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We present calculations of electrical resistivity for expanded boron, aluminum, titanium, and copper plasmas
using the Ziman formulation in the framework of the average-atom model. Our results are compared to experi-
mental data, as well as to other theoretical calculations, relying on the Ziman and Kubo-Greenwood formulations,
and based on average-atom models or quantum-molecular-dynamics simulations. The impact of the definition
of ionization, paying particular attention to the consistency between the definition and the perfect free electron
gas assumption made in the formalism, is discussed. We propose a definition of the mean ionization generalizing
to expanded plasmas the idea initially put forward for dense plasmas, consisting in dropping the contribution
of quasibound states from the ionization due to continuum ones. It is shown that our recommendation for the
calculation of the quasibound density of states provides the best agreement with measurements.
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I. INTRODUCTION

Many fields of physics are related to the study of atomic
properties of warm dense matter. More specifically, there is
a constant need to improve models for accurate equations of
state and transport coefficients. Among the latter, the elec-
trical resistivity is of particular importance for the study of
the intense energy-flux interactions with matter that occur
in laser-fusion experiments [1,2]. Many experimental meth-
ods have been developed to investigate transport properties.
Among them, high intensity heavy ion beams are used to
probe large volumes of high-energy matter [3], pulsed elec-
trical currents to explode wires or to rapidly heat foils [4,5],
highly bright x-ray beams [6] or intense laser beams [7] to
heat solid targets at constant volume, while the “isochoric
plasma closed vessel” facility allows for the study of expanded
materials under isochoric conditions [8,9].

The direct current (dc) electrical resistivities are currently
calculated within the Ziman-Evans (ZE) theory [10,11], which
describes the scattering of free electrons in a metal by an
ion. Among the physical quantities needed, those necessary to
build the scattering cross section can be provided by quantum-
molecular-dynamics (QMD) or average-atom (AA) methods.

Standard average-atom codes, including our PARADISIO
one [12,13] and the PURGATORIO code [14], are based on
Liberman’s INFERNO atom-in-jellium model of matter [15].
The strong assumption of the INFERNO model is the muffin-
tin approximation, consisting in considering that, beyond the
ionic cell, the electron density is constant and equal to the
jellium density. Such an assumption, coming from solid-state
theory, has important consequences for the model. The global
neutrality of the system boils down to the neutrality of the
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ionic cell. The potential is zero outside the cell. In that
sense, the atomic sphere is separated from the surrounding
jellium, and all the calculations are performed in the ionic
(Wigner-Seitz) cell. INFERNO-based average-atom methods
are renowned for giving rather accurate results at reasonable
computational cost. These results can be used in the Ziman-
Evans formalism to calculate electrical resistivities.

The Ziman-Evans formula expresses the electrical resis-
tivity in terms of electron scattering phase-shifts, the ion
charge (also called the mean ionization) Z* and the ion-ion
structure factor S(g). Two issues arise then when results from
average-atom codes are used. The ion-ion structure factor is
not provided by INFERNO-type average-atom models, which
are single-atom ones, and must be obtained separately. Many
models are available for this quantity, each of them having
its own range of validity. Interpolations between two limiting
models, like in [16], are often necessary. A similar problem
appears for Z*, which is not unambiguously defined since it
is not a quantum-mechanical observable, and for which many
formula are in competition.

Recently, we published an article (referred to as “Paper I”
in the following) [13] on the calculation of electrical conduc-
tivity of aluminum at solid density p = 2.7 gcm?, using the
Ziman-Evans approach in the framework of the average-atom
code PARADISIO. Our choice of aluminum at this density was
dictated by the great number of experimental and theoretical
results available for comparisons. We investigated a large
temperature range, going from ambient one up to 100 eV,
thus covering solid state, melting, liquid, and plasma states.
In this study, Z* was defined as the number of electrons in the
continuum states, a choice that can be justified by the fact that
it is the one that recovers the Z* = 3 value (i.e., AI’* charge)
in the solid and liquid states. Having thus solved the problem
of the definition of Z*, we focused our attention on the ion-ion
structure factor, in order to, on one hand, to reproduce the
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resistivity jump at melting, and on the other hand to propose
a continuous model for S(g) suitable from the liquid to the
plasma states. Our first goal was achieved by extending to the
liquid a concept inherited from solid state theory, and consist-
ing in dropping elastic scattering contributions from the total
ion-ion structure factor. This led us to derive a formula for the
correction that must be applied to Ziman-Evans’s resistivity
above melting. The correction is the highest at melting and
vanishes progressively as temperature increases. Our second
aim, that was to find a unique description from liquid to
plasma, using the same model for the total S(g), is therefore
also achieved.

In an other article (“Paper II’) [17], we presented some
complementary results to the previous work. Still for solid-
density aluminum, the impact of different definitions for Z*
and different models for S(g) on electrical resistivity was
investigated. A direct effect of the definition retained for Z* on
the Ziman-Evans resistivity through the factor 1/Z*? (the ZE
formula will be given in the main text) is obvious. We showed
that Z* also impacts indirectly the results through the structure
factor and the chemical potential, and that this counteracts the
direct effect. Most probably by chance, the compensation is
nearly complete in the case of dense aluminum. Convinced
that compensation is not the rule, we believe in the necessity
to, at least, frame the possible values of Z*, and, ideally, find a
global definition for it, in the spirit of the work we have done
on the structure factor.

This is the main aim of the present paper. We calculate
electrical resistivities for expanded boron, aluminum, tita-
nium, and copper, within the Ziman-Evans theory, in the
framework of our average-atom code PARADISIO. The densi-
ties (in the order of a few times pgjig/10) and temperatures
(ranging from 10* to 4 x 10* K) of our calculations are favor-
able to large differences in Z* according to its definition, and
correspond to the conditions of the experiments performed
on the EPI “isochoric plasma close vessel” facility [18], to
which we compare our results. We also confront the latter to
published theoretical values [4,18-20].

Ziman’s formalism imposes electrical neutrality of the sys-
tem, i.e., Z* must correspond to the scattered electron gas
charge. The latter electron gas is also assumed to be perfectly
uniform and free. The definition of Z* should be consistent
with this. We therefore, throughout the paper, pay particular
attention to the consistency between the definition of the ion
charge and the perfect free electron gas assumption underlin-
ing the Ziman-Evans formalism.

The Ziman-Evans formula, and the different ways to define
the mean ionization from the code, are described in Sec. II.
The above mentioned comparisons of our results to experi-
ments and other theoretical works are presented in Sec. III. A
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definition for the mean ionization Z* emerges then among the
different ones we probed. It yields the best possible agreement
with experiments and theories, given the approximations un-
derlying the INFERNO model, and extends, in a natural way,
to low densities an expression already proposed for normal
or dense ones. In Sec. IV, we try to go beyond the ideal free
electron gas assumed in Ziman’s formalism by the introduc-
tion of a real electronic density of states (DOS) in the formula,
before ending, in Sec. V, on the conclusions that can be drawn
from the present work. Finally, a description of PARADISIO is
proposed in the Appendix.

II. CALCULATION OF ELECTRICAL RESISTIVITY IN
THE FRAMEWORK OF THE AVERAGE-ATOM MODEL

A. The Ziman-Evans formulation

The atomic units are used throughout this paper, i.e., i =
m = e = 1, where &, m, and e denote respectively the Planck
constant, the electron mass, and its electrical charge. The
Boltzmann constant kg is also set to unity.

Ziman’s formulation [10] describes, within the linear re-
sponse theory, the acceleration of free electrons in a metal and
their scattering by an ion:

——;/mﬂ( \I(e)d 1
= 3nZ*%n; Jo Oe © mEtede,

where n; is the ion density, Z* the mean ionic charge, u the
chemical potential, and f (e, i) the Fermi-Dirac distribution

fle, p)= )

ePle—m) 4 1’
with 8 = 1/T.

The function Z(¢€) is related to the scattering cross sec-
tion X(g) and to the ion-ion structure factor S(g) by

2k
I(e) = /0 7’S(@)2(g)dq, 3)

where § = k' — k is the momentum transferred in the elastic
scattering event (i.e., in which |I?| = |12|). Introducing the
scattering angle 6 = (75, l?), one has q2 = 2k*(1 — x), where
x =cosf, and one gets then the following expression in-
troducing the squared modulus of the scattering amplitude
la(k, )I*:

1
T(e) = 2k / STky/2(0 = 0llath, O = dx. @)
-1

la(k, x)|*> is provided by the f-matrix formalism of
Evans [11], which reads, in the relativistic formalism under-
lying our average-atom code PARADISIO [21],

2

2
+ ; (5)

K| . .
> %e’w sin[8, (k)P; (x)

where k = —(L + 1) for j =€+ 1/2, k = £ for j =€ — 1/2, € being the usual orbital quantum number. P, and P@1 are the
Legendre and associated Legendre polynomials. Finally, the quantities §, (k) denote the scattering phase-shifts, provided by the

average-atom code.
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B. Definition of mean ionic charge
and corresponding chemical potential

Mean ionic charge Z* is not a quantum-mechanical observ-
able, and is therefore not clearly defined. Several definitions
are possible in the framework of average-atom models. First,
Z* can be identified with the ideally free part of the conduction
electrons, whose number reads

Liree = / (e, 1) Xideal (€ )de, (6)
0

where Xjgeq (€) represents the ideal electron density of states,

V2e
Kigea(€) = ——. (7
TN,
Actually, Zg.. is related to the charge density at infinity.
Within the framework of the INFERNO model, its value is given
by Ztee = 1/n;, where 7 is the jellium density.

Definition (6), by considering only the charge density at
infinity, excludes less extensive charge densities which can
nevertheless contribute to the electrical conductivity. A second
definition identifies Z* with the total number of continuum
electrons,

Zeont = [) f(é, M)X(G)dé, (8)

where X (¢) denotes the continuum density of states.

Unlike the first definition, the latter (8) suffers from the
defect of including possible charges trapped in resonances,
which do not contribute to the electrical properties [21]. Other
definitions for Z* can be introduced to try to overcome these
pitfalls. They are inspired by Friedel’s model of an impu-
rity (here the ion) embedded in a perfect electron gas [22].
Friedel’s model expresses the modification of the uniform
electron gas (UEG) charge by the impurity (I) as

ZIinUEG — ZUEG + ZF, (9)

where Zp denotes the charge displaced by the electron-
ion potential, whose value can be obtained applying the
finite-temperature Friedel sum rule. In the framework of the
relativistic formalism [22,23] one has

2 [ 35,
Z ;/O def(e,u)ZK:IKI (€)

de

2 ™ af
2 /0 de(—g)XK:IKI(SK(E) (10)

The third definition that we will consider consists in adding
the number of displaced charges to the definition (6), yielding

n
Z*szree +Zr = —+Zr. (11)
i
Equation (9) can be interpreted from a different point
of view. Considering that Z'"VEG = Z_ .. one gets ZVEC =
Zeont — Zr . A fourth possibility comes then from the electrical
neutrality requirement that imposes ZVEC = Z*:

z* =Zeont — Zr. (12)

"""""""""""" —1=0
—1=1
1=2
— 1=3
—— (- df/de)
\\1 1
_27 ! ! ! ! |
0 0.2 0.4 0.6 0.8 1
€ (a.u.)

FIG. 1. Aluminum at p = 0.3 gcm ™ and 7 = 10000 K: domi-
nant phase-shifts (¢ = 0, 1, 2, and 3), as functions of the energy.

This definition follows the same spirit as the one Z* = Z oy —
Zquasi- proposed by Petrov and Davidson [24], following the
paper of Sterne et al. [21], for the case of dense plasmas
when resonances appear in the continuum. Zy,si.p denotes the
number of electrons trapped in the resonances, considered as
bound, despite their positive energy. Since the contributions
of the resonances largely dominate those of the expanded
free states in (10), that formula appears appropriate for the
calculation of Zgyasi.n. The use of Eq. (12) is therefore relevant
at high densities.

Displaced charge Zr can be positive or negative, depending
on the sign of the dominant §, (¢ ) phase shifts. Negative phase
shifts occur when the potential experienced by the electrons
becomes more repulsive (see Ref. [25], p. 405), i.e., when the
attractive —Z/r nucleus-electron contribution is more strongly
counterbalanced by the repulsive Coulomb electron-electron
contribution. Low densities p increase the probability density
of an electron in low £ states within the extended radius Rys,
and thus favor the repulsive contributions to the potential.
Equation (12) implies in that case that some bound electrons
(i.e., of negative energy) must be considered as “quasifree”
and counted in the number of electrons contributing to the
electrical conductivity. Equation (12) appears then as an ex-
tension to the expanded plasma case of the formula proposed
by Petrov and Davidson for dense plasmas.

Figure 1 illustrates how Z can be negative, by the example
of aluminum at density p = 0.3 gcm ™ and temperature T =
10000 K. The black, red, green, and blue full lines represent
phaseshifts obtained with PARADISIO. The dashed black line
corresponds to (—d f/d€) and underlines the dominant nega-
tive contributions of £ = 0 and 1 to Zg. Therefore, Eq. (11)
subtracts “s” and “p” type states from an ideal electronic
density of states, whereas Eq. (12) introduces additional £ = 0
and £ =1 ones to the average-atom conduction density of
states. In the former case, the resulting Z* remains consistent
with the ideal density of states assumed in Ziman’s formal-
ism, whereas, in the latter one, the inconsistency between the
initial Z* = Z.p value with this assumption is reduced by the
addition of extended “s” and “p” charges.

The Ziman formalism assumes that the scattered electrons
are free. Z* is therefore associated with the chemical potential
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w* that verifies

z* :/ de f(e, W )Xigeal (€), (13)
0
or, equivalently,
* ﬁ *
Z* = W}—uz(ﬁﬂ ) (14

where we have introduced the Fermi function of order 1/2,

00 1172
]:1/2(x) = [) dtetfx n 1. (15)
The compatibility of Z* and the chemical potential u* ob-
tained with Eq. (13) has been discussed by Burrill et al. [26].
The authors came to the conclusion that the use of total
continuum charge Z,,, for the mean ion charge Z* should be
associated with the exact average-atom chemical potential 1,
but this implies accounting for the nonideality of the electron
gas in Ziman’s theory. However, in a review article [27],
Ziman asserts that such a modification would have a limited
impact on the resulting resistivities, due to compensations
by the scattering contributions. The results presented in the
next section were obtained with the original Ziman formalism
based on the assumption of an ideal uniform electron gas. We
will, however, examine this possibility (see Sec. [V) in a case
for which we observed the largest deviations from the ideal
electron density of states, i.e., aluminum at p = 0.3 gcm*3
and T = 10000 K.

C. Quantities provided by PARADISIO

These are the average ion charge Z* and electron-ion phase
shifts 3, (k). PARADISIO handles all electronic states (bound
and continuum ones) on the same footing in a quantum-
mechanical framework, which is an essential condition for
properly accounting for the effects of electron-electron in-
teractions in the phase shifts [28]. A detailed description of
the code, including how the phase shifts Zge. and Z.,ne are
obtained, is given in the Appendix.

We studied, in Paper II, the impact of the exchange-
correlation functional on the Ziman resistivity calculations in
the case of solid density aluminum. We showed that finite-
temperature functionals unquestionably improve agreement
with experiments and QMD theories. Among the finite-
temperature formulations probed in Paper II, the KSDT [29]
and GDSMFB [30] formulations are both based on the same
Padé approximants, involving a set of 18 parameters. Whereas
KSDT obtained them by fitting restricted path integral Monte
Carlo (RPIMC) data, GDSMFB exclusively used configura-
tion path integral Monte Carlo and blocking path integral
Monte Carlo calculations. The advantage of the latter is that
they do not invoke the fixed node approximation which is the
basis of RPIMC calculations, and may limit their relevance.
GDSMFB is therefore more accurate than KSDT, although
the differences with KSDT can be small in some phase space
regions of the UEG. In the present work we retain these latter
GDSMFB functionals, although this choice did not change
significantly our results compared to the ones obtained with
KSDT.

D. The sensitivity of Ziman’s formalism
to the ion-ion structure factor

For the sake of consistency with Paper I, the Ornstein-
Zernike equation is solved together with the hypernetted-
chain (HNC) closure relation for a system of screened charged
spheres, following Rogers [31]. The calculations are initiated
using the model direct correlation function of Held and Pig-
nolet [32]. Following Paper I, elastic scattering contributions
are then removed from the HNC S(g), which is equivalent to
add the following quantity to Ziman’s resistivity [13]:

1 Z N(G) o2V (G)

B 3w Z*2n; 4

oo 2
X / (—a—f>k2G2 X 'a(k, 1 - G—2>
G2 ok 2k

where N(G) denotes the number of reciprocal lattice vectors
of same length G and ¢>"(© the Debye-Waller factors ac-
counting for thermal decay of the elastic contributions. In the
thermodynamic conditions of the present work, we found that
dn ~ 0. There are two reasons for that. First, temperatures
are high enough to strongly attenuate the G’s contributions by
the means of the Debye-Waller factors. Second, (—df/de) =
—k(df/0dk) is a peak centered at the chemical potential p*,
which is significantly located below zero at the considered
temperatures and densities, so that the reciprocal vectors G
lie within the tail of (=9 f/0€).

In Paper II, we showed, in the case of solid density
aluminum at 1 eV, the impact of S(g) on the Ziman-Evans re-
sistivity, and observed that it was rather limited, despite strong
discrepancies between the models we probed. Here also, the
(—9df/0¢) function plays a determinant role by strongly at-
tenuating the contributions of the high energies, for which the
various probed S(g) differ the most. In the present work, the
ion coupling parameter I' = (Z*e)? /(Rws kgT ), where Rys is
the Wigner-Seitz cell radius [see Eq. (A1) in the Appendix],
is also much lower than in the conditions of Paper II, reducing
the discrepancy between the HNC structure factor and the
more appropriate to the liquid state one-component-plasma
(OCP) one.

This surprising low sensitivity of Ziman’s resistivity to
S(q) reflects the fact that, when INFERNO-type average-atom
codes are used, S(g) only impacts the resistivity by means
of the ZE formula’s explicit dependence on this quantity. In
contrast, more sophisticated average-atom methods that go
beyond the jellium approximation, like neutral-pseudoatom
based ones [33-35], allow self-consistent calculation of the
ion-ion structure factor and electronic states. S(g) then also
impacts n indirectly, by the means of the scattering phase
shifts §,, as well as by Z*.

én =

2
dk, (16)

III. COMPARISONS TO EXPERIMENTAL RESULTS
AND OTHER THEORETICAL MODELS

We compare our calculations to the experimental electri-
cal resistivities presented in the Clérouin et al. compilation

of experiments performed on the “isochoric plasma closed
vessel” facility [18]. This paper also reports the coauthors’
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FIG. 2. Titanium at p = 0.2 gcm ™ (n; = 2.5 x 10?' cm™>). (a) Experiments (filled gray circles), QMD calculations (filled red squares),
Kubo-Greenwood approach using SQAA results (blue line), and the Ziman-Evans one using the quantities calculated by SCAALP (green line)
are all from Ref. [18]. The red line corresponds to calculations based on a chemical model [43]. Our own results (Ziman-Evans formulation
with quantities given by PARADISIO) are represented by the triangles: green one for Z* = Zj., blue one assuming Z* = Zoy, and red triangles
based on the definition Z* = Zg. + Zr. (b) Values of Zee, Zeont» (Ziree + Zr ), and (Zeon — Zr ) along the 0.2 g cm™ isochore.

theoretical results, in this case, quantum-molecular-dynamics
and average-atom ones.

Among the elements selected in the present work, alu-
minum has been the subject of a great number of studies, both
experimental and theoretical. We add comparisons to exper-
iments performed by Korobenko et al. [19] and by Krisch
and Kunze [4]. The theoretical set retained for aluminum
is enriched by the quantum-molecular-dynamics results of
Desjarlais et al. [20].

The quantum-molecular-dynamics simulations of Clérouin
et al. are performed using projector augmented wave (PAW)
pseudopotentials with the electronic structure package VASP
(Vienna Ab initio Simulation Package) developed at the Uni-
versity of Vienna [36], in the isokinetic ensemble in order
to ensure a control of temperature. The exchange-correlation
contribution is treated in the local density approximation
(LDA) using the Ceperley-Alder parametrization [37] in the
case of boron and aluminum, and, for titanium and copper,
in the generalized gradient approximation (GGA) using the
Perdew-Zunger formulation [38]. The resistivities are com-
puted within the Kubo-Greenwood (KG) formalism [39,40]

using the QMD Kohn-Sham orbitals ¥¥, energies €, and oc-
cupations f, obtained for selected configurations:

2 - i i
0@ =31 3 2 WO = (] Velv)
nmo g

X 8(€y, — €, — ho). (17)

k and W(ié) are the wave vectors and their weights in the
Brillouin zone, and V,, (o = x, y, 7) are the velocity operators
in each direction between two states n and m with occupations
Juand fo.

General good agreement between quantum-molecular-
dynamics theoretical results, represented by the filled red
squares throughout Figs. 2-5, and experiments (filled gray
circles) is observed.

The average-atom theoretical results presented in Ref. [18]
are based on two types of models. SQAA (Standard Quan-
tum Average-Atom) [41] is an INFERNO type average-atom
code, similar to the PURGATORIO and PARADISIO ones. The
specificity of the INFERNO model is to introduce the den-
sity effects through the boundary conditions at the edge of
the ion sphere, with a uniform jellium replacing the ionic
environment. The SCAALP (Self Consistent Approach for As-
trophysical and Laboratory Plasmas) code [42] goes beyond
the jellium approximation by taking into account the ionic
structure through a variational approach based on the Gibbs-
Bogolyubov inequality for hard spheres. The electronic and
ionic properties are then determined in a self-consistent way.

The resistivities calculated in Ref. [18] are obtained by
applying the Kubo-Greenwood method to the SQAA results,
while the Ziman-Evans formalism is used with those from
SCAALP. They are respectively represented by the blue and
green curves. Both studies predict comparable resistivities at
T 2 30000 K, but SQAA departs significantly from QMD cal-
culations and from the experimental values at 7 < 20 000 K,
opposite to the SCAALP results, which show at least qualita-
tive agreement with experiment, with less steep rises of the
resistivities as T decreases.

Our own calculations combine the Ziman-Evans formalism
with the INFERNO based PARADISIO code, thus providing a
third average-atom approach. They are represented by the
triangles, and obtained with the four definitions (6), (8), (9),
and (12) for the ion charge Z* proposed in the preceding sec-
tion. The figures are sorted following increasing ion density
n;. Panels (b) present, for each element considered in this
paper, the values of the mean ion charge obtained with the
definitions proposed in Sec. II. Except for the case of boron
of density p = 0.1 gcm™3, the four values of Z* diverge as
temperature drops under 20 000 K typically, reflecting grow-
ing deviations from the UEG. Panels (a) show the calculated
resistivities using the Z* values from Panels (b). It appears
that our PARADISIO-ZE results are in agreement with those of
SQAA-KG in all situations where a single value of the average
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FIG. 3. Copperat p = 0.3 gcm™ (n; = 2.8 x 10?! cm™*). Same legends as for Fig. 2.

ionization can be obtained using PARADISIO, i.e., typically
above 20 000 K and over the whole temperature range in the
case of boron. Below 20 000 K, one observes, for the highest
ion densities considered (0.3 g cm™* for aluminum and 0.1
g cm~? for boron), the best agreement with SQAA-KG when
the definition Z* = Z., is applied. For the two lowest ion
densities (titanium at 0.2 g cm™> and copper at 0.3 g cm™3),
the resistivities calculated with the fourth definition (12) are
the closest to SQAA-KG one at 7 = 10000 K. But, for all
considered ion densities, the use of the Z* = Z ooy — Zr 1Im-
proves the agreement between our PARADISIO-ZE calculations
and experiments.

As mentioned above, the case of boron at 0.1 g cm™
presents, among the ones considered in the present work,
the best agreement with experiments and QMD -calcula-
tions. Figure 4(b) shows that Zgee X Zgree + Zr = Zeont =
Zeont — ZF (the last equality follows from the preceding ones)
on the whole investigated temperature range 10000 < T <
40000 K. The first equality implies that Zr ~ 0, which re-
flects the fact that electrons are clearly separated into perfectly
bound and perfectly free ones. Moreover, we can conclude
from Zgee & Zeone that all continuum electrons form an ideal
uniform electron gas. These are the best conditions for the

3

T T
1 0-3 | (a) @ exp. _
F @ QMD ]
¥ — SQAA-KG §
— SCAALP-ZE| 4
v Z*:ZCOH[ T
g
=107 E
= ]
5 A4
107 F E
C | | | | L | L ]
10000 15000 20000 25000 30000 35000 40000
T(X)

application of Ziman’s theory to electrical resistivity calcu-
lations. Since there is no ambiguity about which electrons
contribute or not to conductivity, the AA models provide a
unique value for the mean ion charge, and Ziman’s resis-
tivity is unique too. Z* is also perfectly consistent with the
UEG DOS assumption which underpins the Ziman theory.
The case of boron at 0.1 g cm~ shows that, when these two
requirements are fulfilled, good agreement between AA-ZE
and QMD calculations is achievable.

Concerning titanium, copper, and aluminum, if we focus on
temperatures below 15 000 K, we observe, based on Figs. 2
up to 5, a hierarchy (not a rule) n®P < n(Zeony — Zr) <
N(Zgee) < N(Zeont) < N(Zgee + Zr) between the resistivities
n(Z*) obtained with the different definitions for the mean
ionic charge. At least for the few materials considered in
this work, the best agreement with the experimental values
n®*P- is obtained with the two definitions Z* = Z o, — Zr and
Z* = Zgee, Which are the most consistent with the description
of the scattered electron gas as a perfect one. This is obvi-
ous when Z* is identified to the jellium’s charge. According
to Figs. 2 up to 5, our PARADISIO-ZE results are improved
when Z* is identified to the charge deduced from a density
of states obtained by removing nonideal contributions from

10’y ® 5

i o g

L b ]

L =3 1

1071 E & E

% o ]
N r Q > Z*:Zfl‘ee :
i v Z*zzcont 1

102E A LMLy S E

¢ §

10° ! ! | \ \ —

10000 15000 20000 25000 30000 35000 40000
T (K)

FIG. 4. Boronat p = 0.1 gcm™> (n; = 5.2 x 10*' cm™?). Same legends as for Fig. 2.
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(a)‘ @ exp. (Clérouin et al.)
-3 exp. (Korobenko et al.)
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é >
210" v
= A
<
#
10°
| | | | |
10000 15000 20000 25000 30000 35000 40000
T (K)

T T
10°F ® $ g
F # ]
[ % § ]
L <] |
w'e Y E
v 1 z
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[ v Z*: cont N
]0-21& A Z*_Zfree+ZF —
E < Z*:Zcont_ZF E
10° 7 \ | ! ! ! ]
10000 15000 20000 25000 30000 35000 40000
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FIG. 5. Aluminum at p = 0.3 gcm™ (n; = 6.7 x 10*' cm™). (a) In addition to the results of Clérouin et al. (filled gray circles), the
figure presents those of Korobenko et al. (filled green circles) [19] as well as measurements of Krisch and Kuntze [4] (filled magenta circles).
The theoretical data set is also enriched by results from Desjarlais et al. (filled blue squares). (b) Values of Zgee, Zeonts (Ziree + Zr), and

(Zeont — Zr) along the 0.3 g cm ™~ isochore.

the average-atom continuum density of states, thus approach-
ing a “quasi-free-like” density of states. In contrast, the two
definitions Z* = Z.one and Z* = Zgee + Zr show the worst
agreement with experiments. The first case takes Z* as the
number of electrons obtained from the total continuum den-
sity of states, whereas the latter identifies it to the number
contained in a “real-like” density of states, i.e. the ideal one
perturbed by the presence of the ion.

Among the few examples studied in the present work,
we observe the greatest differences in the mean ionization
Z* when different definitions are used, for aluminum at
p=03gem™3 and at T = 10000 K. More specifically, we
obtain in that case Zon — Zr ~ 3Zconts i€, Zp & —3Zoont.
DeSilva and Rakhel [44] measured electrical conductivities
for a few metals at densities covering the metal to nonmetal
transition. They performed a great number of experiments
on aluminum at 7 = 10000 K, and obtained a rather dis-
persed cloud of experimental values for densities ranging from
0.01 g cm™3 up to 1 g cm™3, represented in Fig. 6 by the
red squares. According to our own dispersion of calculated
conductivities at 10 000 K and at 0.3 g cm~, it appeared
to us interesting to extend our calculations for aluminum in
the density range covered by DeSilva and Rakhel, in order to
verify if our values obtained with definition Z* = Z oy — Zp
could enter into the experimental cloud represented by the red
squares. As in Figs. 2 up to 5, the blue triangles of Fig. 6
correspond to our calculations with Z* = Z,,, and the black
ones to those obtained with Z* = Z.,,. — Zr. We can observe
that our PARADISIO-ZE values are improved with the latter
definition for the mean ionization, but not enough to bring
them within the cloud of experimental values.

Of course, other definitions can be considered, and likely
to improve the agreement with experiments. Recently, Callow
et al. published new ways to calculate mean ionization in
the framework of average-atom models [45], consisting in
partitioning bound and free electrons according to their shells
(characterized by principal quantum number 7) instead of the
sign of their energies. But the arbitrary character of the assign-
ment of electrons according to their energies is then replaced

by the necessity of clearly setting the boundary between
bound and free orbitals. These news methods are therefore
not self-contained ones, in contrast to those we proposed in
the present work. Indeed, all the definitions we retained for
the mean ionization can be provided by PARADISIO which only
requires the atomic number, the molar mass, a mass density,
and a temperature as input parameters (see the Appendix).
This does not call into question the quality of the work by
Callow et al. However, we believe that it is not certain that the
methods they propose for the calculation of the average ion-
ization can be applied to extended temperature and/or density
domains without any readjustment. Moreover, we are in the
present work seeking for a definition for Z* consistent with

6 T T T T
| i exp. (DeSilva & Rakhel) +
5.5 SCAALP D*DD
H + SCAALP-CPMD ER
L X QMD (Desjarlais et al.) v %
L V 'Ly HE? 8
R S T
- 7 dy
o 4- S
b—cs m ER DXBD B v
(=} N 4
b 3 5| oy 4 & e v
<330 T %;g ¥ 9 v
3 I
z5r Al-T=10 000 K
2 ! ! ! ! !
-2.5 -2 -1.5 -1 -0.5 0 0.5

3
log, p (g/cm’)

FIG. 6. Aluminum’s electrical conductivity oy along the T =
10000 K isotherm in the density range of metal to nonmetal
transition. Red squares: experiments [44]. Green pluses: SCAALP
calculations [46,47]. Black pluses: from the same authors, results
obtained with a combination between SCAALP and Car-Parrinello
molecular dynamics (CPMD). Blue crosses: QMD results of Des-
jarlais et al. [20]. Triangles: our calculations, in blue with Z* = Z.q,
and in black with Z* = Z — Zr.
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Ziman’s approach for the electrical resistivity, whereas Callow
et al. place themselves in a more general framework, aiming at
proposing a global definition applicable to the greatest number
of numerical methods involved in the study of the properties
of warm dense matter, such as hydrodynamic, Monte Carlo,
or pseudopotential approaches.

It appears from Figs. 2—6 that none of the definitions we
proposed for Z* in order to fulfill our requirements of con-
tinuity over large domains of densities and temperatures and
coherence with the free electronic density of states assumed
in Ziman’s formalism is able to achieve agreement with ex-
periments or QMD calculations at low temperature. Even with
definition (12), a large discrepancy remains at 7 < 15000 K.
More sophisticated average-atom models, based on more
realistic ionic environments, give better results at low temper-
atures. Indeed, the SCAALP resistivities presented in Figs. 2-5,
despite failing to present perfect quantitative agreement with
experiments, give at least a relevant dn/dT slope. Figure 6 re-
ports SCAALP results obtained for aluminum at 7 = 10000 K
in the density range covering the metal to nonmetal transition,
and are represented by the green and black pluses. These two
series of results differ by the way they account for the ion en-
vironment, through the ion-ion structure factor [46,47]. Those
represented by the black pluses were obtained with a sophisti-
cated S(g) resulting from the combination between SCAALP
and Car-Parrinello molecular dynamics, and are consistent
with the bottom of the cloud of experimental values, whereas
the green pluses, obtained with standard SCAALP model, are
situated on the top of the cloud. These results illustrate the im-
portance of solving self-consistently the electronic structure
and the ion-ion structure factor at the average-atom code level.
They suggest also the sensitivity to the model retained for S(q)
of beyond-jellium-approximation codes. Since all of these
aspects are absent from our atom-in-jellium approach, we
believe that agreement with experimental resistivities is most
probably out of reach of any approach associating the Ziman-
Evans formalism and standard atom-in-jellium average-atom
method at low densities and low temperatures. In these con-
ditions, definition (12), however, offers the best possible
agreement.

However, in Ref. [48], Starrett pointed out the fact that the
consistency of the Ziman formula would be improved if the
density of states involved in the calculation of the resistivity
was the same as the one used in the computation of the ion-
ization. In the next section, we examine how the replacement,
in the Ziman formulation, of the ideal electronic density of
states by that given by PARADISIO impacts the electrical re-
sistivity, and if it is likely to modify significantly the main
conclusions of the above comparisons with experimental data
and other computations. We illustrate this discussion in the
case of aluminum at 0.3 g cm~3 and 10 000 K, for which
the average-atom continuum density of states departs the most
from ideal one.

IV. INTRODUCTION OF A NONIDEAL DENSITY
OF FREE STATES IN ZIMAN’S FORMALISM

The expression of the Ziman-Evans resistivity can be
rewritten as (n, being the electronic density, related to ionic

one n; by n, = Z*n;)

1 [ Af\ 2e)¥? 1
dE(—x) T (1%)

n=-=

ng Jo
introducing the inverse of the electron-ion relaxation time (we
recall that k? = 2e, using the atomic units),

1 1 [ do Z(¢)
- =nn— dgq*—S(q) = Tnj———. 19
- =7 k3/0 99 =5 (@) =mn YL (19)

Noting that the quantity (2¢)%?/(37?) corresponds to the
antiderivative of the UEG (ideal) density of state multiplied
by the ion density #;

2¢)3/2 €
(36732 :ni/ dé/nUEG(é/), (20)
0
with
(26)1/2
ne) = ——, 1)

the extension of Ziman’s formula proposed in Refs. [48,49] in
order to account for any nonideal density of states n(e) reads

77—1 00de( af)./\/(e)l
0 T

== -
n; de

e e T
_Z*zni/() de( 86>N(€)(26)3/2’ (22)

where
N(e) =n; /E de' n(e). (23)
0

For the UEG density of states n9ES(¢) given by Eq. (21), this

function reads

(26)3/2
372

NUEG () = 24)

T T T T T T

| — real DOS
10 — ideal DOS
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FIG. 7. Antiderivative of the density of free states (DOS): com-
parison between the ideal-gas case [given by Eq. (24)] and the
“real” one, obtained from a full-quantum mechanical average-atom
calculation. The two latter densities of states used to build A (¢) are
displayed in the inset.
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FIG. 8. Partial quantity (—df/de) N (¢), involved in the Ziman
formula and obtained from an average-atom computation, as a func-
tion of the continuum energy.

Figure 7 displays the functions A (), i.e., n; times the
antiderivatives of the real and ideal density of states n(e) rep-
resented in the inset. In Fig. 8 these two curves are multiplied
by (—df/d€). At this stage, one expects a reduction of the
resistivity when Z* = Z, is used with the real continuum
density of states.

However, the quantities (—%)N (¢) shown in Fig. 8 must
still be multiplied by the scattering contribution Z(¢)/(2¢ ).
This inverses the effect observed in Fig. 8. As shown in Fig. 9,
the scattering contribution to the resistivity, represented in
the inset, counters the effect of the introduction of the real
density of states, which is consistent with an observation
made by Ziman in his seminal review on the subject [27].
In the present case of 0.3 g cm~> aluminum at 10 000 K,
the replacement of the ideal density of states by the real one
induces an increase of the resistivity of the order of 25%. It is

N
T
Ie) / (28)"
S
T

5
T

[\S]

T
=Y
o
=3
~
<
>
=)
%

|

(-df/de) N(e) I(e)/(2e)"”

,_.
T

— real DOS B
— 1ideal DOS

| | I
00 0.1 0.2 0.3 0.4
€

FIG. 9. Product of the two functions (—df /de) N (¢) represented
in Fig. 8, with the one I(€)/(2¢)*? shown in the inset, as a function
of the continuum energy. The enhancement of this integrand when
the real DOS is used in the modified Ziman formula increases the
resistivity (and therefore reduces the conductivity).

higher than the estimated 15% experimental error bars on the
values of Ref. [18], but most experiments are more scattered
than this latter uncertainty (see Figs. 5 and 6). The impact of
the replacement of the ideal density of states by the real one
is too limited to conclude that it will improve the agreement
with experiments in the cases considered in this work. This is
consistent with Ziman’s conclusion in Ref. [27].

V. CONCLUSION

We presented electrical resistivity calculations for boron,
aluminum, titanium, and copper expanded plasmas using the
Ziman formulation in the framework of the average-atom
model. We compared our results to experimental data, as well
as other theoretical calculations, relying on the Ziman and
Kubo-Greenwood formalisms, and based on average-atom
models or quantum-molecular-dynamics simulations.

The ion charge Z* is a key parameter in Ziman’s formal-
ism, which identifies it to the charge of an ideal electronic
conducting background. The difficulty is to determine which
electronic states actually contribute to conductivity. Defining
Z* as the number of perfectly unbound and free electrons ne-
glects less mobile ones, that are, however, likely to contribute
too. Contrarily, defining it as the number Z.q, of continuum
electrons may include some charges that remain too close to
the ion to contribute significantly to electrical conductivity, as
is the case at high densities, when resonances occur in the free
density of states. For such cases, Petrov and Davidson pro-
posed definition Z* = Zon — Zguasi-b, CONSisting in removing
the number Zg.s.» electrons trapped in the resonances from
the total continuum electrons [24]. In the present work, we
proposed to replace Zguip by the charge Zp displaced by
the ion-electron interaction, as given by Friedel’s model of
an impurity embedded in a perfect electron gas, from the total
number Z.,,; of conduction electrons.

Zr gives the number of electrons that are the most strongly
scattered by the central potential. For dense plasmas, it rises
significantly in the conditions where resonances occur in the
density of states, giving then the number of quasibound elec-
trons trapped in these structures. Definition Z* = Z.o — Zp
tends then to the one proposed by Petrov and Davidson [24].
However, ours offers more flexibility than that of Petrov and
Davidson. Indeed, the displaced charge Zr can be positive or
negative, depending whether the potential is attractive or re-
pulsive. The latter case occurs for low-density plasmas. Some
bound electrons become then “quasifree” and contribute to the
electrical conductivity. This adapts to the low-density case the
concept of “quasibound” nonconductive electrons originally
applied to dense plasmas. Definition Z* = Z.,,« — Zr gener-
alizes then the expression of Petrov and Davidson for the ion
charge to low-density plasmas.

We found that such a description of electrons effectively
contributing to the conductivity gives, within the Ziman
theory combined with an average-atom computation of the
atomic structure, the best possible agreement, according to
the jellium approximation for the environment, with mea-
surements and quantum-molecular-dynamics simulations. In
contrast, the definitions Z* = Z.,« and Z* = Zgee + Zr re-
sulted in less satisfying agreement. This could be due to an
inconsistency between these latter two definitions and the
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assumption of an ideal density of free electronic states in
Ziman’s formula [26,48].

Therefore, we also considered the possibility of using Z* =
Zcont In @ modified Ziman formulation introducing explicitly a
nonideal density of states [48,49]. We showed that the positive
impact on the resistivity induced in this way is canceled by
the scattering contribution term in Ziman’s formula, bringing
back the final results within the experimental uncertainty.

Simultaneously with our study, Callow ef al. were working
on new ways to calculate mean ionization in the framework
of average-atom models [45]. Their approach consists in par-
titioning bound and free electrons according to their shells,
instead of their energies. One could here object that ours is
based on the latter partitioning proposal, judged inappropriate
by the authors. However, we can note that, by introducing
the concepts of “quasibound” and “quasifree” charges, our
definition Z* = Z.oy — Zp alleviates the problem posed by
differentiation based on energy sign.

In the present work, our aim was to propose a definition
for Z* consistent with Ziman’s approach for the electrical
resistivity. The approach of Callow et al. is set in a more gen-
eral framework, with the aim of proposing a global definition
applicable to a large number of numerical methods involved
in the study of the properties of warm dense matter, such as
hydrodynamic or Monte Carlo simulations, or pseudopoten-
tial calculations. Although one of their proposals is closely
related to the Kubo-Greenwood method, further investigations
are necessary concerning its applicability for resistivity calcu-
lations within the Ziman formalism. This was out of the scope
of the present work. We believe that the subject is interesting
enough to deserve to be investigated separately. Their study
was also limited to ambient densities.

Finally, as mentioned in their paper, their new methods
for obtaining the mean ionization are not “black-box” ones,
because of the need to set a boundary between bound and
free orbitals. They therefore seem less easy to use for studies
requiring calculations on a large range of thermodynamical
conditions than our proposal, which only requires the knowl-
edge of the atomic number, the molar mass, a mass density,
and a temperature as input parameters and free from any
adjustment.

APPENDIX: THE AVERAGE-ATOM CODE PARADISIO

The PARADISIO [12] code is based on Liberman’s relativis-
tic quantum-average-atom model INFERNO [15]. Within the
latter, the atom is considered as a point nucleus surrounded by
its Z electrons, and placed at the center of a spherical cavity
of radius Rws embedded in a jellium. The Wigner-Seitz radius

Rws reads
( 3 A/NAVO>1/3
Rws = | — ,
4T p

(AL)

0, A, and Nay, denoting respectively the mass density, molar
mass and, Avogadro number.

The jellium takes place of the surrounding ions, and con-
sists of a uniform electron gas and a uniform distribution of
positive charges that ensures its electrical neutrality. Electrical
neutrality inside the cavity is imposed too. PARADISIO then
computes then electronic structure in a self-consistent way.

The only required parameters are atomic number Z, molar
mass A, mass density p, and temperature 7T .

Atomic units where e = i = m = 1, and where the celerity
of light ¢ = 137.036 is the inverse of the fine structure con-
stant o = e*/(8mepag), as being the Bohr radius and ¢, the
permittivity of vacuum, are used throughout the Appendix.

In a spherically symmetric potential, the one-electron
wave-functions, solutions of Dirac equation, are of the form

LErQ im0,
wﬁ)swm(?):( e ¢)), (A2)

—LG(NQjem (0, $)

where 2, and €2 4,, are two spinors. j, £, and m are quantum
numbers associated respectively to the total angular momen-
tum J, the orbital angular momentum L, and its projection L,
on the z axis. The quantum number ¢’ is given by

v {z+1 if j=€+41/2,

if j=¢—1/2. (A

-1

The Dirac equation reduces then to the following equa-
tions verified by the radial functions F (r) and G(r):

dF Vgt (r) — ¢ —
- = _fp(r) _ MG(A,
r r : (Ad)
dG  Veg(r)+c” — € K
99 _ T r i+ Lo,
dr c r
where
k=—{+1) for j=£+1/2,
J / (AS)
k=1¢ for j=¢-1/2.
The effective potential V¢ (r) reads
Veff(r) = Vc(r) + ch(r) -V 1f r g RWS? (A6)
Vert (1) = Voo if r > Rws,
where V,(r) is the Coulomb potential
Z n(r’) 2,
Voir)y=——+ —Adnr'dr, (A7)
r r'<Rws |’7 - }"/|

n(r) denoting the electronic density. Vi.(r) is the exchange-
correlation potential, equal to the exchange-correlation chem-
ical potential evaluated at local density n(r):

ch(r) = /,LXC[VZ(I’), T,

the exchange-correlation chemical potential py.[rn, T'] being
related to the exchange-correlation free energy functional fi.
functional by

(A8)

0
Mxeln, T] = %nfxc[n» Tllr. (A9)
PARADISIO uses the Padé approximants of Karasiev et al. [29],
with the revised parameters of Groth et al. [30]. The quantity
v in Eq. (A6) is

V= feln(Rws), T] — pxclit, T']

i
n(Rws)

+ (xel, T1 = fxelft, T1), (A10)
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where n(Rws) is the electron density at the radius of the cavity.
Finally, the value of the potential outside cavity, denoted Vo,
is

Voo = txe[ft, T, (A1D)

i1 denoting the density of the jellium.

The solutions of Egs. (A4) for » > Rws where the potential
is constant. are known, and therefore Eqs. (A4) only have to
be solved for r < Rws. The inside and outside solutions are
matched at r = Rws.

The model imposes F(r) = G(r)=0at r =0 and r —
oo. Outside the cavity, the radial functions F°°(r) and G°°(r)
(the superscript “oc” stands for “outside cavity”) satisfying
those boundary conditions are, for bound states, modified
Bessel functions of the third kind [50], exponentially decreas-
ing, and, for free states, combinations of Bessel functions
of the first and second kinds, with decreasing amplitudes as
r — 00.

The solutions of Egs. (A4) are, for r > Rws, the following:

(i) For € < V, (bound states),

FX(r)= docy; rKyy12(kr),

o — €
(A12)
Gy (r) = aorKp412(kr),

where the K, 11> (n being an integer) are modified Bessel
functions of the third kind and aq the normalization constant
1

JEAEE®] + [Gem)] Ydr

(A13)
|

ap =

Rws
Zoowa = Y f(€0, 1) Y 2lx] {/ [Fo(r, k. €)* + Go(r, ke, )] r2dr},
b K 0

00 Rws
Zeont = / def(e, )y 2lx| {/ [Fi(r. k., €)* + Gi(r, k, €)*] rzdr}.
0 P 0

f (e, w) is the Fermi-Dirac energy distribution

fle. ) = (A20)

eﬂ(f—ll) + 1 ’

where 8 = 1/T, and the chemical potential © is determined
from the electro-neutrality condition

Zoound + Zeont = Z. (A21)

These functions connect to inside cavity ones only for some
values of €, yielding the discrete set of bound energies.
(i1) For € > V, (free states),

F*(r) = boc

r[cos(8) je(kr) — sin(8, )ne(kr)],

€ — Vs
GY*(r) = bor[cos(8,) je (kr) — sin(8, )ne (kr)], (Al14)
where the normalization factor b, reads
(A15)

2 k
=TT
I+ (€—Voo)?

The matching of these outside cavity radial functions with the
internal ones at » = Rys is always possible by adjusting the
phase shifts §, (k).

The wave number k and the energy € are related by

(Voo —€)
k:\/Z(Voo —€)|:1 — 2—6'2i|

The electronic density n(r) follows then:

n(r) =YY 20| [F(r k, &) + Gy(r, k., &)’]
b K

(A16)

[o.¢]
+f de Y 2| [Fi(r k. €)* + Gi(r. i, €)].
0 K

(A17)

The number Z;,yunq of bound electrons and the number Zq
of continuum ones respectively read

(A18)
(A19)
[
Finally, the jellium density 7 is
_ 2
n= W}-l/z(ﬂ/i), (A22)
where
0o (172
F = df———— A23
1/2(x) /0 prE— (A23)

defines the Fermi function of order 1/2.
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