂U (q)

∂qk
. (25)

To improve the quality of the constant vertex mass approx-
imation for the (vacuum) dynamics of a lipid bilayer with a
nontrivial shape, one should either adjust the vertex masses
to the average areas of the associated plaquettes, mi = ρ〈ai〉,
or employ a remeshing procedure to homogenize the plaquette
sizes. But even in this case, the unphysically large fluctuations
in the surface density inherent in mesh dynamics might have
a detrimental effect.

III. METHODS

All presented simulations were carried out and can be
reproduced using the virtual cell model (VCM) [56] software
package that uses OpenMM MD engine [32] for running

calculations in parallel on GPU and/or CPU platforms. VCM
is open-source software, and the configuration files used to
generate the presented data are available in the Supplemental
Material [77].

A. Potentials and forces

OpenMM can automatically calculate the forces given ex-
pressions for the potential energy. This feature was crucial for
the success of the present exploratory work since the explicit
forms of the multiparticle (more than five particles) interac-
tions for the area, volume, and bending energies derived in
Supplemental Material Sec. II [77] are already intimidating
enough by themselves. In addition to the physical potentials
related to the vesicle shape, we have used two auxiliary poten-
tials. The mesh softness is controlled via a WCA potential, Uh,
on the triangle heights, h j , given by Supplemental Material
Eq. (8) [77], which sets a lower limit on the size of the
plaquettes and ensures that vertices do not overlap with edges
and other vertices. Furthermore, in rare occasions, it is useful
to suppress large dihedral bending angles φ between adjacent
triangles with an anharmonic O(φ4)-bending potential (Sup-
plemental Material Eq. (10) [77]).

B. Equations of motion

OpenMM’s native Verlet integrator (leap-frog Verlet inte-
gration) was used to integrate Newton’s equations of motion
for a vesicle that evolves in a vacuum,

mi
d�vi

dt
= �fi. (26)

For the study of vesicle fluctuations, OpenMM’s Langevin
integrator (LFMiddle discretization [87]) was used,

mi
d�vi

dt
= �fi − γ mi�vi + �Ri, (27)

where γ is the friction coefficient, and �Ri is an uncorrelated
random force with a zero mean and values taken from a
normal distribution with a variance, 2miγ kBT . Finally, for the
high friction limit, OpenMM’s Brownian Integrator was used
to simulate systems where inertial forces can be ignored,

γ mi�vi = �fi + �Ri. (28)

C. Reduced units

VCM follows OpenMM’s convention to set values for the
units of m0 (mass), l (length), ε (energy), and τsim =

√
m0l2/ε

(time) in SI units (see Table I) where kBT = 2.49ε for kB =
8.3 × 10−3 kJ/mol K and T = 300K. The choice of these nu-
merical values does not affect the simulation results but makes

TABLE I. The adopted reduced units used in VCM and OpenMM.

Quantity Units

l nm
τsim ps
m0 amu
ε kJ/mol
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(a) (b) (c) (d) (e) (f)

FIG. 4. Characteristics of deformed spherical surfaces for varying amplitudes of the mode Y2,0(�).The snapshots show peanut-shaped
meshes for the maximal considered amplitude of u2,0 = 1 generated by adding Y2,0(�) to vertex coordinates for the different mesh types from
Fig. 1. Columns (a), (b), and (c) plot the energy difference in the area, volume, and mean curvature. The surface energy is a function of the total
surface of the mesh calculated by summing the Voronoi (purple) and Barycentric (gray) areas. The blue data show the volume energy calculated
by summing the volume of the pyramids with triangle bases on the mesh surface. The black lines in columns (a) and (b) were generated using
Eqs. (34) and (36). The curvature energy has the same color code as in Supplemental Material Fig. 6 [77]. The black line in column (c) plots
Eq. (38), which correctly predicts the mean curvature energy for small amplitudes. The local slope of the energies corresponds to the restoring
forces in mode space as a function of the mode amplitude for the area, volume, and mean curvature energy plotted in columns (d), (e), and (f).
The black lines in these columns plot equations, Eq. (35), Eq. (37), and Eq. (39), respectively. The values are reported for meshes with (from
top to bottom) an ordered, fluctuating ordered, random, and fluctuating random discretization. Error bars show the standard deviation from the
mean.

converting experimental measurements to simulation parame-
ters more convenient.

D. Simulation setup and default parameters

Detailed instructions on the preparation of the spherical
meshes we have used as starting states and whose connectivity
we have preserved throughout all presented simulations are
provided in Supplemental Material Sec. III [77]. We typically
set the initially enclosed volume and the initial mesh surface
area to the ground-state volume V0 (sum of the volume of
triangular pyramids) and ground-state area A0 (sum of the sur-
face triangle area). The meshes used are publicly available in
VCM’s repository [56]. Typically, we use random triangulated
meshes with radius r0 = 1000l and vertex mass m = 50m0

to initiate the simulations. The default number of vertices is
N = 1002, but meshes with N = 252, 492, 1962, and 4002
were also used when required. Our default values for the
vesicle characteristics are

(i) an area compressibility kA = 5.22 × 105kBT/r2
0 [88],

(ii) a bulk modulus kV = 1.6 × 107kBT/r3
0 [88],

(iii) a bending rigidity of κ = 20kBT .

E. Data acquisition

Unless stated otherwise,
(i) 10 mesh samples (Nsamples) were used to obtain the

values for each point.

(ii) The error bars show the standard deviation of the mea-
sured values divided by

√
Nsamples − 1.

(iii) In case a Langevin integrator was used, the friction
was set to γ = 0.01τ−1

sim.
(iv) Meshes were simulated with UA, UV , Uh, and one of

the bending potentials Ub.
Fig. 4: Except for the ordered mesh that has a unique

configuration for each mesh resolution, 50 mesh samples were
used to calculate the observables (No MD simulation). All
meshes had 9002 vertices.

Fig. 5: For each data point, five random meshes were sim-
ulated using a Verlet integrator.

Fig. 6: The mode amplitudes were obtained by running
Langevin simulations for roughly ∼20 τ2,m.

Fig. 7: The shapes were obtained by running Langevin sim-
ulations of initially oblate ellipsoids with a reduced volume ν.
For each ν, the simulation was initiated with a very soft mesh
(� ≈ 0.037) and was run for roughly 40τ2,0 to ensure equilib-
rium. The mesh hardness was then increased during 3 intervals
to reach the target hardnesses: 0.037 → 0.15, 0.15 → 0.33,
and finally 0.33 → 0.59. At each interval, the mesh hardness
was gradually increased over roughly 20τ2,m by adjusting dh

in the Uh potential. After the target hardness was reached, the
simulation was extended an additional 20τ2,m to make sure
the mesh was well equilibrated. In total, the simulations was
run for 160τ2,m (40τ2,m in the beginning and 40τ2,m for each
interval).
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FIG. 5. The points show the average runtime before failure, 〈Tf 〉,
of simulations of a nearly spherical vesicle. The equations of motion
were calculated using a velocity Verlet integrator until either the
kinetic energy was doubled or the simulation failed due to numerical
instabilities. The same color code as in Supplemental Material Fig. 6
[77] was used to indicate different bending models. ε = 4kBT , for
the auxiliary potential Uh.

Figs. 9 and 10: The data was obtained by running five
samples of random meshes for each regime. Each simulation
was initially run for ∼20τ2,m using the Langevin integrator to
obtain an equilibrated configuration. The equilibrated config-
urations were then extended for an additional 350τ2,m with a
Verlet integrator with a short sampling rate (2 × 10−2 τ7,m) to
obtain trajectories suitable for autocorrelation calculations.

Fig. 11: Twenty samples were simulated with a Verlet
integrator for each of the prolate and oblate ellipsoidal mesh’s
temporal bending energy evolution. All samples were initiated
from a prolate or oblate soft mesh (� ≈ 0.037). The prolate
ellipsoid with reduced volume ν = 0.4 required an order of
magnitude smaller time step to run stably.

IV. RESULTS

We begin by quantifying the softness of our meshes and
exploring the relationship between their properties and our
auxiliary potential for controlling the minimal triangle heights
(Sec. IV A). In a second step, we explore in Sec. IV B the
quality of discretized estimates of the vesicle area, volume,
and curvature energy. In Sec. IV C, we define the time step for
mesh dynamics simulations and explore their stability for dif-
ferent discretizations of the bending energy. Sec. IV E presents
a quantitative analysis of the amplitude of surface undulations
of nearly spherical vesicles, while Sec. IV F contains more
qualitative results on the ability of soft meshes to accom-
modate larger shape changes. Finally, Sec. IV G presents a
quantitative analysis of the dynamics of surface undulations

of nearly spherical vesicles and some qualitative results for
the timescale on which larger shape transformations occur. We
close with some observations on the computational efficiency
of the method and our implementation in Sec. IV H.

A. Soft meshes

In the first step, we need to define the meshes we will
use to define vesicle shapes. Two distinct types of disorders
characterize them. The disorder in the mesh connectivity (and
hence the distinction between ordered and random meshes,
see Supplemental Material Sec. III [77] for their construction
on a sphere) remains unchanged or quenched in mesh dy-
namics simulations in the absence of additional connectivity
altering operations like dynamic triangulation [68,69]. In con-
trast, the disorder in the shape and size of individual triangles
is annealed since they constantly vary during mesh dynamics
simulations. The amplitude of these fluctuations is controlled
via the WCA-type auxiliary potential Uh (Supplemental Mate-
rial Eq. (8) [77]), which controls the minimal triangle heights,
h j . It is important to note that in the absence of local strain en-
ergy affecting the triangle shapes, the definition of a buckling
transition [89] will not apply. Consequently, disclination and
dislocation points in the connectivity graph G do not perturb
the represented surfaces.

1. Mesh equilibration

The SM_AVh_V movie in the Supplemental Material [77]
shows a preview of the simulation output for a mesh run-
ning with UA, UV , and Uh (the “_AVh_” letters in the movie
name indicate the use of these potentials). The details of the
simulation setup and the parameters used are written in the
Supplemental Material [77]. The simulation evolves with a
Verlet integrator (indicated by the letter “_V” at the end of the
movie name). The simulation time is measured in the WCA
characteristic timescale, τh = dh

√
m/εh, where m is the vertex

mass. In the simulation, the vertices can move in space, and
the mesh area and volume fluctuate around the mesh’s initial
respective values. Since in this simulation, we have not used
a mean curvature potential, as long as the area and volume
are maintained by UA and UV , triangle neighbors can make
any angle without an energy cost. At the same time, area and
volume potentials prevent the appearance of large spikes on
the surface since they will change the reduced volume of the
shape. A mean curvature model would be required to simulate
a surface representing a vesicle, which will be discussed in
the next section. Nevertheless, this system is a simple model
to study the effect of applying dynamic area redistribution
to a triangulated mesh. Supplemental Material Figs. 3 and 4
[77] show the corresponding temporal evolution of area size
and bond length distribution. Mesh dynamics simulations are
very fast in redistributing the vertices and quickly converge.
Note that there is no appreciable difference between the dis-
tributions measured after 6.5τh and 1100τh (blue curve, nearly
hidden in the background).

2. Characterising and controlling the mesh softness

The average shape of triangles that tile the surface of a
mesh can be estimated by isosceles triangles with height, h̄
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(a)

(d) (e) (f)

(b) (c)

FIG. 6. Fluctuation amplitudes of spherical meshes as a function of spherical harmonics modes. All panels show data for systems without
a volume potential (P = 0 or kV = 0, respectively). (a) Vesicles, with radius r0 = 1 µm, � = 0.037, κ = 20kBT , and different vertex numbers
N . Meshes with a larger number of vertices can capture larger mode number deformations. (b) The fluctuation amplitudes decrease for meshes
with the same r0 = 1 µm, � = 0.037, N = 1002, but higher bending rigidities κ . Panel (c) shows the independence of the fluctuation spectrum
of vesicles from their size. (d) Meshes with N = 1002, κ = 20kBT , but different �. A large � leads to solid-like behavior (∼�0) for small
modes. The effective Young’s modulus seems to follow Y2D(�) = (�/0.59)2 1.8 × 10−3kBT.(nm)−2. (e) A constant effective Young modulus
for meshes with the same � = 0.59 and bending modulus but different radii. (f) In this panel, we have reproduced the data presented in
panel (a) using Jülicher’s bending discretization with no visible difference in the vesicle spectrum. Solid lines plot the behavior described by
Eq. (A17). All dashed lines plot Eq. (A18) for the provided inputs.

and the average area, āiso,

āiso = 1√
3

h̄2. (29)

During dynamic area redistribution, the vertices are allowed
to move on the surface. Hence a region may appear that is
made from very small triangles. The area of these triangles,
āmin, are determined by the smallest height, dh, allowed by the
Uh potential,

āmin = 1√
3

d2
h . (30)

As a simple measure of the admitted size fluctuations, we
define the parameter

� = āmin

āiso
=

(
dh

h̄

)2

(31)

as the ratio of the smallest allowed and the average triangle
area.

3. Influence of � on the mesh properties

Supplemental Material Fig. 5 [77] summarizes several re-
sults, which illustrate the influence of � on the behavior
of our meshes. In Supplemental Material Fig. 5(a) [77] we
show the amplitude of density modes ρ�,m inferred from the

vertex positions on the surface of nearly spherical vesicles
with reduced volume of ν = 1. In analogy to the bending
modes from Refs. [34,45] the density modes are defined in
terms of spherical harmonics to account for the spherical
geometry. For small values of �, the mode amplitudes for
large � approach the value of ρ�,m = 1 characteristic of a
two-dimensional ideal gas (black points) and indicative of
the absence of structural order. A small effect of the con-
nectivity of the vertices through the quenched triangulated
network can be observed over large distances (small �). In
contrast, a marked peak appears around twice the maximum
mode number (�max = √

N − 1) when � = O(1). This co-
incides with a marked reduction in the fluctuations of the
triangle areas (Supplemental Material Fig. 5(b) [77]) and a
faster decay of the area autocorrelation function (Supplemen-
tal Material Fig. 5(c) [77]). This indicates the formation of
a finitely compressible liquid-like mesh, where compression
waves propagate more quickly. Such a mesh is not suitable
for our purposes because it can probably not accommodate
large deviations from the original shape.

B. Calculation of mesh observables

Before we can employ fluctuating ordered and fluctuating
random meshes (see Fig. 1) for simulating vesicles, we need
to ascertain that key observables like the vesicle area, volume,
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FIG. 7. Snapshots of fluid bilayer vesicle simulations using dif-
ferent combinations of ν and �. The area of the meshes was set to
A0 = 4π (µm)2 and κ = 20kBT . Each row displays shape changes
due to a gradual increase in the mesh triangle area ratio, � = 0.037,
adjusted through Uh. Shapes indicated with a green line are vesicle
shapes that are compatible with the connectivity of the mesh. Yellow
and red squares indicate meshes that require mild or frequent remesh-
ing to produce the same shapes as their soft mesh counterparts.

and bending energy can be calculated with sufficient preci-
sion.

1. Area and volume

By mapping vertices of meshes on the surface of a unit
sphere, the accuracy at which area and volume can be calcu-
lated was investigated as a function of mesh resolution. The
results are presented in Supplemental Material Fig. 6 [77].
The total area of the meshes was calculated by summing
the Voronoi (purple) and the Barycentric (gray) area of the
vertices (left column), and the total volume (blue) of the
meshes, calculated by summing over the tetrahedron volumes,
is presented in the middle column. For all mesh types, the
area and volume of a sphere can be calculated at very high
accuracy, which improves with the resolution. A snapshot of
each mesh type is placed next to each row as a visual guide
for different mesh types.

The spherical meshes in Fig. 1 can be deformed by exciting
spherical harmonic modes. This was achieved with the addi-
tion of a mode to the radial position of all vertices,

r(θ, φ) = r0 + r0|u2,0|Y2,0(θ, φ). (32)

A peanut shape was generated by adding Y2,0(θ, φ) with
amplitude u2,0 = 1 (top meshes in Fig. 4). The surface area
energy of a deformed unit sphere was calculated by substitut-
ing

r(θ, φ) = r0

[
1 +

∑
u�,mY�,m(θ, φ)

]
(33)

FIG. 8. Snapshots of RBC simulations where the spontaneous
curvature of the fluid mesh was set to either C0 = 0 (left column)
or C0 = 16/r0 (right column). The RBCs have a diameter of ap-
proximately 2.6 µm, κ = 50kBT , and the two-dimensional Young’s
modulus of the elastic (green) mesh was set to Y2D = 25 µNm. The
first row shows a snapshot of the composite mesh, while the second
and third rows display the solid (green) and fluid (red) components
separately. The last two rows compare a wire frame side view of
the fluid part of an RBC membrane (composite mesh) with a vesicle
(single fluid mesh) with the same properties. All green meshes have
N = 92 vertices, and fluid meshes in the left column have N = 1002
vertices, whereas the ones in the right column have N = 4002.

in Eq. (1), and setting �, m = 2, 0,

EA = 2

π
kA|u2,0|4. (34)

The retractive force as a function of the amplitude is

− ∂EA

∂u2,0
= − 8

π
kA|u2,0|3. (35)

Similarly, the energy cost of changing the volume of the
unit to the peanut shape is calculated using Eq. (2),

EV = 3

8π
kV |u2,0|4, (36)

and the opposing force is

− ∂EV

∂u2,0
= − 3

2π
kV |u2,0|3. (37)
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FIG. 9. The surface mode fluctuation amplitude autocorrelation for a vesicle with 1002 vertices and parameters reported in Sec. III D. The
curves in the columns correspond to vesicles simulated using a Velocity Verlet (I), Langevin (II and III), and a Brownian (IV) integrator. Each
curve corresponds to a different mode amplitude time series measurements identified by a random number seed (used to generate the mesh and
initiate the random force generator) and the mode numbers � and m. Column I has a sinusoidal form where each mode has a unique frequency.
Columns II and III show underdamped and overdamped oscillations as a function of the oscillation frequency and integrator friction γ . Finally,
column IV has exponential decay due to dominating friction forces.

In Fig. 4, columns (a) and (b), we have plotted the results
for the changes in the area and volume energies due to the
deformation of a mesh from a sphere (u2,0 = 0) to a peanut
shape (u2,0 = 1). The local slopes of the area and volume en-
ergies are plotted in Fig. 4 columns (d) and (e) to approximate
the restoring force applied to the surface vertices to pull them
back to the surface of a sphere. The black lines draw the equa-
tions derived from mode analysis of “nearly” spherical shapes.
For small deviations (u2,0 < 0.5), the measured values and the
theoretical predictions correspond very well. The exponent
of the energies and forces remain unchanged for large shape
deviations, u2,0 > 0.5, and naturally, the values diverge. The
data presented in Fig. 4 columns (a) and (d) emphasize that
choosing Voronoi (purple) or Barycentric (gray) as the vertex
area does not affect the energy and force calculations.

2. Curvature

The curvature energy of a unit sphere (8πκ ≈ 25.1ε, κ =
1ε) can be calculated using Eq. (4) by substituting C1 =
C2 = 1

R , and C0 = 2
R∞

= 0. The right column in Supple-
mental Material Fig. 6 [77] plots the normalized bending
curvature energy of a unit sphere, calculated using four bend-
ing discretization models, Gompper&Kroll (red), Gompper&

Kroll-Barycentric (blue), Jülicher (green), and Jülicher-
Voronoi (orange) on regular and soft meshes with different
resolutions.

It should be emphasized that any of the four models
can be used to estimate the curvature energy of shapes
for the different meshes. In the case of fluctuating random
meshes, the curvature estimation becomes more precise as
the resolution increases for models that use the Voronoi area
(Gompper&Kroll and Jülicher-Voronoi), however, for models
using the Barycentric area (Jülicher and Gompper&Kroll-
Barycentric) the results deviate by ∼1.5% for our lowest
resolution and asymptotically grows up to ∼4% as the number
of vertices increases. This difference is due to the ratio of
vertices with degrees N5 and N7 for different mesh resolutions
and, consequently, the difference in the contribution of these
vertices to the total bending (discussed in detail in Supple-
mental Material Sec. IV [77]). The effect of randomness in
configuration (fluctuations) and topology can be compared by
observing the second and last row in Supplemental Material
Fig. 6 [77] right column. The fluctuating ordered meshes
have the same mesh connectivity but random configurations,
whereas the fluctuating random meshes are random both in
topology and configuration. The curvature calculation mod-
els were initially derived for meshes with a homogeneous
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FIG. 10. The surface mode fluctuation amplitude autocorrelation for a vesicle with 1002 vertices and parameters reported in Sec. III D.
The curves in the columns correspond to vesicles simulated using a Velocity Verlet (I), Langevin (II and III), and a Brownian (IV) integrator.
The colored curves show the mean and standard deviation of the data presented in the respective column in Fig. 9. The black dashed lines
plot cos(ω�,mt ) for column I, the numeric results of Eq. (A35), Eq. (A36), or Eq. (A37) for the Langevin dynamics (columns II and III), and
Eq. (A39) for the Brownian dynamics (column IV). The dotted lines in column I show a fitted curve representing underdamped dynamics used
to measure the intrinsic friction, γ�.

vertex distribution. Hence, the curvature estimation for
meshes with this property is very accurate. Our results show
that these models produce reasonably accurate curvature es-
timation when used on fluctuating meshes. By increasing the
resolution, we discover that randomness in topology affects
the Barycentric-based models far more than the Voronoi-
based models.

FIG. 11. The temporal evolution of the bending energy of oblate
(filled symbols) and prolate (hollow symbols) ellipsoidal meshes
with softness � ≈ 0.037.

In Fig. 4 column (c) the calculated curvature energy of
meshes after adding a spherical harmonic mode with � = 2
and m = 0 with a range of amplitudes, |u�,m|, between 0
(sphere) and 1 (peanut) was plotted. The curvature energy of
a sphere deformed by a spherical harmonics mode and zero
spontaneous curvature can be estimated for small deviations
from a sphere [45],

Eb = 8πκ + 12κ|u2,0|2 (38)

and the restoring force in mode space as

− ∂Eb

∂u2,0
= −24κ|u2,0|. (39)

The discretized bending calculations [symbols in Fig. 4
column (c)] and predictions from Eq. (38) estimate the same
curvature energy for small amplitudes (|u�,m| < 0.5) and for
larger amplitudes the two diverge since Eq. (38) was cal-
culated for up to the quadratic term. Similar to the right
column in Supplemental Material Fig. 6 [77], the four bending
models calculate almost the same curvature for ordered and
random meshes, and the curvature estimation difference for
Barycentric and Voronoi-based models are also present in the
peanut-shaped deformations for soft meshes (although very
small for fluctuating ordered). Surprisingly all four models
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produce the same restoring force, which means that all of
these models have the same shape dynamics, albeit the forces
in the random and fluctuating meshes are slightly stronger
compared to the ordered mesh [column (f) in Fig. 4]. In con-
clusion, if the topology of the mesh is not the major concern
of the study, then fluctuating ordered meshes produce more
precise absolute energy measurement and force calculation.

C. Mesh dynamics simulations

Having all elements in place to run actual mesh dynamics
simulations, we start with some qualitative evidence that the
method actually works. The movie SM_AVh_GKB_V shows
the simulation preview of a soft mesh with UA, UV , Uh, and the
Gompper&Kroll-Barycentric mean curvature potential, U GKB

b
that fluctuates in a vacuum. The simulation was initiated with
a random mesh and a reduced volume, ν 
 1. Because of the
curvature potential, the mesh surface is smoother compared
to the SM_AVh_V simulation that does not include a mean
curvature potential.

In the following, we first show how to estimate a suitable
time step for mesh dynamics simulations as a function of the
vesicle and mesh characteristics. Then we test the stability of
mesh dynamics simulations for the different discretizations of
the bending energy.

1. Simulation time step

As the last step before running mesh dynamics simula-
tions, we need to estimate the permissible time step, �t . The
in-plane motion of the vertices is limited by our WCA-like
auxiliary potential, Uh, see Supplemental Material Eq. (8) [77]
and Fig. 16(c1). In units of the bead mass, m, the minimal
triangle height, dh, and the energy scale, εh, of Uh the corre-
sponding time is given by

τh = dh

√
m

εh
. (40)

Alternatively we can use 4πr2
0 ≈ 2Nāiso = 2√

3
Nh̄2 = 2√

3
N
�

d2
h

to express τh in units of the radius, r0, and total mass, M, of
the vesicle:

τh =
√

2π
√

3

√
�

N

√
Mr2

0

εh
. (41)

The transverse motion of the vertices is limited by the bending
energy, Ub, see Supplemental Material Eqs. (4)–(7) [77] and
the panels in the right-hand side (r.h.s.) column of Fig. 17. For
a homogeneously tiled mesh, the oscillation time of the fastest
bending mode is given by

τ�max,m = 2π

N

√
Mr2

0

4πκ
= 1√

2
√

3
h̄

√
m

κ
. (42)

In soft meshes, regions may appear where all triangles have
the smallest possible height dh. Substituting dh for h̄ in the
above expression, we estimate that the oscillation time of the
central vertex in such small plaquettes is of the order of

√
�τ�max,m = 1√

2
√

3
dh

√
m

κ
=

√
�

1

N

√
π

Mr2
0

κ
. (43)

The admissible time step is a fraction of the minimum of τh

and
√

�τ�max,m. There are several ways of reading the above
results. When expressed in microscopic units for given mate-
rial parameters and vertex masses, we see that the time step
for a given spatial resolution is independent of the size of the
vesicles. Expressing the characteristic times in terms of the
target vesicle’s total mass and surface area reveals how the
time step depends on the properties of the employed mesh.
Not surprisingly, the time step is smaller for a finer spatial
resolution with larger values of N . Choosing a small value
of � to allow for large fluctuations in the triangle sizes also
reduces the time step. Importantly, the choice

εh < 2
√

3 κ (44)

for the energy scale of the auxiliary potential Uh assures that
the time step of mesh dynamics simulations is limited by the
physical bending rigidity independently of the mesh charac-
teristics.

2. Stability of mesh dynamics simulations

To test the stability of mesh dynamics simulations and the
influence of the discretization of the bending energy, Sup-
plemental Material Eqs. (4)–(7) [77], we have run a series
of simulations of this type for nearly spherical vesicles with
properties described in Sec. III D. By setting εh = 4kbT and
κ = 20kBT we satisfy Eq. (44) and, accordingly, must set
the simulation time step to a suitable fraction of the shortest
bending timescale

√
�τ�max,m. With the choice of parameters

used (see Sec. III D), the timescale for the in-plane motion of
the vertices is τh ≈ 45τsim. Adjusting dh to get a mesh with
� = 0.037, the out-of-plane shortest oscillation timescale of
the vertices is

√
�τ�max,m ≈ 10.8τsim. A suitable MD time

step would correspond to roughly �t ∼ 0.01
√

�τ�max . Start-
ing from nearly spherical random meshes that initially have
� ∼ 1 we measure the total simulation time Tf until the
energy increases by 50% either due to a slow drift or a catas-
trophic failure.

In Fig. 5, we show for soft and hard meshes how the
average simulation runtime to failure, 〈Tf 〉 varies as a function
of the time step, �t . For hard meshes with � = 0.59 mesh
dynamics simulations can be stably run with time steps up
to �t = O(1/10)

√
�τ�max,m. The unexpectedly large stability

might be due to the harmonic character of the out-of-plane
potential. In particular, the discretization scheme of the bend-
ing energy has no discernible influence on the stability. For
soft meshes with � = 0.037, the same observations continue
to hold for discretization schemes like Jülicher’s, which use
the Barycentric plaquette area. In contrast, for Voronoi-based
discretization schemes like the one by Gompper&Kroll, sim-
ulations rapidly fail even for time steps that are orders of
magnitude smaller.

Clearly, these differences are not due to the different
expressions for the plaquette curvatures but to the use of
different definitions of the plaquette area for the normaliza-
tion: Our “Gompper&Kroll-Barycentric” model is essentially
as stable as Jülicher’s original model, while our “Jülicher-
Voronoi” model displays the same difficulties as the original
Gompper&Kroll model. In Appendix C, we explore the en-
ergy landscape surrounding individual vertex, assuming that
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the rest of the mesh remains frozen. As expected, the analysis
shows that vertices can move nearly freely within as well as
above and below their plaquette. For Barycentric-based mod-
els, the energy rapidly increases when they leave this zone so
that they will always be guided back should an MD time step
lead them outside. In contrast, Voronoi-based discretizations
of the bending energy create zones with large negative ener-
gies outside the plaquette zone. Importantly, some of these
regions are located just on the edge of the plaquette zone
where the Voronoi formula for the plaquette area changes
sign. This suggests the existence of low-energy transition
paths out of the plaquette zone that allow vertices to fall
into one of these pitfalls and disrupt the MD simulation via
the accompanying conversion of potential into kinetic energy.
For harder meshes, the auxiliary potentials prevent these in-
stabilities, and the difference between the two estimates of
the plaquette area becomes as insignificant as suggested by
Fig. 14. We cannot exclude that these instabilities could also
be prevented for soft meshes through more salient choices
for the auxiliary potentials. However, since the Barycentric
models produce excellent results, we see at present no real
motivation to pursue the development of MD methods based
on Voronoi expressions.

D. Vesicle area

The area potential controls the surface area of a fluctuating
vesicle through the surface compressibility, kA [Eq. (1)]. The
panels in Supplemental Material Fig. 7 [77] plot the ratio
of the average area of simulated vesicles to the area of a
sphere that has the same radius as the vesicle mesh. The data
point corresponding to a vesicle simulated with r0 = 1 µm,
κ = 20kBT , � = 0.037, and N = 1002 is indicated with a red
circle to act as a reference across different panels.

All results show that the area of the vesicle slightly fluc-
tuates around an average area determined by the number of
vertices on the mesh, as demonstrated with different numbers
of vertices for vesicles with a radius r0 = 1 µm [Supplemental
Material Fig. 7(a) [77]] and vesicles with radii r0 = 0.5, 0.7,
1, and 1.5 µm [Supplemental Material Fig. 7(c) [77]].

The average area of the vesicle was not affected by the
simulated bending rigidities [Supplemental Material Fig. 7(b)
[77]] but increased slightly for higher choices of � [Supple-
mental Material Fig. 7(d) [77]].

E. Fluctuations of nearly spherical vesicles

Having established how to run stable mesh dynamics sim-
ulations for arbitrary meshes, we can now start to test the
utility of soft meshes. Is it really true that the behavior of
fluid bilayers can emerge in simulations of meshes with fixed
connectivity as suggested by Eq. (14)?

As a first quantitative test, we have simulated nearly spher-
ical vesicles without spontaneous curvature, C0 = 0 for a
wide range of combinations of radius, bending rigidity, spatial
resolution, and mesh softness. The movie SM_Ah_GKB_L
shows an example of the fluctuating vesicle for the softest
mesh used (� ≈ 0.037). The various panels of Fig. 6 analyze
individual dependencies. All data are shown in a log-log rep-
resentation, and most of our data sets display the expected

key signature 〈|u�,m|2〉 ∝ 1
�4 from Eq. (A17) for the long-

wavelength bending modes of vesicles with fluid membranes.
Below we first explore the effect of the employed mesh’s
spatial resolution and the variation of physical parameters.
Then we concentrate on the influence of the mesh softness.

1. The effect of the spatial resolution of the employed mesh

In Fig. 6(a), we have plotted fluctuation amplitudes for
meshes with the same radius, bending rigidity, and softness,
� but with different numbers of vertices, N . Reassuringly,
the long wave-length modes 〈|u�,m|2〉 are not affected by this
choice and fall on the “fluid” spectrum indicated by the solid
black line [Eq. (A17)]. Furthermore, the finer the resolution
of the mesh, the larger the wave number and the shorter the
wavelength up to which the fluid regime extends.

2. Influence of the bending rigidity

Equation (A17) predicts that the fluctuation amplitudes
of fluid bilayer vesicles should be inversely proportional to
the bending rigidity of the bilayer, 〈|u�,m|2〉 ∝ kBT

κ
. When

the bending rigidity increases, the surface becomes harder
to bend, and the fluctuation amplitudes decrease. Figure 6(b)
shows the fluctuation spectrum of a soft mesh with N = 1002
vertices with � = 0.037 for different bending rigidity values.
The simulated vesicles beautifully display the expected be-
havior.

3. Irrelevance of the vesicle radius

However, given the same bending rigidity, the fluctuations
spectrum of fluid meshes are independent of their size, as the
results presented in Fig. 6(c) confirm for simulated meshes
with different radii. In Fig. 6(c), the meshes with vertex num-
ber N = 252, 496, 1002, and 1962 correspond to vesicles with
radius r0 = 0.5 µm, 0.7 µm, 1 µm, and 1.5 µm, respectively.

4. The effect of the softness of the employed mesh

In Fig. 6(d), we take random meshes for a given resolu-
tion (N = 1002) of our target vesicles with r0 = 1 µm and
simulate them at different softness values. Soft meshes have
a small elasticity due to the Uh potential that prevents the
vertices from crossing triangle edges during their in-plane
motion. For very soft meshes (� � 1), the elasticity effect
due to the vertex-edge collision is well suppressed, but as
� was increased, the meshes behave like elastic membranes.
The spectrum of elastic (solid) membranes displays an elastic
regime (∼�0) that dominates the large shape deformations
(small modes) and transitions into a curvature regime (∼�4)
that dominates the large as depicted by Eq. (A18). In Fig. 6(d),
the spectrum of a low � mesh shows “fluid” behavior (on the
black line), while for � � 0.15, small modes are deflected,
indicating a “solid” regime. The dotted lines plot the elastic
shell fluctuation amplitudes for �p = 0 and a guessed input
value for Y2D as a function of mesh softness, showing a clear
agreement with the behavior described by Eq. (A18). We
conjecture that a soft mesh’s Young’s modulus is a function
of mesh softness,

Y2D(�) =
(

�

0.59

)2

1.8 × 10−3 kBT/(nm)2. (45)
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5. Independence of the effective Young’s modulus
from the vesicle size

The number of modes affected by the elastic regime de-
pends on the size of the vesicle [Eq. (A18)]. In Fig. 6(e),
we show the spectrum of vesicles with the same bending
rigidity and mesh softness but different radii (the same area
to vertex ratio r2

0/N). The Young’s modulus described by
Eq. (45) was used to describe the spectrum of these vesicles
using Eq. (A18) (dotted lines). The radius of the smallest
mesh was 0.5 µm (N = 252), and the largest one was 1.5 µm
(N = 4002). These results solidify the hypothesis on the de-
pendency of the intrinsic Young’s modulus on � and mark the
choice for low � values essential for simulating fluid vesicles
with soft meshes.

6. Different choice of mean curvature discretization

Finally, we compare results for the Gompper&Kroll-
Barycenter discretization and Jülicher’s original mean curva-
ture discritization [66]. Since both potentials use barycentric
weights, they can both be used to simulate vesicles. In
Fig. 6(f), we plot the same system as presented in panels a,
but by using Jülicher’s mean curvature potential and observe
the same “fluid” behavior.

F. Accommodation of larger shape changes

To further investigate the ability of meshes to represent
shapes different from those for which their connectivity was
optimized, we have explored how our spherical meshes fare
in simulations (i) of fluid bilayer vesicles with significantly
diminished reduced volume and (ii) of a composite membrane
model for red blood cells.

1. Vesicles shapes for smaller reduced volumes

As a first challenge, we have explored how our spherical
meshes adapt to significant reductions of their reduced volume
from the original value of ν ≈ 1 down to ν = 0.1.

To obtain results for our softest meshes with � = 0.037,
we have (i) affinely deformed spherical random meshes
(Fig. 1) into oblate ellipsoids of the target volume and area
in a procedure analogous to the one depicted in Fig. 4 and
(ii) simulated the temporal evolution of these unstable shapes
using Langevin dynamics. For harder meshes, simulations
starting from the ellipsoidal initial shapes tended to become
unstable. We have instead re-equilibrated the shapes obtained
for � = 0.037 for larger values of � using a “push-off”-like
procedure to slowly increase dh [90]. The resulting shapes are
shown in Fig. 7. For intermediate values of ν, they resemble
red blood cell discocytes, but they become unphysical for
smaller ν since we have not included interactions to prevent
the surface from intersecting itself. The conformations can
be compared to corresponding results of energy minimiza-
tions from Refs. [91–94] modulo the fact that mesh dynamics
simulations generate ensembles of finite temperature shapes,
including thermal fluctuations (Ref. [95] conducts a detailed
comparison between ground-state shapes generated using dif-
ferent mean curvature potentials). For our softest meshes, the
agreement is excellent for all studied reduced volumes down
to the smallest value of ν = 0.1 (green frames in Fig. 7),

demonstrating that a soft mesh can sustain important shape
transformations with little or no need for remeshing. The
use of a harder mesh has no effect for sufficiently large ν,
but small or significant deviations (yellow and red frames in
Fig. 7, respectively) appear the earlier, the larger the value
of � and hence the mesh stiffness. As demonstrated by Sup-
plemental Material Fig. 8 [77], the appearance of visible
deviations coincides with measurable differences in the bend-
ing energy as well as an increase in the energy absorbed by
the auxiliary potential controlling the triangle shapes relative
to the spherical case.

2. Composite membrane models for red blood cells

As a second example of the versatility of soft meshes,
Fig. 8 shows results of mesh dynamics simulations of a
composite membrane model for red blood cells [12,40]. The
connectivity of the mesh representing the fluid cell membrane
was adapted to nearly spherical shapes. The fluid mesh was set
up with an area and volume potential and a mean curvature
potential with bending rigidity of κ = 50kBT . However, we
now allow a nonvanishing spontaneous curvature C0 of the
fluid bilayer, Eq. (4). Moreover, the mesh representing the
bilayer is coupled to a second mesh with a two-dimensional
Young’s modulus of Y2D = 25 µNm [12,40], which represents
the spectrin network and provides a strong elastic response
to deformations. We have started our simulations from oblate
shapes with a reduced volume ν = 0.6. The results shown
in the two columns of Fig. 8 are for RBC with spontaneous
curvatures of C0 = 0 and C0 = 16/r0, respectively. The two
movies SM_RBC_C0 and SM_RBC_C0.006 animate both
of the simulations of the RBC from the initial frame. They
show the RBCs from different angles and also highlight the
dynamics of the fluid and solid mesh (green). The first three
rows show RBC composite meshes alongside separate views
of the solid and soft meshes.

Finally, in the last two rows of Fig. 8, we present side
views of the meshes representing the fluid bilayer of the RBC
and of a corresponding vesicle without the spectrin layer
(blue). Most of the shape properties of the RBC originate
from the fluid properties of the mesh and not the elastic mesh.
This can also be visually confirmed by watching the movie
SM_AVh_GKB_L_nu0.6 that shows the simulation output
for a fluid vesicle with the same properties as the RBC with
zero spontaneous curvature from different angles. For Stoma-
tocyte and echinocyte shape transformations, one should use
the area difference elasticity model (ADE), where the solid
mesh will greatly contribute to the RBC shape [37].

G. Vesicle dynamics

To quantitatively characterize the vesicle dynamics in mesh
dynamics simulations, we have measured the autocorrelation
functions of the surface modes of nearly spherical vesicles.
We have investigated three different types of equations of
motion for the mesh vertices (Newtonian/molecular dynam-
ics, Langevin dynamics, and Brownian dynamics), which
OpenMM can easily generate, and for which we have derived
theoretical expressions for the autocorrelation functions in
Sec. A 6. We close our exploration of soft meshes and mesh
dynamics simulations of continuum models of fluid bilayers
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by exploring the timescale on which the larger shape changes
discussed in Sec. IV F occur in the present setup.

1. Fluctuations of nearly spherical vesicles

Figure 9 summarizes our raw data for vesicles with κ =
20kBT and a radius of r0 = 1 µm represented by a soft mesh
(� = 0.037) with N = 1002 vertices. Results for Newtonian
dynamics, Langevin dynamics with two different levels of
damping (γ = 0.001 and γ = 0.01), and Brownian dynamics
are shown in this order in separate columns. Although inertia
does not exist in the Brownian equation (mass is zero), γ

can be calculated by dividing the Brownian friction ζ by the
vesicle mass used in the simulations to compare the results in
a similar format as the Langevin columns.

Panels in a particular row show results for a common
mode number, � ∈ [2, 7]. The individual curves represent time
averages for individual modes (�, m) from five independent
runs. Since there are 2� + 1 independent values of m for a
given mode number �, there are more curves for larger mode
numbers; for example, we have plotted 25 curves for C2(t ) and
75 for C7(t ) in column I .

Qualitatively, the data shown in Fig. 9 are relatively easy
to interpret. For Brownian dynamics and Langevin dynamics
with the higher friction value of γ = 0.01 all shown modes are
overdamped. For Langevin dynamics with γ = 0.001 only the
� = 2 mode is overdamped, the � = 3 mode is close to criti-
cal damping, while modes with � � 4 are underdamped. For
Newtonian/molecular dynamics, all modes are underdamped.

For a quantitative analysis, we compare in Fig. 10 the
respective ensemble averages of the data from Fig. 9 to the
theoretically expected correlation functions derived in Ap-
pendix A 6. In contrast to Fig. 9, we no longer plot all data on a
common time axis but rescale time with �-dependent damping
or oscillations times.

For Newtonian dynamics (i.e., a vesicle that oscillates in
a vacuum), Eq. (A30) suggest that surface modes should
oscillate stably and hence have a sinusoidal autocorrelation
function. Instead, we observe a weak damping, that we ascribe
to a Fermi-Pasta-Ulam-like dynamic coupling [96] between
the modes due to the nonlinear auxiliary potential. Inter-
estingly, the correlation functions for different � look quite
similar when plotted as a function of ω�,m t (l.h.s. column
of Fig. 10), suggesting that the intrinsic damping time of the
modes is a faction of their oscillation time. This is confirmed
by the fitted values for γ� for vesicles with different � val-
ues, which we have plotted in Supplemental Material Fig. 9
[77]. For soft meshes with � � 1 we find γ� ≈ 0.15ω�,m

independently of �. The intrinsic friction is larger for stiffer
meshes with � = O(1) without ever dominating the inertial
dynamics.

We note that apart from the weak damping, the proper
large-scale inertial dynamics emerges, even though our
present implementation associates a constant mass to vertices
independently of the variable surface area they represent. In
principle, this is easy to correct. However, for efficiency rea-
sons, the correction of the forces should be carried out within
OpenMM. In practice, our understanding of the inner work-
ings of OpenMM turned out to be too limited to implement
a correction based on the user-defined barycentric plaquette

areas in the heart of OpenMM’s time step routine. While
this can hopefully be corrected in future versions, we note
that inertial effects play no role at the low Reynolds numbers
relevant to the dynamics of vesicles or biological cells.

The surface undulations of vesicles in nature are highly
damped and dominated by the hydrodynamics of the sur-
rounding and enclosed fluids [44,45]. The negligible internal
friction in undulations simulations is thus essential for the pos-
sibility of generating realistic dynamics in simulations where
the present membrane model is coupled to hydrodynamic
solvers or explicit (coarse-grain) solvent models. As a simple
example, consider the above simulations with Langevin or
Brownian dynamics, which couple the membrane motion to
a viscous background.

In column II the data is also rescaled by the angular fre-
quency of a harmonic oscillator ω�,m for comparison with
column I. ω′

�,m was theoretically calculated for columns II and
III using the same input parameters used to set up the simula-
tions (γ , κ , M, and r0). Depending on the value of ω′

�,m, one of
the equations (A35), (A36), or (A37) was selected and plotted
with black dashed line as the predicted oscillation. The error
in fitting the equations was used to draw a gray area to indicate
the error in plotting the theoretical calculations. Substituting
the simulation parameters, we calculated �crit ≈ 2.11 (≈2.26
if γ�=2 ≈ 0.00015 is also considered) for column II, predict-
ing that the slowest mode (� = 2) goes through overdamped
oscillations and � > 2 go through underdamped oscillations.
The same calculation places �crit ≈ 6.68 (≈7.05 with γ�=7 ≈
0.0011) for column III. The theoretical curves confirm (with
excellent precision) the observed transition from overdamped
to underdamped for γ = 0.001 and the overdamped oscilla-
tion for the larger choice of thermostat friction (γ = 0.01).

The dashed black line in the final column was plotted using
Eq. (A39). In the Brownian regimes, all modes decay at the
same rate. This point was emphasized by rescaling the time
axis using the relaxation time ω2

�,m/γ . The intrinsic friction
was disregarded in our calculations since it was 3 orders of
magnitude smaller than the Brownian friction.

In Supplemental Material Fig. 9 [77] Eq. (A30) was used to
fit the intrinsic friction as a function of the mode frequencies
for � = 0.037. Since higher values of � � 0.15 generate a
Young’s modulus Eq. (A30) is no longer valid. Based on the
calculations presented in Appendix A 6, we can calculate the
frequency of the vesicles as

ω�,m(�)2 = 4π

Mr2
0

[κ (� + 2)(� + 1)�(� − 1)

+Y2D(�)

(
3(�2 + � − 2)

3(�2 + �) − 2

)]
, (46)

where the definition of Y2D(�) is in Eq. (45).

2. Dynamics of larger shape transformations

The movies SM_AVh_GKB_L_nu0.6, SM_RBC_c0, and
SM_RBC_c0.006 illustrate the evolution from oblate initial
states to the shapes shown in Figs. 7 and 8, respectively,
for vesicles with a reduced volume ν � 1 and a red blood
cell model. We close by exploring the timescale on which
these transformations occur in a vacuum when the vesicles
are simulated using mesh dynamics.
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In Fig. 11, we plotted the temporal evolution of the bending
energy as a proxy for the evolution of the shape transforma-
tions for vesicles with reduced volumes ν � 1. For ν = 1,
the initial bending energy of Eb = 8πκ = 502.6kBT about
doubles when each of the N = 1002 surface modes absorbs
the thermal energy of kBT/2. For smaller ν, this increase
is more than compensated by the decrease of the bending
energy for the initial oblate or prolate ellipsoid to the shapes
illustrated in Fig. 7. We have rescaled the time axis in Fig. 11
with the time, τ2,m, it takes to complete the slowest surface
oscillations in equilibrium. As is clear from the data, the
shape transformation occurs in all cases extremely rapidly on
a fraction of this time and without the larger and larger spatial
distances over which the vertices need to move in the more
strongly deflated vesicles in the least slowing down the pro-
cess. We conclude that in mesh dynamics simulations, where
the bilayer is coupled to an explicit solvent or hydrodynamic
solver, the vesicle dynamics would be completely dominated
by the induced motion of the fluid.

H. Computational efficiency

Vesicle simulations using mesh dynamics for a continuum
model are obviously “fast” compared to models with molec-
ular resolution. But we also believe them to be quite useful
within their own class for reasons inherent in the method as
well as for unlocking the computational power of modern
molecular dynamics codes.

1. Sampling efficiency

Regarding sampling, the computational effort is propor-
tional to the ratio of the longest relaxation time in the system
and the time step. In the case of underdamped mesh dynamics
simulations,

τ2,m√
�τ�max,m

∝ N√
�

, (47)

while for overdamped mesh dynamics simulations with a
damping constant γ = (

√
�τ�max,m)−1 of the order of the in-

verse time step this increases to

γ τ 2
2,m√

�τ�max,m

= τ 2
2,m(√

�τ�max,m
)2 ∝ N2

�
. (48)

2. Algorithmic complexity

The second proportionality factor is the time required to
complete all the calculations necessary to execute a single
time step. For the calculation of the bending energies and
forces, this timescales linearly with the number of vertices, N .
However, our global area and volume potentials imply that for
these parts of the calculation, the computational effort per time
step increases as the second power of the number of vertices.

3. The efficiency of modern MD codes

Being compatible with standard molecular dynamics has
the advantage that mesh dynamics can benefit from the enor-
mous work done in this field to adapt codes to modern
computer architectures. For example, we could run all vesicle

TABLE II. The hardware specification of the GPUs used for the
simulations.

GPU Cores Freq. (base) Memory Power Price

1 3000 1.6 GHz 8 GB 250 W ∼$700
2 16 000 2.2 GHz 24 GB 450 W ∼$2000

simulations on GPUs without extra work because our mesh
dynamics implementation in VCM is based on OpenMM.

We have benchmarked mesh dynamics on two GPUs
installed on similar machines with different technical speci-
fications (see Table II).

Our vesicle simulations are extremely light on memory
(<250 MB) since the vesicle is represented by just ∼103 ver-
tices. The results for the runtime of a vesicle with N vertices
simulated for 10τ2,0 with 1τ2,0 sampling rate (interrupt MD 10
times to retrieve simulation trajectories, velocities, etc.), were
reported in Table III.

To appreciate these numbers, we recall that the above sim-
ulation times correspond to the generation of one statistically
independent sample in equilibrium or to the time necessary to
effect the larger shape transformations. We conclude that tak-
ing advantage of OpenMM’s parallelization, mesh dynamics
simulations via VCM provide a fast and low-cost method for
exploring vesicle shapes.

Furthermore, the above numbers reveal that for N = 4002
particles, the many-body interactions about double the exe-
cution time relative to the optimal N2 scaling. In the present
implementation, mesh dynamics thus risks losing its effi-
ciency for larger system sizes or resolutions than we have
considered.

V. DISCUSSION

A. Soft meshes versus hard meshes

Homogenous triangulations (top row in Fig. 1) represent
the geometrical properties of surfaces more accurately than
triangulations with identical numbers of vertices, but triangles
of variable areas and shapes (bottom row in Fig. 1). Not
surprisingly, most numerical studies of continuum models of
fluid bilayer membranes employ “hard” meshes imposing this
homogeneity. However, for evolving surfaces hard meshes
need dynamic remeshing to relax deformation-generated
stress and shear.

Here we propose to trade precision for flexibility and to
use “soft” meshes, which can adapt to a large variety of
shapes (Figs. 7 and 8) without generating a significant elastic
restoring force toward the shape, for which their connectivity
was optimized.

TABLE III. The energy consumption and runtime of the simula-
tion samples for different hardware.

GPU 1 GPU 2

N Runtime Consumption Runtime Consumption

252 12 s 8.3 × 10−4 kWh 10 s 1.25 × 10−3 kWh
1002 3.83 min 1.6 × 10−2 kWh 3.66 min 2.75 × 10−2 kWh
4002 110 min 0.46 kWh 72 min 0.54 kWh
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B. Robust curvature energy discretization

For hard meshes, there is little to choose between Gomp-
per’s and Kroll’s [84] popular adaptation of Itzykson’s [65]
discretization of the curvature energy and the alternative for-
mulation by Jülicher [66] (Supplemental Material Fig. 6 [77]).
Remarkably, the Gompper and Kroll formula is almost as
precise for soft fluctuating meshes as for homogeneous tilings.
In contrast, there are appreciable discretization errors for
Jülicher’s formula, even though there seem to be smaller or
no differences for the derived forces (Fig. 4). As we show in
Supplemental Material Sec. IV [77], the reason for the higher
precision of Itzykson’s [65] discretization is the choice of the
Voronoi instead of the Barycentric area for the normalization
of the contribution of a plaquette (Fig. 14). Itzykson’s and
Jülicher’s expressions for the numerator measuring the local
curvature yield identical results.

However, the less precise formulations using the Barycen-
tric area offer vastly superior numerical robustness for the
evaluation of the curvature energy of soft meshes. Problems
arise on triangulated meshes whenever a vertex moves out of
the area defined by the vertices it is connected to (Fig. 17).
While simple auxiliary potentials on the height of the triangles
are sufficient to stabilize simulations using Barycentric area
(Fig. 18), violations of the tiling conditions almost inevitably
lead to irrecoverable errors for Voronoi-based formulas.

C. Mesh dynamics simulations

Mesh dynamics is formulated as a molecular dynamics
compatible framework for the simulation of continuum mod-
els of fluid bilayer membranes, where the degrees of freedom
are the vertices of two-dimensional meshes with fixed connec-
tivity. In particular, we exploit the robustness of barycentric
formulations of the curvature energy to employ soft meshes
for which the in-plane motion of the vertices is only weakly
constrained and which can adapt to a large variety of shapes.
Furthermore, we found ways to implement the potentials con-
trolling the total surface area and enclosed volume [80] as
many-body potentials (Supplemental Material Eqs. (1) and (2)
[77]). In contrast to single vertex Monte Carlo moves for the
same model, solving the equations of motion for the coupled
mesh degrees of freedom generates collective “moves” which
globally redistribute the surface area and the enclosed volume.

The present first tests suggest that mesh dynamics is nu-
merically efficient and can, for soft meshes, quantitatively
reproduce characteristic large-scale behavior of fluid bilayer
membranes without remeshing. Moreover, the dissipation free
dynamics ensure that the vesicle dynamics will be dominated
by the enclosed and surrounding fluid once the mesh is cou-
pled to an explicit solvent or hydrodynamic solver.

D. A unified view of dynamic triangulation and mesh dynamics

Mesh dynamics shows that the surface dynamics can be
largely decoupled from changes in mesh connectivity. In
Sec. II C 3, we defined ensemble averages over the possi-
ble vesicles shapes, Eq. (7), as ensemble averages over the
possible connectivities and vertex positions for the meshes
representing the surfaces, Eq. (11). In particular, we argued
that for soft meshes, it might be enough to integrate out the

vertex positions for a fixed connectivity graph, G, which is
reasonably well adapted to the dominant shapes S in the
ensemble, Eq. (14). Figure 7 illustrates that for sufficiently
soft meshes, even shapes for reduced volumes ν � 1 can be
reliably simulated with a spherical mesh.

Obviously, there is no reason to make a dogma out of using
fixed mesh connectivity. Dynamic triangulation [69,97] is the
obvious solution to the limited shape transformations in pure
mesh dynamics simulations for harder meshes (Fig. 7). As
shown in Supplemental Material Fig. 8 [77], the appearance of
notable deviations coincides with measurable increases in the
average value of the auxiliary potential, 〈Uh〉 controlling the
softness of our meshes. We have not yet tried to combine the
two approaches, but since our description is based on a Hamil-
tonian, we see no principal obstacle to alternating between
mesh dynamics simulations and connectivity-altering Monte
Carlo moves to sample averages over the annealed ensemble
of mesh connectivities. While mesh dynamics simulations
would assure efficient nonlocal mass transport and surface
dynamics, the regular dynamic retriangulation would keep the
energy stored in the auxiliary potentials independent of the
vesicle shape and hence prevent the corresponding effective
elasticity from distorting the observed conformations. Obvi-
ously, the harder the mesh, the more frequently these moves
need to be applied and the more often one needs to step out of
the MD simulations.

VI. SUMMARY AND CONCLUSION

Most current simulations of continuum models of fluid
bilayer membranes follow Gompper and Kroll [84] in using
dynamic triangulation Monte Carlo schemes [68,69] together
with a discretization of the curvature energy going back
to Itzykson [65]. Here we have shown that an alternative
formulation by Jülicher [66] offers vastly superior numer-
ical robustness for the evaluation of the curvature energy
on triangulated meshes with fluctuating triangle shapes and
sizes. Curiously, the ultimate reason for the versatility of
Jülicher’s formulation lies in a comparatively mundane part
of his expression: the choice of the Barycentric area for the
normalization of the contribution of a plaquette (Fig. 14). It
is the use of the Voronoi area for the same purpose in Itzyk-
son’s expression, which proves to be its undoing for irregular
meshes.

Soft meshes can represent a large variety of shapes with-
out requiring remeshing and are thus ideal for simulations
of dynamically evolving surfaces. Here we have exploited
the robustness of barycentric formulations of the curvature
energy to propose mesh dynamics simulations of soft meshes
as an alternative to dynamic triangulation for hard meshes.
Mesh dynamics allows the simulation of continuum models
of fluid bilayer membranes in a molecular dynamics frame-
work, where the degrees of freedom are the vertices of a soft
two-dimensional mesh with fixed connectivity whose in-plane
motion is only weakly constrained. In particular, mesh dynam-
ics simulation treats the conservation of the membrane area
globally and not locally. There was no coupling between the
unresolved in-plane flow of lipids and the in-plane motion of
the vertices of our soft mesh: the bilayer area was dynamically
redistributed over the entire mesh.
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We have implemented mesh dynamics into the OpenMM
molecular dynamics engine [32] via the virtual cell model
[56] software package, allowing us to benefit from OpenMM’s
built-in ability to distribute calculations on GPUs and to au-
tomatically derive the forces corresponding to (multiparticle)
potentials [32]. In the first step, we have established the nu-
merical foundations of mesh dynamics. In particular, we (i)
have introduced suitable auxiliary potentials for controlling
the soft mesh representing the bilayer, (ii) have analyzed the
time step of mesh dynamics simulations, and (iii) have shown
them to be long-time stable. In the second step, we have
focused on the physical validation and interpretation of the
results of mesh dynamics simulations for vesicles represented
by N ∼ 1000 vertices with a typical radius of 1 µm and fluid
bilayer membranes with bending rigidities of 20kBT .

As a first quantitative test of the method, we have an-
alyzed surface modes for nearly spherical vesicles. While
there are well-known theoretical predictions for their mean-
square excitation [45,63], we have additionally derived the
expected functional form of their autocorrelation functions
for the Newtonian, Langevin, and Brownian vertex dynamics
readily available in molecular dynamics engines.

With respect to the mean-square amplitudes of the sur-
face modes, we demonstrated the ability of our method to
generate the characteristic] signature 〈|u�,m|2〉 ∝ 1

�4 of the
long-wavelength bending modes of vesicles with fluid mem-
branes and to quantitatively reproduce their theoretically
expected amplitudes, Eq. (A17). Furthermore, our analysis
revealed that the fixed mesh connectivity and the mesh dy-
namics auxiliary potential Uh combine to produce a small
effective Young’s modulus, Y2D(�), which can be easily con-
trolled via the softness � of the employed mesh.

The dynamical analysis showed that the relaxation of
the surface modes for Newtonian, Langevin, and Brown-
ian vertex dynamics could be quantitatively understood in
a generalized Langevin framework with an intrinsic, mode
number-dependent friction for the different surface modes.
Importantly, the model’s internal friction is negligible since
even the longest wavelength surface modes remain under-
damped in molecular dynamics simulations solving Newton’s
equations of motion for the vertices of our soft meshes. This
feature is essential for the possibility of generating realistic
vesicle dynamics in future simulations, where the present
membrane model is coupled to hydrodynamic solvers or ex-
plicit (coarse-grain) solvent models since the surface mode
dynamics of vesicles in nature are highly damped and domi-
nated by the hydrodynamics of the surrounding and enclosed
fluids [44,45].

First results of mesh dynamics simulations for the explo-
ration of vesicle shapes with reduced volumes ν � 1 and
the behavior of (red blood) cells with composite membranes
further demonstrated the utility of soft meshes and their ability
to adapt to a large variety of vesicle shapes. In particular, the
larger shape transformations occurred in our mesh dynam-
ics simulations on the characteristic timescale of the slowest
surface modes and can be simulated in a matter of minutes on
standard GPUs.

Two limitations of the present work merit emphasis:
(i) When the area constraint is applied globally and not

locally [88], a vertex represents a variable amount of bilayer

corresponding to the instantaneous area of the associated
plaquette. Interestingly, the general mesh Hamiltonian (16)
generates an effective interaction, Eq. (20), homogenizing the
plaquette areas. However, the corresponding equations of mo-
tion (22) are nontrivial to solve and require further study. This
might be interesting in itself and necessary for the application
of mesh dynamics to systems like soap bubbles, where inertial
effects are important and sensitive to the mass distribution on
the triangulated surface. Here we have studied mesh dynamics
in the constant vertex mass approximation, where vertices
follow standard Newtonian dynamics. We believe this approx-
imation to be uncritical for lipid bilayer vesicles in aqueous
solutions, where inertial effects are irrelevant. However, we
have not yet demonstrated this in practice by coupling our
vesicles to an explicit solvent or hydrodynamic solvers [55].

(ii) In general, continuum models require dynamic mesh-
ing techniques to explore the multitude of shapes that
two-dimensional liquids can adopt in three dimensions. Mesh
dynamics should thus, in general, be viewed as a complement
to dynamic triangulation rather than a substitute. Since our
description is based on a Hamiltonian, we see no principal
obstacle to decoupling the surface dynamics from the remesh-
ing by alternating between mesh dynamics simulations and
connectivity-altering Monte Carlo moves. In particular, this
combination should allow the simulation of surfaces with
meshes of arbitrary � if the frequency of dynamic trian-
gulation attempts is adjusted to the stiffness of the mesh.
But again, we have not yet combined the two approaches in
practice.
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APPENDIX A: FLUCTUATION ANALYSIS FOR NEARLY
SPHERICAL VESICLES

The ground-state shape of a vesicle is a function of its
material and geometrical properties. However, due to thermal
fluctuations, random undulations appear on the surface. The
shapes of nearly spherical vesicles can be described as a sum
of normal modes [84]. Various properties of the membrane,
such as its energy or dynamics, can be understood by studying
these modes. Undulation at each point, r(θ, φ), can be written
as a radial displacement relative to the average radius, r0,

r(θ, φ) = r0[1 + g(θ, φ)]. (A1)

Because the membrane is nearly spherical, it is convenient to
expand g(θ, φ) in terms of the spherical harmonics, Y�,m(θ, φ),

g(θ, φ) =
�max∑
�=0

�∑
m=−�

u�,mY�,m(θ, φ). (A2)
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u�,m, is the normal mode amplitude, and we have used the
definition of the normalized spherical harmonics,

Y�,m(θ, φ) =
√

2� + 1

4π

√
(� − |m|)!
(� + |m|)! Pm

� (cos θ ) eimφ, (A3)

that is a function of the associated Legendre polynomials,
Pm

� (x).
Following the same logic, surface undulation mode am-

plitudes for a closed surface can be calculated using the
following surface integral:

〈|u�,m|2〉 =
∫

d�Y ∗
�,m(θ, φ)

(
r(θ, φ) − r0

r0

)
. (A4)

1. The area of a fluctuating spherical shape

The area of a membrane patch, dA = r2d�, in terms of
spherical harmonics (up to second order in g) is [34]

dA = r2
0

(
1 + g2 + 1

2 gL2g
)
d�, (A5)

where the angular momentum operator L2 has the standard
definition,

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (A6)

Taking the integral yields the area of a fluctuating surface A,

A =
∫

dA = r2
0

∫ (
1 + g2 + 1

2
gL2g

)
d�

= r2
0

{
4π +

∑
�

|u�,m|2
[

1 + 1

2
�(� + 1)

]}
. (A7)

Compared to a sphere, a larger area is needed to accommodate
fluctuations. The excess area energy cost can be calculated by
substituting the derived expression in Eq. (1),

EA = 1

2
kA

(
A − 4πr2

0

)2

4πr2
0

= 1

8π
kAr2

0

{∑
|u�,m|2

[
1 + 1

2
�(� + 1)

]}2

. (A8)

2. The volume of a fluctuating spherical shape

The volume enclosed by a fluctuating membrane can be
calculated by integrating over the volume element enclosed
by the membrane, dV . Keeping terms up to the second order
in g,

V =
∫

dV = 1

3

∫
rdA

= 1

3

∫
r3d� = 1

3
r3

0

∫
(1 + g)3d�

= 1

3
4πr3

0 + r3
0

∑
�

|u�,m|2. (A9)

Similar to Sec. A 1, we can use Eq. (2) to calculate the energy
due to volume fluctuations,

EV = 1

2
kV

(
V − 4

3πr3
0

)2

4
3πr3

0

= 3

8π
kV r3

0

(∑
|u�,m|2

)2
. (A10)

The reduced volume of a shape, ν, is the ratio of its volume
to the ratio of the volume of a sphere with the same surface
area,

ν = 6
√

πVA− 3
2 . (A11)

A perfect sphere has a reduced volume of ν = 1. To accom-
modate fluctuations on the surface, a shape with a reduced
volume, ν < 1, is required [99]. Equations (A7) and (A9) can
be used to calculate the reduced volume required by a surface
fluctuating with a set of mode amplitudes,

ν = 1 + 3
4π

∑ |u�,m|2{
1 + 1

4π

∑ |u�,m|2[1 + 1
2�(� + 1)

]}3/2

≈ 1 − 3

8π

∑
|u�,m|2[�(� + 1) − 1]. (A12)

3. Bending fluctuations

The energy of a membrane dominated by bending and
without area or volume constraints can be described by
Eq. (4). If we assume that the spontaneous radius is the same
everywhere on the membrane surface, then the curvature en-
ergy of the membrane with spontaneous radius, rs, is [34]

Eb = 1

2
κ

∫
dA

(
∇ · �n − 2

rs

)2

. (A13)

The surface normal, �n, is defined as a function of the equa-
tion of the surface, R(r) = r − r0[1 + g(θ, φ)] = 0,

�n = �∇R(r)

| �∇R(r)| , (A14)

where (r, θ, φ) are the spherical coordinates. Expanding
Eq. (A13) in terms of spherical harmonics [45],

Eb
�,m = 8πκ + 1

2
κ
∑
�>1

|u�,m|2(� + 2)(� − 1)

×[�(� + 1) − 4α + 2α2], (A15)

and applying the equipartition theory, we may estimate the
fluctuation amplitudes [34,44] of a bending dominant mem-
brane without constraints as

〈|u�,m|2〉 = kBT

κ

1

(� + 2)(� − 1).[�(� + 1) − 4α + 2α2]
(A16)

α = r0/rs is the ratio of the radius of the membrane and
the spontaneous radius. Since the contributions from the area
and volume energies are of the order, O(u4

�,m), we have not
included them in the derivation of Eq. (A16). For a vesicle
with α = 0, the amplitudes simplify to

〈|u�,m|2〉 = kBT

κ

1

(� + 2)(� + 1)�(� − 1)
. (A17)

Notice that the amplitude of each mode is only a function of
the mode number, �, and temperature to bending rigidity ratio,
kBT/κ , and (as expected) independent of the radius (size) of
the system.
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4. Spherical shell fluctuations

Composite membranes like the nuclear envelope or the red
blood cell also include components made of polymers that
have elastic properties. The surface mode fluctuations of these
systems can be described in terms of their two-dimensional
Young’s modulus, Y2D, and the pressure difference, �p, be-
tween the surrounding and enclosed fluid [63],

kBT 〈|u�,m|2〉−1 = κ (� + 2)(� + 1)�(� − 1)

− �p r3
0

[
1 + 1

2
�(� + 1)

]

+ Y2D r2
0

[
3(�2 + � − 2)

3(�2 + �) − 2

]
. (A18)

For such systems, the surface fluctuation amplitudes are no
longer size independent. This corresponds to a buckling tran-
sition from a bending dominant spherical shape to a faceted
one determined by the dimensionless Föppl-von Kármán
number � = Y2Dr2

0/κ [89].

5. Normal force on the vesicle surface

Following Ref. [45], the curvature of a surface with C0 = 0
is defined as

H = C1 + C2 = �∇ · �n = 2

r

(
1 + r0

2r
L2g

)
; (A19)

for small g we can approximate 1/r with 1
r0

(1 − g). The force
density on the surface of the vesicle is defined as −κ∇2H .
Taking the Laplacian of the above equation,

∇2H =
[

1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2
L2

][
2

r

(
1 + r0

2r
L2g

)]
. (A20)

The radial derivative calculations are as follows:

1

r2

∂

∂r

{
r2 ∂

∂r

[
2

r

(
1 + r0

2r
L2g

)]}

= −2

r2

∂

∂r

(
1 + r0

r
L2g

)

= 2r0

r4
L2g. (A21)

Carrying out the angular derivative, we get

− 1

r2
L2

[
2

r

(
1 + r0

2r
L2g

)]
= − r0

r4
L2(L2g). (A22)

Therefore, we arrive at the following expression for
Eq. (A20):

∇2H = r0

r4
[2L2g − L2(L2g)]. (A23)

The normal force angular density can be calculated as a func-
tion of θ, φ,

F (θ, φ) = −
∫

κ∇2H
dA

d�

= κ
r0

r4
[2L2g − L2(L2g)]r2

(
1 + r2

0

2r2
gL2g

)

= κr0

r2
[2L2g − L2(L2g)] + O(g3). (A24)

Taking the spherical Fourier transform of the above equa-
tion yields the force on each mode,

f�,m =
∫

F (θ, φ)Y ∗
�,m(θ, φ)d�,

f�,m = − κ

r0
u�,m(� + 2)(� + 1)�(� − 1). (A25)

6. Dynamics and timescale calculations

We can write Newton’s equation to describe the motion
of points on a spherical vesicle oscillating in a vacuum as a
function of the angular coordinates θ with a radius r0 and a
homogeneous density M/4πr2

0 ,

M

4πr2
0

dA

d�
r̈(θ, φ, t ) = F (θ, φ),

Mr0

4π

∑
�,m

ü�,m,tY�,m(θ, φ) = F (θ, φ), (A26)

where F (θ, φ) is the force on the vesicle at a specific spherical
coordinate. We can derive an expression for the dynamics of
the vesicle modes by taking the spherical Fourier transform
of the above equation. The Fourier transform of the left-hand
side is

Mr0

4π

∫
d�Y ∗

�,m(�)
∑
�′,m′

ü�′,m′ (�, t )Y�′,m′ (�)

= Mr0

4π
ü�,m(t ). (A27)

We can use Eq. (A17) to derive the normal force of each
mode,

f�,m(t ) = − 1

r0

∂

∂u�,m
Eb

= − κ

r0
u�,m(t )(� + 2)(� + 1)�(� − 1), (A28)

in agreement with Eq. (A25). Alternatively, in the case where
the spontaneous curvature of the vesicle is zero (C0 = 0),
the normal force surface density on the vesicle is F =
−κ∇2(C1 + C2) [44]. Therefore, the normal force angular
density can be calculated with F (θ, φ) = F × (dA/d�). A
more sophisticated force expression can also be derived for a
nonzero spontaneous curvature, as demonstrated by Ref. [45].

Putting Eqs. (A27) and (A28) together, we draw an expres-
sion for the mode dynamics,

ü�,m = −4πκ

Mr2
0

u�,m(t )(� + 2)(� + 1)�(� − 1),

ü�,m = −ω2
�,mu�,m, (A29)

where the oscillation angular frequency of each mode, ω�,m is
defined as

ω�,m =
√

4πκ

Mr2
0

(� + 2)(� + 1)�(� − 1). (A30)

Since the period of oscillation, τ�,m = 2π/ω�,m, is propor-
tional to the inverse of ω�,m, the smallest mode number (� =
2) corresponds to the slowest shape change dynamics.
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The Langevin equation can be used to describe the dynam-
ics of a vesicle under constant friction ζ in contact with a heat
bath at temperature T ,

mẍ + ζ ẋ + kx = Fη,

Fη =
√

2kBT ζη(t ), (A31)

where η(t ) is the time derivative of a Wiener process with the
following properties,

〈η(t )〉 = 0,

〈η(t )η(t ′)〉 = δ(t − t ′). (A32)

Following a similar procedure, the mode amplitudes for
Langevin dynamics can be derived,

Mr0

4π
ü�,m + ζ r0

4π
u̇�,m + Mr0

4π
ω2

�,mu�,m = Fη,

ü�,m + γ u̇�,m + k�,m

M
u�,m = 4π

Mr0
Fη, (A33)

where k�,m = Mω2
�,m and we have substituted ζ = γ M. Equa-

tion (A33) describes a damped oscillation with frequency

ω′
�,m =

√
ω2

�,m − γ 2/4. The nature of damping depends on

ω′
�,m. Real positive values of ω′

�,m describe an underdamped
system, ω′

�,m = 0 a critically damped, and if ω′
�,m is complex,

then the system is overdamped. We can use Eq. (A30) to
calculate the characteristic critical mode number, �crit, as a
function of the friction,

�crit ≈ 1

2

(
Mr2

0

πκ

) 1
4 √

γ . (A34)

For a given γ , mode numbers larger than the critical mode
(shorter wavelengths), � > �crit are underdamped, and longer
wavelengths are overdamped.

The autocorrelation of the mode amplitudes for an under-
damped vesicle is

〈u�,m(t )u�,m(0)〉

= 〈|u�,m|2〉e− γ

2 t

[
cos(ω′

�,mt ) + γ

2ω′
�,m

sin(ω′
�,mt )

]
.

(A35)

In the equation above, the relaxation time of the system is 1/γ .
The mode amplitude autocorrelation for a critically damped
vesicle is

〈u�,m(t )u�,m(0)〉 = 〈|u�,m|2〉e− γ

2 t
(

1 + γ

2
t
)
. (A36)

Finally, the mode amplitude autocorrelation for an over-
damped vesicle is

〈u�,m(t )u�,m(0)〉
= 〈|u�,m|2〉e− γ

2 t

×
[

sinh(|ω′
�,m|t ) + 2

γ
|ω′

�,m| cosh(|ω′
�,m|t )

]
. (A37)

The vesicle motion for the high friction limit of Eq. (A31)
where inertial forces can be disregarded, is captured by the

Brownian equation,

r0

4π
ζ u̇�,m(t ) + r0

4π
k�,mu�,m(t ) = Fη. (A38)

The autocorrelation of the mode amplitudes takes the simple
form

〈u�,m(t )u�,m(0)〉 = 〈|u�,m|2〉e−t/τζ . (A39)

The relaxation time of the system, ζ/k�,m = γ /ω2
�,m, is calcu-

lated using the ratio of the harmonic force stiffness and the
friction in the system.

The same procedure can be used to understand the behavior
of modes when a vesicle fluctuates in a fluid environment. The
bending force will have the same form since it depends only
on the vesicle properties. However, the velocities of surface
patches on the vesicle are dominated by the hydrodynamics
of the surrounding and enclosed fluid. The autocorrelation of
the surface mode amplitudes for such a system [45] can then
be obtained by deriving the velocity field on the surface of the
vesicle through the Stokes equation of motion [99].

APPENDIX B: TRIANGULATED SURFACES

1. Euler identity

Triangulated surfaces have interesting properties. A flat
surface with a homogeneous distribution of vertices is tiled
with isosceles triangles where each vertex is connected to
exactly six neighbors (degree 6). However, this is not the case
for curved surfaces. A closed surface comprises a mixture of
vertices with different degrees. If only vertex degrees 5, 6, and
7 are present in a closed triangulated mesh, then the difference
in the number of vertices with degrees 5 and 7 is a function of
the genus, χ , of the surface [89],

N5 − N7 = 12(1 − χ ). (B1)

2. Area and volume

Since triangles on the meshes do not overlap, the total area
of the surface can be calculated by summing over individual
triangle areas. The area of each triangle can be easily calcu-
lated by taking half the magnitude of the cross product of two
adjacent edges corresponding to the illustrated blue surface
between

−→
BA and

−→
CA in Fig. 12:

A =
∑

tri

1

2
|−→BA||−→CA| sin(θBAC), (B2)

∑
tri, sums over all triangles on the mesh. The volume of a

tetrahedron, vi, with a surface triangle ABC as one of its faces
and point, X , as its fourth vertex can be calculated using the
triple product of the vectors in Fig. 12,

vi = 1
6

−→
AB × −→

AC · −→AX . (B3)

The volume of tetrahedra can have negative signs depend-
ing on the coordinates of X . By always selecting vectors

−→
AB

and
−→
AC such that their cross product points toward inside

the mesh, the sum over, vi, results in the mesh volume in-
dependent of the coordinate choice for X , even for the most
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FIG. 12. Volume of a tetrahedron with a mesh triangle as one of
its faces and an arbitrary point, X as its fourth vertex is calculated
with the triple product of two vectors on the triangle and a third
vector that points to X .

complicated shapes:

V =
∑
tri

vi. (B4)

3. Approximate bending energies from dihedral angles

Kantor and Nelson [59] proposed approximating the en-
ergy described by Eq. (4) in terms of the dihedral angle
between adjacent triangles,

EDihedral
b = kDihedral

b

∑
<i, j>

(1 − cos φi j ). (B5)

In Eq. (B5) the sum runs over all edges (or triangle pairs)
and φi j is the angle between triangle normals adjacent to edge
�i j that connects vertex i and j [see Fig. 13(b)]. As discussed
in detail by Gompper and Kroll [84], the relation between
kDihedral

b in Eq. (B5) and κ in Eq. (4) is shape dependent (for

a spherical shape kDihedral
b ≈

√
3

2 κ) and therefore not appro-
priate for describing the curvature of nonspherical shapes.
The triangle pair potential is simple but fails to calculate the
curvature of saddle points correctly. Another problem with
the triangle pair potential is that it is only a function of the
dihedral angle, and subsequently, the shape and size of the
surface triangles do not contribute to the surface curvature.
This is a nice feature since the total bending curvature of a
shape should be independent of the mesh size. But, it is not
appropriate for surfaces tiled with a wide spread of triangle

(a) (b)

FIG. 13. (a) The angles θ
i j
1 and θ

i j
2 associated with the edge �i j

are used to calculate the distance between vertices in a dual lattice
[100]. (b) An arbitrary edge, �i j , on a triangulated surface sketched
together with its adjacent triangles. The angle φi j is defined as the
angle between normal triangular vectors, denoted by nα and nβ .

(a) (b)

FIG. 14. (a) The Voronoi and (b) the Barycentric area of an
arbitrary plaquette. The difference between the two vertex areas is
emphasized by illustrating one area in the background and the other
in the foreground.

sizes that may result in a tiny triangle pair contributing the
same to the bending curvature as a gigantic one with the same
dihedral angle, φi j .

The bending energy [Eq. (4)] can be discretized in terms of
the mean curvature at each vertex Hi = C1 + C2, and the area
associated with the vertex, ai,

Eb = 1

2
κ

∫
dA[C1 + C2 − C0]2

≡ 1

2
κ
∑

i

ai[Hi − C0]2

= 1

2
κ
∑

i

ai
[
H2

i − 2HiC0 + C2
0

]
. (B6)

4. The formulation by Itzykson, Gompper, and Kroll

In 1986, Itzykson calculated the Laplacian of a scalar field
on a triangulated surface [65]. Since the mean curvature at
each point, �r, on a surface patch with normal vector, �n, is
defined as H = �n · � �R (� is the Laplace–Beltrami operator),
Gompper and Kroll used Itzykson’s formulation to calculate
the mean curvature of a vertex on a triangulated mesh [84] as

HGK
i = �ni · ��r ≡ 1

aV
i

�n ·
[∑

j(i) �̃i j

�i j
(�ri − �r j )

]
. (B7)

The sum in
∑

j(i) runs over all vertex neighbors of i. �i j is
the length of the edge between vertex i and j, and �ri and
�r j are the position vectors of the corresponding vertices. �̃i j

is the length of a bond in the dual lattice and is defined
as �̃i j = 1

2�i j (cot θ i j
1 + cot θ i j

2 ). The Voronoi area [Fig. 14(a)]
associated with each vertex aV

i , can be calculated using these
two lengths,

aV
i = 1

4

∑
j(i)

�̃i j�i j . (B8)

The surface normal, �ni, of a plaquette [assembly of triangles
with a common vertex as sketched in Fig. 13(a)] is as follows
[101]:

�ni =
∑

T (i) θ
i
T �ni

T∣∣∑
T (i) θ

i
T �ni

T

∣∣ , (B9)

where
∑

T (i) runs over all triangles that include vertex i, θ i
T

and �ni
T are, respectively, the angle of a triangle at vertex,
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i, and its surface normal vector. It should be noted that the
Laplacian and the normal vector are in the same direction in
three-dimensional space [84], which leads to the following
definition for the surface bending energy,

EGK
b = 1

2
κ
∑

i

1

aV
i

⎡
⎣∑

j(i)

�̃ ji

�i j
(�ri − �r j )

⎤
⎦

2

− 2
2

rs
�ni ·

⎡
⎣∑

j(i)

�̃ ji

�i j
(�ri − �r j )

⎤
⎦ + 4

r2
s

aV
i . (B10)

Equation (B10) was derived for surfaces that have triangles
with the same shape and size and are not obtuse [65]. As
also discussed by Gompper and Kroll [84], Eq. (B10) can get
unstable since the sign of �̃ ji can become negative for obtuse
triangles. By introducing restrictions on the length of mesh
edges (and maximizing the probability of the appearance of
acute triangles), Gompper and Kroll successfully modeled
vesicles with an infinite spontaneous curvature radius (C0 =
0) on dynamically triangulated surfaces.

5. Jülicher’s formulation

Jülicher described the mean curvature of a lattice point
by taking the average of the dihedral angles of neighboring
triangles on a plaquette with the Barycentric area of the central
vertex [66],

H J
i = 1

aB
i

∑
j(i)

1

2
�i jφi j . (B11)

Here, �i j and φi j have the same definition as in Fig. 13(b). The
area element associated with each vertex, aB

i , is the Barycen-
tric area [Fig. 14(b)] that is calculated as one third of the sum
of the area of all triangles that have vertex i in common,

aB
i = 1

3

∑
tri(i)

atri. (B12)

Substituting in Eq. (B6) results in the total mean curvature
energy of a mesh with spontaneous curvature defined as C0 =
2/rs of a triangulated surface,

E J
b = 1

2
κ
∑

i

1

aB
i

⎡
⎣∑

j(i)

1

2
(�i jφi j )

⎤
⎦

2

− 2
2

rs

⎡
⎣∑

j(i)

1

2
(�i jφi j )

⎤
⎦

+ 4

r2
s

aB
i . (B13)

We show in Supplemental Material Sec. IV [77] that for a
given plaquette, the numerators in both Gompper and Kroll’s
[Eq. (B10)] and Jülicher’s [Eq. (B13)] models calculate ap-
proximately the same value for small curvatures,⎡

⎣∑
j(i)

1

2
(�i jφi j )

⎤
⎦

2

≈
⎡
⎣∑

j(i)

�̃i j

�i j
(�ri − �r j )

⎤
⎦

2

. (B14)

Hence, the difference in the bending energy of a plaquette for
these two models mainly originates from the weight (area)
associated with each central vertex.

6. Alternative hybrid formulations

The difference in the associated vertex area in the bending
energy models inspired us to use two new models to estimate
the total curvature of plaquettes by swapping the weights. The
Gompper&Kroll-Barycentric,

EGKB
b = 1

2
κ
∑

i

1

aB
i

⎡
⎣∑

j(i)

�̃i j

�i j
(�ri − �r j )

⎤
⎦

2

− 2
2

rs

⎡
⎣∑

j(i)

�̃i j

�i j
(�ri − �r j )

⎤
⎦ + 4

r2
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i , (B15)

and the Jülicher-Voronoi,

E JV
b = 1

2
κ
∑

i

1
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i
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j(i)
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2
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1

2
(�i jφi j )

⎤
⎦

+ 4

r2
s

aV
i . (B16)

APPENDIX C: THE ENERGY LANDSCAPE
SURROUNDING INDIVIDUAL VERTICES

To understand the effect of the physical and auxiliary po-
tentials on the stability of mesh dynamics simulations, we
have explored the 3d energy landscape for a single mobile
vertex i in an otherwise frozen conformation of a spherical
fluctuating random mesh,

�U (q′
i ) = U (G, {q′}) − U (G, {q}),

{q} = {q1, q2, , ..., qi, ..., qN },
{q′} = {q1, q2, , ..., q′

i, ..., qN }. (C1)

It is obviously difficult to draw definite conclusions from a
single, randomly chosen example, but we believe that the exer-
cise nevertheless provides useful insights into the reason why
it is difficult to run mesh dynamics simulations for soft meshes
with Voronoi-based discretizations of the bending energy.

The chosen mesh is illustrated in Fig. 15 (left). All the
reference coordinates {q} are located on the surface of a sphere

FIG. 15. Left: A 2D representation of a selected plaquette (left
panel) on a fluctuating random mesh indicated with green bonds. The
central vertex of the green plaquette is also a member of the neighbor
plaquettes indicated with orange edges. Right: The two-dimensional
cuts through the energy landscape are: (1) a curved surface on a
sphere that goes through the mesh vertices (left column in Figs. 16–
18) and (2) a straight surface (blue plane) perpendicular to the mesh
surface (right column in Figs. 16–18).
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FIG. 16. The energy landscape in the space around a selected
plaquette for the area potential, UA, volume potential, UV , WCA
potential of the triangle heights, Uh, and a nonlinear bending potential
relating to the dihedral angles, Uφ . The changes in energy relative to
the initial configuration of the mesh were plotted as a function of the
central vertex coordinates of the green plaquette. In the left column,
the energies were calculated for the vertex coordinates on the surface
of a sphere, and in the right column, on a plane perpendicular to the
surface (see Fig. 15). The color bar displays the energy values in
the units of kBT = 2.49ε. The area compressibility was set to kA =
5.12 × 105kBT/l2, and the bulk modulus to kV = 1.6 × 107kBT/l3.
Each panel plots 320 × 320 pixels.

(all mesh edges lie under the surface), and the mobile vertex
i is the central vertex of the green plaquette. We report �U
for two 2d slices [Fig. 15 (right)]: panels in the left-hand
side (l.h.s.) columns of Figs. 16–18 show the variation of
�U over the surface of the represented sphere; panels in the
r.h.s. columns of the figures show the variation of �U over a
perpendicular plane containing qi and the center of the sphere.

The energies associated with the area and the volume are
only affected by changes in the area of the triangles that
belong to the central plaquette. Figure 16, rows a and b,
show the plots of the area and volume energies of the mesh.
The area and volume of the initial configuration of the mesh
were used as the values for the ground-state area (A0) and vol-
ume values (V0) in Eqs. (1) and (2). The total area and volume
of the mesh change very slightly when the vertex is moving
within the green plaquette (left panels), as confirmed by the
measurements presented in Supplemental Material Fig. 6 [77].

FIG. 17. The change in the mean curvature energy of a spherical
mesh when the central vertex of a selected plaquette moves on the
surface of the sphere (left column) or on a plane perpendicular to the
surface (right column) while all other vertices are fixed in space. For
all rows, the curvature energy difference was plotted relative to the
initial configuration where the central vertex is at the origin of the xy
plane. κ = 20kBT . Each panel plots 320 × 320 pixels.

However, the area increases as soon as the vertex passes over
an edge. The volume energy, however, only increases in the
direction of the normal to the plaquette surface (right panel).
Therefore, the motion of the vertex on the surface does not
cost much in terms of the volume energy. The strengths of the
area and volume energies depend on the area compressibility
kA, and the bulk modulus kV , which are the material proper-
ties of the system. We have used kA = 5.12 × 105kBT/l2 and
kV = 1.6 × 107kBT/l3 [88]. Figure 16 rows (c) and (d) plot
two auxiliary potentials that do not have a physical origin but
are tools that help stabilize the dynamics of the vertices. Row
(c) plots the effect of the Weeks-Chandler-Anderson potential
Uh on the triangle heights, and row (d) plots the effect of the
nonlinear bending energy Uφ on the angle of the triangle pairs.
Uh builds a wall around the edges (and consequently the ver-
tices) and restricts the movement of the central vertex. Uφ only
takes effect when large dihedral angles appear (for example,
right before a vertex crosses over an edge), as observed in both
columns. In these plots we have set ε = 4kBT for the Uh, with
dh/r0 = 0.02 and κφ = 20kBT , where kBT = 2.49ε.

Changes in the energy landscape for the bending models
are both a function of the coordinates of the green plaquette
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FIG. 18. Plots of the results presented in Fig. 17 after adding the
area and volume energies and the two auxiliary potentials to each
row. Not all numerical instabilities produced by the Voronoi calcu-
lations can be masked by the auxiliary potentials that make these
models dynamically unstable. All parameters are set to the same
values stated in Figs. 16 and 17. Each panel plots 320 × 320 pixels.

coordinates and its neighbors. Since the central vertex is also
a member of the plaquettes indicated with orange edges in
the left panel of Fig. 15, when its coordinates change, the
angles (both dihedral and triangle angles) in its surrounding
plaquettes are affected as well. In Fig. 17, the difference in
the mean curvature energy of the mesh relative to the initial
configuration was calculated for the four bending models.
When the central vertex moves inside the green plaquette
“zone” on the spherical cap (within an acceptable margin of
error), the total mean curvature energy of the mesh does not
change for either of the bending models. If the coordinate
of the central vertex lies exactly on the plaquette edges or
corner vertices, then the curvature energy calculations will
break down since the definition of the angles of the dihedral
and the triangle becomes ambiguous. It should be noted that
since we chose to move the vertex on the sphere surface and
not on the mesh, the coordinates will never lie precisely on the
edges but will pass very closely over them. In other words, for
the coordinates that lie outside the green plaquette, the left
column shows how the energy landscape changes when the

FIG. 19. A zoomed in version of the energy landscapes presented
in Figs. 18(b2) and 18(d2) for the Gompper&Kroll and the Jülicher-
Voronoi mean curvature models.

triangles begin to make folds on the surface, thus increasing
the energy of the mesh. In the right column, for Voronoi-based
models (Gompper&Kroll and Jülicher-Voronoi), a sudden
drop in the mean curvature energy was observed when the
plaquette made sharp angles (on both surfaces). This is due
to sign changes in the Voronoi area calculations. Although the
details of the energy landscape are functions of the green and
orange plaquettes, the general behavior is the same for most
configurations.

Figure 18 plots the energy landscape for the four bend-
ing models presented in Fig. 17 with the addition of the
area and volume potentials and the two auxiliary potentials
from Fig. 16. The mobile point can freely explore the target
zone, a thin layer around the green plaquette sketched in
Fig. 15, where its energy is essentially position independent.
Within the target zone, we are back to the cases explored in
Supplemental Material Fig. 6 [77] and Fig. 4. In particular,
the choice of the expression for the discretized bending en-
ergy seems uncritical since near-identical results are obtained.
Furthermore, the auxiliary potentials succeed in creating high
energy barriers around the target zone. However, there is a
fundamental difference between Voronoi- and Barycentric-
based models when it comes to the energy profile outside the
target zone and beyond the barrier.

For Barycentric-based models, i.e., the original Jülicher
and the newly introduced Gompper&Kroll-Barycentric bend-
ing model, the mobile vertex will always be guided back
to the target zone should an MD time step lead it outside.
In fact, these models can recover from sharp bends and
function without the nonlinear dihedral bending potential.
In simulations involving drastic shape changes, we never-
theless recommend its use to prevent the formation of local
artifacts.

In Voronoi-based models, the zones with large negative
energies remain outside the target zone. Importantly, some of
these regions are located just on the edge of the target zone
where the Voronoi formula for the plaquette area changes
sign. In particular, the close-up in Fig. 19 suggests the exis-
tence of low-energy transition paths out of the target zone that
would allow a vertex to fall into one of these pitfalls and to
disrupt the MD simulation via the accompanying conversion
of potential into kinetic energy.
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