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We propose an approximate method to calculate ion partition functions in the context of the chemical-
picture representation of plasmas as an interacting mixture of various ions and free electrons under the
local-thermodynamic-equilibrium conditions. The method uses the superconfiguration approach and implies
that the first-order corrections to the energies of excited electron configurations due to the electron-electron
interaction may be replaced by a similar first-order correction to the energy of the basic configuration of an ion
with the same number of bound electrons. The method enables one to significantly speed up the calculations and
generally provides quite accurate results. Using the method proposed, plasma ionization balance and average ion
charges calculated on the base of the chemical-picture representation show a good agreement with the relevant
average-atom data. For the case of weak electron-ion nonideality, we provide approximate relations between
the chemical-picture and average-atom values of the average ion charge, chemical potential, and plasma-density
depression of ionization potential.
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I. INTRODUCTION

Thermophysical properties of high-temperature plasmas in
a wide range of temperatures and densities are most frequently
described with quantum-statistical models of two types: ion-
ization equilibrium or chemical-picture models [1–9], that
represent the matter as an interacting mixture of various ions
with the internal electronic (atomic-shell) structure and free
electrons and average-atom models [10–12] based on the
electron-density functional theory [13,14] and dealing with
microscopic quantities averaged over all possible quantum ion
states. With a few exceptions (see, e.g., Refs. [5,7,9,15–18]),
chemical-picture models are generally used for low-density
plasmas (at densities smaller or much smaller than that of
the normal solid), while the average-atom models, on the
contrary, are used for the compressed matter. However, the
applicability domains of these models largely overlap with
each other if the density and atomic-shell-structure effects
are appropriately taken into account. In this context, it is
important to perform a comparative analysis of chemical-
picture and average-atom models as it enables one to provide
mutual verification and a deeper understanding of underlying
approximations of the models, and it makes the simula-
tion of thermophysical plasma properties more reliable. In
particular, it is essential to compare the relevant ionization-
balance and average-ion-charge calculated data since these
data directly affect the modeled thermodynamic and optical
properties. Also, calculated data on average ion charges are
necessary to address a number of special issues such as the
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evaluation of electron (electric and thermal conductivities,
thermoelectric power) [19–23] and ion (viscosity and diffu-
sion) [24,25] transport coefficients and Thomson scattering
cross-sections [26–28], energy loss of fast charged particles
in various materials [29], and construction of ion-ion pair
potentials for molecular-dynamics simulations using, e.g., the
method of pseudoatom molecular dynamics [30,31]. In this
context, we note that available experimental data on aver-
age ionization of dense high-temperature plasmas are rather
scarce (see, e.g., Refs. [32–34]). It is also worth noting that
average ion charge is a nonobservable quantity that may be
defined for the average-atom model in several ways. These
definitions and the effect of their use on the calculated quan-
tities were studied in detail in previous papers [19,31,35–42].
By contrast, chemical-picture models give only one definition
for the average ion charge. At the same time, only a few pa-
pers can be found where chemical-picture and average-atom
models are subject to comparative analysis [43], including
the comparison of average ion charges that the models give
[44–46]. The present work provides such a comparison re-
garding a version of the chemical-picture model we previously
developed and called CP-SC (chemical-picture superconfig-
uration model) [6], and one of the most commonly used
average-atom models—the Liberman model [47].

The CP-SC model calculates ion partition functions us-
ing the superconfiguration (SC) approach [48,49] and the
occupation-probability formalism for one-electron states in
the presence of plasma electric microfields [3]. The model
includes the effects of Coulomb nonideality and electron de-
generacy, thus allowing its use in a wide range of temperatures
and densities up to the values at which pressure ionization
becomes essential. We will not discuss all the features of the
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CP-SC model here, and we address the issues instead that
were not detailed in Ref. [6] and had yet to be pursued, namely
calculation of the ionization balance and the account of the
first-order correction to the configuration energy due to the
electron-electron interaction.

At present, Liberman’s model has been implemented in
a number of average-atom codes [50–53]. We use our own
implementation—the RESEOS model [54,55]. A method to
calculate ionization balance with RESEOS is described in
Ref. [54], and we will not go into the details here.

In Sec. II we describe a method employed in the CP-
SC model to calculate ion partition functions using the SC
approach allowing for the first-order correction to the con-
figuration energy due to electron-electron interaction, and we
compare charge-state distributions of iron plasmas obtained
from the CP-SC and RESEOS calculations. Section III is de-
voted to comparisons of average ion charges calculated with
various models.

II. IONIZATION BALANCE IN THE
SUPERCONFIGURATION APPROXIMATION

In the CP-SC model, the ionization balance is found by
solving the modified Saha equations [56] (see, e.g., Ref. [4]):

cQ

cQ−1
= UQ(g)

UQ−1(g)
exp[β(μe − �μ̃Q)], (1)

Z −
∑

Q

cQ Q = 〈Z〉 =
√

2

π2 β3/2 ni
I1/2(β μe), (2)

∑
Q

cQ = 1. (3)

Here Z is the nuclear charge, 〈Z〉 is the average ion charge,
cQ is the fractional abundance of ions with Q bound elec-
trons, β = 1/T (T stands for the temperature), μe is the
electron chemical potential, ni is the ion density, Ik (x) =∫∞

0
yk dy

1+exp(y−x) is the Fermi-Dirac integral, and �μ̃Q denotes
the nonideality correction given by the difference of the
chemical-potential corrections of particles involved in the
ionization-recombination process:

�μ̃Q =
(

∂

∂cQ
− ∂

∂cQ−1
− ∂

∂〈Z〉
)

FC

− T
∑

Q′
cQ′

(
∂

∂cQ
− ∂

∂cQ−1
− ∂

∂〈Z〉
)

ln UQ′ (4)

with FC being the per-atom energy of Coulomb interaction
between ions and free electrons.

The symbol g in Eq. (1) stands for the set of statistical
weights gs = 2 js + 1 of (relativistic) electron shells, with js
denoting the total angular momentum of a shell s. The main
feature of the CP-SC model is that the ion partition functions

UQ(g) =
∑
C∈Q

wC e−β EC
∏

s

wqs
s (5)

are calculated in the SC approximation [48,49] allowing for
contributions from essentially all the excited ion states without
resorting to the explicit accounting of those that frequently be-
comes almost intractable. Summation in Eq. (5) is performed

over all the electron configurations of a Q-electron ion with
their average energies EC and degeneracies

wC =
∏

s

(
gs

qs

)
=
∏

s

gs!

qs! (gs − qs)!
, (6)

with qs being the occupation number of a shell s. In Eq. (5),
ws = w(Q)

s (ρ, T ) [3] (ρ stands for the material density) is
the occupation probability of shell s one-electron states un-
der the effect of a plasma ion microfield. In dense plasmas,
ion-microfield perturbations lead to delocalization of the
upper-shell electrons, thus truncating the number of bound-
electron states and providing convergence of a Q-electron ion
partition function.

The average configuration energy entering Eq. (5) is ex-
pressed as (see, e.g., Refs. [57,58])

EC =
∑

s

qs 〈s〉 + 1

2

∑
st

qs(qt − δst )〈s, t〉, (7)

where δst is the Kronecker delta, 〈s〉 is the energy of a shell
s electron in the Coulomb field of the nucleus (the sum of
kinetic and potential energies), and 〈s, t〉 is the interaction
matrix element for electrons in shells s and t .

It should be noted that CP-SC, like most of the chemical-
picture models, employs the precalculated isolated-ion data
on matrix elements 〈s〉, 〈s, t〉. In the present paper, we do
not consider the class of models [5,9,15–18,44,59,60] which
imply the solution of the self-consistent-field equations for
electron wave functions in various ion species at each spe-
cific value of temperature and density. Such models can also
be considered as the chemical-picture ones, though they do
not necessarily imply the need for the solution of the Saha
equations. Hence, all our further conclusions are restricted to
the chemical-picture models like CP-SC in which the atomic
data, expressed solely in terms of electron wave functions,
are obtained for isolated ions. The important feature of the
latter models is the use of the approximation of the uniform
free-electron density in Eq. (2).

In the CP-SC model, the energy expressed by Eq. (7)
is found from the perturbation theory: one-electron wave
functions and the corresponding matrix elements 〈s〉, 〈s, t〉
are calculated for basic configurations of Q-electron ion
species by using the flexible atomic code (FAC) [61] and
then employed to calculate the energies of all the excited con-
figurations of relevant ion species. The basic configurations
are obtained by successively filling the electron shells in the
increasing order of the principal quantum number, then of
the orbital quantum number, and finally of the total angular
momentum.

The main advantage of the SC approach comes from the
possibility to calculate partition functions (5) by using re-
cursion relations [48,49], thus avoiding the need for explicit
accounting of individual electron configurations. The CP-SC
model implements the recursion relation of Ref. [49] that of-
fers a pathway for robust calculations at arbitrary temperatures
and shell numbers. However, Eq. (7) is still inappropriate for
direct use in the recursion relation since the latter suggests
that the configuration energy is represented as a sum of inde-
pendent contributions of individual electron shells involved.
For this reason, the following approximation is generally
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employed [8,62]. The configuration energy (7) is decomposed
into two terms: a zero-order term E (0)

C , defined as a linear
expansion in terms of the electron-shell occupation numbers,

E (0)
C =

∑
s

θs qs, (8)

and a first-order electron-electron interaction correction E (1)
C

that enters the calculation of the partition function of a Q-
electron ion UQ(g) (5) in an averaged form 〈E (1)

C 〉 with the
averaging done by using zero-order configuration energies.
To reduce the inaccuracies due to the use of 〈E (1)

C 〉 in the
calculation of UQ(g), the averaging involves the sets of con-
figurations with close average energies—superconfigurations
(SCs) 	—rather than all the number of electron configura-
tions of a Q-electron ion under consideration. As a result, the
ion partition function is found as a sum of partition functions
of individual SCs:

UQ(g) =
∑
	∈Q

exp
(−β

〈
E (1)

C

〉
	

)
U (0)

	 (g). (9)

Here, we introduced the notation

U (0)
	 (g) =

∑
C∈	

wC e−β E (0)
C

∏
s

wqs
s (10)

and

〈A(q)〉	 = 1

U (0)
	 (g)

∑
C∈	

A(q) wC e−β E (0)
C

∏
s

wqs
s , (11)

where A(q) is an arbitrary function of the shell occupation
numbers.

In practice, to calculate zero-order partition functions
(10) with the recursion relation, SCs are represented as the
collections of supershells σ—groups of shells with close one-
electron energies—occupied by Qσ electrons [48]. So, each
SC includes all possible configurations relevant to a specified
set {Qσ } of the supershell total occupation numbers

Qσ =
∑
s∈σ

qs. (12)

Inaccuracies due to the use of an averaged form of the first-
order electron-electron interaction correction 〈E (1)

C 〉	 rather
than the set of corrections E (1)

C for individual configurations
depend both on the number of supershells comprising the total
set of electron shells (the more detailed the partitioning is, the
better is the resulting accuracy) and on the choice of the ex-
pansion coefficients θs in Eq. (8), generally being specific for
individual SCs. In this context, one should note an approach
developed in Refs. [63,64] based on the Gibbs-Bogoliubov
(or Jensen-Feynman) inequality that provides a possibility to
minimize the inaccuracies discussed with an optimal choice
of the coefficients θs.

If the ionization balance is calculated with an average-atom
model [in this case the factor

∏
s

w
qs
s is missing from Eq. (10)],

the matrix elements 〈s〉, 〈s, t〉 are assumed to be identical for
all ion species as those are obtained under the average-atom
approximation. Moreover, minimizing the inaccuracy of the
total partition function U (g) = ∑

Q
UQ(g), one can also get the

factors θs to be the same for all ion species. In this case, the

values of θs were found to be close to one-electron energies in
the average-atom approximation: θs ≈ εAA

s [63,64]. Making
use of this fact, we therefore take in RESEOS the zero-order
approximation for the configuration energy in the form

E (0)
C =

∑
s

εAA
s qs. (13)

Then, if the first-order correction E (1)
C is completely neglected,

the well-known binomial distribution for the configuration
probabilities PC is recovered:

PC =
∏

s

(
gs

qs

)[
n
(
εAA

s

)]qs
[
1 − n

(
εAA

s

)]gs−qs
, (14)

where n(ε) is the Fermi-Dirac distribution:

n(ε) = 1

1 + exp
[
β
(
ε − μAA

e

)] . (15)

In Eq. (15), the electron chemical potential obtained in the
average-atom approximation is denoted as μAA

e to be distin-
guished from the chemical potential μe entering Eqs. (1) and
(2).

Although the binomial distribution overestimates the vari-
ance of the charge-state distribution [65], it enables one to
reproduce exactly the average number of bound electrons ob-
tained with the average-atom model due to the optimal choice
of the expansion coefficients εAA

s in Eq. (13).
As in the average-atom model, CP-SC also treats one-

electron shell energies as the coefficients of zero-order
configuration energy expansion in terms of the electron-
shell occupation numbers, like in Eq. (13), except that all
Q-electron ion species employ their individual sets of one-
electron energies:

E (0)
C =

∑
s

ε(Q)
s qs. (16)

The energy ε(Q)
s is calculated for the basic configuration of a

Q-electron ion if the occupation number q(Q)
s of a shell s in it

is nonzero and for the relevant singly excited configuration if
not. The singly excited configuration is obtained by promot-
ing one electron from an outer (partially) filled shell of the
basic configuration to the shell s. Let q(Q,s)

t be the occupation
number of a shell t in a configuration (basic or singly excited)
for which the energy ε(Q)

s is calculated. Then this energy is
written as [57,58]

ε(Q)
s = 〈s〉 +

∑
t

(
q(Q,s)

t − δst
)〈s, t〉. (17)

The energy expressed by Eq. (16) is, however, not so op-
timal as to minimize inaccuracies of the calculated partition
functions. As will be shown below, for this reason calculations
in the zero-order approximation (with the first-order electron-
electron interaction corrections omitted) by the CP-SC model
may yield rather poor estimates of the average numbers of
bound electrons.

In the superconfiguration chemical-picture models, one-
electron energies—the coefficients of zero-order configura-
tion energy expansion (16)—are generally found for every
individual superconfiguration by solving appropriate self-
consistent-field (SCF) equations [8], which are, however,
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rather expensive computationally. The CP-SC model utilizes
a more efficient approach, in which the SCF equations are
solved only once for the basic configurations of individual
Q-electron ion species so that the energies and wave functions
of electrons missing in the basic configurations are found
by solving the relevant one-electron Dirac equations with
the “frozen” core-electron wave functions. In this case, the
amount of atomic data required for the follow-on ionization-
balance calculation (matrix elements 〈s〉 = 〈s〉(Q), 〈s, t〉 =
〈s, t〉(Q), and one-electron energies ε(Q)

s ) is not large. Doing so,
we show below that the CP-SC model yields quite accurate re-
sults if the first-order electron-electron interaction correction
E (1)

C to the configuration energy is taken into account.
It follows from Eqs. (7), (16), and (17) that in the CP-SC

model, the first-order correction E (1)
C has the form

E (1)
C =

∑
st

qs

(
1

2
(qt − δst ) − (

q(Q,s)
t − δst

))〈s, t〉, (18)

and its average value is

〈
E (1)

C

〉
	

=
Nσ∑

σ=1

⎧⎨
⎩A(Q)(σ, Qσ )

+
∑
s∈σ

〈qs〉σ
⎛
⎝ Nσ∑

σ ′=σ+1

B(Q)(σ ′, Qσ ′ , s) − C(Q)(s)

⎞
⎠
⎫⎬
⎭,

(19)

where Nσ is the number of supershells,

A(Q)(σ, Qσ ) = 1

2

∑
s,t∈σ

〈qs(qt − δst )〉σ 〈s, t〉, (20)

B(Q)(σ, Qσ , s) =
∑
t∈σ

〈qt 〉σ 〈s, t〉, (21)

C(Q)(s) =
∑

t

(
q(Q,s)

t − δst
)〈s, t〉. (22)

Average values entering Eqs. (19)–(21) are expressed in
terms of the ratios of the supershell partition functions. To
evaluate those, it is convenient to count off one-electron ener-
gies from their minimal values regarding each supershell:

〈qs〉σ = gs Xs Ū (0)
Qσ

(gs)

Ū (0)
Qσ

(g)
, (23)

〈qs(qt − δst )〉σ = gs gs
t Xs Xt Ū (0)

Qσ
(gst )

Ū (0)
Qσ

(g)
. (24)

Here,

(gst ...)m = gst ...
m = gm − δsm − δtm − · · · (25)

is the reduced statistical weight of a shell m,

Xs = exp
[−β

(
ε̃(Q)

s − ε̃σ
min

)]
, (26)

ε̃(Q)
s = ε(Q)

s − 1

β
ln w(Q)

s , (27)

ε̃σ
min = min

s∈σ
ε̃(Q)

s , (28)

Ū (0)
Qσ

(g) =
∑

∑
s∈σ

qs=Qσ

∏
s∈σ

(
gs

qs

)
X qs

s . (29)

The replacement of one-electron energies ε(Q)
s by their effec-

tive counterparts (27), performed to write down Eq. (26), is
done to reproduce the multiplier

∏
s

w
qs
s entering Eq. (10).

Prior to the summation over SCs in Eq. (9), it is necessary
first to calculate partition functions (29) for the occupation
numbers of the supershells Qmin

σ � Qσ � Qmax
σ which may be

encountered with a substantial probability at a given tempera-
ture and density. The set of supershells is usually constructed
so that the differences of one-electron energies in each super-
shell are less than or of the order of the temperature value
specified (to ensure the convergence with respect to the num-
ber of supershells), thus making all the factors (26) be of
the order of unity. In this situation, one can use a simplified
version of the double recursion relation of Ref. [49]:

Ū (0)
Qσ

(g) ≡ Ū (0)
Qσ ,N (g) =

min (Qσ ,gN )∑
q=0

Ū (0)
Qσ −q,N−1(g)

× exp

[
−β

(
ε̃

(Q)
N − ε̃σ

min

)+ ln

(
gN

q

)]
,

Ū (0)
Qσ ,0(g) = δQσ ,0, (30)

where N is the number of shells in a supershell σ . Equa-
tion (30) provides a capability of stable computing even when
the difference of shell energies within a supershell is several
times higher than the temperature. Its use also yields twofold
benefits in computer time compared to the original formula
of Ref. [49] (implying that the partition functions should first
be normalized): there is no need to solve the equation for
the normalization factor, and furthermore, running a single
double cycle gives all partition functions for supershell oc-
cupation numbers 1 � Qσ � Qmax

σ , while the original formula
of Ref. [49] should be reused for each individual occupation
number.

Consider next three different methods to calculate ion-
ization balance. The first method (method I) implies that
the first-order correction to the configuration energy E (1)

C is
omitted. In this case, there is no need to partition the total
set of electron shells into a number of supershells and then
perform the summation over the SCs: the results will remain
unchanged if all the shells are gathered into a single super-
shell. In such a supershell, energy differences of individual
shells may, however, far exceed the temperature and therefore
it is desirable to calculate the partition function Ū (0)

Q (g) =
U (0)

Q (g) exp(β Q ε̃
Q
min), where ε̃

Q
min = min

s
{ε̃(Q)

s }, just with the

recursion relation of Ref. [49] by going to the normalized
partition function, rather than with the simplified Eq. (30).
Here, the ionization balance is obtained at a low enough
computational cost due to a very limited number of partition
functions to be calculated.

In the second method (method II), the first-order correction
to the energy of each configuration E (1)

C is replaced by an
appropriate first-order correction to the energy of the basic
configuration of the Q-electron ion to which a given con-
figuration belongs. The results are also independent of the
partitioning into supershells, and hence all the shells can be
gathered into a single supershell so that the partition function
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of the relevant Q-electron ion can be written as

UQ(g) = ŨQ(g) exp

(
−β EC(Q)

0
+
∑

s

q(Q)
s ln w(Q)

s

)
, (31)

where C(Q)
0 is the basic configuration of a Q-electron ion, q(Q)

s
are the basic configuration shell occupation numbers, and

ŨQ(g) = Ū (0)
Q (g) exp

(
β
∑

s

q(Q)
s

(
ε̃(Q)

s − ε̃
Q
min

))
. (32)

Substituting Eq. (31) into Eq. (1) yields

cQ

cQ−1
= ŨQ(g)

ŨQ−1(g)
exp

{
β
(

EC(Q−1)
0

− EC(Q)
0

+ μe

−�μ̃Q
)+ ln w(Q)

α +
∑

s

q(Q−1)
s ln

w(Q)
s

w
(Q−1)
s

}
, (33)

where α is the outer (partially) filled shell in the basic config-
uration of a Q-electron ion.

Consider the difference of basic-configuration energies for
the neighboring ionization stages in Eq. (33):

EC(Q−1)
0

− EC(Q)
0

= −ε(Q)
α −

∑
s

q(Q−1)
s (〈s〉(Q) − 〈s〉(Q−1))

− 1

2

∑
st

q(Q−1)
s (q(Q−1)

t − δst )(〈s, t〉(Q) − 〈s, t〉(Q−1)).

(34)

In the CP-SC model, we disregard the distinctions in Eqs. (33)
and (34) between the matrix elements 〈s〉, 〈s, t〉 and between
the occupation probabilities ws relating to the ions of neigh-
boring ionization stages. This is possible to do since the
one-electron wave functions, as a rule, are only slightly dif-
ferent for such ions, and one-electron occupation probabilities
for the basic configurations of the most abundant ions are
generally close to unity. As a result, the term ln w(Q)

α may also
be omitted in Eq. (33), which then takes the form

cQ

cQ−1
= ŨQ(g)

ŨQ−1(g)
exp

[
β
(
μe − �μ̃Q − ε(Q)

α

)]
. (35)

The most consistent method III employs the SC-averaged
first-order correction 〈E (1)

C 〉	. In this case, the equation for the
ratio of fractional ion abundances for neighboring ionization
stages still takes the form of Eq. (35), while the expression
for the partition function ŨQ(g), unlike Eq. (32), includes
the summation over superconfigurations and the difference of
the correction 〈E (1)

C 〉	 for running superconfiguration 	 and
the relevant first-order correction to the energy of the basic

TABLE I. Average numbers of bound electrons for the charge-
state distributions shown in Fig. 1.

T (eV) 30 100 300 1000

CP-SC, method I 10.94 6.73 2.20 0.25
CP-SC, method II 17.89 10.42 2.48 0.26
CP-SC, method III 17.76 10.42 2.47 0.26
RESEOS, binomial
distribution 17.77 10.47 2.52 0.27
RESEOS, Gibbs
distribution 17.72 10.47 2.48 0.26

configuration of the Q-electron ion:

ŨQ(g) =
∑
	∈Q

(∏
σ

Ū (0)
Qσ

(g)

)
exp

{
β

Nσ∑
σ=1

[
D(Q)(σ )

− A(Q)(σ, Qσ ) −
∑
s∈σ

〈qs〉σ
(

Nσ∑
σ ′=σ+1

B(Q)(σ ′, Qσ ′ , s)

−C(Q)(s)

)]
+ β E (1)

C(Q)
0

}
, (36)

where

D(Q)(σ ) =
∑
s∈σ

q(Q)
s

(
ε̃(Q)

s − ε̃σ
min

)
, (37)

and the first-order correction to the basic configuration energy,
in accordance with the general Eq. (18), has the form

E (1)
C(Q)

0

=
∑

st

q(Q)
s

(
1
2 (q(Q)

t − δst ) − (q(Q,s)
t − δst )

)〈s, t〉. (38)

Evidently, it is reasonable to calculate the correction (38), as
well as the quantities A(Q)(σ, Qσ ) (20), B(Q)(σ, Qσ , s) (21),
C(Q)(s) (22), D(Q)(σ ) (37), 〈qs〉σ (23), and Ū (0)

Qσ
(g) (30) before

doing the summation over superconfigurations in Eq. (36).
Figure 1 provides a comparison of the charge-state dis-

tributions in iron plasmas at a density ρ = 0.01 g/cm3 and
various temperatures as calculated with the CP-SC model
by using methods I–III and with the RESEOS model utilizing
configuration probabilities given by the Gibbs distribution,
consistently allowing for the first-order correction E (1)

C (corre-
sponding to method III in the CP-SC model) [54], and by the
binomial distribution disregarding E (1)

C . The related average
numbers of bound electrons 〈Q〉 = ∑

Q cQ Q are presented in
Table I. In the case of the binomial distribution (14), these
numbers are seen to be only slightly different from the values
obtained with the first-order correction E (1)

C included, even
though the binomial distribution overestimates the variance of
the charge-state distribution at low temperatures (compared
to the characteristic energy of pair interaction between bound
electrons) [65]. At low temperatures, the CP-SC calculation
in the zero-order approximation strongly underestimates the
average numbers of bound electrons due to the use of nonop-
timal zero-order energies (16), as discussed above. Indeed, the
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zero-order approximation implies that the following replacement is done in Eq. (35):

exp
[
β
(
EC(Q−1)

0
− EC(Q)

0

)] ≈ exp
(−β ε(Q)

α

) → exp
[
β
(

E (0)
C(Q−1)

0

− E (0)
C(Q)

0

)]
= exp

(
−β ε(Q)

α + β
∑

s

q(Q−1)
s

(
ε(Q−1)

s − ε(Q)
s

))
. (39)

Since (ε(Q−1)
s − ε(Q)

s ) < 0, the charge-state distribution in the
zero-order approximation is seen to be shifted to the lower
values of Q, and the shift gets larger as the temperature goes
down. Figure 1 shows that the zero-order approximation (16)
gives acceptable results only close to the limit of complete
ionization and therefore is generally unsuitable for practical
use.

However, even the simplified consideration of the first-
order electron-electron interaction correction in the CP-SC
model (i.e., calculation by method II) enables one to take into
account the major part of the effects due to such correction,
and, as is seen from Fig. 1, it yields a charge-state distribu-
tion being close to that consistently including the correction
E (1)

C with both the chemical-picture CP-SC and average-atom
RESEOS models.

It will be shown in Sec. III (see Figs. 2–5) that average ion
charges from the CP-SC calculations done by using methods
II and III agree either well or satisfactorily with each other in
a wide range of material temperatures and densities (except
for relatively low temperatures at which the average number
of bound electrons is sufficiently large). At the same time,
method II handles only a very moderate number of partition
functions and therefore has a very low computational cost.
This is achieved by making two steps: first, by the replacement
of the first-order corrections to the energies of excited electron
configurations by a similar correction to the energy of the
basic configuration, and second, by the use of a single set of
isolated-ion atomic data (matrix elements 〈s〉, 〈s, t〉) for all
the electron configurations of a given ion species. As a result,
the number of arithmetic operations K required to evaluate all
the partition functions in a given iteration of a self-consistent
calculation employing method II can be readily estimated as
min(gs, Qmax)Ntot(Qmax − Qmin)Qmax, where Ntot is the total
number of electron shells, and Qmin and Qmax are the minimal
and maximal numbers of bound electrons for potentially abun-
dant ion species, respectively. For typical values Ntot = 100,
gs � 10, Qmin ≈ 0, and Qmax ∼ 10, we therefore get K ∼ 105.
This is a moderate number enabling one to perform rapid
calculations: for a given pair of (ρ, T ) it takes only a few
seconds to run the method-II calculation on a conventional
3 GHz PC, i.e., one or two orders of magnitude smaller than
for average-atom models. For these reasons, method II is espe-
cially suitable for large-scale calculations. Another advantage
of method II over method III is that it offers much easier
computer implementation.

At this point, we note that the use of a single set
of isolated-ion atomic data for each ion species also ap-
pears to be advantageous in the context of method III.
According to the algorithm described above, this results
in the following number of arithmetic operations per-
formed: K ∼ (Qmax

σ − Qmin
σ )Nσ Ntot Nσ . This number is gen-

erally larger than in the case of method II, but it may
be small enough to enable one doing calculations at a

lower computational cost as compared to the average-atom
models.

It should also be noted here that some results obtained
using method II were published earlier in Ref. [6], but the
description of the method itself has not been provided thus
far. So, this paper presents a detailed description of the method
and its validation.

III. AVERAGE ION CHARGES FROM
CHEMICAL-PICTURE AND AVERAGE-ATOM MODELS

The average ion charge is an unobservable physical
quantity and therefore cannot generally be defined unambigu-
ously. The average-atom models are intended for use over a
wider range of temperature and density conditions than the
chemical-picture ones and hence, unlike the chemical-picture
models, the average-atom formalism offers several definitions
for the average ion charge [19,31,35–42], each with its advan-
tages and disadvantages in different domains of temperatures
and densities. We consider four such definitions.

First, the average ion charge can be defined as the number
of electrons in the continuum states (with positive energies)
within an atomic cell of radius r0 = [3/(4π ni )]1/3 (the vol-
ume of this cell is equal to the average volume per atom).
Since in Liberman’s model the atomic cell is electrically neu-
tral, such an average ion charge can also be defined as the
difference between the charge of the nucleus Z and the number
of bound-state electrons in the atomic cell:

〈Z〉 = 〈Z〉1 = Z −
∑

s

ps gs n
(
εAA

s

)
, (40)

where

ps =
∫ r0

0

(
P2

s (r) + Q2
s (r)

)
dr, (41)

with Ps(r)/r and Qs(r)/r being the major and the minor radial
components of the relativistic wave function, respectively,
given by the solution of average-atom model equations.

At the values of the electron-ion Coulomb coupling param-
eter

ei = 1

3

(
r0

rDe

)2

� 1, (42)

where

rDe =
(

2π β 〈Z〉 ni
I−1/2

(
β μAA

e

)
I1/2

(
β μAA

e

)
)−1/2

(43)

is the electron Debye radius allowing for the degeneracy [66],
the semiclassical approximation works well for the contin-
uum electron states. In this case, average ion charge (40)
can be calculated quite accurately by using the nonrelativistic

015207-6



PLASMA IONIZATION BALANCE IN CHEMICAL-PICTURE … PHYSICAL REVIEW E 108, 015207 (2023)

 0

 0.2

 0.4

 0.6

 0.8

 8  10  12  14  16  18  20  22  24

c Q

Q

T=30 eV

CP-SC (method III)
CP-SC (method II)
CP-SC (method I)
RESEOS (Gibbs)

RESEOS (binomial)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4  6  8  10  12  14

c Q

Q

T=100 eV

 0

 0.2

 0.4

 0.6

 0.8

 1  2  3  4  5  6

c Q

Q

T=300 eV

 0

 0.2

 0.4

 0.6

 0  1  2  3

c Q

Q

T=1 keV

FIG. 1. Relative fractional abundances of Q-electron ions in
iron plasmas at a density ρ = 0.01 g/cm3 and various temperatures
as calculated with the CP-SC model by using methods I (orange
dashes), II (violet dashes), and III (red solid curves) and with the
RESEOS model utilizing configuration probabilities given by the
Gibbs (cyan solid curves) and binomial (green dots and dashes)
distributions.
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FIG. 2. Average ion charges in an iron plasma at T = 30 eV as
calculated with CP-SC (red solid and dashed curves correspond to
the use of methods III and II, respectively), RESEOS [blue solid,
cyan dashed-dotted, and violet dashed-dotted curves correspond to
the use of Eqs. (40), (44), and (45), respectively], and ChemEOS
[7,72] (orange solid and dashed curves correspond, respectively, to
the calculations with and without correction to the Fie free-energy
term employed).

semiclassical formula

〈Z〉1 ≈ 〈Z〉2 = 4
√

2

π

∫ r0

0
r2 dr

∫ ∞

0

√
ε − V (r) n(ε) dε,

(44)

where V (r) is the electron potential energy. Equation (44)
may be considered as an independent wide-range definition of
the average ion charge [31,38] and employed at any value of
the Coulomb coupling parameter. Though Eq. (44) is derived
under the semiclassical approximation, we note that it uses
the quantities (chemical potential and the electron potential
energy) given by a quantum-mechanical average-atom model
rather than by a semiclassical one.

The third frequently used definition of the average ion
charge in the average-atom model formally corresponds to the
second equality in Eq. (2):

〈Z〉3 =
√

2

π2 β3/2 ni
I1/2

(
β μAA

e

)

= 4
√

2

π

∫ r0

0
r2 dr

∫ ∞

0

√
ε n(ε) dε. (45)

The average ion charge defined in such a way is just the
ratio of the free-electron density at V (r) = 0, i.e., actually
at r > r0, to the ion density ni. Within the atomic cell (at
r < r0), the free-electron density usually increases as the
radius diminishes due to the growing attraction by the nu-
cleus [the potential energy V (r) becomes higher in absolute
value]. Equation (45) disregards the nonuniformity of the
free-electron density and hence systematically underestimates
the average ion charge. This underestimation directly follows
from the comparison of Eqs. (44) and (45) if it is remembered
that V (r) < 0.
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FIG. 3. The same as in Fig. 2 (except for the orange dashed
curve) for T = 100 eV.

Finally, the fourth definition of the average ion charge
differs from Eq. (45) by the use of the electron density ne(r)
at the atomic-cell boundary rather than at r > r0:

〈Z〉4 = ne(r0)/ni. (46)

At ei � 1, average ion charges from Eqs. (46) and (45) are
usually close to each other. However, for strongly coupled
plasmas, Eq. (46) in some cases provides better agreement
between the calculated and experimental values of various
quantities (e.g., electric conductivity in the region of the
metal-insulator transition [19]).

Next, we make estimates of the difference δ〈Z〉 = 〈Z〉1 −
〈Z〉3 ≈ 〈Z〉2 − 〈Z〉3 assuming that the condition (42) is satis-
fied and hence the expression under the square root sign in
Eq. (44) can be expanded in terms of the small parameter
V (r)/ε. In this case, the potential energy can be evaluated
to an accuracy of ∼V (r)/ε in the approximation considering
pointlike ion and uniform free-electron density [10]:

V (r) ≈ −〈Z〉
r

(
1 − 3r

2r0
+ 1

2

(
r

r0

)3
)

. (47)

As a result, we obtain

δ〈Z〉 ≈ 0.3〈Z〉
π2

√
2β ni r0

I−1/2
(
β μAA

e

)
, (48)

δ〈Z〉
〈Z〉3

≈ 0.1

(
r0

rDe

)2

= 0.3ei, (49)

i.e., Eq. (45) underestimates the average ion charge compared
to Eqs. (40) and (44) by a value of the order of ei. Under these
conditions (weak Coulomb coupling), the definitions (40) and
(44) provide more physically valid results than the definition
(45), while in the opposite case of strong Coulomb nonideal-
ity, Eq. (40) may severely overestimate average ionization as,
according to this equation, all electrons in resonant continuum
states [67] are treated as being completely free ones.

In Figs. 2–5, we compare average ion charges calculated
for an iron plasma by the CP-SC model [Eq. (2)], Liberman’s
model implementation of RESEOS [Eqs. (40), (44), and (45)],
and the ChemEOS model [4,7], in which, unlike CP-SC, ion
partition functions are found by the detailed account of the
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FIG. 4. The same as in Fig. 2 for T = 300 eV.

most probable electronic configurations. The figures show that
in the applicability domain of the CP-SC model, the CP-SC
values are close to those given by the RESEOS calculations
utilizing Eqs. (40) and (44) as the meaning of the definition
(40), and hence its semiclassical counterpart (44), is similar
to that of the first equality in Eq. (2): average ion charge is
just the difference of the nucleus charge and the number of
electrons with negative energies.

One can also see that the CP-SC results obtained using two
different methods to calculate partition functions—the rather
simple method II and the more laborious (but more accurate)
method III—are in close agreement. Pronounced differences
are found only at the lowest temperature considered—T =
30 eV (see Fig. 2). The reason is that the effect due to the
consistent treatment of the first-order correction to the con-
figuration energy E (1)

C grows as the average number of bound
electrons increases (with decreasing temperature) because the
correction is quadratic in the number of electrons while the
configuration energy in the zero-order approximation (16)
includes only linear terms. Figure 2 shows that an appropriate
inclusion of the first-order electron-electron interaction cor-
rection (19) in the context of CP-SC method III improves the

 22

 23

 24

 25
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FIG. 5. The same as in Fig. 2 (except for the orange dashed
curve) for T = 1 keV. Red solid and dashed curves are seen as almost
merged together.
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FIG. 6. CP-SC occupation probabilities w(〈Q〉)
s for the n = 5 elec-

tron shells in iron plasmas at T = 30 eV (solid curves) and their
RESEOS average-atom counterparts (41) (dashed curves of the same
colors) vs the plasma material density.

agreement with the RESEOS-calculated data compared to the
simplified CP-SC method-II calculation.

An essential distinction of the CP-SC calculations from the
RESEOS ones utilizing Eq. (40) stems from the fact that the
CP-SC model employs the occupation probabilities of one-
electron bound states, w(Q)

s (ρ, T ), that behave as smoothly
varying functions of material density and temperature. In the
average-atom model, the quantities ps (41)—the integrals of
squared relativistic radial wave-function amplitudes over the
atomic-cell volume—may be considered as the counterparts
of w(Q)

s (ρ, T ). As the density increases and/or temperature
decreases, ps first reduces and then vanishes at some density
and temperature values (ρs, Ts) when the relevant shell s in
the average-atom model disappears. The vanishing occurs as
an abrupt jump if the orbital quantum number ls �= 0 or as
a gradual falloff if ls = 0. In the chemical-picture model, at
densities and temperatures near (ρs, Ts), w(Q)

s (ρ, T ) for the
most abundant ions also varies from close-to-1 to close-to-
0 values, but this variation goes on continuously (without
jumps) and far more smoothly than the average-atom ps value
does. As an illustration, Fig. 6 presents integrals ps (41) for
the electron shells with principal quantum number n = 5 in
iron plasmas at T = 30 eV and various densities calculated by
RESEOS and the relevant occupation probabilities w(〈Q〉)

s from
the CP-SC model. For a more descriptive comparison with
the average-atom model, the probabilities w(〈Q〉)

s , shown in
Fig. 6, were obtained for an effective ion with 〈Q〉 = Z − 〈Z〉
bound electrons by interpolating between w(Q)

s precalculated
for ions with nearby integer Q’s. It is seen that in the CP-
SC model, delocalization of bound states under compression
proceeds rather slowly: occupation probabilities w(〈Q〉)

s reduce
from close-to-1 to close-to-0 values as the density increases
by two orders of magnitude. As a result, the CP-SC model
gives smooth dependences of the average ion charge on tem-
perature and density. In the average-atom model, bound states
are driven to the continuum in rather narrow temperature and
density ranges, thus giving rise to irregularities (jumps) in
the dependences 〈Z〉1(ρ, T ). However, in both the average-
atom and CP-SC models, bound-electron delocalization takes

place near the same values of T and ρ (Fig. 6), and due
to this fact the dependences 〈Z〉1(ρ, T ) are essentially close
to 〈Z〉(ρ, T ) from the CP-SC model, as mentioned above.
Although the ways to include the density effects in the CP-SC
and average-atom models are formally different, it follows
that both models provide a consistent description of these
effects.

It should be noted that in the average-atom model,
the bound-electron delocalization process is actually not
completed when the bound states (with negative energies) dis-
appear as the process generates the relevant density-of-states
continuum resonances [67] with the long-lived bound-state
properties at further material compression or the temperature
lowering. Due to the formation of resonances, all the ob-
servable quantities, e.g., thermodynamic functions, chemical
potential, and electron density, are free from jumps. Accord-
ingly, there are no jumps in the average ion charges obtained
with Eqs. (44), (45), and (46) as those are expressed in terms
of the chemical potential, electron density, and potential en-
ergy V (r) directly related to the electron density. In addition,
Eq. (44) effectively smooths out the jumps of average ion
charge (40). In this context, the values of 〈Z〉2 determined by
Eq. (44) behave in a similar way to their CP-SC counterparts.
At the same time, the smooth dependence 〈Z〉2(ρ, T ) auto-
matically follows from the equations of Liberman’s model
[67–71], while getting physically correct smooth dependences
〈Z〉(ρ, T ) in the CP-SC model requires additional consider-
ation of the bound-state perturbation due to the plasma ion
microfield, thus making the relevant occupation probabilities
vary from unity to zero.

ChemEOS results shown in Figs. 2–5 by solid and
dashed orange curves differ in approximations for the plasma
Helmholtz free energy, which was minimized to derive ion-
ization equilibrium Eqs. (1)–(3). To describe the contribution
to the Helmholtz free energy due to the Coulomb interaction
of charged particles, the ChemEOS model uses a wide-range
analytical approximation of Ref. [73] based on numerical
results (solution of the Ornstein-Zernicke equation in the
hypernetted-chain approximation, Monte Carlo calculations)
and analytical asymptotic expansions. In Ref. [73], this con-
tribution is represented as the sum of three terms:

FC = Fii + Fie + Fee. (50)

Here, the term Fii is responsible for the ion-ion interaction
in the one-component plasma approximation [74], i.e., in a
system of equally charged pointlike ions moving in a uniform
neutralizing background of free electrons, Fie is a correction to
Fii allowing for the polarization of free-electron gas due to the
ion attraction, and Fee is the exchange-correlation contribution
of free electrons.

Dashed orange curves in Figs. 2 and 4 correspond to
the original approximation for the Helmholtz free energy of
Ref. [73]. In Ref. [7], the term Fie in Eq. (50) was modified to
take account of the finite-ion-size effects (the original approx-
imation was obtained for pointlike ions) enabling one to avoid
the nonphysical behavior of average ion charges and thermo-
dynamic functions encountered at high material densities. The
average ion charges corresponding to the modified contribu-
tion Fie are shown in Figs. 2–5 by solid orange curves. The
CP-SC model also uses the approximation for the Coulomb
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contribution to the Helmholtz free energy of Ref. [73] with
only the leading term Fii retained. It is seen from Figs. 2–5
that ChemEOS calculations utilizing the original form of Fie

overestimate average ion charges compared to the CP-SC
ones and underestimate those when Fie is modified. This dis-
crepancy gets more pronounced with the increasing role of
Coulomb interaction as the density of matter grows and the
temperature goes down. Though the CP-SC model disregards
the contributions Fie and Fee, the results agree well with those
obtained by the RESEOS model, which calculates the Coulomb
energy considering the nonuniformity of free-electron density
and exchange (exchange-correlation) interaction of electrons
and therefore allows for the effects described with the Fie and
Fee terms in the chemical-picture model. This fact provides
support for the validity of retaining only the leading ion-ion
term Fii in the wide-range calculations utilizing the analyt-
ical approximation for the Coulomb-interaction part of the
Helmholtz free energy FC [73], and it suggests that further
inclusion of the free-electron-gas polarization effect needs to
be reconsidered.

Analyzing Figs. 2–5, one should keep in mind that RE-
SEOS, like most of the average-atom models, does not provide
correct asymptotics of the Coulomb interaction energy in
the limit of weak nonideality (high temperatures and/or low
densities of matter). In this limit, the Coulomb interaction is,
however, not so important and therefore inaccurate represen-
tation of the relevant RESEOS asymptotics has almost no effect
on the average ionization (and the total thermodynamic func-
tions), as exemplified by a good agreement with the CP-SC
calculations.

So, comparison of the average ion charges shown in
Figs. 2–5 suggests that the applicability range of the CP-
SC model is wider than that of the current version of the
ChemEOS model, at least for mid-Z elements such as iron.

A good overall agreement of average ion charges and
corresponding charge-state distributions, which we obtain
for average-atom and chemical-picture models, results in
the agreement of observable thermodynamic and optical
quantities. This is exemplified by Fig. 7, which presents
the comparison of Rosseland mean opacities of iron at

T = 250 eV calculated by the RESEOS, CP-SC, and ATOMIC

[75,76] models (ATOMIC is based on the ChemEOS model).
Although the underlying physical models (the Liberman
average-atom, chemical-picture CP-SC, and ChemEOS mod-
els) and methods employed to calculate opacities (the
superconfiguration approach for RESEOS and CP-SC and de-
tailed configuration accounting for ATOMIC) are different, one
can see that all the models provide fairly close results.

The second equality in Eq. (2) is formally equivalent to
Eq. (45) (keeping in mind the difference of the electron
chemical potentials in the chemical-picture and average-
atom models), but if the latter equation underestimates the
average ion charge, as it disregards the nonuniformity of
the free-electron density, Eq. (2) does not provide such an
underestimation—see Figs. 2–5. This means that Eq. (2),
unlike (45), effectively accounts for the nonuniformity of
the free-electron density as the chemical potential μe in the
chemical-picture model is different from its counterpart μAA

e
in the average-atom model (μe is systematically larger than
μAA

e ). We then evaluate the difference

δμe = μe − μAA
e , (51)

assuming that average ion charges (2) and (40) [or (44)] are
identical. So, we have

〈Z〉1 − 〈Z〉3 ≈ δμe

π2
√

2β ni
I−1/2

(
β μAA

e

)
(52)

[here we use a commonly known property of the Fermi-Dirac
integrals, I ′

k (x) = k Ik−1(x) at k > 1]. Equating the right-hand
sides of Eqs. (52) and (48) yields

δμe ≈ 0.3〈Z〉/r0. (53)

We note an interesting outcome of Eq. (53) in the context
of considering plasma-density effects in the chemical-picture
model. Substituting (51) into Eq. (1), one gets

cQ

cQ−1
= UQ(g)

UQ−1(g)
exp

{
β
[
μAA

e − (�μ̃Q − δμe)
]}

. (54)

Ionization balance can also be calculated from the average-
atom model if one assumes that one-electron wave functions
for the most probable ionic configurations are only slightly
different from the average-atom ones. In this case, the
expression for the ratio of fractional ion abundances for
neighboring ionization stages does not include the multiplier
exp(−β �μ̃Q), while the partition functions are calculated
with configuration energies ẼAA

C , which, unlike the configu-
ration energies EC of isolated ions, allow for the interaction
between bound and free electrons [54,77]. The expression for
ẼAA

C can be found in Ref. [54] and, to an accuracy of omitted
exchange corrections, may be rewritten in the form

ẼAA
C = EAA

C + Q �I. (55)

Here, �I is just the energy of interaction between a bound
electron and free ones being responsible for the ionization
potential depression (IPD) due to plasma-density effects [78],
and EAA

C has the same form as the configuration energy of
an isolated ion EC [Eq. (7)], but EAA

C is calculated using
one-electron wave functions of the average-atom model. We
then assume that in the applicability domain of the CP-SC
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responds to the similar RESEOS calculations with the account of
IPD (ẼAA

C(Q)
0

).

model, the average-atom wave functions are close to those
of an isolated ion with approximately the same number of
bound electrons [this assumption will be examined below (see
Fig. 8)], and hence

EAA
C ≈ EC . (56)

Then one arrives at the expression

cQ

cQ−1
= UQ(g)

UQ−1(g)
exp

[
β
(
μAA

e − �I
)]

, (57)

where, as in Eq. (54), partition functions are calculated with
the configuration energies of isolated ions.

In chemical-picture models, the correction �μ̃Q to the
chemical potential in Eq. (1) is frequently replaced by an
estimate of the IPD given by the Stewart-Pyatt model [79],
�ISP (see, e.g., Ref. [80]). Comparison of Eqs. (54) and (57)
suggests that this approach is not sufficiently consistent. In
the Stewart-Pyatt model, the IPD is defined as the interaction
energy of a bound electron located at the origin of coordi-
nates and external charges (free electrons and external ions)
and so it has the same physical meaning as �I in Eq. (57)
and, therefore, as the difference �μ̃Q − δμe in Eq. (54). Be-
cause of this, the replacement of �μ̃Q by �ISP leads to an
underestimation of the IPD. We illustrate this fact consider-
ing an idealized reference system of a uniform ion sphere,
i.e., an electrically neutral system of a 〈Z〉-charged central
pointlike ion and electrons uniformly distributed inside the
sphere of radius r0 (the system that the system of charges
in the average atom is close to as ei � 1 [81–83]). In this
case,

FC ≈ −0.9〈Z〉2/r0, (58)

and, if the deviation of occupation probabilities ws from
unity is neglected, then for the most abundant ions

(with Q ≈ Z − 〈Z〉),
�μ̃Q ≈ 1.8〈Z〉/r0, (59)

�μ̃Q − δμe ≈ 1.5〈Z〉/r0. (60)

The difference (60) is just the value of IPD given by the
Stewart-Pyatt model for the uniform-ion-sphere system, being
coincident with �I in Eq. (55) found for a pointlike ion in the
uniform free-electron background, and so the replacement of
�μ̃Q by �ISP would lead to the underestimation of the IPD by
a factor of 1.25. We note that the correction �μe = 1.8〈Z〉/r0

was obtained earlier in Ref. [84].
Thus, the chemical-picture and average-atom models con-

sistently describe the IPD due to the plasma-density effects
if Eq. (1) in the chemical-picture model includes the varia-
tional correction (4) rather than just the value of IPD from
the Stewart-Pyatt model or closely related models such as the
ion-sphere model [81–83,85–88].

Now, we should check the validity of approximation (56)
being essential in the analysis of the relation between IPD in
the average-atom and chemical-picture models. The inaccu-
racy of Eq. (56) grows with increasing material density due
to the deviation of electron wave functions found at finite
material density from those in isolated ions. Figure 8 presents
the comparison of average energies EC(Q)

0
, EAA

C(Q)
0

, and ẼAA
C(Q)

0

for

basic configurations of various ion species in an iron plasma at
the highest density encountered in Figs. 2–5 (ρ = 10 g/cm3).
For each number of bound electrons Q, the average-atom
(RESEOS) values EAA

C(Q)
0

and ẼAA
C(Q)

0

were calculated at a temper-

ature for which 〈Z〉 ≈ Z − Q, and the IPD in Eq. (55) was
set equal to its value from the uniform ion sphere model:
�I = 1.5〈Z〉/r0. One can see that for the cases considered
in Figs. 2–5, the relation (56) is indeed valid: the difference
between EC(Q)

0
and EAA

C(Q)
0

is less than 0.1%, i.e., much smaller

than the difference between EAA
C(Q)

0

and ẼAA
C(Q)

0

. Hence, in the

applicability domain of the CP-SC model (when the pressure
ionization is not essential), the difference between electron
wave functions in isolated ions and those obtained for finite
material density is rather small and does not affect our conclu-
sions on the relation between the CP-SC and RESEOS values of
chemical potentials and IPD.

The systematic difference between electron chemical po-
tentials in the chemical-picture and average-atom models is
also essential when comparing the relevant thermodynamic
functions. This can be illustrated by the following example.
Let us assume again that Eq. (53) is valid while Eq. (58)
includes the additional exchange-correlation term Fee:

FC ≈ −0.9〈Z〉2/r0 + Fee. (61)

The average-atom electron pressure evaluated using the semi-
classical approximation for free electrons reads (see Ref. [10])

PAA
e ≈ 2

√
2

3π2 β5/2
I3/2

(
β μAA

e

)+ n2
i

∂Fee

∂ni
(62)

(we omitted here the contribution of bound electrons, which
is generally small). At the same time, in the chemical-picture
model, the electron pressure includes the “ideal” free-electron
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FIG. 9. Average ion charges in a lead plasma at T = 100 eV as
calculated with CP-SC (red solid and dashed curves correspond to
the use of methods III and II, respectively) and RESEOS [blue solid
and violet dashed-dotted curves correspond to the use of Eqs. (40)
and (45), respectively].

contribution, which is formally equivalent to the first term in
Eq. (62) and the correction due to Coulomb nonideality:

Pe ≈ 2
√

2

3π2 β5/2
I3/2(β μe) + n2

i

∂FC

∂ni
≈ 2

√
2

3π2 β5/2

× I3/2
[
β
(
μAA

e + δμe
)]− 0.3〈Z〉2

r0
ni + n2

i

∂Fee

∂ni
≈ PAA

e

+ β δμe

√
2

π2 β5/2
I1/2

(
β μAA

e

)− 0.3〈Z〉2

r0
ni ≈ PAA

e .

(63)

So, in this approximation the term with δμe counterbal-
ances the Coulomb nonideality term n2

i
∂Fii
∂ni

, which is formally
missing in the average-atom pressure and, as a result, the
average-atom and chemical-picture pressures approximately
coincide.

While the distinctions between the CP-SC results obtained
with the use of methods II and III remain moderate for iron
even at T ∼ 30 eV (Fig. 2), similar calculations for heavy
elements may show more essential disagreement of the rel-
evant values of 〈Z〉 at relatively low temperatures when the
average number of bound electrons is sufficiently large. To
illustrate this, Fig. 9 presents average ion charges of lead at
T = 100 eV calculated with the CP-SC and RESEOS models.
Here, the CP-SC calculation by method II underestimates
average ion charge by 0.7–1.6 unities compared to the use of
method III. Approximately the same underestimation is ob-
tained in the RESEOS calculation done with Eq. (45) compared
to that employing Eq. (40), which provides more physically
valid results under the conditions considered (ei < 1). The
use of method III instead of method II in the CP-SC model
gives better agreement with the RESEOS results obtained with
Eq. (40).

It should be noted that the case illustrated by Fig. 9 is
rather difficult to calculate by the chemical-picture model due
to a large number of electron configurations occurring with
substantial probabilities. Detailed accounting of those (like,
e.g., in the ChemEOS model) is computationally impractical,

 4

 4.5
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 5.5

 6

10-1 100 101 102 103

〈Z
〉

ρ, g/cm3

CP-SC (method III)
RESEOS (〈Z〉1)
RESEOS (〈Z〉2)
RESEOS (〈Z〉3)
RESEOS (〈Z〉4)

Purgatorio (〈Z〉4)
NPA

Thomas-Fermi (〈Z〉2)
QMD

ChemEOS

FIG. 10. Average ion charges in a carbon plasma at T = 100 eV
as calculated with the CP-SC (using method III—red solid curve),
RESEOS [blue, cyan, and green solid curves correspond to the use
of Eqs. (40), (44), and (46), respectively, and violet dashed-dotted
curve—to the use of Eq. (45)], Thomas-Fermi [using Eq. (44)—
yellow dashed curve], Purgatorio [45] [using Eq. (46)—magenta
dashed curve], ChemEOS (ATOMIC) [45] (orange solid curve), and
NPA [89] (brown dots) models along with the data of Ref. [45] from
the QMD dynamic-conductivity calculations utilizing the Kubo-
Greenwood formula (dark-green circles).

thus making the use of the superconfiguration approach highly
desirable.

To conclude, we consider the dependence of the carbon-
plasma average ion charges on the material density at T =
100 eV (Fig. 10). In this case, two methods to calculate the ion
partition function in the CP-SC model, i.e., methods II and III,
give very close results (as the number of bound electrons in
carbon ions is small), and so only the calculations by method
III are shown in Fig. 10. Formally, the equations of the CP-SC
model can be solved up to very high densities. However, in
carbon plasmas at T = 100 eV and ρ � 10 − 30 g/cm3, of
great importance is the effect of pressure ionization providing
the growth of average ionization and specific internal energy
under compression. The CP-SC model does not reproduce
this growth correctly (as it uses the electron wave functions
and corresponding matrix elements 〈s〉 and 〈s, t〉 for isolated
ions), and therefore the relevant CP-SC curve in Fig. 10 is
truncated at the density ρ = 32 g/cm3. As in the case of iron
(Figs. 2–5), one can see that the CP-SC average ion charges
are generally close to those found with RESEOS in the CP-SC
applicability domain by using Eqs. (40) and (44). The depen-
dences 〈Z〉(ρ) obtained both with the CP-SC model and with
the semiclassical Eq. (44) effectively smooth out the jumps
and irregularities of average ion charge (40) caused by the
disappearance of bound-electron states in the average-atom
model under the pressure ionization. At low and moderately
high (ρ � 10 − 30 g/cm3) densities, Eqs. (45) and (46) un-
derestimate the average ion charge since, as has already been
mentioned, these equations do not allow for the nonuni-
formity of the free-electron density within the atomic cell.
In addition to the RESEOS calculations, Fig. 10 also
presents the calculations of Ref. [51] performed with the
use of Eq. (46) with an alternative Liberman’s model
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implementation—the Purgatorio code [51]. As one would ex-
pect, the RESEOS and Purgatorio calculations following the
same definition of the average ion charge provide very close
results.

In the high-compression regime (ρ � 10 − 30 g/cm3), one
can observe the large spread in the average ion charges ob-
tained under different approximations. The average ion charge
given by Eq. (40) rapidly grows at ρ > 100 g/cm3 as the
wave function of the 1s shell is being delocalized outside
the atomic cell [under compression, the value of p1s (41)
decreases from unity to zero]. The ChemEOS model quali-
tatively reproduces this rapid growth but with a shift to higher
densities probably due to the approximation employed to
evaluate the free-energy term Fie (50). At the same time, the
average ion charge given by the neutral pseudoatom (NPA)
model of Dharma-wardana [89] agrees well with the RESEOS

one calculated using Eq. (40) (here shown are the results of
Ref. [89] obtained by imposing the Friedel sum rule). Unlike
the Liberman model implemented in RESEOS, the NPA model
consistently accounts for the effect of spatial ion correla-
tions. The agreement of the RESEOS and NPA results suggests
that in this case a simple representation of the ion-ion pair
correlation function employed in the Liberman model, i.e.,
g(r) = θ (r − r0), where θ (x) is the Heaviside function, does
not lead to considerable inaccuracies in average ion charge.

Equations (44), (45), and (46) predict a smoother growth
with increasing density as compared to Eq. (40) and the
calculations done with the ChemEOS and NPA models. Un-
like the lower densities, in this case it is difficult to identify
the definition of average ion charge yielding more accurate
results in the average-atom model since a considerable part
of electrons occupy the states with the properties being in-
termediate between those of bound and purely free-electron
states, and hence the average ion charge loses its clear physical
interpretation implied in the chemical-picture representation
of ionized matter as an interacting mixture of free electrons
and ions with various numbers of bound electrons. Thus, the
physical meaning of the calculated average ion charge may
essentially depend on a specific model, and so the comparison
of average ion charges obtained from various models should
be made with caution. One can, however, try to relate the
average ion charge to one or another observable. For exam-
ple, in Ref. [45] average ion charge is determined from the
sum rule for dynamic conductivity calculated with use of ab
initio quantum molecular dynamics (QMD) simulations [90]
and the Kubo-Greenwood formula [91–93] with the account
only of the electron transitions within the conduction band.
It is seen from Fig. 10 that Eq. (44) provides the closest
agreement with the results obtained in this way. Figure 10
therefore shows that in the context of an average-atom model
with a quantum-mechanical description of electrons (such as
the Liberman model), Eq. (44) provides reasonable agreement
with the QMD calculations when the density of matter is high
enough, and good agreement with the chemical-picture results
at low densities. This suggests that Eq. (44) can be used in
various wide-range models of thermophysical properties of
ionized matter employing the results of average-ion-charge
calculations as an input data. Here we also note that reason-
able agreement with the ab initio results of Ref. [45] may be
achieved if one evaluates average ion charge with Eq. (44)
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FIG. 11. Radial distributions of free-electron density,
4π r2 ne, f (r), for carbon at T = 100 eV and ρ = 200 g/cm3

corresponding to average ion charges defined by Eqs. (40) (blue
solid curve), (44) (cyan solid curve), (45) (violet solid curve), and
(46) (green dashed curve), along with the total radial electron density
4π r2 ne(r) (brown dashed-dotted curve).

in the context of the semiclassical Thomas-Fermi model [94]
(see Fig. 10). In this case, Eq. (44), however, overestimates
the average ion charge at low densities as the Thomas-Fermi
model disregards quantum shell-structure effects.

It seems likely that the best agreement of the average
ion charge (44) with the ab initio data of Ref. [45] may be
explained in terms of the electron density, which is the key
quantity in the density functional theory. Figure 11 presents
a comparison of the free-electron density distributions ne, f (r)
corresponding to various definitions of average ion charge, so
that 〈Z〉 = 4π

∫ r0

0 r2 ne, f (r) dr. Physically, electrons located
near the atomic-cell boundary may be considered as being the
free ones since they can move from one cell to another. Equa-
tions (45) and (46) underestimate ne, f (r) near r = r0 as these
average-ion-charge definitions themselves do not allow for the
nonuniformity of free-electron density. Equation (40) predicts
a considerable contribution of the bound electron density to
the total one near r = r0 because in this case the 1s bound
state is not completely localized within the atomic cell (see
Fig. 10). As one can see from Fig. 11, under the conditions
considered, only the definition of average ion charge (44)
ensures that nearly all the electrons at r  r0 (approximately
at r/r0 > 0.6) appear to be the free ones.

IV. CONCLUSION

We have analyzed various methods to calculate ion par-
tition functions in the context of the superconfiguration
approach implemented in our chemical-picture CP-SC model.
It is shown that the calculation of partition functions with the
configuration energies found in the zero-order approximation
with respect to the electron-electron interaction strongly over-
estimates average ion charge and is therefore unsuitable for
practical use. The realistic description of ionization balance
is possible if the first-order corrections to the configuration
energies due to the electron-electron interaction are taken into
account. We have proposed a simplified method to calculate
these corrections enabling one to significantly speed up the
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calculations. The method implies that the first-order correc-
tions to the energies of excited electron configurations due to
the electron-electron interaction may be replaced by a similar
first-order correction to the energy of the basic configuration
of an ion with the same number of bound electrons. In most
cases (except for heavy elements at T � 100 eV), this sim-
plification is shown to yield approximately the same results as
those obtained with the consistent account of these corrections
in the superconfiguration approach.

We have performed the comparisons of average ion charges
in iron, lead, and carbon plasmas along with the charge-
state distributions (for iron) obtained from the calculations
done by the CP-SC model and by the Liberman average-
atom model implemented in the RESEOS code. Considering
two definitions of average ion charge most frequently em-
ployed in Liberman’s model—the difference of the nuclear
charge and the number of bound-state electrons in the atomic
cell (40) and the ratio of the free-electron density outside
the atomic cell to the ion density (45)—the first definition
was shown to give the results being close to those obtained
with the CP-SC model. Although the definition (45) is for-
mally similar to Eq. (2) employed to solve the modified Saha
equations of the chemical-picture model, actually it under-
estimates the average ionization since it does not account
for the spatial nonuniformity of the free-electron density. At
the same time, Eq. (2), unlike Eq. (45), implicitly accounts
for the nonuniformity of the free-electron density, leading to
the systematic difference δμe of chemical potentials in the
chemical-picture and average-atom models. This difference
was estimated analytically in the limit of weak electron-ion
nonideality [Eq. (53)]. In addition, we provided estimations
indicating that the difference δμe does not lead to the dis-
agreement of IPD and thermodynamic functions obtained
from the chemical-picture and average-atom models.

A good agreement between the CP-SC and RESEOS cal-
culations is obtained if the Coulomb interaction of charged
particles in the CP-SC model is described under the one-
component plasma approximation [74] considering a system
of equally charged pointlike ions moving in a uniform
neutralizing background of free electrons. Comparison with

the calculations done by using another chemical-picture
model ChemEOS [4,7] additionally allowing for the free-
electron-gas polarization effect due to the ion attraction both
with the original and modified (allowing for the finite-ion-size
effects) versions of wide-range analytical approximation of
Ref. [73] showed that such methods of considering this ef-
fect worsen the agreement with the RESEOS data taking into
account the nonuniformity of free-electron density. This fact
provides support for the validity of using the one-component
plasma approximation [74] to represent the Coulomb interac-
tion in the chemical-picture model and suggests that further
inclusion of the free-electron-gas polarization effect needs to
be reconsidered.

Considering an iron plasma at T = 250 eV, we have shown
that the Rosseland mean opacities obtained from the CP-
SC, RESEOS, and ATOMIC models agree fairly well with each
other. This additionally indicates that charge-state distribu-
tions obtained from these models are close to each other as
the opacities are known to be very sensitive to the relative
abundances of the ions present.

A good overall agreement of average ion charges, charge-
state distributions, and Rosseland mean opacities we obtained
using the CP-SC and Liberman models may enhance the re-
liability of the calculated thermophysical plasma properties.
On the one hand, this indicates that well-known troubles with
the average-atom model, namely the neglect of the orbital
relaxation effect (i.e., the distinction of one-electron wave
functions referring to different electron configurations) and
incorrect asymptotics of the Coulomb interaction energy in
the limit of weak nonideality, do not lead to pronounced
inaccuracies. On the other hand, a good agreement of the ther-
mophysical data obtained with the average-atom and CP-SC
models for moderately nonideal plasma at ei � 1 suggests
that the density effects in the CP-SC model are appropriately
taken into account (via the occupation-probability formalism
and the Coulomb interaction term in the Helmholtz free en-
ergy). We can therefore conclude that even for such values
of the Coulomb coupling parameter, the physical accuracy of
the CP-SC model is approximately the same as that of the
Liberman model (or another similar average-atom model).
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