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Effects of the transversely nonuniform plasma density in a blowout regime
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We present an analytical study on the effects of the transverse plasma gradient in the blowout regime of
a plasma wakefield accelerator. The analysis departs from a simple ballistic model of plasma electrons and
allows us to derive a complete analytic solution for the pseudopotential and, consequently, for the wakefield. We
demonstrate that the transverse plasma gradient modifies the bubble shape and affects the wakefield; namely,
the dipole plasma gradient results in a dipole component of the wakefield. Analysis suggests that, despite the
asymmetry, the instability due to the fixed transverse plasma gradient is unlikely, as the total wakefield has a
single stable point inside the bubble. The only effect that occurs is the shift of the electromagnetic center. We
point out that random fluctuation of the transverse plasma gradient could become an issue.
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I. INTRODUCTION

Beam breakup (BBU) and emittance degradation are one of
the main challenges on the way to a high-luminosity collider
based on a wakefield accelerator technology [1–6]. Among
others [1–3], plasma-based wakefield accelerators (PWAs)
are considered the most promising candidate for the particle
accelerators of the future [7–12] as they possess an intrinsic
focusing mechanism provided by the ions and extreme accel-
erating gradients at the same time [13,14]. In particular, in a
so-called bubble regime, when plasma electrons are expelled,
due to the high intensity of either a laser or electron driver the
longitudinal (accelerating) electric field can be ∼50 GV/m
[15,16]. An accelerating gradient is tightly connected with the
transverse wakefield by the means of the Panofsky-Wenzel
theorem [17]. When the longitudinal wake is axisymmetric,
the transverse wake is zero, but even a tiny asymmetry is
enough to seed the instability, which is caused by the trans-
verse wake. The latter is connected with the fact that projected
transverse beam emittance grows exponentially due to the
BBU [18]. Moreover, even a short noise (a small random
force or random asymmetry in the beam distribution) triggers
the BBU.

Despite such a strong limitation, it turns out that the BBU
can still be controlled. Many mechanisms and approaches,
including ion motion [19], BNS damping [20,21], and other
methods of instability suppression, have been investigated
extensively. It was demonstrated that the BBU is not just
suppressed but eliminated in a certain parameter range.

In the present study, we investigate how the local trans-
verse asymmetry of the plasma gradient affects the wake and
analyze these results from a beam dynamics perspective. The
most promising approach to the analytic (or semianalytic)
description of the bubble regime is the Lu model [22,23], but,
unfortunately, it does not account for the transverse plasma
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gradient yet and works best behind the driver. Previous studies
[24,25] indicate that a transverse plasma gradient (axisym-
metric in the considered cases) modifies the wakefield, and
thus it must be taken into account. It turns out that the most
promising high-repetition PWA technology is the transverse
flowing supersonic gas jet [26], as heat and transient effects in
plasma become an issue [27,28]. The drawback of this tech-
nology is built-in electron and ion density gradients [29,30].
As a consequence, such a scheme might be vulnerable to the
BBU. A recent study [31] indicates that the transverse plasma
gradient of a supersonic gas jet indeed results in a modified
dynamics and echoes some conclusions of the present paper.

The analysis is based on the ballistic model of the plasma
electrons introduced in Refs. [32,33]. To an extent, the present
calculations echo the analysis of the Ref. [34], where a flat
bubble formation was investigated. In contrast to Ref. [34],
where it was demonstrated that the wakefield is insensitive to
the transverse plasma gradient, we show that in a commonly
considered round bubble, a transverse plasma gradient results
in a transverse wake. Within the considered approximation
we analyze plasma flow, derive an analytic expression for
the pseudopotential, and provide a discussion of the possible
consequences.

The paper is organized as follows. In Sec. II, for the sake of
convenience, we reproduce basic formulas and equations pro-
vided in Refs. [32–34] that we will use throughout the paper.
In Sec. III we derive the expression for the electromagnetic
shock wave produced by the driver, and in Sec. IV we present
an expression that describes the bubble shape within a ballistic
approximation. In Sec. VI the plasma electron density is de-
rived, and the outcome of this section is then used in Sec. VII
to get to the main result of the paper—the expression for the
pseudopotential.

II. BASIC EQUATIONS

We utilize the general idea of the model introduced in
Ref. [35] and start from the set of equations derived in
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Ref. [33]. We use the same convention as Ref. [33], and we use
dimensionless variables: time is normalized to ω−1

p , length to
k−1

p , velocities to the speed of light c, and momenta to mc. We
also normalize fields to mcωp/e, forces to mcωp, potentials to
mc2/e, charge density to n0e, plasma density to n0, and current
density to en0c. With e being the elementary charge, e > 0.

The equations of motion for the plasma electrons can be
written as [35]

dp
dt

= ∇φ − v × B,
dr
dt

= p
γ

, (1)

where p is the momentum of the plasma electrons, γ =√
1 + p2 is the relativistic gamma factor of the plasma elec-

trons, v = p/γ is the velocity, and φ is the electric potential.
Additionally, we introduce the pseudopotential ψ = φ − Az

(Az is the z component of the vector potential) that defines
that wakefield as

Ez = ∂ψ

∂ξ
, F⊥ = −∇⊥ψ, (2)

and ∇ = (∂x, ∂y,−∂ξ ). Here F⊥ is the transverse part of the
Lorentz force per unit charge of the test particle and ξ = t − z.

In the quasistatic approximation, when the Hamiltonian
that corresponds to Eqs. (1) depends on z and t only in combi-
nation ξ = t − z there exists the following integral of motion
[33,35]:

γ − pz − ψ = 1, (3)

and as a consequence we have

1 − vz = 1 + ψ

γ
. (4)

In a quasistatic picture, it is convenient to replace the deriva-
tive by time t with the derivative by ξ . We use the fact that

dξ

dt
= 1 − vz, (5)

and consequently for an arbitrary function f (ξ ) we have

df

dt
= df

dξ

dξ

dt
= (1 − vz )

df

dξ
= 1 + ψ

γ

df

dξ
. (6)

Since in the quasistatic picture momentum of the plasma
electron is a function of ξ , Eqs. (1) with Eq. (6) are reduced to

dp⊥
dξ

= γ

1 + ψ
[∇⊥ψ + ẑ × B⊥] − Bz

1 + ψ
p⊥ × ẑ. (7)

The equation for the pseudopotential reads (see Ref. [33])

�⊥ψ = (1 − vz )ne − ni(x), (8)

where ne is the plasma electron density and ni(x) is the ion
density that depends on x. In what follows, we will assume
that

ni(x) = 1 + gx, (9)

with g � 1. The assumption above is dictated by the natural
gradient of the gas density in a gas jet. Fast ionization and im-
mediate interaction make both densities equal if one assumes
that jet gradient is dominating over others.

The equations for the magnetic field are

�⊥Bz = ẑ · (∇⊥ × nev⊥), (10)

�⊥B⊥ = −ẑ × ∇⊥nevz − ẑ × ∂ξ nev⊥. (11)

The continuity equation reads

∂ξ [ne(1 − vz )] + ∇⊥ · nev⊥ = 0. (12)

III. SHOCK WAVE

To calculate the field distribution that is produced by
the point driver that travels through plasma, we follow
Refs. [32,33]. Namely, we assume that driver fields are lo-
calized in an infinitesimally thin layer, i.e., they have a
delta-function discontinuity:

E⊥ = Dδ(ξ ),

B⊥ = ẑ × Dδ(ξ ). (13)

The transverse profile of these fields is defined by the 2D
vector D.

To solve for the shock wave at ξ = 0, we assume that
the plasma density in front of the moving driver has a linear
gradient

n0 = 1 + gx, (14)

where the uniform part of the density is 1, g is a constant, and
x is the transverse coordinate. We assume a small gradient,

g � 1, (15)

and use the perturbation theory.
We consider an equation for the vector D that according to

Ref. [33] reads

�⊥D = n0

γ0
D. (16)

If we split D into r and φ component, then Eq. (16) can be
written in expanded form as

�⊥Dr − Dr

r2
− 2

r2

∂Dφ

∂φ
= n0

γ0
Dr,

�⊥Dφ − Dφ

r2
+ 2

r2

∂Dr

∂φ
= n0

γ0
Dφ, (17)

with the Laplace operator given by

�⊥ = 1

r

∂

∂r

[
r

∂

∂r

]
+ 1

r2

∂2

∂φ2
. (18)

If we assume that n0 is a constant, then due to the axial
symmetry we have D = Dr (r)r and Dφ = 0. This immediately
results in the equation for D(r) in a form

1

r

∂

∂r

[
r
∂Dr

∂r

]
− 1

r2
Dr = n0

γ0
Dr . (19)

With the unmodified plasma density, initial gamma set to
unity (n0 = 1, γ0 = 1), and boundary conditions Dr (∞) = 0,
Dr (r → 0) = 2ν/r we have

Dr (r, φ) = 2νK1(r). (20)
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Next, we consider n0 as given by Eq. (14). We apply perturba-
tion theory and seek a solution of Eq. (17) in a form

Dr = D(0)
r + D(1)

r ,

Dφ = D(0)
φ + D(1)

φ , (21)

with D(0)
r = 2νK1(r), D(0)

φ = 0, and D(1)
r,φ ∼ g, small correc-

tions. Substituting Eqs. (21) and Eq. (14) into Eqs. (17),
equating terms of the same order, and accounting for x =
r cos(φ) we arrive at a set of equations for corrections in the
form

�⊥D(1)
r − D(1)

r

r2
− 2

r2

∂D(1)
φ

∂φ
= D(1)

r + 2νgK1(r)r cos(φ),

�⊥D(1)
φ − D(1)

φ

r2
+ 2

r2

∂D(1)
r

∂φ
= D(1)

φ . (22)

Next we decompose D(1)
r and D(1)

φ in a Fourier series

D(1)
r (r, φ) =

∑
D̃r

n(r) cos(nφ), (23)

D(1)
φ (r, φ) =

∑
D̃φ

n (r) sin(nφ), (24)

and substitute this decomposition into Eqs. (22). Equating
amplitudes of corresponding cosines and sines we have

1

r

∂

∂r

[
r
∂Dr

1

∂r

]
− 2

r2
Dr

1 − 2

r2
Dφ

1 = Dr
1 + 2νgK1(r)r,

1

r

∂

∂r

[
r
∂Dφ

1

∂r

]
− 2

r2
Dφ

1 − 2

r2
Dr

1 = Dφ

1 . (25)

Next we introduce new functions � = Dr
1 + Dφ

1 and � =
Dr

1 − Dφ

1 . Adding and subtracting Eqs. (25) we get

1

r

∂

∂r

[
r
∂�

∂r

]
− 4

r2
� = � + 2νgK1(r)r,

1

r

∂

∂r

[
r
∂�

∂r

]
= � + 2νgK1(r)r. (26)

A general solution to the equations above is zero as none of the
functions fulfill boundary conditions �(∞) → 0, �(∞ → 0)
and �(0) < ∞, �(0) < ∞. A specific solution on the other
hand does not vanish and can be found via Hankel transforma-
tion. Forward and inverse Hankel transformation on the order
n of some function f (r) are given by

f̂ (k) = Hn[ f (r)] ≡
∫ ∞

0
r f (r)Jn(kr) dr, (27)

f (r) = H−1
n [ f̂ (k)] ≡

∫ ∞

0
k f̂ (k)Jn(kr) dk. (28)

Here Jn(kr) is the Bessel function of the first kind of the
order n.

We apply H2 to the fist equation and H0 to the second
equation and get

�̃ = −4νg
k2

(1 + k2)2
,

�̃ = −4νg
1

(1 + k2)2
. (29)

An inverse Hankel transform gives

� = −4νgH−1
2

[
k2

(1 + k2)3

]
= −νg

2
r2K0(r),

� = −4νgH−1
0

[
1

(1 + k2)3

]
= −νg

2
r2K2(r). (30)

Dr
1 and Dφ

1 are recovered as

Dr
1 = � + �

2
, (31)

Dφ

1 = � − �

2
, (32)

and read

Dr
1 = −νg

4
r2[K0(r) + K2(r)], (33)

Dφ

1 = −νg

4
r2[K0(r) − K2(r)]. (34)

Finally, first-order corrections can be written as

D(1)
r = −νg

4
r2[K0(r) + K2(r)] cos(φ), (35)

D(1)
φ = −νg

4
r2[K0(r) − K2(r)] sin(φ). (36)

IV. SHAPE MODIFICATION OF THE PLASMA BUBBLE

We neglect the effect of the plasma self-fields on the tra-
jectories of the plasma electrons. This is a “ballistic” regime
of plasma motion introduced in Ref. [32]; it assumes that the
plasma electrons are moving with constant velocities.

We assume plasma electrons to be nonrelativistic and
ν � 1 as well as ν � r < 1. With help of Eq. (20) and Eq. (35)
we can write equations of motion for the plasma electrons as

dx

dξ
≈ 2ν

r0
cos(φ0) − g

ν

2
,

dy

dξ
≈ 2ν

r0
sin(φ0). (37)

A solution to the equations above gives electron trajectories

x = r0 cos φ0 + 2νξ

[
cos(φ0)

r0
− g

4

]
,

y = r0 sin φ0 + 2νξ
sin(φ0)

r0
. (38)

From Eqs. (38) one can deduce (see Appendix A) an equa-
tion of an envelope surface that defines the boundary of the
bubble in the ballistic approximation in a form(

x + 1
2νξg

)2 + y2 = 8νξ . (39)

It can be seen from the equation above that the circular cross
sections of the bubble in the x, y plane are shifted in the x
direction by the distance νξg/2, which is linearly increasing
with ξ .

We introduce the coordinates x̃ = x + gνξ/2, ỹ = y and
r̃ =

√
x̃2 + ỹ2 and the angle φ̃ = arccos x̃/r̃. Then Eqs. (38)

can be written as

r̃ = r0 + 2ν
ξ

r0
, φ̃ = φ0. (40)
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FIG. 1. Longitudinal cuts of the plasma flow in the ballistic ap-
proximation for the case of ν = 1 and g = 0.8. The numbers are
far from realistic and are chosen to emphasize the effect visually.
The vertical axis is the vertical coordinate of the plasma electrons in
the corresponding cutting plane. The bubble is “bent” towards lower
plasma density.

The condition dr̃/dr0 = 0 gives the equation for the bubble
boundary

r̃b(ξ ) = 2
√

2νξ, (41)

in full agreement with Ref. [32]. Switching back to the (x, y)
we arrive at the final expression for the bubble boundary in
the form

rb(ξ, φ) = 2
√

2νξ − g
νξ

2
cos (φ). (42)

Trajectories of the plasma electrons and plasma boundary are
shown in Fig. 1.

V. AXIAL SYMMETRY OF THE CONTINUITY EQUATION
IN THE BALLISTIC APPROXIMATION

First, we refer to the continuity equation (12) that in the
ballistics approximation takes the form

∂ξ ne + ∇⊥ · nev⊥ = 0. (43)

Here as before v⊥ is the vector of the transverse velocity of
the plasma electrons that according to Eq. (37) reads

v⊥ =
(

2ν

r0
cos(φ0) − g

ν

2
,

2ν

r0
sin(φ0)

)T

. (44)

We notice that
∂

∂ x̃
= ∂

∂x
,

∂

∂ ỹ
= ∂

∂y
. (45)

Next, if we assume that n = n(x̃, ỹ, ξ ), then Eq. (43) should
be modified as

∂ξ ne + g
ν

2
∂x̃ne + vx∂x̃ne + vy∂ỹne + ne∂x̃vx + ne∂ỹvy = 0.

(46)

Introducing ṽ⊥ = ( 2ν
r0

cos(φ0), 2ν
r0

sin(φ0))T , ∇̃⊥ = (∂x̃, ∂ỹ)
and noting that

∂x̃vx = ∂x̃ ṽx, (47)

we have

∂ξ ne + ∇̃⊥ · neṽ⊥ = 0. (48)

We notice that in the new coordinates the plasma flow (in
particular velocity field) has a cylindrical symmetry, and thus
the continuity equation has a cylindrical symmetry as well and
can be written as

∂ξ ne + 1

r̃

∂

∂ r̃
r̃neṽ⊥ = 0, (49)

with ṽ⊥ = 2ν
r0

.

VI. PLASMA DENSITY IN THE BALLISTIC
APPROXIMATION

Immediately behind the driver, at ξ = 0+, the plasma den-
sity n0 is given by Eq. (14). If we assume that electron
trajectories are known, then from the continuity of the plasma
flow we conclude that

n(x, y, ξ )dS = n0(x0, y0)dS0, (50)

from which it follows that

n(x, y, ξ ) = n0(x0, y0)
dS0

dS
. (51)

The ratio dS/dS0 is calculated though the Jacobian

dS

dS0
=
∣∣∣∣∣

∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

∣∣∣∣∣. (52)

Near the bubble boundary, as far as the maximum bubble ra-
dius rbm ∼ √

ν and ν � 1, we can use electron trajectories as
defined by Eq. (40). Accounting for the cylindrical symmetry
in the (x̃, ỹ) coordinates we get

n(r̃, φ̃, ξ ) = n0(r0, φ0)
r0dr0

r̃d r̃

= n0(r0, φ0)
r3

0

r̃
∣∣r2

0 − 2νξ
∣∣ , (53)

where we have used Eq. (40) to calculate dr̃/dr0.
The initial radius r0 in this equation should be expressed

through r and ξ from Eq. (40):

r±
0 = 1

2 r̃ ±
√

1
4 r̃2 − 2νξ = 1

2 r̃(1 ± √
1 − t ), (54)

where

t = 8νξ

r̃2
= r̃2

b

r̃2
< 1, (55)

with r̃b ≡ 2
√

2νξ as given by Eq. (41).
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Two solutions correspond to two trajectories that arrive
from different initial radii r0, φ0 to a given point r̃, φ̃, ξ . One
of these trajectories arrives before and the other one after it
touches the envelope. Correspondingly, at a given ξ, r̃, φ̃, we
need to sum the two densities for both trajectories.

Substituting (54) into (53) we obtain

n±(r̃, φ̃, ξ ) = 1

2

(1 ± √
1 − t )3

|(1 ± √
1 − t )2 − t | (1 + gr±

0 cos φ0), (56)

where we have used Eq. (14) for n0. In this formula we have
to express r0 through r̃ using Eq. (54) and also use φ̃ = φ0.
For the total density, after some simplifications, we find

n(r̃, φ̃, ξ ) = n+(r̃, φ̃, ξ ) + n−(r̃, φ̃, ξ )

= 1

2

2 − t√
1 − t

+ gr̃
4 − 3t

4
√

1 − t
cos φ̃

= 2r̃2 − r̃2
b

2r̃
√

r̃2 − r̃2
b

+ g
4r̃2 − 3r̃2

b

4
√

r̃2 − r̃2
b

cos φ̃. (57)

As a consequence of the singularity in the shock wave, the
plasma density has a square root singularity at the boundary
of the bubble.

We switch back to the initial coordinates r, φ, ξ and keep
only terms of the order g:

n(r, φ, ξ ) = 2r2 − r̃2
b

2r
√

r2 − r̃2
b

+ g
cos φ

4
(
r2 − r̃2

b

)3/2

[(
4r2 − 3r̃2

b

)(
r2 − r̃2

b

) − r̃6
b

8r2

]
.

(58)

As expected the first term in Eq. (58) coincides with the elec-
tron density in the uniform case given in Ref. [32], while the
second term provides correction that accounts for the initial
transverse plasma gradient.

VII. PSEUDOPOTENTIAL

The equation for the pseudopotential under the assumption
of the nonrelativistic plasma flow (vz � 1) reads

�⊥ψ = ne − ni, (59)

where ne is the plasma electron density and ni is the ion den-
sity that depends on x. In what follows, we will assume that

ni(x) = 1 + gx. (60)

We assume r0 � 1 and r � 1 switch to x̃ = x + gνξ/2,
ỹ = y, r̃ =

√
x̃2 + ỹ2, and the angle φ̃ = arccos x̃/r̃ account

for Eq. (57) and Eq. (60), and rewrite Eq. (59) in the extended
form

1

r̃

∂

∂ r̃

[
r̃
∂ψ

∂ r̃

]
+ 1

r̃2

∂2ψ

∂φ̃2

= 2r̃2 − r̃2
b

2r̃
√

r̃2 − r̃2
b

θ (r̃ − r̃b) − 1

+ gr̃ cos φ̃

⎛
⎜⎝ 4r̃2 − 3r̃2

b

4r̃
√

r̃2 − r̃2
b

θ (r̃ − r̃b) − 1

⎞
⎟⎠, (61)

Next we decompose ψ in in a Fourier series

ψ (r̃, φ̃) =
∑

ψ̃n(r̃) cos(nφ̃). (62)

Consequently we have

1

r̃

∂

∂ r̃

[
r̃
∂ψ̃0

∂ r̃

]
= 2r̃2 − r̃2

b

2r̃
√

r̃2 − r̃2
b

θ (r̃ − r̃b) − 1 (63)

and

1

r̃

∂

∂ r̃

[
r̃
∂ψ̃1

∂ r̃

]
− ψ̃1

r̃2

= gr̃

⎛
⎜⎝ 4r̃2 − 3r̃2

b

4r̃
√

r̃2 − r̃2
b

θ (r̃ − r̃b) − 1

⎞
⎟⎠. (64)

We introduce a new normalized radius κ = r̃/r̃b and rewrite
Eq. (63) and Eq. (64) in the universal form

1

κ

∂

∂κ

[
κ

∂ψ̃0

∂κ

]
= r̃2

b

[
2κ2 − 1

2κ
√

κ2 − 1
θ (κ − 1) − 1

]
(65)

and

1

κ

∂

∂κ

[
κ

∂ψ̃1

∂κ

]
− ψ̃1

κ2
= r̃3

bgκ

[
4κ2 − 3

4κ
√

κ2 − 1
θ (κ − 1) − 1

]
.

(66)

The equations above can be integrated, and the solutions read

ψ̃0(κ ) =
{

a1 + a2 log κ − 1
4 r̃2

bκ
2 κ < 1

a3 + a4 log κ + 1
4 r̃2

bκ (
√

κ2 − 1 − κ ) − 1
4 r̃2

b log
(
κ + √

κ2 − 1
)

1 < κ � ∞
(67)

and

ψ̃1(κ ) =
⎧⎨
⎩

b1κ + b2
κ

− 1
8 gr̃3

bκ
3 κ < 1

b3κ + b4
κ

− 1
16 r̃3

bgκ
{

2κ2 − 2κ
√

κ2 − 1 + log
[

κ+√
κ2−1

κ−√
κ2−1

]}
1 < κ � ∞

. (68)
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Here ai and bi are constants that can be found from the condition ψ (r = 0) < ∞ for ξ 
= 0 and the continuity of the
pseudopotential and its derivative at the bubble boundary.

First, we consider the monopole part ψ̃0( r̃
r̃b

), Eq. (67). The condition ψ̃0(r̃ = 0) < ∞ for ξ 
= 0 leads to a2 = 0, the continuity
of the potential gives a3 = a1, and the continuity of the derivative requires a4 = 0. Consequently we arrive at

ψ̃0

(
r̃

r̃b

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 − r̃2

4 r̃ < r̃b

a1 + r̃
4

(√
r̃2 − r̃2

b − r̃
) − r̃2

b
4 log

(
r̃
r̃b

+
√(

r̃
r̃b

)2
− 1

)
r̃b < r̃ � ∞

. (69)

Next, we consider the dipole part ψ̃1( r̃
r̃b

), Eq. (68). Condition ψ̃1(r̃ = 0) < ∞ for ξ 
= 0 leads to b2 = 0, the continuity of the
potential gives b1 = b3 + b4, and the continuity of the derivative requires b1 = b3 − b4. Consequently b4 = 0, b3 = b1, and we
arrive at

ψ̃1

(
r̃

r̃b

)
=

⎧⎪⎪⎨
⎪⎪⎩

b1
r̃
r̃b

− 1
8 gr̃3 r̃ < r̃b

b1
r̃
r̃b

− 1
16 gr̃

{
2r̃2 − 2r̃

√
r̃2 − r̃2

b + log

[
r̃+

√
r̃2−r̃b

r̃−
√

r̃2−r̃b

]}
r̃b < r̃ � ∞

. (70)

We note that at large r̃ � r̃b the particular solution for the ψ̃0

diverges as ∼− r̃2
b
4 log r̃ and the particular solution for the ψ̃1

diverges ∼− r̃2
b g
8 r̃ log r̃ (see Appendix B for the details). This

is connected with the fact that we neglected screening effects
in the considered approximation.

We switch back to the original coordinates r and φ. Notic-
ing that cos φ = cos φ̃ + O[g] and accounting for the fact that
ψ̃ (κ ) ∼ O[g] one may write

ψ (r, φ, ξ ) = ψ̃0

(
r

r̃b

)
+ g

r̃b

16
ψ̃ ′

0

(
r

r̃b

)
cos φ

+ ψ̃1

(
r

r̃b

)
cos φ + O[g2]. (71)

We observe that, as expected, the pseudopotential consists
of two parts: monopole, which corresponds to the term ψ̃0( r

r̃b
),

and dipole, which is a combination of the total derivative by κ

of the monopole term ψ̃ ′
0(κ ) and a correction ψ̃1( r

r̃b
).

At distances, r ∼ 1, the plasma density should be
unperturbed, and plasma electrons screen the field that arises
from the bubble. This, in turn, results in the vanishing of
the pseudopotential. To account for this and estimate the
remaining unknown constants a1 and b1 we require the pseu-
dopotential to be zero at r = 1.

First, we notice that at r � r̃b the expressions for ψ̃0 and
ψ̃1 reduce to

ψ̃0

(
r

r̃b

)
= a1 − r̃2

b

8
− r̃2

b

4
log

(
2

r

r̃b

)
+ O

[
r̃b

r

]
,

ψ̃1

(
r

r̃b

)
= b1

r

r̃b
− gr̃2

b

16
r − gr̃2

b

8
r log

(
2

r

r̃b

)
+ O

[
r̃b

r

]
.

(72)

Next, keeping only divergent terms and setting r = 1 we ar-
rive at

a1 ≈ r̃2
b

4
log

(
2

r̃b

)
,

b1 ≈ gr̃3
b

8
log

(
2

r̃b

)
. (73)

Following Eqs. (69) and (70) with Eq. (71) and Eq. (73) we
arrive at the final expression for the pseudopotential inside the
bubble in the form

ψ (r, φ, ξ ) ≈ r̃2
b

4
log

(
2

r̃b

)
− r2

4

− g
r̃2

b cos φ

8

[
r

4
− r log

(
2

r̃b

)
+ r3

r̃2
b

]
. (74)

For the analysis it is convenient to normalize the pseudopo-
tential to 1/r̃2

b . We recall the definition of r̃b given by Eq. (41)
and write the expression for the normalized pseudopotential

ψ

r̃2
b

= − 1

8
log (2νξ ) − x2

n + y2
n

4

− g

√
2νξ

4
xn

[
1

4
+ 1

2
log (2νξ ) + x2

n + y2
n

]
, (75)

with xn = x/rb and yn = y/rb.
We note that this equation is valid inside the bubble only

when r < rb � 1, implying a small vicinity of the driver or a
low-charge regime.

VIII. ANALYSIS

With the help of Eq. (2) and Eq. (74) the transverse part
of the Lorentz force per unit charge of the negatively charged
test particle can be evaluated as

Fx = − x

2
− g

r̃2
b

8

[
1

4
− log

(
2

r̃b

)
+ 3x2 + y2

r̃2
b

]
,

Fy = − y

2
− g

xy

4
. (76)

It is convenient to normalize it to 1/r̃b and present in terms of
xn = x/r̃b and yn = y/r̃b:

Fx

r̃b
= −xn

2
− g

√
2νξ

4

[
1

4
+ 1

2
log (2νξ ) + 3x2

n + y2
n

]
,

Fy

r̃b
= −yn

2
− g

√
2νξ

xnyn

2
. (77)
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FIG. 2. Contour plot for the normalized pseudopotential ψ/r̃2
b

given by Eq. (75) (left column) and normalized transverse wakefield
F⊥/r̃b vector field given by Eq. (77) (right column) for three different
values of the longitudinal coordinate ξ and ν = 1, g = 0.8. Red dots
indicate fixed points of the vector field given by Eq. (78). We note
that xn = x/r̃b and yn = y/r̃b.

We note that the pseudopotential has a cubic term in xn that
naturally leads to two fixed points of the vector field (one sta-
ble and one unstable). By setting Fx = 0 and Fy = 0 one may
find fixed points of the transverse wakefield by solving the
corresponding algebraic system that follows from Eq. (77):

yF
n = 0,

xS
n = −g

√
νξ

4
√

2
[1 + 2 log (2νξ )],

xuS
n = −

√
2

3g
√

νξ
+ g

√
νξ

4
√

2
[1 + 2 log (2νξ )]. (78)

To simplify the final formula, we kept only terms of the order
g, i.e., we disregarded terms of the order O[g2] in Taylor
decomposition.

In Fig. 2 we show level sets of the pseudopotential given
by Eq. (75), the transverse wakefield vector field Eq. (77),
and fixed points of the vector field Eq. (78) for three different
values of the longitudinal coordinate ξ . We chose extreme

(and probably unreachable in practice) parameters of g = 0.8
and ν = 1 to emphasize the effect. We observe that at small
values of ξ , where the model is directly applicable, only one
stable fixed point exists within the bubble cross section. The
transverse gradient shifts the electromagnetic origin towards
the higher densities of the ion column, but the net effect re-
mains focusing albeit asymmetric. A further increase in ξ does
not change the picture. The asymmetry in the focusing grows,
but the structure of the wake remains the same. Interestingly,
if we speculate and go beyond the formal applicability of the
considered model, we may observe the situation when both
stable and unstable fixed points are located inside the bubble
cross section. We point out that despite the complex structure
of the pseudopotential, the stable region (the region where the
beam is attracted to the stable fixed point) occupies more than
half of the bubble cross section even in this unrealistic sce-
nario. The latter indicates that the most likely fixed transverse
plasma gradient (a transverse plasma gradient that does not
change in z) should not affect the driver dynamics (at least
within considered approximation) and results only in some
asymmetric distortion of the bubble shape and wake.

It is worth mentioning that the plasma gradient may fluctu-
ate randomly due to the random fluctuations of the plasma
density. Such a random fluctuation will result in a random
kick. It is well known (see Refs. [36,37]) that random kicks
may lead to emittance growth and potentially may lead to
driver instability. Indeed, in one dimension emittance growth
(see, for instance, Ref. [38]) due to the random kick reads

δε

δs
= 〈x2〉〈F 2

x

〉
ε

. (79)

Here ε is the beam emittance and τ is the characteristic time
of the fluctuation. Following Eq. (77) we can write〈

F 2
x

〉 ∼ 〈g2〉 ∼ 〈n2〉 − n2
0. (80)

Consequently, the dispersion of the density fluctuation sets the
growth rate for the emittance. This observation motivates fur-
ther studies in more realistic scenarios by applying either the
Lu model [22] or a proper extension of a numerical simulation
[39–44].

IX. CONCLUSIONS

We have presented a detailed analysis of the wakefield
in the presence of the transverse plasma gradient. A simple
ballistic model from Refs. [32,33] was updated to account for
the linear transverse inhomogeneity in plasma. As a result,
we provide final analytic expressions for the pseudopotential
and the transverse wakefield. We note that as in the flat bubble
regime considered previously in Ref. [34], the bubble shape in
the present study shows a similar distortion. Namely, a small
perturbation to the plasma density results in the “bending”
of the bubble toward a lower plasma gradient. However, in
contrast to the flat bubble regime, in the round bubble the
transverse wake does not vanish.

We point out that random fluctuation of the plasma density,
which naturally occurs, may lead to emittance growth and
potentially become a challenge. Consequently, further devel-
opments in this direction are in order.

We note that the numerical examples provided in the paper
are synthetic, and we choose parameters for these examples to
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emphasize corresponding effects. In reality, the parameter g,
a transverse plasma gradient, should be on the order of 1% or
less as well as ζ � 1. We emphasize that the whole analysis
is applicable only when plasma electrons are nonrelativistic.

Despite the restrictions outlined above, the model pre-
sented is still useful, as it is complementary to the Lu model of
the plasma bubble [22]. The model presented can be “merged”
with the Lu model such that the results of the ballistic model
may serve as an initial condition for the Lu equation. A com-
bined model will be free of the empiric parameters and cover
the whole range of the driver beam intensities.

The equation derived in the present paper can be used as a
crude estimate for the transverse emittance growth due to the
random fluctuations of the plasma density.
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APPENDIX A: ENVELOPE SURFACES
FOR THE BALLISTIC TRAJECTORIES

First, we notice that if g = 0, then as was shown in
Ref. [32], for a given ξ , the map (38) when r0 varies from
0 to ∞ and φ0 varies from 0 to 2π leaves an empty circle of
radius 2

√
2νξ centered at x = y = 0. With a nonzero g, we

can move the term −νξg/2 from the right- to the left-hand
side. We then see that this empty circle is shifted by −νξg/2
along x, and hence its equation is Eq. (39).

Another approach is to consider an arbitrary ballistic tra-
jectory as given by Eq. (38). This trajectory can be represented
in a vector form in xyξ space as

r = (x, y, ξ )T (A1)

with x and y given by Eq. (38). Next we consider a transforma-
tion of the xyξ space along ξ axis given by a rotation matrix

Rξ =
⎛
⎝ cos φ0 sin φ0 0

− sin φ0 cos φ0 0
0 0 1

⎞
⎠ (A2)

and apply it to Eq. (A1). With Eq. (38) we have

Rξ r

=
(

r0 + 2ξν

r0
− ξgν

2
cos φ0,

ξgν

2
sin φ0, ξ

)T

. (A3)

Next we consider rotation along the x axis

Rx =
⎛
⎝1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠ (A4)

such that tan(θ ) = νg
2 sin(φ0). Combining Eq. (A4) with

Eq. (A3) we get

RxRξ r =
(

r0+ 2ξν

r0
− ξgν

2
cos φ0, 0, ξ

√
1 +

[gν

2
sin φ0

]2
)T

.

(A5)

It follows from Eq. (A5) that the xyξ space can be rotated with
the help of a RxRξ transformation such that after the combiner
rotation any given trajectory will always lie in the Oxξ plane.
The combiner rotation RxRξ depends only on the initial polar
angle φ0 of the trajectory starting point and is independent
of r0. Consequently, we conclude that all trajectories with
starting points with the same initial angle φ0 are transformed
by the rotation RxRξ to the Oxξ plane as well. It is worth
reiterating that all trajectories that start at the same initial
angle φ0 will stay in the same plane and, with the help of
two rotations Rξ and Rx, can be always translated into Oxξ
plane. As far as the transformation RxRξ is not degenerate
and has only one stationary point (0,0,0) trajectory that starts
from different angles φ0 and never cross as different φ0 defines
different rotations of the xyξ space. This in turn effectively
reduces the initial problem of finding an envelope surface for
all trajectories to a problem of finding an envelope curve for
families of the trajectories with the same angle φ0 transformed
to the Oxξ plane with the help of the RxRξ rotation.

If x̃ ≡ r0 + 2ξν

r0
− ξgν

2 cos(φ0), then an envelope curve for
each family according to Eq. (A5) can be written as

x̃e = 2
√

2νξ − ξgν

2
cos(φ0). (A6)

Thus, points on an envelope curve in a transformed plane have
the coordinates

r̃e =
(

2
√

2νξ − ξgν

2
cos φ0, 0, ξ

√
1 +

[gν

2
sin φ0

]2
)T

.

(A7)

The inverse transformation R−1
ξ R−1

x applied to Eq. (A7) gives
a set of points that resemble the envelope curve that results
from the trajectories that have the fixed polar angle φ0 for the
starting points

R−1
ξ R−1

x r̃e =
(

2
√

2νξ cos φ0 − ξgν

2
, 2
√

2νξ sin φ0, ξ

)T

.

(A8)

If now x ≡ 2
√

2νξ cos φ0 − ξgν
2 and y ≡ 2

√
2νξ sin φ0, then

one can arrive at Eq. (39).
The analysis presented above has another important con-

sequence. As far as each φ0 family of the trajectories forms
a separate and independent of others envelope line, plasma
density that results from electron blowout can be derived
exactly in the same way for each family in the transformed
plane.
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APPENDIX B: DIVERGENCE OF THE UNSCREENED
PSEUDOPOTENTIAL FOR THE LARGE VALUES OF κ

We consider an asymptotic at κ � 1 of the right-hand side
of Eq. (66):

r3
bgκ

[
4κ2 − 3

4κ
√

κ2 − 1
θ (κ − 1) − 1

]

≈ r3
bgκ

[
θ (κ − 1) − 1 − θ (κ − 1)

4κ2

]
. (B1)

With this for κ > 1 Eq. (66) reduces to

1

κ

∂

∂κ

[
κ

∂ψ̃1

∂κ

]
− ψ̃1

κ2
≈ − r3

bg

4κ
. (B2)

This particular solution has the form

ψ̃1 ≈ r3
bgκ

16
(1 − 2 log κ ), (B3)

and accounting for the log κ � 1 we get

ψ̃1 ≈ − r3
bg

8
κ log κ. (B4)
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