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Equivalence of nonequilibrium ensembles: Two-dimensional turbulence with a dual cascade
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We examine the conjecture of equivalence of nonequilibrium ensembles for turbulent flows in two dimensions
in a dual-cascade setup. We construct a formally time-reversible Navier-Stokes equation in two dimensions
by imposing global constraints of energy and enstrophy conservation. A comparative study of the statistical
properties of its solutions with those obtained from the standard Navier-Stokes equations clearly shows that a
formally time-reversible system is able to reproduce the features of a two-dimensional turbulent flow. Statistical
quantities based on one- and two-point measurements show an excellent agreement between the two systems
for the inverse- and direct-cascade regions. Moreover, we find that the conjecture holds very well for two-
dimensional turbulent flows with both conserved energy and enstrophy at finite Reynolds number.
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I. INTRODUCTION

Equivalence of equilibrium ensembles, such as micro-
canonical and canonical ensembles at constant energy and
at constant temperature, respectively, in the thermodynamic
limit (number of constituents N → ∞) is a well-known result,
usually taught in the first course on statistical mechanics.
Can we get such a useful result for systems driven far
from equilibrium, especially for turbulence? Turbulence is a
quintessential example of a nonequilibrium dissipative system
that involves an extremely large number of interacting degrees
of freedom. In Ref. [1] it was postulated that the statisti-
cal properties of turbulence based on the solutions of the
Navier-Stokes equation (NSE) and its suitably modified, time-
reversal-invariant version, called the reversible Navier-Stokes
(RNS), are equivalent in the limit of an infinite Reynolds
number (Re). Henceforth this will be called “equivalence con-
jecture.” The infinite Re limit serves as a thermodynamic limit
here. This conjecture stems from a more general equivalence
of dynamical ensembles discussed in Ref. [2] for a sheared
fluid in a nonequilibrium steady state.

Here we take up the example of two-dimensional (2D)
turbulence [3,4] and examine the equivalence conjecture more
closely in order to understand its applicability at moderate
to large Reynolds numbers. 2D turbulent flows are often
used to understand atmospheric and oceanic flow dynamics
that influence the weather and climate systems and whose
modeling is of paramount importance currently. It is not just
this practical utility of 2D turbulence that is interesting, but
the study of 2D turbulence has benefited the most from the
ideas emanating from equilibrium statistical mechanics [5,6].
A time-reversible formulation for 2D turbulence can help in
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developing coarse-grained LES-type models [7]. The inviscid,
unforced 2D NSE admits two conserved positive quadratic
quantities: the energy and the enstrophy (integrated square of
the vorticity). An ad absurdum Fjørtoft argument illustrates
that these two conserved quantities result in a dual cascade
behavior in 2D turbulence [8]: the energy injected at scale �f

cascades towards larger length scales giving rise to large-scale
coherent condensate if the friction is not strong while the
enstrophy cascades towards smaller length scales.

Are these features reproduced by the formally time-
reversal-invariant formulations of the 2D NSE as suggested
by the equivalence conjecture? In Ref. [1] a RNS system
was built by modifying the (viscous) dissipation term of the
NSE, which amounts to constructing an artificial dissipation
mechanism that exactly balances the injection statistics of the
applied external force so that a prescribed macroscopic ob-
servable becomes a constant of motion. The dissipation coeffi-
cient constructed in this manner makes the dissipation term in
the new governing equation time-reversal invariant. Given the
reduced numerical complexity of the 2D NSE, the validity of
the conjecture has been examined in the past, albeit for a few
to moderate number of degrees of freedom. The consequences
of the chaotic hypothesis were tested for 2D flows [9–12],
wherein fluctuations of global quadratic quantities were exam-
ined in statistically stationary states while keeping one global
quadratic quantity fixed. Comparison of the Lyapunov spectra
showed that these match with the ones computed using NSE,
thereby suggesting that the conjecture holds. However, the
conjecture must be examined in numerical simulations of 2D
turbulent flows where both the cascades are well resolved and
higher-order statistics are studied in detail.

Studies in three dimensions based on reduced models and
direct numerical simulations of RNS systems indicate a grow-
ing support for the conjecture [7,13–16]. A time-reversible
shell model of turbulence [13], obtained by imposing a global
constraint of energy conservation, was used to explore a part
of the RNS parameter space by varying the forcing strength;
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the system underwent a smooth transition from an equilib-
rium state to a nonequilibrium stationary state which exhibit
an energy cascade from large to small length scales. This
important work was further extended in Ref. [15] wherein
different statistical regimes of the RNS system (for a constant
energy constraint) were systematically examined in DNSs
at a modest resolution based on quantities that derive from
one-point measurements. It suggested that the RNS sys-
tems could perhaps provide a framework that is capable of
yielding genuine turbulent statistics out of a time-reversible
dynamics. Moreover, DNS results, aided by the Leith model
and a heuristic mean-field Landau free-energy argument,
conclusively demonstrated the existence of a continuous
second-order phase transition from warm states (partially
thermalized solutions) to hydrodynamic states. With com-
pact energy support in k-space (and insensitive to the cutoff
scale), the (normalized) enstrophy or equivalently reversible-
dissipation coefficient plays the role of an order parameter.

Recent works have also explored the consequences of
global constraints other than the total energy, where it has
been suggested that the choice of a global macroscopic ob-
servable is an important factor in determining the relevance
of the associated RNS system for comparison with the NSE
[17]. Moreover, the time-reversible shell model was also used
to study the time irreversibility that is associated with the non-
linear energy transfers (energy cascade) in three dimensions,
given that the RNS system avoids the explicit time-reversal
symmetry breaking by construction [14]. Recently, a model
obtained by imposing the constraint that turbulent enstrophy
is conserved was analyzed in 3D turbulence where the RNS
and NSE systems were shown to be similar [16].

The primary objective of the present work is to test the
validity of the equivalence conjecture for 2D turbulence. We
perform well-resolved DNSs of the 2D NSE and RNS in a
dual cascade setup, and we compare the statistical properties
of their solutions using one- and two-point measurements.
Similar to the 3D case [15], we find that 2D RNS reproduces
very well the global observables and is able to capture the
essential features of the two cascade processes such as energy
spectra and fluxes, which match with their NSE counterparts.
The third-order longitudinal velocity structure function ob-
tained using the RNS system exhibits scaling behavior similar
to what is seen for the 2D NSE.

The remainder of this paper is organized as follows.
In Sec. II we give an overview of the 2D RNS system as
appropriate for this work. Section III provides a summary
of the numerical methods and parameters that are used in
this study, along with a brief account of various statistical
quantities that we use. Section IV contains results of our
numerical simulations and their discussion, while in Sec. V
we give the conclusions drawn from results and discuss the
significance of our work.

II. TIME-REVERSIBLE 2D NAVIER-STOKES EQUATIONS

The two-dimensional Navier-Stokes equation is written in
terms of the velocity field u as

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2nu − αu + fu, (1)

where p is the pressure field, ν is the kinematic viscosity for
n = 1, α is the linear friction damping, and fu is the forcing
term. The incompressibility condition is ensured by requir-
ing ∇ · u = 0. Also, expressed in terms of its components,
the velocity field is u(x) = (ux(x), uy(x)). By introducing the
stream function ψ , the velocity field can be written as u ≡
(∂yψ,−∂xψ ). Thereby, the above NSE can be expressed in
stream function and vorticity formulation as

∂ω

∂t
+ J (ω,ψ ) = ν∇2nω − αω + fω, (2)

where ω = êz · (∇ × u) = −∇2ψ is the vorticity field,
J (ω,ψ ) = u · ∇ω = ∂xω∂yψ − ∂yω∂xψ , and fωez = ∇ × fu.

In the presence of viscous dissipation and large-scale fric-
tion, the resulting macroscopic dynamics described by the 2D
NSE is irreversible. The NS Eq. (1) is not invariant under the
transformation

Tu : t → −t ; u → −u; (3)

equivalently, Eq. (2) (vorticity formulation) is not invariant
under the transformation Tω : t → −t ; ω → −ω. However,
following the equivalence conjecture, coefficients of the
dissipative terms can be modified to yield a formally time-
reversible governing equation, which is invariant under the
transformation Tu (and equivalently Tω).

For the 2D system under consideration, if we decide to
impose the global conservation of the total energy and enstro-
phy, we can construct a desired RNS system with dissipation
coefficients αr and νr , which are chosen in order to conserve
both the energy and enstrophy. Equations (1) and (2) can be
used to derive the following balance equations:

∂〈u2〉
∂t

= −ν〈ω2〉 − α〈u2〉 + 〈u · fu〉, (4a)

∂〈ω2〉
∂t

= −ν〈|∇ × (ωêz )|2〉 − α〈ω2〉 + 〈ω fω〉, (4b)

wherein 〈·〉 denotes spatial averaging.
Let E ≡ 〈u2〉 denote the energy, 	 ≡ 〈ω2〉 the enstrophy,

and P ≡ 〈|∇ × (ωêz )|2〉 the palinstrophy. Also, the energy and
enstrophy injection rates are given by εI = 〈u · fu〉 and ηI =
〈ω fω〉. For the RNS system conserving both the total energy
and the enstrophy, we have the relations dE/dt = d	/dt =
0. Substituting the relations into Eqs. (4a) and (4b) gives εI =
αE + ν	 and ηI = α	 + νP. Therefore, the coefficients αr

and νr for the 2D RNS system, conserving both the energy
and enstrophy, are given by

αr[u] = εI P − ηI	

EP − 	2
, (5a)

νr[u] = εI	 − ηI E

	2 − PE
. (5b)

Observe that under the transformation Tu we get εI → −εI

and under the transformation Tω we get ηI → −ηI . This
change of sign under these transformations makes the dissi-
pative terms αru and νr∇2u invariant under Tu. Also note that
the reversible friction coefficient αr and reversible viscosity
coefficient νr are functionals of u, thus they depend on the
state of the system. The RNS system is obtained by replacing
the constant in time values of α and ν in the NSE with the
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TABLE I. Table of runs showing the number of collocation
points, N2

c , the Reynolds number, Re, and the large-scale Reynolds
number, Rh. �E/E and �	/	 provide an estimate of the noncon-
servation of the imposed global constraints of conserved total energy
E and enstrophy 	 for the RNS system. For more details, see Table II
in Appendix B.

N2
c Re Rh �E

E
�	

	

Run1 40962 7.8 × 104 2.2 × 104 9.0 × 10−8 2.9 × 10−4

Run2 10242 5.0 × 104 2.2 × 104 4.7 × 10−8 4.8 × 10−4

Run3 10242 3.7 × 104 2.2 × 104 8.6 × 10−7 7.9 × 10−4

Run4 5122 2.3 × 104 2.2 × 104 9.6 × 10−7 2.9 × 10−4

Run5 5122 1.7 × 104 2.3 × 104 4.9 × 10−7 1.2 × 10−4

Run6 5122 7.2 × 103 2.2 × 104 1.7 × 10−5 3.4 × 10−3

Run7 2562 2.3 × 103 2.1 × 104 2.1 × 10−4 5.2 × 10−3

Run8 2562 4.9 × 102 2.2 × 104 2.3 × 10−4 6 × 10−4

state-dependent αr and νr , respectively:

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + νr∇2u − αru + fu, (6)

incompressibility is enforced by demanding ∇ · u = 0. In the
turbulent/chaotic regime, state-dependent coefficients αr, νr

are functions of time since the velocity field is a time-
dependent field.

III. NUMERICAL SETUP

We compare the statistical properties of the solutions of
the NSE (1) and the RNS Eq. (6) in a turbulent flow at
statistical steady state. To do this comparison, we perform
direct numerical simulations of the governing equations in the
vorticity formulation [see, e.g., Eq. (2) and Ref. [18]] using a
highly accurate pseudospectral method with periodic bound-
ary conditions [19]. We consider a square simulation domain
of dimensions 2πL × 2πL where L is a length scale of the
system. We use N2

c collocation points and the 2/3-dealiasing
rule; the maximum wave number is kmax = Nc/3. For time
integration, we use a standard Runge-Kutta ARS443 scheme
[20]. For the RNS simulations, the time step is kept small
in order to minimize the energy- and enstrophy-conservation
errors during the numerical time integration; see Table I for an
estimate of these errors. In both the RNS and NSE, the linear
terms are integrated implicitly while the nonlinear terms are
integrated explicitly. For the RNS, the dissipation coefficients
are computed at every time step in order to conserve the total
energy and total enstrophy at all times.

Steady-state turbulent flow-field is maintained by forcing
the vorticity field with a spatially periodic forcing which has
been studied elsewhere [21], given by

fω(x) = 2k̃ f f0 sin(k̃ f x) sin(k̃ f y), (7)

where f0 and k̃ f are, respectively, the forcing amplitude and
wave number. We write k f := √

2k̃ f as the norm of the forcing
wave vector (k̃ f , k̃ f ). The NSE runs are started using the initial
condition

ω(x) = ω0

18∑
ki=14

2k2
i sin(ki x + θx ) sin(ki x + θy), (8)

where θx and θy are random phases. Here ω0 is a constant that
is used to fix the initial energy.

We carry out the DNSs of the NSE and RNS systems
on collocation points up to N2

c = 40962. The forcing wave
number is fixed at k f L = 32

√
2. Therefore, we work in the

dual cascade setup, where we allow for almost a decade of
wave-number range on either side of the forcing wave number.

In this work, our goal is to examine the statistical properties
of the RNS system and provide a comparative assessment
with respect to the NSE. Therefore, we use the following
protocol for performing the DNSs. We allow the standard
NSE system to attain a statistically steady state at a fixed vis-
cosity, friction, and forcing strength. We use the steady-state
solutions of the NSE to construct an initial state for the RNS
that ensures 〈ENSE〉t = ERNS and 〈	NSE〉t = 	RNS, while we
keep the forcing strength the same and allow the friction and
viscous dissipation coefficients to fluctuate in time, as dictated
by the dynamical evolution (see Appendix A for more details).
To better compare the two systems, we nondimensionalize the
variables in both the NSE and RNS systems using the length
scale L, velocity scale U , and a time scale L/U . Here U is
the rms velocity taken from the NSE system and is defined
as U = 〈|u|2〉1/2

x,t ; 〈〉x,t denotes both time and spatial averag-
ing. We are interested in three nondimensional parameters of
the system that can be constructed from Eq. (2). They are
the Reynolds number (Re), the large-scale Reynolds number
(Rh), and the forcing wave number k f . The two Reynolds
numbers are defined as

Re = UL

ν
, Rh = U

Lα
. (9)

We define νNSE = 1/Re and αNSE = 1/Rh, which are constant
values that will be later compared with the nondimensional
νRNS (t ) = νr (t )/UL and αRNS (t ) = αr (t )/UL. We retain the
same notation for all other quantities after nondimensionaliza-
tion for the purpose of simplicity. Table I shows the numerical
resolutions that were used to simulate the 2D turbulent flow
along with the parameters Re and Rh that were explored in
this study.

Below, we define some of the statistical quantities that will
be used to describe the state of the system. The isotropic
energy spectrum is

E (k, t ) :=
∑

k− 1
2 <|k′ |�k+ 1

2

|û(k′, t )|2, (10)

where û denotes the two-dimensional Fourier transform of the
velocity field, and thê symbol denotes the Fourier transform
of the underlying variable. The total energy and enstrophy are
given by

E (t ) =
∫∫

dx dy|u(x, t )|2 =
kmax∑

|k|=0

|û(k, t )|2, (11a)

	(t ) =
∫∫

dx dy|ω(x, t )|2 =
kmax∑

|k|=0

k2|û(k, t )|2. (11b)
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FIG. 1. Plots of time series from NSE (solid lines) and RNS (dashed lines) systems showing (a) energy E ; (b) enstrophy 	; (c) viscosity
ν; and (d) large-scale friction α. The runs correspond to Re ≈ 7.8 × 104 and Rh ≈ 2.2 × 104 with N2

c = 40962 collocation points (Run1).

The fluxes of energy and enstrophy are given by �E (k) =∑k
0 T (k, t ) and �Z (k) = ∑k

0 Z (k, t ), respectively, wherein
the nonlinear transfer functions are computed as

T (k, t ) = 〈uk · [(u · ∇)u]〉, (12a)

Z (k, t ) = 〈ωk[(u · ∇)ω]〉, (12b)

where uk denotes the real-space velocity field constructed
from the field u by keeping only the contribution from modes
with wave number k and filtering out all other modes. Sim-
ilarly, ωk denotes the vorticity field constructed in the same
manner; see Ref. [18]. In the present work, we also examine
some of the two-point statistical properties of the 2D turbulent
flow. The velocity increments between two points separated
by a distance r are given by

δv(r, t ) = u(x + r, t ) − u(x, t ), (13a)

δv‖(r, t ) = δv(r, t ) · r̂, (13b)

where δv‖ is the longitudinal velocity increment and r̂ =
r/|r|. Due to the isotropic nature of the turbulent flow, we ex-
pect δv‖(r, t ) to be a function of r, independent of r̂. We will
be concentrating only on the longitudinal velocity increment,
so we will denote δv‖ simply as δv. The increments can be
used to compute the pth-order longitudinal structure functions

S(p)
L (r) = 〈[δv(r, t )]p〉x,t . (14)

IV. RESULTS AND DISCUSSION

The RNS system has been obtained by imposing the global
constraints of constant energy E and enstrophy 	. Therefore,
it is imperative to compare the energy E and enstrophy 	 with
the NSE counterparts. Figures 1(a) and 1(b) show the time
series of E and 	 for both the NSE and RNS systems. We
see that the energy and enstrophy conservation relations are
well satisfied by the RNS system, while the E ,	 of the NSE

FIG. 2. Pseudocolor plots of vorticity for (a) NSE and (b) RNS simulations at Re ≈ 7.8 × 104 and Rh ≈ 2.2 × 104 with N2
c = 40962

collocation points (Run1).
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FIG. 3. Energy spectra and fluxes for the NSE (solid lines) and RNS (dashed lines): (a) energy spectra E (k) exhibit k−5/3 and k−4 scaling
behavior in the inverse and direct cascade regions, respectively; (b) energy flux �E (k); (c) enstrophy flux �Z (k). εI and ηI are the energy
and enstrophy injection rates, respectively. The runs correspond to Re ≈ 7.8 × 104 and Rh ≈ 2.2 × 104 with N2

c = 40962 collocation points
(Run1).

fluctuates around the E ,	 values of the RNS, respectively.
Thus, we can say that ERNS ≈ 〈ENSE〉t and 	RNS ≈ 〈	NSE〉t .
Similarly, Figs. 1(c) and 1(d) show the time series of the state-
dependent diffusion coefficients νRNS and αRNS [see Eq. (5)],
respectively. Clearly, as discussed before, these quantities
fluctuate in time, but their time-average is equal to the constant
values that are used in the NSE, 〈αRNS〉t ≈ αNSE (= 1/Rh) and
〈νRNS〉t ≈ νNSE (= 1/Re). Moreover, for the simulations at large
Reynolds numbers of Re ≈ 7.8 × 104, Rh ≈ 2.2 × 104, with
well-resolved dissipation ranges, values of αRNS and νRNS are
never negative for the entire duration of simulation that we
explored.

Figures 2(a) and 2(b) show the pseudocolor plots of the
vorticity field ω for the NSE and RNS systems, respec-
tively, for Re ≈ 7.8 × 104, Rh ≈ 2.2 × 104, and forced at an
intermediate length scale k f = 32

√
2. Both vorticity fields

exhibit similar features, including a dominant pair of a pos-
itive and negative vortex, which is usually associated with
an inverse cascade of energy if the large-scale friction is not
large.

Next we characterize the multiscale dynamics of the RNS,
and we compare it with the NSE by looking at the spectral
quantities such as the energy spectrum and fluxes. Figure 3(a)
shows the plot of averaged energy spectra obtained for the
two systems, on which two inertial ranges are clearly ob-
served. For the inertial range at low wave numbers, 1 � k <

k f , the spectrum scales as E (k) ∼ k−β1 with β1 � 5/3. The
second inertial range with E (k) � k−β2 is present over the
wave numbers k f < k � kν with β2 � 4; the latter differs
from Kraichnan’s prediction of k−3 similar to what has been
observed for intermediate Reynolds numbers in 2D turbu-
lence [22]. kν marks the beginning of the wave-number region
where viscous dissipation starts to dominate. Moreover, the
slight departure of the exponent β1 from 5/3, seen in the
form of buildup of the spectrum at small k-values, can be
attributed to the pileup of energy at k = 1 which alters the
spectral exponent.

The aforementioned two inertial ranges are associated with
the presence of an inverse cascade of energy and a forward
(direct) cascade of enstrophy. The plots of energy flux �E (k)

versus k and enstrophy flux �Z (k) versus k, Figs. 3(b) and
3(c), respectively, confirm this picture for the RNS as well.
The energy flux is negative for k < k f and is almost a constant
�E (k) ∼ εI in the inertial range at large scales. The enstrophy
flux is positive for k > k f with a tendency to become constant
�Z (k) ∼ ηI in the inertial range, before starting to rapidly fall
at large wave numbers. It is well known that the plateau in
these fluxes is obtained only in the limit Re → ∞, Rh → ∞
[22]; in this work we keep Rh constant.

FIG. 4. Plots of compensated third-order longitudinal structure
function S(3)

L for the NSE (orange solid lines) and RNS (sky-blue and
green dashed lines): Inverse cascade region with a plateau at 3/2;
direct cascade region with a plateau ∼1/8. � f is the forcing length
scale; εI and ηI are the energy and enstrophy injection rates, respec-
tively. Blue dashed and black dash-dotted horizontal lines indicate
constant values of 3/2 and 1/8, respectively. The runs correspond
to Re ≈ 7.8 × 104 and Rh ≈ 2.2 × 104 with N2

c = 40962 collocation
points (Run1).
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FIG. 5. Comparison of the probability distribution functions (PDFs) of longitudinal increments of velocity δv and vorticity δω, of the
NSE (solid lines) and RNS (dashed lines), at different length scales in the inverse and direct cascade regions. � f is the forcing length scale;
therefore, � > � f indicates the inverse cascade region and � < � f indicates the direct cascade region. On each of the plots, a black solid
line represents a Gaussian fit to the PDF at the smallest scale shown for the RNS system. Here Re ≈ 7.8 × 104 and Rh ≈ 2.2 × 104 with
N2

c = 40962 collocation points (Run1).

Next we examine the two systems closely using the two-
point statistics. The plots of the third-order structure functions
for the NSE and RNS are shown in Fig. 4. They show a similar
scaling behavior at both large and small r values. The RNS
system exhibits an S(3)

L ∼ r and S(3)
L ∼ r3 scaling behavior in

the inverse and direct cascade regions, respectively. This is in
agreement with the well established behavior of the NSE in
the dual cascade setting [3]. Moreover, Fig. 4 clearly shows
that the compensated structure function S(3)

L /(εI r) ≈ 3/2 both
for the RNS and NSE system in the inverse cascade region.
Similarly, in the direct cascade region the compensated struc-
ture function S(3)

L /(ηI r3) ≈ 1/8 for both systems.
We compute the PDFs of the longitudinal velocity and

vorticity increments at different length scales for the run with
Re ≈ 7.8 × 104, Rh ≈ 2.2 × 104. Figures 5(a) and 5(b) show
the plots of P (δv) in the inverse and direct cascade regions,
respectively. These plots, at different length scales greater
than � f , for the RNS and NSE systems overlap with each other
and are very well fitted by a Gaussian distribution, thereby

indicating a lack of velocity intermittency [23]. Lack of exact
overlap for � = 8� f , 10� f can be attributed to the lack of very
good statistical averaging at large length scales. For � < � f ,
we observe that the tails of the PDFs deviate from Gaus-
sian distribution. This agreement of the velocity-increment
statistics for the two systems also extends to the vorticity
increments both in the inverse and direct cascade regions; see
Figs. 5(c) and 5(d), respectively, where PDFs exhibit expo-
nential tails. We have checked these features at different Re
while keeping Rh fixed at a large value of ∼2.2 × 104, and we
found a very good agreement between the statistics of the two
systems, especially in the large Re and Rh limit, which can be
regarded as the thermodynamic limit with a large number of
excited modes (plots not shown for smaller Re).

Now we focus on the distribution of fluctuations of the
dissipation coefficients of the RNS system. Figure 6 shows
the PDFs of the rescaled viscosity νRNS/〈νRNS〉t and rescaled
large-scale friction αRNS/〈αRNS〉t for different values of Re for
the RNS system. Rescaling here is done with respect to the

FIG. 6. Probability distribution functions of rescaled viscosity νRNS/〈νRNS 〉 and large-scale dissipation αRNS/〈αRNS 〉 for different Re, while
Rh is held fixed at � 2.2 × 104, for the RNS systems. Insets of these plots show the behavior of the standard deviation σν and σα as a function
of Re. Gaussian fits to PDFs in (a) are indicated by solid lines of the same color, but in a lighter shade; in (b) Gaussian fit is indicated by a
black solid line.
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TABLE II. Complementary information for Table I: the number of collocation points, N2
c ; the time-step values dtNSE and dtRNS used in the

NSE and RNS simulations, respectively. It also provides the values of the following NSE quantities (denoted by subscript NSE) and their ratio
to respective quantities obtained in the RNS simulation (denoted by subscript RNS): the viscosity νNSE; the friction αNSE; the energy ENSE; and
the enstrophy 	NSE. To use the above data for the discussion of the main text, it must be nondimensionalized using appropriate combinations
of U (rms velocity of the NSE system), L, and a unit of time L/U ; for more details, see Sec. IV.

N2
c dtNSE dtRNS νNSE

〈νRNS〉
νNSE

αNSE
〈αRNS〉
αNSE

〈ENSE〉 ERNS
〈ENSE〉 〈	NSE〉 	RNS

〈	NSE〉 U

Run1 40962 2.0 × 10−4 5.0 × 10−6 6.25 × 10−5 1.075 1.0 × 10−2 1.009 23.25 1.00 980.9 0.998 4.822
Run2 10242 2.0 × 10−4 1.0 × 10−5 9.40 × 10−5 1.017 9.5 × 10−3 0.995 22.29 1.00 875.31 0.999 4.721
Run3 10242 2.0 × 10−4 3.0 × 10−5 1.25 × 10−4 0.995 9.5 × 10−3 0.992 21.0 1.001 800.37 1.003 4.586
Run4 5122 2.0 × 10−4 1.0 × 10−5 1.88 × 10−4 0.979 9 × 10−3 0.986 19.1 1.000 761.6 1.001 4.37
Run5 5122 2.0 × 10−4 1.0 × 10−5 2.5 × 10−4 1.058 8.5 × 10−3 0.971 17.88 1.000 675.5 1.043 4.228
Run6 5122 2.0 × 10−4 3.0 × 10−5 5 × 10−4 1.008 7.5 × 10−3 0.973 13.07 0.990 541.9 0.996 3.615
Run7 2562 2.0 × 10−4 1.0 × 10−5 1 × 10−3 0.986 5 × 10−3 1.027 5.48 1.001 557.7 0.996 2.341
Run8 2562 2.0 × 10−4 1.0 × 10−5 2 × 10−3 0.999 2 × 10−3 1.064 0.969 1.000 1037.1 0.999 0.984

mean of the diffusion coefficients. The figures show that both
the viscosity and large-scale friction have a distribution that is
close to Gaussian. It is important to note that the left tail of
the distribution of viscosity is always sub-Gaussian. For small
values of Re the large-scale friction has negative events, while
at large values of Re the large-scale friction is always positive
over the whole duration of the simulation. The viscosity νRNS ,
on the other hand, always remains positive in the parameters
that were explored as part of this study.

The insets of Fig. 6 show the standard deviation of the
rescaled viscosity νRNS/〈νRNS〉 and rescaled large-scale friction
αRNS/〈αRNS〉 as a function of Re. We see that the standard
deviation of the rescaled viscosity is below 1 even at large
Re, whereas the standard deviation of the rescaled large-scale
friction saturates to a value close to 0.1.

V. CONCLUSIONS

We have examined the validity of the equivalence conjec-
ture for 2D turbulence at moderate to large Re and Rh, while
simultaneously imposing two global constraints: conserved
total energy and enstrophy. These two quadratic quantities are
conserved in the inviscid limit (Euler equation). We find that
the RNS system so constructed is able to capture the general
behavior of the NSE system. For the global quantities and
the spectral diagnostics, one-point statistics, such as energy
spectra and fluxes for the two systems, agree very well with
each other at all Re and Rh. In fact, the modification of the

energy spectra at large scales because of the condensate is
described very well by the RNS system.

Fluctuations of the state-dependent dissipation coefficients,
viscosity, and the large-scale friction are well fitted by a Gaus-
sian distribution, except for the observation that the left tail of
the viscosity PDF starts to drop suddenly at a large distance
from the mean resulting in a slightly asymmetric distribution.
This observation could be seen in light of the fact that we do
not observe any negative viscosity event in our simulations.

Here, our results based on two-point statistics, such as lon-
gitudinal velocity structure functions and PDFs of increments
of velocity and vorticity, demonstrate that the two systems
are statistically similar. Moreover, the agreement between the
two systems holds very well for a wide range of Re, at least
for those considered in this study. Thus, the conjecture holds
very well for 2D turbulent flows with both conserved energy
and enstrophy at finite Reynolds number, which goes beyond
the original conjecture for three-dimensional turbulence in the
limit of infinite Reynolds number [11,24].

It remains to be seen whether the formally time-reversible
system can capture the dynamics of systems where the form
of dissipation is not well defined, and whether it can be used
to study complex transitions in other turbulent flows [25].
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APPENDIX A: INITIAL CONDITION FOR
THE RNS SYSTEM

Below we describe the numerical scheme to generate the
RNS initial field that has ERNS and 	RNS, which match very
closely with 〈ENSE〉 and 〈	NSE〉, respectively.

Let S1 and S2 be any two arbitrary states of the NSE system
chosen from a set of its nonequilibrium steady states. The state
Si(ui, ωi, Ei,	i ) is associated with the velocity field ui, the
vorticity fields ωi, the energy Ei, and the enstrophy 	i, where
i ∈ {1, 2}.

Next we take the initial velocity field uRNS as a linear
combination of the velocity fields associated with the states
S1 and S2:

uRNS = λ1u1 + λ2u2. (A1)

Similarly,

ωRNS = λ1ω1 + λ2ω2. (A2)

This yields the following relations for the energy ERNS and the
enstrophy 	RNS of the initial state:

ERNS = λ2
1E1 + λ2

2E2 + 2λ1λ2〈u1.u2〉,
	RNS = λ2

1	1 + λ2
2	2 + 2λ1λ2〈ω1ω2〉, (A3)

where 〈u1 · u2〉 is the inner product of velocity fields averaged
over space.

FIG. 8. Energy spectra E (k) for the runs Run2, Run4, Run5, and
Run7. These spectra, along with those in Fig. 3, show that the equiv-
alence of nonequilibrium ensembles holds very well, irrespective of
the numerical resolution.

Now we need to find λ1 and λ2 such that the following
relations are satisfied:

λ2
1E1 + λ2

2E2 + 2λ1λ2〈u1.u2〉 = 〈ENSE〉, (A4a)

λ2
1	1 + λ2

2	2 + 2λ1λ2〈ω1ω2〉 = 〈	NSE〉. (A4b)

We use the Shooting method to determine λ1 and λ2. We
start with an estimated value of λ1 and evaluate λ2 using
Eq. (A4b). Next, we use the value of λ2 to find a new value of
λ1 using Eq. (A4a). We iterate this process for a large number
of times in order to obtain converged values of λ1 and λ2.

APPENDIX B: DATA

In Table II, we give additional details about the simulations
Run1–Run8 that complement the information provided in
Table I.

APPENDIX C: NEGATIVE α EVENTS

In Figs. 7 and 8, we present α(t ) time series showing
negative events, and the energy spectra E (k), respectively.
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