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Collective ion dynamics in Coulomb one-component plasmas within
the self-consistent relaxation theory
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In this paper, we present the theoretical formalism describing the collective ion dynamics of the nonideal
Coulomb classical one-component plasmas on the basis of the self-consistent relaxation theory. The theory is
adapted to account for correlations between the frequency relaxation parameters that characterize the three- and
four-particle dynamics and the parameters associated with the two-particle dynamics. The dynamic structure
factor spectra and dispersion characteristics calculated for a wide range of wave numbers are in agreement with
the molecular dynamics simulation data and the results obtained with the theory of the frequency moments. The
proposed formalism reproduces all the features inherent to the Coulomb one-component plasmas and requires
only knowledge of the coupling parameter and the information about the structure.
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I. INTRODUCTION

The Coulomb one-component plasmas (COCP) is the
specific system of identical charged point particles in a uni-
form neutralizing background [1–15]. Together with the hard
sphere model, the COCP occupies an important place in the
theory of simple liquids and plays a key role in the physics
of extreme states of matter [8,9]. In nature, the COCP is
realized in such objects as neutron star crusts, interiors of
white dwarfs, and giant planets [8–12]. Point particles of the
COCP interact with each other through the Coulomb potential

u(r) = (Ze)2

4πε0r
, (1)

where r is the distance between particles, ε0 is the electrical
constant, and Z is the particle charge in units of electron
charge e. Despite the simple analytical form of this potential,
the COCP is a nontrivial system. First of all, the Coulomb
interaction potential is long ranged. Unlike, for example, the
Lennard-Jones potential, the Coulomb potential (as well as the
Yukawa potential) is purely repulsive. Therefore, laboratory
and natural implementations of such systems are always ac-
companied by the presence of external factors that stabilize
them and keep the system in equilibrium. For example, in
experiments with dust particles, this is usually an external
electric or magnetic field, which creates the so-called trap that
holds particles within a finite volume [9]. When modeling
by the molecular dynamics (MD) method, the stability of
these systems can be achieved by using periodic boundary
conditions. In this case, however, the use of the standard
method of taking into account the interaction with the nearest
neighbors can give correct results only for intermediate and
strongly screening Yukawa systems. The Coulomb systems
as well as the Yukawa systems with a large screening length
require considering the long-range effect of the corresponding
potentials. As a rule, this is achieved using the modified Ewald
summation method or its analogs, in which the effective

interaction potential of particles (charges) takes into account
their interaction with the background of the opposite sign
[1,16]. Thus, when describing the physical properties of the
Coulomb system, it is always necessary to take into account
the presence of the uniform neutralizing background of oppo-
site sign. For example, in a general case, if particles of some
system interact through some potential φ(r) and their mutual
arrangement is reproduced by the radial distribution function
g(r), then the reduced excess internal energy per particle is
defined by the following relation:

Uex = 2πρ

kBT

∫ ∞

0
φ(r)g(r)r2dr.

Here, ρ is the number density of particles, kB is the Boltzmann
constant, and T is the absolute temperature. Then, in the case
of the Coulomb potential, φ(r) = u(r), the last equation will
produce infinite energy. To calculate Uex in the case of the
COCP, it is necessary to replace g(r) with g(r) − 1, which
actually means taking into account the presence of a uniform
neutralizing background. On the other hand, the interaction of
the COCP charges with the opposite background appears at
local deviations of their number density from some average
value ρ. This interaction is characterized by forces whose
amplitudes are directly proportional to the amplitude of the
displacement of the point charges relative to the background
[1,17–21]. This leads to the appearance of a collective oscilla-
tory motion of the COCP particles with the certain inherent
frequency ωp. The frequency ωp is called the plasma fre-
quency and is defined as follows [1–9]:

ωp =
√

(Ze)2ρ

ε0m
. (2)

Here, m is the mass of the particles. On the other hand, as
we know, the frequency of natural oscillations of a spring
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FIG. 1. Dispersions of side peak in S(k, ω) spectra for the COCP
(reproduced from [25]) at different coupling parameters �. Solid line
represents the Bohm-Gross dispersion relation (6) at � = 0.2.

pendulum is determined by a relation of the form

ωK =
√

K

M
, (3)

where K is the elasticity coefficient of the spring pen-
dulum and M is the mass of the pendulum. Comparing
Eqs. (2) and (3), one can see that the quantity (Ze)2ρ/ε0

actually represents the effective elasticity coefficient of
the COCP.

The characteristic frequency of collective vibrations of par-
ticles at finite spatial scales will differ from ωp, i.e., there
is a dispersion dependence of the frequency ω on the wave
number k. Full information about the vibrational processes as-
sociated with density redistribution at different spatial scales
of an equilibrium multiparticle system can be obtained from
such quantity as the dynamic structure factor S(k, ω) [22].
The physical meaning of the dynamic structure factor can
be interpreted as the intensity of fluctuations of particle
number density in the system with different frequencies ω

on various spatial scales L ∼ 2π/k. In the case of simple
single-component liquids, the spectrum S(k, ω) at the fixed
k is characterized by one central and two symmetric side
peaks [22]. The central peak corresponds to nonpropagat-
ing isobaric entropy fluctuations and side peaks correspond
to adiabatic pressure fluctuations, which propagate in space.
The positions of these peaks on the frequency ω axis as
well as their widths are associated with values of thermal
diffusivity, attenuation coefficient, and sound velocity for
the system.

The specificity of the Coulomb system is largely due to
the long-range interaction of particles (charges) and directly
appears also in the form of the spectra S(k, ω) mainly in the
long-wave limit (i.e., at k → 0). First, in the case of the COCP,
the central (Rayleigh) peak is practically absent [3,14]. This is
due to the fact that the resulting arbitrary local redistribution
of the particle number density rapidly propagates throughout
the Coulomb system without appreciable transfer of thermal
energy. Second, the side peaks of S(k, ω) spectra are located

near the frequency ωp and tend to it in low-k limit (k → 0).
This means that the k dependence of the side peak positions
of S(k, ω) spectra, which is denoted as ωc(k), has a frequency
(energy) gap at k = 0 and the width of this gap is

ωp = lim
k→0

ωc(k). (4)

Note that, in the case of systems with a short-range interpar-
ticle interaction potential, the dispersion dependence ωc(k) at
k → 0 is linear: limk→0 ωc(k) = csk, where cs is the speed
of sound. The shift of the side peak position as k increases
into the region of higher or lower frequencies compared to
the frequency ωp depends on the thermodynamic state of
the system, which is determined by a single quantity—the
so-called coupling parameter

� = (Ze)2

4πε0akBT
. (5)

Here, a = (3/4πρ)1/3 is the radius of the Wigner-Seitz cell.
The coupling parameter � is approximately the ratio of the
potential energy between two particles to the average thermal
energy of a particle. The greater the value of the parameter
�, the more coupled the system is. Thus, at � � 175, the
COCP is a disordered system, while, at � � 175, it is a crystal
with the bcc lattice [2,3]. When the thermal energy of motion
of the particles is much larger than their interaction energy,
i.e., at � � 1, ideal Coulomb gas is realized. In this case, the
k dependence of the characteristic frequency of collective ex-
citations is given by the well-known Bohm-Gross dispersion
relation [23,24]:

ω(BG)(k) = ωp

√
1 + (ka)2

�
. (6)

For a strongly coupled COCP at � values exceeding some
critical value �c, the side peak of S(k, ω) spectra at low-k
range with increasing k shifts to a lower frequency compared
to the plasma frequency ωp [25–27]. In this case, the so-called
negative dispersion mode is realized and the dispersion depen-
dence ωc(k) will satisfy the condition

dωc(k)

dk
< 0 at k → 0. (7)

The results of molecular dynamic (MD) simulations of the
COCP [25] reveal that the critical value of the coupling
parameter is �c ≈ 9.5 (Fig. 1). It is noteworthy that the
k dependence of ω(BG)(k) is similar to the dependence of the
total energy of mass particles on their momentum, where at
zero momentum there is an energy gap due to the rest mass
of particles [28]. In the case of the COCP, the rest energy
is directly the energy of natural collective vibrations at the
frequency ωp.

Another feature of the COCP is the presence of the so-
called second high-frequency plasmon peak in the S(k, ω)
spectra, which is found in MD simulations data [15]. It is
necessary to note that there is currently no consensus on what
causes this effect.

Note that until now there has been no unified theoret-
ical approach that would describe the collective dynamics
of the COCP on the wide spatial scale without adjust-
ing parameters. Existing methods either contain adjustable
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FIG. 2. Schemes showing arbitrary vibrational n-particle groups. The quantity ωn, where n = 1, 2, 3, . . ., is the average frequency of the
corresponding oscillatory circuit, which characterizes the oscillatory dynamics of various n-particle groups. Note that in the case of ω2 ≡ ωE

we have a linear oscillatory circuit (a), in the case of ω3 we have a flat oscillatory circuit (b), and in the case of ω4 we have a three-dimensional
oscillatory circuit (c). Particles can oscillate in any direction; however, regardless of this, the dimension of the oscillatory circuit d is
preserved.

parameters or give satisfactory results in a limited range of
wave number values. In this paper, this gap will be filled
by use of the self-consistent relaxation theory of collective
particle dynamics, which had previously been successfully
applied to describe both Yukawa liquids and liquid met-
als [29,30]. The main results of this work are as follows.
Based on the established correlations between the frequency
relaxation parameters characterizing the two-particle, three-
particle, and four-particle dynamics of the COCP for different
states with the coupling parameter � ∈ [5; 100], the expres-
sion for the dynamical structure factor S(k, ω) was derived. It
is necessary to note that the obtained expression for S(k, ω)
requires only information about the thermodynamic state
and structure of the system as input parameters. The theory
correctly reproduces the MD simulations results for S(k, ω)
over a wide range of wave numbers as well as the disper-
sion laws of the high-frequency plasma mode, decrement of
the plasma excitations, and frequency of longitudinal plasma
excitations.

The paper is organized as follows. In Sec. II, we describe
the theoretical formalism related with the self-consistent re-
laxation theory of ion collective dynamics in the COCP. In
Sec. III, the obtained theoretical results are compared with
MD simulations data and the results of other theoretical ap-
proaches. The main findings are given in the Conclusion
(Sec. IV).

II. THEORETICAL FORMALISM

The dynamic structure factor S(k, ω) is a Fourier transform
(in frequency) of the density fluctuations time correlation
function F (k, t ) known also as the intermediate scattering
function [30–32]:

S(k, ω) = S(k)

2π

∫ ∞

−∞
F (k, t ) exp(iωt )dt . (8)

Here, S(k) is the static structure factor; t is the time.
For simple liquids in low-k limit (hydrodynamic regime),
the exact expression for the dynamic structure factor [22]

is known:

SH (k, ω) = S(k)

2π

[
γ − 1

γ

2DT k2

ω2 + (DT k2)2

+ 1

γ

2∑
j=1

σk2

[ω + (−1) jcsk]2 + (σk2)2

]
. (9)

Here, γ is the ratio of the specific heat capacity at constant
pressure to the specific heat capacity at constant volume,
DT is the thermal diffusivity coefficient, and σ is the sound
attenuation coefficient. Equation (9) can be derived directly
from the linearized Navier-Stokes equations, where the key
dynamic variables—the number density, the energy density,
and the current—are treated as slow variables. This equa-
tion correctly reproduces the collective dynamics of particles
in simple liquids, where the effective interparticle interaction
is characterized by a finite length, and it usually provides
a phenomenological description of experiments on inelastic
light scattering in liquids. A detailed derivation of Eq. (9) can
be found in the classical monographs [22,31]. However, the
hydrodynamic theory with Eq. (9) for S(k, ω) is not applicable
for the COCP [5,6] that is due to the long-range character
of the particle interaction in the COCP. On the other hand,
the microscopic theories, which consider the system as an
ensemble of interacting particles, turn out to be more efficient.
For example, the theory based on the method of frequency
moments (FM theory) provides an analytical expression for
S(k, ω), which has no adjustable parameters [13,14]. Here, the
expression for S(k, ω) is obtained as a result of a fractional-
linear transformation of the Nevanlinna parameter function,
which has specific mathematical properties and satisfies the
sum rules. Further, models based on exponential [32] and
Gaussian [33] memory functions and the model based on a
modified Navier-Stokes equation [34] are also used to de-
scribe the collective dynamics of the COCP. However, these
models contain various fitting parameters. This paper presents
a theoretical formalism to calculate S(k, ω) of the COCP,
which is based on the self-consistent relaxation theory of
collective dynamics in multiparticle systems [29,30,35–38].
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From Eq. (8), the following series can be obtained for the
function F (k, t ):

F (k, t ) = 1 − 〈ω(2)(k)〉 t2

2!
+ 〈ω(4)(k)〉 t4

4!
+ · · ·

+ (−i)l〈ω(l )(k)〉 t l

l!
+ · · · , (10)

where 〈ω(l )(k)〉 is the normalized frequency moment
S(k, ω) lth-order:

〈ω(l )(k)〉 = (−i)l d l

dt l
F (k, t )

∣∣∣∣
t=0

=
∫ ∞
−∞ ωl S(k, ω)dω

S(k)
. (11)

From Eq. (10), one obtains the following expression for the
Laplace transform of the function F (k, t ):

F̃ (k, s) = 1

s
− 〈ω(2)(k)〉

s3
+ 〈ω(4)(k)〉

s5
+ · · ·

+ (−i)l 〈ω(l )(k)〉
sl+1

+ · · · . (12)

On the other hand, the last expression can be rewritten as the
continued fraction:

F̃ (k, s) = 1

s + 
1(k)

s + 
2(k)

s + 
3(k)

s + . . .

. (13)

Here, 
n(k) (n = 1, 2, 3, . . .) is the frequency relaxation
parameters, which have a dimension of square frequency
[29,30,35–38]. Each of these parameters is related to the
corresponding frequency moment of S(k, ω) via the sum
rules [30]:


1(k) = 〈ω(2)(k)〉
〈ω(0)(k)〉 ,


2(k) = 〈ω(4)(k)〉
〈ω(2)(k)〉 − 〈ω(2)(k)〉

〈ω(0)(k)〉 ,


3(k) = [〈ω(6)(k)〉〈ω(2)(k)〉 − [〈ω(4)(k)〉]2]〈ω(0)(k)〉
〈ω(4)(k)〉〈ω(2)(k)〉〈ω(0)(k)〉 − [〈ω(2)(k)〉]3

, . . . ,


n(k) = F[〈ω(0)(k)〉, 〈ω(2)(k)〉, . . . , 〈ω(2n)(k)〉], (14)

where F means an algebraic expression.
The following microscopic expressions are known for the

frequency relaxation parameters of the first, second, and third
orders [38]:


1(k) = kBT

m

k2

S(k)
, (15a)


2(k) = 3

(
ω2

E + kBT

m
k2

)
− 
1(k)

− ρ

m

∫
∇2

l φ(r) exp(ik · r)g(r)d3r, (15b)


3(k) = ω4
3


2(k)
+ �3(k). (15c)

Here,

ω2
E = ρ

3m

∫
∇2

l φ(r)g(r)d3r

is known as the Einstein frequency,

ω4
3 = ρ2

m2

∫
d3r

∫
d3r1

g3(r, r1)

rr1

φ(r)

dr

φ(r1)

dr1

is the analog of the Einstein frequency, which characterizes
the frequency of vibrational dynamics of different particle
triplets, and �3(k) is the combination integral expressions
containing the interaction potential φ(r), pair distribution
function g(r), and three-particle distribution function g3(r, r1)
[38]. In the general case, for the 
n(k), we have the following
expression:


n(k) = W {ωn,�n(k)}. (16)

Here, W means an algebraic expression, ωn is the analog of
the Einstein frequency, which characterizes the frequency of
vibrational dynamics of different groups of n particles (see
Fig. 2), and �n(k) is the combination integral expressions
containing the interaction potential φ(r) and distribution
functions beginning from the pair g(r) to the n particle
gn(r, r1, . . . , rn−2) inclusive. Thus the nth-order frequency
relaxation parameter 
n(k) is related to the corresponding
n-particle distribution function of the system and
characterizes the vibrational process for various groups of n
particles [29,30,35–38].

On the other hand, the quantities τn(k) = 1/
√


n(k),
where n = 1, 2, 3, . . ., determine the time scale of the corre-
sponding relaxation processes. Thus the first four quantities
in this set—τ1(k), τ2(k), τ3(k), and τ4(k)—correlate with
the time scales of the processes where hydrodynamic vari-
ables are exhibited. In turn, these dynamic variables form
an orthogonal basis, the first element of which is the
density fluctuations [29,30,35–38]. The generalization of
the hydrodynamic theory realized within the framework
of the self-consistent relaxation theory implies a restric-
tion by the set of frequency relaxation parameters up to
and including the fourth order. The time scales of the
dynamic variables above the fourth order will be out-
side the processes that are associated with the structure
relaxation.

The key idea of the self-consistent relaxation theory is as
follows: beginning from the fourth order the characteristic
frequencies of the dynamic variables fluctuations are aligned
[29,30,35,38], i.e.,


4(k) = 
5(k) = 
6(k) = · · · . (17)

Using this condition, from Eq. (13) one obtains the following
analytical expression for S(k, ω) [29,30,35,38]:

S(k, ω) = S(k)

π


1(k)
2(k)
3(k)


4(k) − 
3(k)

×
√


4(k)

ω6 + A1(k)ω4 + A2(k)ω2 + A3(k)
, (18)
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where

A1(k) = 
2
3(k) − 
2(k)[2
4(k) − 
3(k)]


4(k) − 
3(k)
− 2
1(k),

A2(k) = 
2
2(k)
4(k) − 2
1(k)
2

3(k)


4(k) − 
3(k)

+ 
1(k)
2(k)[2
4(k) − 
3(k)]


4(k) − 
3(k)
+ 
2

1(k),

A3(k) = 
2
1(k)
2

3(k)


4(k) − 
3(k)
.

Thus, to calculate S(k, ω) within the self-consistent relaxation
theory, one needs to know the first four frequency relaxation
parameters. For the case of the COCP, the following exact mi-
croscopic expressions for first- and second-order parameters
are known [13,30,39–42]:


1(k) = ω2
p(ka)2

3�S(k)
, (19)


2(k) = ω2
p

(
1 + (ka)2

�
+ 2

∫ ∞

0

j2(kax)

x
h(x)dx

)
− 
1(k),

(20)

where x = r/a is the dimensionless spatial variable, j2(x)
is the second-order spherical Bessel function, and h(x) =
g(x) − 1. The frequency relaxation parameters 
3(k) and

4(k) can be determined from MD simulations (details
are provided in the Appendix) data through their basic
definitions [30]. Mathematical analysis of these parame-
ters derived from MD simulations reveals the following
correlations:


3(k) ≈ 3
2
2(k) + ω2

0, (21a)


4(k) ≈ 4
3
3(k) + ω2

1(k) ≈ 2
2(k) + 4
3ω2

0 + ω2
1(k),

(21b)

where

ω2
0 = 3 ω2

p√
�

, ω2
1(k) = ω2

p

√
�

7ka
.

It is necessary to note that the similar correlations were ob-
tained for the Yukawa one-component plasmas (YOCP) [29].
In contrast to this case, Eq. (21b) for 
4(k) contains the
k-dependent term ω2

1(k), which occurs due to the long-range
nature of the Coulomb interaction potential (1). Figure 3
shows k dependencies of the reduced frequency relaxation
parameters for the COCP at various �. As can be seen,
Eqs. (21a) and (21b) satisfactorily reproduce well the MD
simulations results for 
3(k) and 
4(k). In fact, relations
(21a) and (21b) indicate a correspondence between two-
particle correlations and three- and four-particle correlations.
The theoretical model presented in this paper is obtained
within the framework of the self-consistent relaxation theory
[29,30,35–38], which is modified for the case of the COCP,
where the frequency relaxation parameters are related to each
other according to certain correlation relations (21a) and
(21b). These relations represent an empirical result: as follows
from molecular dynamics simulation data, these relations are
satisfied for the thermodynamic states where the COCP is a

FIG. 3. Dispersion dependences of the frequency relaxation pa-
rameters reduced to ω2

p [symbols—calculations based on simulation
data; solid and dashed lines—calculations using approximate corre-
lation relations (21a) and (21b), respectively].

fluidlike system (i.e., at � ∈ [5; 100]). The theoretical model
presented applies directly to this region of states.

Analysis of expression (18) allows one to obtain the dis-
persion equation for the high-frequency plasma mode:

s3 + B1(k)s2 + B2(k)s + B1(k)
1(k) = 0, (22)

where

B1(k) = 2
1(k)
√


4(k)

2
4(k) − 
3(k)
,

B2(k) = 
1(k) + B1(k)
√


4(k).

Solution of this equation yields s(k) = ±iωc(k) − δ(k) with
dispersion for the side peak of S(k, ω),

ωc(k) =
√

3( 3
√

Z (k) − q(k) + 3
√

Z (k) + q(k)), (23)

and the decrement dispersion of plasma excitations,

δ(k) = 3
√

Z (k) + q(k) − 3
√

Z (k) − q(k) − B2(k)

3
, (24)

where

Z (k) =
√

p3(k) + q2(k),

p(k) = B2(k)

3
+ (

B1(k)

3
)2,

q(k) = B1(k)

54
(2B1(k)2 − 9B1(k)

√

4(k) + 18
1(k)).

Obviously, by analogy with the hydrodynamic expression (9),
the values ωc(k) and δ(k) defined by formulas (23) and (24),
respectively, will characterize the position and width of the
side peak in S(k, ω) spectra.

III. RESULTS AND DISCUSSION

The theoretical results are compared with the data of
MD simulations and with the results of other models, in
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FIG. 4. Top panels: spectra of S(k, ω) multiplied by the plasma frequency at different values of the coupling parameter �. Here theoretical
results from Eq. (18) shown by black solid lines are compared with MD simulations data given by green circles, with results of the FM theory
[13] given by red dashed lines, with results of the exponential memory function model (EMF) given by brown dashed lines [32], results of
the Gaussian memory function model (GMF) [33] given by blue dashed lines, and results of the model based on and modified Navier-Stokes
equation (MNS) [34] given by a thin black line. Bottom panels: differences between the simulation data and the corresponding theoretical
values.

particular, with the FM theory. In the work of [13], based
on physical considerations, an expression for S(k, ω) was
found that is similar to Eq. (18). A detailed discussion of
the correspondences between the self-consistent relaxation
theory and the method of frequency moments was given
in Ref. [29].

Figure 4 shows the S(k, ω) spectra of the COCP for differ-
ent dimensionless wave numbers ka and coupling parameters
� = 5, 20, 50, and 100. These � values correspond to the
liquid phase of the COCP. It can be seen that, for the consid-
ered values of the coupling parameter � and wave number k,
the self-consistent relaxation theory reproduces the results of
MD simulations quite accurately and describes all the features
of these spectra. At small wave numbers k < km/2, where km

is the wave number corresponding to the first maximum in the
static structure factor S(k), the spectra S(k, ω) of the COCP,
as expected, contain only the high frequency components at
the frequencies near to ωp. As the dimensionless wave num-
ber ka increases, beginning from values comparable to km/2,
the zero component appears and the high-frequency compo-
nent disappears. This feature is characteristic of all classical
simple liquids with a short-range interparticle interaction

potential. This means that beginning from the wave numbers
k = km/2 and higher, i.e., on spatial scales that correspond to
several mean interparticle distances, the long-range character
of the Coulomb interaction ceases to play an appreciable
role in the particle dynamics. Note that Eq. (18) in some
cases gives somewhat better agreement with the results of
MD simulations than the FM theory [13], as well as models
based on the exponential memory function [32] and modi-
fied Navier-Stokes equation [34]. The model based on the
Gaussian memory function [33] gives good agreement with
MD simulations data, but it contains a fitting parameter—the
so-called relaxation time.

To obtain the k dependence of the longitudinal collective
excitations frequency ωL, we consider the spectral density of
the longitudinal current correlation function CL(k, ω), which
is directly related to S(k, ω) as

CL(k, ω) = 3�ω2

(ωpka)2
S(k, ω). (25)

Using this relation, from Eq. (18) one can obtain the analytical
expression for the dispersion law ωL(k) of longitudinal plasma
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FIG. 5. Wave number dependencies of the frequency ωc(k) (top row), decrement of plasma excitations δ(k) (middle row), and longitudinal
plasma excitations ωL (k) (bottom row) plotted at different values of the coupling parameter �. The black solid lines represent theoretical results
obtained using expressions (23), (24), and (26), the red dashed lines show the results of the moment theory [13], and the green circles show
the MD simulations data.

excitations:

ωL(k) =
√

C+(k) + C−(k) − A1(k)

6
, (26)

where

C±(k) = 3

√√√√A3(k)

4
− A3

1(k)

216
±

√
A2

3(k)

16
− A3(k)A3

1(k)

432
.

Figure 5 presents the dispersion characteristics of the COCP.
It can be seen (top and middle rows) that Eqs. (23) and
(24) reproduce the MD simulations results for the dispersion
characteristics ωc(k) and δ(k) very well. From the bottom
row, it is clear that Eq. (26) enables one to correctly calculate
ωL(k) over a wide range of the COCP parameter changes. The
proposed theoretical formalism correctly reproduces asymp-
totes of dispersion dependencies for low wave numbers and
the so-called roton minima [13] at the COCP states with
� = 5, 20, 50, and 100.

A remarkable fact is that both the self-consistent relax-
ation theory and the FM theory produce expressions for the
characteristics of the collective particle dynamics in terms of
frequency moments and/or frequency relaxation parameters.
In addition, both theories are consistent with each other: one
can formulate a condition for high order frequency relax-
ation parameters under which self-consistent relaxation theory

produces FM theory results. This point is discussed in detail
in Ref. [29] (see Supplemental Material). A characteristic
feature of FM theory is that it is based on the Nevanlinna pa-
rameter function. The most important advantage of this theory
is that the obtained analytical expressions for the dynami-
cal structure factor and other quantities of collective particle
dynamics do not contain any fitting parameters [13,14] and
also the theory does not rely directly on any empirical results
leading to expressions similar to correlation relations (21a)
and (21b). On the other hand, a feature of FM theory is that it
does not take into account the manifestation of an independent
central (Rayleigh) component in the spectra of the dynamic
structure factor at wave numbers comparable with ka = 4.29
and higher (see Fig. 4).

As mentioned above, states close to an ideal Coulomb
gas with � � 1 have a positive dispersion of high-frequency
collective excitations [see Eq. (6)], while a Coulomb (Wigner)
crystal with � � 175 is characterized by a negative dispersion
of these excitations [3]. Thus one can expect that the state with
�c ≈ 9.5, which is the boundary for regimes with positive and
negative dispersions, will correspond to a crossover between
regimes with gaslike and solidlike collective ion dynamics.
On the other hand, the disappearance of the so-called roton
minima observed at �c represents one of the conditions of the
Frenkel line [43], which in the phase diagram of an arbitrary
system separates the thermodynamic states with gaslike and
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TABLE I. Values of the coefficient α at various �.

� 5 20 50 100

α 0.021 −0.020 −0.029 −0.031

solidlike particle dynamics [43–46]. Consequently, in the case
of the COCP, there is a direct correspondence between the
known value of �c and the Frenkel line, which will be located
at �c ≈ 9.5 in the phase diagram.

To determine �c in the framework of the proposed formal-
ism, it is necessary to find the approximation of Eq. (26) at
small k as a quadratic polynomial of the form

ω
(lk)
L (k) ≈ ωp[1 + α(ka)2]. (27)

The positive values of the coefficient α correspond to positive
dispersion, whereas the negative values correspond to negative
dispersion. Table I shows the values of this coefficient for var-
ious �. Using three alpha values corresponding to � = 5, 20,
and 50, one can construct an approximation of the dependence
α(�) in the following view:

α(�) = 2.237 × 10−4�2 − 0.017� + 0.165. (28)

�c will correspond to the condition with α(�) = 0. Then, we
find �c ≈ 11.42. As can be seen, this result is close to �c ≈
9.5 obtained from the large-scale MD simulations in Ref. [25].

IV. CONCLUSION

Thus, in this paper, correlation ratios between the fre-
quency relaxation parameters characterizing the three- and
four-particle dynamics with the parameters characterizing the

two-particle dynamics were obtained for the case of the COCP
at the values of the coupling parameter � = 5, 20, 50, and
100. The application of the obtained correlations enables one
to describe all the features of this nontrivial multiparticle
system within the self-consistent relaxation theory without
any fitting parameters. In spite of the fact that in the realized
approach all correlations are reduced to pairs correlations, it
turns out to be sufficient to describe a system of particles
with the long-range Coulomb interactions. The calculated
dynamic structure factor and dispersion characteristics are
consistent with molecular dynamic simulation data. The ob-
tained discrepancies between the theoretical results and the
MD simulations data are comparable with those given by the
theory based on the frequency moments method.
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APPENDIX: MOLECULAR DYNAMICS
SIMULATION DETAILS

MD simulations of the COCP were performed in the
LAMMPS package [48] for the equilibrium configuration of
the COCP at � = 5, 20, 50, and 100 in the NVT ensemble.
The simulation cell contained 64 000 particles interacting
through the Coulomb potential. Periodic boundary conditions
in all directions were applied to the cell and the PPPM fast
summation method was used. The equations of motion of
the particles were integrated using the velocity-based Verlet
algorithm with a time integration step τ = 0.01/ωp.
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