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Computational model of twisted elastic ribbons
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We develop an irregular lattice mass-spring model to simulate and study the deformation modes of a thin
elastic ribbon as a function of applied end-to-end twist and tension. Our simulations reproduce all reported
experimentally observed modes, including transitions from helicoids to longitudinal wrinkles, creased helicoids
and loops with self-contact, and transverse wrinkles to accordion self-folds. Our simulations also show that the
twist angles at which the primary longitudinal and transverse wrinkles appear are well described by various
analyses of the Föppl–von Kármán equations, but the characteristic wavelength of the longitudinal wrinkles has
a more complex relationship to applied tension than previously estimated. The clamped edges are shown to
suppress longitudinal wrinkling over a distance set by the applied tension and the ribbon width, but otherwise
have no apparent effect on measured wavelength. Further, by analyzing the stress profile, we find that longitudinal
wrinkling does not completely alleviate compression, but caps the magnitude of the compression. Nonetheless,
the width over which wrinkles form is observed to be wider than the near-threshold analysis predictions: the
width is more consistent with the predictions of far-from-threshold analysis. However, the end-to-end contraction
of the ribbon as a function of twist is found to more closely follow the corresponding near-threshold prediction
as tension in the ribbon is increased, in contrast to the expectations of far-from-threshold analysis. These results
point to the need for further theoretical analysis of this rich thin elastic system, guided by our physically robust
and intuitive simulation model.
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I. INTRODUCTION

Twisting a thin ribbon under tension generates compres-
sion, somewhat counterintuitively, and consequently longitu-
dinal wrinkles in the center of the ribbon. Larger twist angles
lead to the even more whimsical creased helicoid phase,
sometimes referred to as “ribbon crystals.” These nonintuitive
deformation modes hint at deep physics, and despite twisting
being the basis of ancient textile technologies—from twisting
fibers into yarns to coiling ropes into piles—the mechanics
of twisted morphologies remain hazy [1–3]. These mysteries
have unfurled slowly over decades, beginning when Green
first observed buckling and wrinkling patterns in ribbons and
analyzed the development of compression with twist [4]. It
was not until nearly 50 years later that the existence of a buck-
ling transition in twisted plates was confirmed numerically
[5], and it took another 20 years to verify numerically the
longitudinal wrinkling pattern Green described [6]. Shortly
after, the creased helicoid phase was modeled geometrically in
the isometric limit [7,8]. Next, experimental probes provided
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a full map of the twisted ribbon phase space, revealing a
sprawling zoo of helicoids, wrinkles, and loops which are
dependent on twist angle and applied tension [9]; analyti-
cal attempts to characterize these postbuckling phenomena
quickly followed [10,11]. Surprisingly, creased helicoids still
formed in ribbons with tension, developing from the wrinkles
themselves [12] and displaying some amount of stretching
in the ridges (unseating the isometric assumptions of previ-
ous studies) [13]. Ribbons of finite thickness are analytically
slippery, requiring approximations whose regions of validity
not fully clear [10,14]. To fully resolve the limitations of
these approximations requires data such as internal energy and
stress distributions, quantities which are currently difficult to
access by experiment or theory.

In general, thin sheets are excellent candidates for com-
putational modeling. Plenty of great work has been done
to simulate thin sheet deformations using finite element
methods (FEMs) [15–19], and there are several mass-spring
models that successfully map regular discrete lattices to the
bulk properties of a sheet [20–22]. Less work, however, has
been dedicated to mapping a microscopically random mesh’s
parameters to the bulk properties of the simulated sheet.
Some models use a random mesh to approximate a constant
bulk Young’s modulus [23,24], and others focus on mak-
ing discretized bending realistic [25–27]. But in some cases
these models are inconsistent with analytical descriptions of
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FIG. 1. Deformation modes of twisted thin sheets, replicated by our simulation whose details are summarized in Fig. 2. Ribbon (a) is
labeled with its dimensions and quantities relevant to the twisting-under-tension procedure. T is the scaled longitudinal tension applied, which
is total applied force F normalized by the width, Young’s modulus, and thickness of the ribbon, and η is a scaled twist angle: the end-to-end
angle θ normalized by the ribbon’s aspect ratio. These quantities are defined in Table I. (a) The helicoid phase initially present before any
buckling transitions occur. (b) Longitudinal buckling occurs at an angle ηlon and has a fixed wavelength λlon set by the tension T and thickness
h. (c) Creased helicoids develop from the longitudinally buckled ribbons as the buckle ridges “turn” to form triangular facets. (d) At tensions
below the crossover tension T ∗, ribbons will snap through to form a loop at an angle ηtran. If twisted far enough, ribbons will develop self-contact
at an angle ηsc. (e) Transverse buckling occurs at tensions greater than T ∗, transitioning at angle ηtran. (f) The wavelength of transverse buckling
λtran is set by the aspect ratio of the sheet; sheets with smaller aspect ratios can display several wavelengths of transverse buckling. (g) At high
twists, low aspect ratio sheets display “accordion folding” and approach the yarning transition [28]. Snapshots (a)–(e) fall within the phase
diagram presented in Fig. 3.

regular meshes; what’s more, a combined stretching and bend-
ing model has to our knowledge, not been thoroughly tested.
A discrete mesh model that compares directly to physical
materials is infinitely useful, opening the door to generating
large data sets useful for data-driven discoveries.

In this paper, we develop a simple, computationally cheap,
mechanical mass-spring model (MSM) to study twisted thin
ribbons. We could equivalently use an FEM approach to study
thin twisted ribbons. However, we are compelled by the MSM
because it is an intuitive extension of coupled oscillators;
allows local, “microscopic” control of the mesh topology; and
is not tethered to the limitations of using a partial differential
equation for the sheet, such as describing the postbuckled
shapes, or singularities in the PDE in areas with stress-
focusing. It is a simple model with historical precedence that
accurately replicates the interesting observables of the thin
elastic sheet, using only Hookean springs with small stresses
that depend linearly on deformation. A lattice model like
this, with nearest and next-to-nearest neighbor interactions,
also preserves the possibility of learning about or from other
statistical mechanics lattice models.

Our randomly seeded MSM maps reliably to a physical
Young’s modulus and bending rigidity, allowing us to match
experimental conditions and generate the various modes of
deformations observed as a function of ribbon aspect ratio,
applied tension and twist (see Fig. 1). We are able to carefully
analyze the onset and growth of wrinkles in the longitudinally

buckled mode using measurements which are also available
experimentally, such as surface curvature. Additionally, the
simulations provide access to the invisible internal dynamics
of the ribbon, including finely resolved spatial and temporal
data for the strain and stress. These insights are useful for
characterizing the mechanics of the buckling transition, and
probing the relevance of existing near- and far-from-threshold
approximations. Guided by recent rounds of physical obser-
vations and analytical inquiries, we show that numerics and
simulations once again hold the key to the next stage of
discovery about twisted thin ribbons.

II. MASS-SPRING MODEL

We model a thin ribbon by defining a mesh with a set of
nodes, arranged either in a regular triangular lattice (where
each interior node has six equidistant nearest neighbors) or
in a random triangular lattice in which node coordination
number and distance to nearest neighbors vary. Nodes are
connected to their neighbors via in-plane springs and dash-
pots, and bending is controlled by pseudosprings (a quadratic
penalization of bending) across each edge between adjacent
triangles, as shown in Fig. 2. A full description of this discrete
model’s relationship to continuum elasticity is provided in
Appendix A; in this section we provide a brief history of the
model and a summary of the modifications we employ.
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FIG. 2. Nodes are connected by in-plane springs with stiffness
ks and dashpot damping bint. The ks of each in-plane spring is set
by the local geometry of the mesh and the target Young’s modulus
for the sheet, Y . Out-of-plane stiffness kb is similarly dictated by the
local geometry and the target bending rigidity, B. Both sets of springs
ensure quadratic energy penalization for stretching and misalignment
of the vectors normal to the triangular mesh facets, Eqs. (4) and (5).

The regular triangular lattice is well studied and often
utilized, with the attractive feature of having an analytical
mapping from the discrete stretching and bending spring
constants (ks and kb) to a continuous two-dimensional (2D)
Young’s modulus and bending rigidity for the sheet. The
springs ri j connecting pairs of lattice sites, xi and x j dictate in-
plane deformations. Hinges separating two triangles �i jk and
�ikl , with normal vectors n̂i jk and n̂ikl , control out-of-plane
motion. Seung and Nelson [20] showed that for the triangular
lattice with unit length springs, and potentials of the form

Es(ri j ) = 1
2 ks(1 − |xi − x j |)2, (1)

Eb(n̂i jk, n̂ikl ) = 1
2 kb|n̂i jk − n̂ikl |2, (2)

the equivalent continuous 2D Young’s modulus and bending
rigidity for the sheet are

Y2D = 2√
3

ks, B =
√

3

2
kb, (3)

respectively. If the rest configuration of the lattice deviates
from hexagonal packing of equilateral triangles (such as at the
boundaries of a rectangular sheet or a collection of randomly
placed lattice points), the above relationships are no longer
correct beyond the leading order discrete approximation of
the continuum. To extend this MSM to irregular lattice con-
figurations, it is useful to modify the prefactor of each energy
term.

Each in-plane spring represents an area of continuous
material that resists stretching or compression. Thus springs
adjacent to larger triangular facets should have stiffer spring
constants to reflect the greater amount of material they rep-
resent. We modify the stretching energy term according to
Van Gelder [23] (with typos in the original model corrected
by Lloyd et al. [24]):

Es(ri j ) = 1

2

(
1

2

A

A0
ks

)
(si j − |xi − x j |)2,

= 1

2

(√
3

4

A

A0
Y2D

)
(si j − |xi − x j |)2, (4)

where Y2D is the target Young’s modulus for the sheet, si j the
rest length of a given spring, A the sum of the facet areas
adjacent to edge ri j , and A0 the area of an equilateral triangle
with side length si j . When the entire lattice is composed of
equilateral triangles, this expression reduces to the model in
Eq. (1).

With similar physical motivations as given above—namely,
that an area of continuous material distributed over a longer
length scale should be floppier, or easier to bend—we modify
the bending energy term to be

Eb(n̂i jk, n̂ikl ) = 1

2

(
2

A0

A
kb

)
|n̂i jk − n̂ikl |2

= 1

2

(
4√
3

A0

A
B

)
|n̂i jk − n̂ikl |2. (5)

The area dependence of the coefficient is inspired by Grinspun
et al. [25] and adapted such that it reduces to the Seung
and Nelson bending energy [Eq. (2)] when all triangles are
equilateral. Although this quantity is presented as a ratio of
areas, it implicitly accounts for the shapes of the adjacent
triangles through the quantity A. Grinspun et al. [25] provide
a full explanation of this shape consideration.

Although our mesh is 2D, the bending rigidity imparts
an effective thickness to the sheet. The bending rigidity B is
related to the Young’s modulus Y by [29]

B = Y h3

12(1 − ν2)
, (6)

where h is the thickness of the material and ν is Poisson’s
ratio. For triangular lattices ν cannot be independently tuned,
so ν = 1/3 always [20,24], and Y = Y2D/h. Thus we can
rearrange Eq. (6) and use the relationships in Eq. (3) to define
an effective thickness:

heff =
√

8kb

ks
. (7)

This length scale is used to set the sheet’s self-avoidance:
the sheet is not allowed to come within heff of itself.
Self-avoidance is enforced by introducing a repulsive force
between contact sites within an interaction range heff of each
other [30]. In general, the contact sites are spaced more
closely than the mesh nodes. For example, the thinnest sheet
we consider here (h = 127 µm) has a mesh spacing about
eight times coarser than heff. Thus we implement “level 3”
refinement (iterative bisection of triangle edges three times,
placing additional contact sites at the midpoints) such that the
spacing of contact sites is on the order of the sheet’s thickness.
Forces between the refined contact sites are distributed to the
nodes of the mesh nearest to the sites, weighted by proximity
to the site. The site refinement applies only during contact
detection and allows the mesh to remain coarse in all other
calculations. From now on, mentions of the simulated sheet’s
thickness h are in reference to this effective thickness.

The equations of motion for a node i in the sheet are

ẋi = vi,

mai = F i, (8)
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where xi is the three-dimensional (3D) position of a node, vi

its velocity, v̇i = ai its acceleration, and F i the sum of the
forces applied to node i, which is given by

F i = −
∑
j∈Ni

∇xi [Es(ri j )] −
∑

(i jk)∈Ti
(ikl )∈Ti

∇xi [Eb(n̂i jk, n̂ikl )]

+
∑
j∈Ni

F int
d (xi, x j, vi, v j ) + F iso

d (vi )

+
∑

j

Fc(xi, x j ) + Fext. (9)

Here Ni are the neighbors of node i, and Ti are the adjacent tri-
angles. The damping term F int

d is due to the dashpots pictured
in Fig. 2, and F iso

d is an additional isotropic, global damping.
Fc is the contact force, which is repulsive and turns on when
two nodes come within h distance of one another [30]. Finally,
any external applied forces are included in Fext.

High-frequency elastic waves dissipate quickly in materi-
als that are of interest to us (e.g., paper, Mylar, aluminum foil).
Instead, wrinkling is characterized by slower deformations
on the scale of the system size, with occasional hysteretic,
snap-through events. We therefore assume the sheet is mostly
in a quasistatic regime where the acceleration of a node is
close to zero: ai ≈ 0. The quasistatic equations of motion
constitute a differential-algebraic system which is well suited
to an implicit numerical integration scheme in time [30].
When the quasistatic approximation is violated, such as near
a snap-through event accompanied by large changes in node
velocities, the full dynamic equations of motion given in
Eq. (8) are integrated explicitly instead. Further details on
the numerical integration schemes and switching criteria are
provided in Appendix B, and a thorough explanation is given
in Ref. [30].

We note that plasticity can be added to this model by
allowing the rest angle (length) of a hinge (spring) to change if
the hinge (spring) is deformed past a specified yield threshold.
The plastic damage can then accumulate according to a purely
plastic, strain hardening, or even strain weakening model [30].
In this work, however, we will discuss only purely elastic
sheets, which do not fatigue or accumulate damage.

III. END-TO-END TWISTING

A. Ribbon setup and boundary conditions

Our simulated ribbons correspond to length L = 45.72 cm
and width W = 2.54 cm. Three different thicknesses are used
throughout this paper: 127 µm, 254 µm, and 508 µm. A single,
randomly seeded ribbon mesh was used across all simulations,
with an average node spacing of d = 1 mm. The random
lattice is generated by seeding the ribbon with nodes using
the Voro++ library [31,32], then Lloyd’s algorithm [33] is
iteratively applied 100 times to make the mesh more regular.
The mesh configuration at this point is taken as its rest config-
uration, and all the springs and facets have differing lengths
and areas. The spring and hinge stiffnesses are set according
to the model in Eqs. (4) and (5), and tuned such that the
Young’s modulus of the sheet is approximately Y = 3.40 GPa
and the bending rigidity is approximately B = 0.653 mPa m3,

TABLE I. Definitions of variables and physical parameters.

Property Symbol Formula

Length L −L/2 < y < L/2
Width W −W/2 < x < W/2
Thickness h
Young’s modulus Y Y2D/h
Poisson’s ratio ν 1/3
Bending rigidity B Y h3

12(1−ν2 )

End-to-end twist angle θ

Scaled twist angle η θ W
L

Scaled applied tension T F
Y hW

Confinement parameter α η2/T

B = 5.22 mPa m3, or B = 41.8 mPa m3, respectively, for the
three thicknesses. Properties of the thinnest ribbon are given
in physical units in Table II.

For both the regular and randomly seeded meshes we per-
formed a series of three modulus convergence tests: stretch,
shear, and bend. The average node spacing had the range
d ∈ [0.5 mm, 2.5 mm]. In Appendix C we see that the model
in Eqs. (4) and (5) converges to the expected values of Young’s
modulus (Y ), shear modulus (G), and bending rigidity (B).
While there is some amount of error in these moduli, it is
within the range of variation expected, for example, from
physical material samples.

As in most of the twisted ribbon experimental setups
[4,8,9,13], the short edges of our ribbon are clamped such
that the nodes are fixed in a rigid line. The clamped edges
then rotate with relative angular velocity θ̇ = 0.15 rad/s (up
to time t = 120 s = 2 min) to produce a net end-to-end twist
angle θ across the ribbon. This rate is sufficiently slow for
the loading to be considered quasistatic. This angle is then
normalized by the aspect ratio to give the scaled twist angle
η = θ W

L . Additionally, a weight F (in Newtons) is applied
longitudinally to the clamped edges. This force is then scaled
by the ribbon’s dimensions and Young’s modulus such that
T = F

Y hW ∈ [1.80 × 10−4, 4.14 × 10−3]. In each simulation
the ribbon was twisted at least until it reached a transverse
buckling point; most of the the final angle twists were between
η ∈ [0.5, 0.9]. The computation time per simulation ranged
from 1–4 days running on 10–14 threads, with the longer
runs mostly depending on the significant contact refinement
needed for very thin sheets that encounter self-contact.

TABLE II. Properties of the primary test ribbon in physical units.

Property Symbol Measurement

Length L 45.7 cm
Width W 2.54 cm
Thickness h 127 µm
Young’s modulus Y 3.40 GPa
Bending rigidity B 0.653 mPa m3

Poisson ratio ν 0.333
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B. Deformation modes

At least seven distinct deformation modes have been ex-
perimentally observed [9,10,28]. Inspired by the variety of
these modes, and the careful tuning necessary to find them
all, we set out to test our computational model’s ability to
reproduce all the physically observed deformations using our
simulated ribbons. By adjusting only the total load applied to
the ribbon along the longitudinal axis (T ) and the twist angle
(η), we indeed find all the reported experimentally observed
morphologies, as displayed in Fig. 1.

We initially see the pure helicoid phase [Fig. 1(a)], which
transitions to the longitudinally buckled ribbon [Fig. 1(b)]
at an angle ηlon. The creased helicoid [Fig. 1(c)] develops
from this longitudinally buckled phase. Creased helicoids can
then undergo a looping transition [Fig. 1(d)] at ηtran and will
eventually develop self-contact at ηsc. At greater tensions we
observe transitions from the helicoid to the transverse-buckled
sheet [Fig. 1(e)]. Transverse-buckled ribbons can also reach
self-contact at ηsc. Sheets with smaller aspect ratios develop
multiple wavelengths of transverse buckling [Fig. 1(f)] and
can enter the accordion folded or yarning regime [Fig. 1(g)].

Overall we see excellent qualitative and quantitative agree-
ment of our simulations with experiments, from visual
inspection of the various instabilities to a thorough recre-
ation of a slice of the twisted ribbon phase space, in Fig. 3.
With these practical tests and the modulus convergence tests
(Young’s, shear, and bend) in Appendix C, we have full confi-
dence in our simulations’ ability to replicate physical sheets
and the nuances of their deformations. We find that some
subtle ambiguities that were raised in experiments, such as
the nature of longitudinal wrinkling’s onset and spectrum of
wrinkling frequencies, as well as dependence of the buckling
wavelength λlon on h and W , are revealed more clearly through
the precise measurements possible via our simulations.

1. Phase space

The ribbon’s deformation modes are arranged in a 3D
phase space with axes of sheet thickness h, normalized twist
angle η, and normalized longitudinal load T (note that other
dimensional and physical properties such as aspect ratio and
Young’s modulus are absorbed in the normalized quantities,
explained further in Table I). By fixing the thickness, one
can take a 2D slice of this phase space with the remaining
variables being the applied load and the twist angle.

We have fixed the thickness at h = 127 µm in order to
recreate a slice of the ribbon deformation phase space that
was probed experimentally by Chopin et al. [9]. Through-
out the slow twist, we extract the angles η at which the
primary instability, any secondary instabilities, and moments
of self-contact occur. The primary instability could be either
longitudinal or transverse buckling (ηlon or ηtran); in the former
case the ribbon will undergo a secondary transverse buckling
instability at a higher twist angle (ηtran). If twisted far enough,
ribbons will reach self-contact (ηsc). All of these transitions
are plotted in Fig. 3, and the longitudinal instability scales
with a dependence on T and an offset related to the ribbon’s
thickness, presented in Eq. (14). The transverse instability also
has a dependence on T , and additional dependences on the
dimensions of the ribbon, shown in Eq. (15). The crossover

FIG. 3. Slice of the thin ribbon deformation phase space at fixed
thickness h = 127 µm. Plotted are longitudinal buckling transitions
(blue circles, long-dashed border), transverse buckling transitions
(green circles, short-dashed border), and points of self-contact (red
circles, solid border) as a function of scaled ribbon tension T and
scaled twist angle η. At low tensions the transverse buckling tran-
sition often leads immediately to self-contact, whereas at higher
tensions the transverse instability occurs before self-contact devel-
ops. The blue long-dashed line corresponds to the theoretical scaling
of the longitudinal buckling angle ηlon [Eq. (14)] with a single fitting
parameter for the coefficient of the finite thickness correction term.
The green short-dashed line is the theoretical scaling of the transverse
buckling angle ηtran [Eq. (15)], again with a single fitting parameter
for the coefficient. T ∗, the tension at which the primary instability
switches from longitudinal to transverse buckling, is indicated by the
vertical black dashed line.

tension T ∗ indicates the primary instability switching from
longitudinal buckling to transverse buckling. [Modes shown
in Figs. 1(a)–1(e) fall within this slice of the phase space,
whereas the varied aspect ratio and thickness of modes in
Figs. 1(f) and 1(g) place these examples in different slices of
the 3D phase space.]

The onset of longitudinal wrinkles is determined by the
out-of-plane displacement along the midline of the ribbon,
as illustrated in Fig. 4(a). After the onset of wrinkling, we
observe that the frequency content of the wrinkle profile is
peaked at a characteristic frequency f = 1/λ, with λ being
the dominant wrinkle wavelength [Fig. 4(b)]. To enhance the
detection of wrinkle onset, frequencies outside a specified
range near the characteristic frequency are removed from the
wrinkle profile, as shown in Figs. 4(b) and 4(c). The resulting
wrinkle amplitude (see Fig. 4 caption for definition) exhibits a
sharp increase at a scaled twist angle ηlon; this “knee point” of
the amplitude curve—approximately the point of maximum
curvature in the data [34]—is the onset of longitudinal buck-
ling [Fig. 4(d)].

Transverse buckling and self-contact are detected by mea-
suring the shortest distance between any two points on
opposing long edges of a ribbon. At η = 0 this distance is
equal to the ribbon width W . However, as η increases, we
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FIG. 4. Detection of longitudinal wrinkles. (a) The out-of-plane displacement ẑ along the midline of a sample ribbon 127 µm thick with
scaled tension T = 9.00 × 10−4, which undergoes longitudinal buckling. Note that due to the clamped boundary conditions the wrinkles are
suppressed a distance Lsup ∼ O(W ). (b) The amplitude spectrum a( f ) of the middle third of the wrinkle profile in (a), computed as the absolute
value of the discrete Fourier transform of ẑ. The frequency of the highest peak is taken to be the reciprocal of the wrinkle wavelength λ. To
aid in identifying the precise onset of wrinkling, the amplitude spectrum is truncated to retain only frequencies in the range (1/λ) ± �, and
the wrinkle profile is reconstructed from the inverse Fourier transform of the truncated spectrum. (c) A waterfall plot of reconstructed wrinkle
profiles as a function of scaled twist angle η along the y axis, for which frequencies (1/λ) ± 0.15 cm−1 have been retained, with λ ≈ 1.69 cm.
(d) The wrinkle amplitude [〈H2(r = 0)〉y]1/2 as a function of η, where the average 〈·〉y is computed over the middle third of the wrinkle
profiles in (c). The three identified scaled angles ηlon, η1, and η2 correspond to selected wrinkle profiles in (c) shown in black. The scaled angle
ηlon = 0.203 marks the detected onset of longitudinal wrinkling, identified as the “knee point” [34] of the amplitude curve. Inset: Amplitude
as a function of confinement parameter offset by the wrinkle onset, α − αlon, with scaling β = 0.56 [Eq. (17)].

continue to track this distance, as shown in Fig. 5(a). The onset
of transverse buckling is marked by a pronounced change in
the slope of the edge distance plot. A second abrupt change
in slope marks the point of self-contact of the ribbon, after

which the shortest distance between opposing long edges is
approximately constant near the ribbon’s effective thickness.

While the transverse buckling and self-contact transitions
observed for large twist and tension are rich and fascinating

FIG. 5. Detection of transverse buckling and self-contact. (a) The shortest distance between any two points on opposing long edges of a
ribbon as a function of scaled twist angle, shown for ribbons at three different scaled tensions. At η = 0, the edge distance is equal to the ribbon
width W , while after self-contact, the edge distance equals the effective thickness h. Solid markers indicate the onset of longitudinal buckling,
transverse buckling, and self-contact, mapping out a vertical trajectory through the phase space plot of Fig. 3 along constant T . (b) Snapshots
of the ribbon in (a) (middle) at T = 1.98 × 10−3 in each of the four deformation regimes.
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phenomena [9,10,28,35,36], for the remainder of this work we
will focus on the small T , small η region. Buckling transitions
in this corner of the phase diagram have been well observed
and categorized experimentally [9], but near-threshold and
far-from-threshold analytical efforts to describe these insta-
bilities are challenged by a lack of closed form solutions
to describe the postbuckling ribbon shapes [5,6,10]. The ap-
proximations available are expected to be valid only within a
very narrow window η � ηlon, even in the so called far-from-
threshold analysis, where the analysis is based on a variant of
the Föppl–von Kármán equations, which is weakly nonlinear
in the small amplitude “out-of-ribbon” displacements [10].
Our simulations enable a critical examination of the nature
of the transitions.

2. Wavelength scaling

The primary instability in the small η, small T corner of
the phase space is longitudinal buckling [Fig. 1(b)]. The spine
of the ribbon is plotted as a function of longitudinal position
in Fig. 4(a); when the ribbon buckles, a pattern of wavelength
λlon appears along the center of the ribbon.

The scaling of λlon with the initial tension T was derived
analytically by Coman and Bassom [6] with singular pertur-
bation methods of the second-order boundary value problem,
and by Chopin and Kudrolli [9] using energy scaling ar-
guments. More sophisticated scaling arguments noting the
relation of wavelength to wrinkling width were also derived
later by Chopin et al. [10]. These methods of obtaining a
scaling relation for the wavelength λlon, gave rise to the same
scaling

λlon√
hW

∝ T −1/4, (10)

where all made use of the near-threshold (NT) approximation,
which assumes a small amplitude for the wrinkles. The NT
analysis makes no claims to describe the wrinkling pattern
as η and the amplitude of the wrinkles increases, but is a
fine reference point for analyzing the onset of the longitudinal
buckling phase.

Figure 6(a) demonstrates that if the wavelength λlon is
normalized by the width and thickness, the data points tend
to collapse on the curve T −1/4. These simulated results agree
with previous experimental measurements of wavelength [9].
However, we find that ribbons held at low tensions devi-
ate from the observed T −1/4 dependence, indicating other
parameters might be subdominant at moderate tensions but
important in the small T limit. A closer look at the data in
log-log space [Fig. 6(b)] reveals the points’ scatter systemat-
ically depends on the ribbon thickness. Thus, our simulations
show that λlon has a more complicated dependence on h, and
potentially T , than previously estimated.

3. Wrinkle suppression

The clamped boundary conditions suppress the wrinkles by
a distance of Lsup ∼ O(W ) from each edge. Lsup is measured
from our simulation data as the distance from the clamp at
which the wrinkle amplitude exceeds 5% of its value at an
angle η > ηlon when wrinkles are well developed [equivalent
to η2 indicated in Figs. 4(c) and 4(d)]. The wrinkle amplitude

FIG. 6. Variation of scaled longitudinal wavelength λlon/
√

hW
with scaled tension T . (a) The wavelength λlon of the wrinkles was
estimated in experiments to scale as T −1/4, and good agreement
is obtained by fitting a curve through the data at all but the two
smallest tensions (T < 4 × 10−4), as shown by the dashed line [9].
Prior experimental results also reveal deviations from the theoretical
scaling at low tensions [9]. (b) Individual fits of scaled wavelength
for each of the three thickness to width ratios h/W (solid lines) shown
on a log-log scale, with the theoretical scaling reproduced from
(a) (dashed line). Closer examination of the data from (a) reveals that
λlon has a lingering dependence on the thickness h, and could have a
more complex relationship to T than previously estimated.

is defined as in Fig. 4(d), and is reflected over the y = 0 line
and averaged to determine a single average value for Lsup at
each tension. Figure 7(a) displays the profile of each longitu-
dinally buckled sample. The regions shaded blue are defined
as the suppression zone near the clamped boundary. As shown
in Fig. 7(b), the suppression distance is very small at low
tensions and increases to nearly 2W at greater tensions, close
to T ∗ (the upper bound for longitudinal wrinkling). Despite
this suppression near the edges, the wavelength λlon of the
wrinkles is not otherwise affected by the clamped boundaries.
We base this on the fact that the buckled wavelength is consis-
tent everywhere outside of the suppression zone, both in the
middle of the ribbon and near the clamps.

C. Mechanical responses

A wide variety of information is accessible to us through
our simulations, such as built-in x-ray vision which allows
us to track the distribution of strain and stress in the sheet
throughout the simulated experiment. These insights allow us
to perform powerful analyses of the sheets’ deformations, and
examine details of the twisted ribbon problem which have
been previously intractable through experimental means. In
particular, we investigate the detailed evolution of the ribbon’s
stress distribution, wrinkling, and the contraction as it deforms
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FIG. 7. Wrinkle suppression in a ribbon with h = 127 µm due
to clamped boundaries. (a) Profiles of all longitudinally buckled
samples, highlighting the wrinkle suppression zone near the ribbon
edges in blue. The suppression distance measured from either clamp
is Lsup. (b) Wrinkle suppression length, Lsup as a function of applied
tension T . The suppression near a clamped edge approaches the value
2W = 5.08 cm as tension increases toward T ∗. Lsup likely depends on
h as well as W .

and undergoes the longitudinal buckling instability at low
tensions.

1. Primary instabilities

The transition from pure helicoid to longitudinal or
transverse buckling can be predicted analytically from the
dimensionless stress profile of a twisted ribbon [10]:

σ yy(x) = T + η2

2

[(
x

W

)2

− 1

12

]
, (11)

σ xx(x) = η2

2

[(
x

W

)2

− 1

4

]{
T + η2

4

[(
x

W

)2

+ 1

12

]}
.

(12)

The ribbon supports a smooth twist in the form of a helicoid
for small η. However, as η increases, depending on the applied
load T , the longitudinal stress σ yy of the centerline (x = 0)
becomes compressive (negative) at an angle η0:

η0 =
√

24T . (13)

In an infinitely thin ribbon, any amount of compressive stress
would cause the ribbon to buckle, but a ribbon of finite thick-
ness can withstand an amount of compression proportional to
its thickness, generating a corrective factor [9],

ηlon =
√

24T + Clon
h

W
. (14)

Here Clon = 11.00 is a fitting parameter extracted from the
longitudinal buckling transitions plotted in Fig. 3, which is
close to the experimentally measured Clon = 9.3 for ribbons
with similar dimensions [9].

The expected transverse buckling angle is estimated by
stress balancing scaling arguments [10]. In ribbons of finite
length (i.e., not extremely long), the transverse buckling angle
is

ηtran = Ctran

√
h

L
T −1/4, (15)

where Ctran is a dimensionless constant. We compare this form
with the transverse buckling transitions we observed in Fig. 3,
and find that Ctran = 4.12 describes transitions that occur at
T > T ∗.

2. Stress distribution

Moving forward we will discuss only the longitudinal
stress, as the transverse stress components are suppressed
within the small η, small T region we study here. A quantity
that will be useful in forthcoming calculations is the “con-
finement parameter” α = η2/T , which allows us to compare
the progression of twist across samples with different applied
tensions. It can also be understood as the ratio of geometric to
tensile strain [10].

For η > η0, the compressive stress occurs in a symmet-
ric region about the longitudinal center line (i.e., x/W < rwr

with 2rwr being the characteristic width of the compression
zone), as seen by solving Eq. (11). The profile will remain
parabolic until the twist reaches the critical buckling an-
gle, ηlon. This parabolic profile is that of a pure helicoid;
the shape of the stress profile at η > ηlon, however, will re-
veal the nature of the longitudinal buckling transition and
which, if either, of the existing analytical approximations
(near-threshold or far-from-threshold) can describe the post-
buckling ribbon [10]. The parameters of our primary test
ribbon (T ∈ [1.8 × 10−4, 2 × 10−3) and h = 127 µm) place it
in a regime which could be considered near-threshold (NT),
or might be in an ambiguous region between the NT and
far-from-threshold (FT) zones. If the stress continues to be
parabolic for some time postbuckling, then we would see that
the longitudinally buckled ribbon is well described by the
NT analysis, and within the region of NT validity. On the
other hand, the FT procedure assumes the compressive stress
in the wrinkled zone is zero at a first-order expansion about
a compression-free state. Ribbons with finite thickness are
expected to support some compressive stress, in which case
we would expect σ yy(x < rwr) = 0, or at least to decrease
substantially, when η > ηlon.

By analyzing the local stress tensors at each facet of our
mesh, we find that for a given applied load T (= 1.08 × 10−3),
the stress profile of our simulated ribbon [Fig. 8(a)] becomes
compressive at precisely the η0 = √

24T (= 0.161) that was
predicted by Eq. (11). In Fig. 8(a) the longitudinal buckling
transition occurs at ηlon = 0.216, after which the stress pro-
file begins to flatten out. The shape of this profile seems to
approach the theoretical profile for an infinitely thin ribbon in
the FT approximation [10]. Importantly, however, we find that
the buckled ribbon continues to support compressive stress,
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FIG. 8. (a) Stress profile of a ribbon with T = 1.08 × 10−3,
h = 127 µm. The color bar (and color of each stress slice) indicates
the progression of the ribbon’s twist, with blue corresponding to
η = 0 and red η = 0.8, which is the fully twisted state for this
sample. The solid black line in the color bar marks η0, when stress
becomes compressive, and the gray dashed line marks ηlon, the onset
of longitudinal buckling. As the ribbon twists, its longitudinal stress
profile is initially parabolic, crossing over to compressive stress in
the center of the ribbon at η0 (= 0.161). After the longitudinal buck-
ling transition at ηlon (= 0.216, dashed blue-purple line) the stress
profile bottoms out (minimum stress marked by the horizontal gray,
dashed line) and widens. The buckled ribbon thus continues to sup-
port compressive stress but functionally caps the compressive load.
(b) At varying thicknesses (h = 63.5 µm, 127 µm, 254 µm, 508 µm)
and degrees of confinement (α = 80, 120, 160, 200), we see that
the residual stress supported by the longitudinally buckled ribbon
is linear in h/(W

√
T ), with a slope of −5.14 ± 0.05 given by the

dashed line. Regardless of α, as the thickness tends to zero we expect
the stress in the ribbon to also vanish.

and the width of the compressive zone widens as the twist
progresses. This was predicted by Qiu [37], but analytically
computing what the residual stress should be for the twisted
ribbon remains challenging and has not yet been done in the
literature.

In Fig. 8(b) we plot the residual stress at various values of
α and across ribbons of varying thickness. Regardless of the
degree of confinement, the ribbon’s residual stress is linear in
h/(W

√
T ). Longitudinal buckling functionally caps the mag-

nitude of stress the ribbon supports; we can see this clearly
by the collapse of data points onto the same fitted line in
Fig. 8(b). At a fixed thickness and tension the residual stress is
the same, even when the value of α increases. As the thickness
of the ribbon tends to zero, we expect the stress to vanish,
since an infinitely thin ribbon cannot support compression.
This intuition is also supported by our data.

Residual stresses are seen in other systems [38–40]; a satu-
ration of residual stress has even been predicted for a circular
sheet confined to a curved substrate [41]. However, given that
the twisted ribbon is not externally confined or adhered to
a substrate, the relation between the ribbon’s residual stress
and these other examples is not immediately obvious. The
residual stress arises for the same reason ηlon exceeds η0: the
nonzero thickness of the ribbon [9]. Like a beam, a ribbon
of finite thickness can support some amount of compression.
Conversely, some amount of compression seems necessary
to maintain the buckling pattern, as the lack of stress would
allow the ribbon to relax back into a flat state. Despite lacking
a precise explanation for the measured phenomenon, these
results are a crucial insight to the nature of the longitudi-
nal wrinkling transition: namely, this transition is completely
reversible since no hysteresis occurs, and the longitudinally
buckled and creased helicoid phases support compression in
the center of the ribbon.

3. Wrinkle amplitude and confinement

Transverse slices of the longitudinal wrinkles can be ex-
tracted from a map of the mean curvature:

A(r) =
√

〈H2(r)〉y. (16)

Note that in this definition of amplitude, the mean curvature
H (r) is averaged along the longitudinal (y) axis in the cen-
tral third of the ribbon. In Fig. 9(a) are plots of H (r), with
red (blue) zones indicating above-the-plane (below-the-plane)
curvature. As the twist progresses the wrinkles store more
curvature and also begin to “turn” into the triangular facets
indicative of the creased helicoid phase. Figure 9(b) plots
Eq. (16) versus the transverse position, as well as the corre-
sponding stress profile [like the slices in Fig. 8(a)] measured
at the same η (reminiscent of a position wave function and
its potential well). The edges of the ribbon are in tension, so
they remain flat, whereas the center of the ribbon contains the
longitudinal wrinkles which form to almost fully relieve the
compression.

As the twist progresses, the maximum amplitude A(r = 0)
gradually increases. We identify ηlon, the onset of longitudinal
wrinkles, as the angle corresponding to the the “knee points,”
the approximate points of maximum curvature [34], in the η

vs amplitude curve, identified in Fig. 4(d). At angles larger
than ηlon, the magnitude of the amplitude continues to grow
according to

A ∼ (α − αlon)β. (17)

(Recall that α = η2/T .) The exponent β is extracted from the
sizeable linear portion of the slope of the amplitude curve
in log-log space, shown in the inset of Fig. 4(d). Figure 10
shows the extracted β from the fits as a function of T for the
three different ribbon thickness probed in our simulation. We
find that β = 0.59 ± 0.05 is approximately constant, albeit
with some scatter which may suggest some dependence of β

on the thickness of the sheet: the amplitude of the wrinkles
increases more rapidly (larger value of β) for thicker ribbons.
This is most likely because thicker ribbons have longer buck-
ling wavelengths λlon, with fewer total ridges fitting along
the length of the ribbon. The β found in our simulations is

015003-9



MADELYN LEEMBRUGGEN et al. PHYSICAL REVIEW E 108, 015003 (2023)

FIG. 9. Development of the wrinkles that appear in a ribbon with a tension T = 1.08 × 10−3, h = 127 µm. Snapshots were taken at regular
intervals, starting at the onset of buckling. The first frame is at η = ηlon, and the frames below show the progression of the wrinkles as the ribbon
goes through the longitudinally buckled phase and begins to cross into the creased helicoid phase. (a) Contour maps of the mean curvature in
the ribbon. Red (blue) corresponds to above(below)-the-plane curvature. Black (gray) dashed lines mark the near threshold (far-from-threshold)
predictions for the width of the wrinkles. At the onset of wrinkling their width is consistent with the NT prediction, but they soon expand to meet
the FT prediction. In the final frame we also see the wrinkle ridges begin to “turn” and start to form the triangular facets characteristic of the
creased helicoid phase. (b) Contour maps of the longitudinal stress component. Red (blue) corresponds to tensile (compressive) in-plane stress.
As the twist angle increases, the magnitude of the compressive stress remains approximately the same, though the width of the compressive
area broadens. The transition from longitudinal buckling to the angled creased helicoid is also evident in these stress maps. (c) Stress profile
and resultant amplitude [A = (〈H2(r)〉y )1/2] at various values of η.

similar to that reported by Chopin and Kudrolli [12] based on
experimental measurements which had more limited preci-
sion. While analytical calculations are currently lacking, we
hope that our results will lead to further work in this direction.

FIG. 10. Maximum amplitude of longitudinal wrinkles scales
like A(r = 0) ∝ (α − αlon )β . Values of β are extracted from the am-
plitude curve in Fig. 4(d) and are plotted here for ribbons of varying
thickness and applied tension. We find β = 0.59 ± 0.05 with the
average value given by the solid black line. The horizontal dashed
black line is the value Chopin and Kudrolli [12] experimentally
estimated to be β = 2/3.

We measure the width of the wrinkled zone rwr by identi-
fying “knee” of the amplitude profile [Fig. 9(b)], and plot this
rwr as a function of η in Fig. 11(a). Chopin et al. [10] predicted
that for a ribbon of finite thickness, rwr = 0 until the critical
ηlon after which rwr might jump directly to the NT curve [[10],
Eq. (3)],

(
1 − 12r2

wr

) = 24

α
, (18)

and eventually progress to following the FT curve [[10]
Eq. (50)],

(1 − 2rwr)
2(1 + 4rwr) = 24

α
. (19)

Our simulation agrees with this in spirit, though we ob-
serve that after longitudinal buckling (denoted by the vertical
dashed black line) the ribbon jumps directly to the FT predic-
tion (plotted in solid red), similar to experimental observations
with ribbons with similar thickness [12]. We also find that rwr

grows a bit faster than the FT prediction. Moderate tensions,
such as T = 1.08 × 10−3, seem to more closely follow the FT
prediction than smaller tensions. Using a thinner ribbon and a
very fine temporal resolution might show wrinkles developing
at widths near the NT curve (plotted in solid blue) before
widening to the FT curve.
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FIG. 11. Tests of the NT (red, upper lines) and FT (blue, lower lines) model predictions at h = 127 µm, various ribbon tensions. (a) At
the onset of wrinkling (ηlon, dashed black line) the wrinkled zone emerges at a nonzero width. It widens as the twist progresses, eventually
asymptoting to rwr = 0.5 as α → ∞. This behavior is similar across various applied tensions, though at moderate tensions (e.g., T = 1.08 ×
10−3) rwr adheres more closely to the theoretical FT prediction than it does at lower tensions. (b) Another way to test the NT and FT predictions
is by measuring the contraction χ of the ribbon. Here χ is plotted against the inverse confinement parameter (such that small values of 1/α

correspond to the greatest angles η). Across varying tensions the ribbon tends to contract as a pure helicoid, following the NT prediction,
until the onset of wrinkling (ηlon, dashed black line). After wrinkling, the contraction proceeds rapidly, at times even faster than the predicted
FT slope. This difference in scaling could be because of the transition to the creased helicoid phase, which is predicted to have a different
contraction scaling than the FT model [7,13,14]. The gray dashed line corresponds to the transverse buckling point, after which the ribbon
springs back to a lesser contraction.

4. Length contraction

Another metric that distinguishes the NT from FT ap-
proximations is χ = 1 − Lee/L0, the contraction of the ribbon
where Lee is the end-to-end ribbon length at a given η, and
L0 is the ribbon length at η0 = √

24T [13]. Figure 11(b) plots
χ/η2 as a function of inverse confinement (1/α). Chopin et al.
further summarize that as a ribbon is twisted, a pure helicoid
will contract as [[10], Eq. (20)],

χNT

η2
= 1

24
− 1

α
(20)

(plotted in solid blue), whereas a ribbon in the FT approxima-
tion would contract according to [[10], Eq. (52)]

χFT

η2
= r2

wr

2
(21)

(plotted in solid red). For three simulations with various ap-
plied tension, we find that initially the ribbon does contract
as a helicoid. Then immediately after the onset of wrinkles it
begins to contract more quickly, similar to the FT predictions.
At times, however, the contraction grows even quicker than
the slope of the FT curve, particularly at low tensions. This
difference in scaling could be because of the ribbon’s transi-
tion into the creased helicoid phase, which contracts more as
an isometric packing of the triangular facets than as an elastic
wrinkling problem (i.e., the FT prediction) [7,13,14].

It has been suspected that the NT approximations well
describe the onset of longitudinal buckling, and that the FT ap-
proach is useful at larger twist angles; the transition between
these regimes is admittedly fuzzy [10,14]. NT analysis does
a great job at predicting λlon [6], and we show throughout
this section that FT analysis is able to capture much of the
postbuckling behavior, such as the general shape of the stress
profile and width of the wrinkled zone. We find that despite
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their individual successes, neither the NT or FT analyses can
entirely capture the onset or development of the longitudinal
wrinkling phase. This deficiency is shown most clearly in the
contraction of the ribbon.

IV. CONCLUSION

We have used simple, computationally cheap, mass-spring
model simulations to recreate the rich morphology and phase
behavior of twisted ribbons, which were previously realized
experimentally and analyzed theoretically. The subtleties of
studying twisted ribbon morphology provided the perfect test
playground for our mechanical model of thin sheets. We chose
a MSM as a simple, nostalgic extension of the ubiquitous
coupled oscillators physical system. The fine spatial control
of the MSM provides intuition for the mesoscopic physics
(much coarser than atomic but still discrete approximation
of the continuum) which drives morphological transitions in
elastic sheets. This particular MSM has a long history, with
analytical mappings for continuous bulk properties when the
underlying lattice is regular [20]. Attempts have been made
in the past to generalize the model to be useful for a random
lattice [23–27], and we propose a hybrid of these past attempts
which we have shown translates the discrete mesh parameters
to the continuous bulk properties, regardless of underlying
mesh topology.

Through precise transition detection and wrinkling analy-
sis we have thoroughly probed the small twist, small applied
tension regime. We carefully examined the scaling of the
longitudinal buckling wavelength, and observed a region of
wrinkle suppression near the clamped edges. As twist in-
creases, the wrinkle amplitude grows with a robust scaling
constant β = 0.59 ± 0.05. Furthermore, studying the stress
profile of the ribbon revealed that longitudinal buckling caps
the amount of compression the ribbon supports with its finite
thickness. Measurements of the wrinkled zone width and the
ribbon’s net contraction additionally reveal that the near- and
far-from-threshold approximations are able to capture some,
but not all, of the ribbons’ behavior.

These simulations are useful for probing regimes of the
twisted ribbon phase space which are difficult to study ex-
perimentally. Additional deformation modes are suspected to
theoretically lurk in the low tension and very thin “corners”
of the phase space [10], approaching the tensionless and iso-
metric limits. These two regimes are straightforward to study
using simulations, since the applied tension and thickness
of the ribbon can be set arbitrarily small in our framework.
A slightly different computational approach is necessary for
the exactly isometric case: a differential-algebraic equation
(DAE) solver is necessary to impose additional algebraic con-
straints on the system. Our method already uses a DAE solver,
which could be readily adapted to study isometric sheets with
our methods. One can also imagine treating the transverse
buckling and looping transitions with the same attention we
have devoted to longitudinal buckling, including the charming
yarning transition [36]. The torque response of ribbons during
the twist procedure could also be extracted from simulations
and compared to experiments [42]. The development of e-
cones and d-cones (highly localized deformation and stress
focusing) in the creased helicoid phase is another topic which

could be further illuminated through simulations [12,43,44].
Deeper understanding of these myriad fascinating instabilities
remains to be unlocked by computational studies.

Further applications of this simulation framework in-
clude deformations of curved films or shells, wrinkling on
substrates, flat-folding and origami, and crumpling through
various geometries. Meshes can be generated with any bound-
ary shape or cutouts, and the resultant sheet can be prestressed
or plastically deformed (e.g., dimpling). Our mesh model is
well suited for studying mechanical responses of a sheet (pre-
and postdeformation), and internal stress and energy measure-
ments allow many modes of data collection and analysis.

ACKNOWLEDGMENTS

We thank Julien Chopin and Benjamin Davidovitch for
their expert thoughts and discussions. This research was par-
tially supported by the National Science Foundation through
the Harvard University Materials Research Science and En-
gineering Center DMR-2011754. M.L. was supported by
the Ford Foundation Predoctoral Fellowship, and both M.L.
and J.A. were supported by the National Science Founda-
tion Graduate Research Fellowship Program under Grant
No. DGE-1745303. A.K. was supported by National Science
Foundation Grant No. DMR-2005090. C.H.R. was partially
supported by the Applied Mathematics Program of the U.S.
DOE Office of Science Advanced Scientific Computing Re-
search under Contract No. DE-AC02-05CH11231.

APPENDIX A: DISCRETIZED MODEL OF A
CONTINUOUS SHEET

1. Stretching

In modeling a continuous sheet, we choose a discretization
scheme inspired by the Seung and Nelson (SN) model [20]
for a mesh of equilateral triangles. We extend the SN model to
apply to meshes with triangles of varying shape by modifying
the prefactors of the energy terms. Beginning with the in-plane
stretching, the energy density of a continuous elastic sheet can
be written as

us = 1
2ε · C · ε, (A1)

where ε is the in-plane strain tensor and C is the stiffness
tensor. A 2D, isometric material has a stiffness tensor of the
form⎡

⎣C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

⎤
⎦ =

⎡
⎣λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤
⎦,

(A2)

where λ and μ are the Lamé coefficients. From these we
obtain the in-plane Young’s modulus and Poisson ratio [20]

Y2D = 4μ(μ + λ)

2μ + λ
, ν = λ

2μ + λ
. (A3)

On the other hand, a discrete lattice has an energy per spring
given by

Es(ri j ) = 1

2

(
1

2

A

A0
ks

)
(si j − |xi − x j |)2 (A4)
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for two nodes at xi, x j connected by a spring of length si j and
spring constant ks. A is the sum of the facet areas adjacent to
edge ri j , and A0 is the area of an equilateral triangle with side
length si j . The term A/(2A0) is given by Van Gelder [23], with
typos in the original model corrected by Lloyd et al. [24].

When every triangle in the mesh is equilateral, i.e., the
nodes are arranged periodically, the energy density can be
written as [21]

us = 1

2V

∑
b

α(b)(�(b) )2n(b)
i n(b)

j n(b)
k n(b)

m εi jεkm, (A5)

where V is the volume of a cell surrounding a node, b is the
index of a bond connected to the node, α is the spring constant
of a half-length bond, and � is the rest length of a half-length
bond. The vectors ni are unit vectors parallel to the bond b, and
i ∈ {1, 2}; εi j are components of the in-plane strain tensor, and
Einstein summation notation is used. Given this definition of
energy density, we can identify that the stiffness tensor is

Ci jkm = 1

V

∑
b

α(b)(�(b) )2n(b)
i n(b)

j n(b)
k n(b)

m . (A6)

In the regular (hexagonal) lattice A/(2A0) reduces to unity,
� = s/2, and the cell volume V = 2

√
3�2. All the springs

have the same constant α = 2ks. Equating the continuous and
discrete forms of the stiffness tensor gives

λ = μ =
√

3

4
ks (A7)

as obtained in previous work [20,21]. Thus the in-plane
Young’s modulus and Poisson ratio for a regular (hexagonal)
lattice are

Y2D = 2√
3

ks, ν = 1

3
. (A8)

Typically for a nonregular lattice, A/(2A0) = 1, so the quan-
tities in Eq. (A8) no longer hold beyond a first order
approximation in the discretization process. Indeed, for non-
regular mesh topologies, one cannot write an exact formula
for the in-plane Young’s modulus. Instead, we choose a target
Y2D = 2ks/

√
3 for the sheet so that the stretching energy has

the form

Es(ri j ) = 1

2

(√
3

4

A

A0
Y2D

)
(si j − |xi − x j |)2, (A9)

as previously stated in Eq. (4). We show in Appendix C that
as the mesh size decreases, the bulk in-plane modulus for the
sheet converges to the target value for Y2D, and a Poisson ratio
of ν = 1/3. In other words, in the absence of an exact trans-
lation between a continuum model and a sheet with randomly
placed nodes, we can approximate an isometric sheet with a
given modulus and ν = 1/3. This is done by allocating the
stiffness of each spring constant based on the local topology
of the mesh, such that all calculations are local and still rely
only on terms that are first order in the deformation.

2. Bending

Still following the SN model [20], we begin with the total
bending energy for a continuous sheet with area S, embedded

in R3:

Ub = 1

2
B

∫
S

H2 dA, (A10)

where B is the bending rigidity, and H is the mean curvature
(calculated as the sum of principal curvatures at a point).
When the surface is deformed by a small amount f , the mean
curvature is approximately the Laplacian: H ≈ ∇2 f .

For a discrete mesh, we use the bending energy

Eb(n̂i jk, n̂ikl ) = 1

2

(
2

A0

A
kb

)
|n̂i jk − n̂ikl |2, (A11)

where n̂i jk and n̂ikl are the unit normals to triangles with
vertices i jk and ikl respectively; A is the sum of facet areas
adjacent to the edge ik between the two facets, and A0 is the
area of an equilateral triangle with side length sik . Essentially
this bending energy is a penalization of misaligned normals
for neighboring facets. The prefactor 2A0/A is inspired by
Wardetzky et al. [26], who chose it as a quantification of the
shape (and thereby mass distribution) of the triangle facets
adjacent to the edge in question. Although we present it as a
ratio of areas, the quantity encodes the local topology of the
mesh.

In the case of a mesh composed entirely of equilateral
triangles, the prefactor 2A0/A again reduces to unity, so the
discrete bending energy is

Eb(n̂i jk, n̂ikl ) = 1
2 |n̂i jk − n̂ikl |2, (A12)

in agreement with the SN model. By rolling a mesh of equi-
lateral triangles into a cylinder, Seung and Nelson related the
continuous bending rigidity B to the discrete bending constant
kb [20]:

B =
√

3

2
kb. (A13)

This relationship does not hold for nonregular mesh topolo-
gies, but as in the stretching case, we choose a target B =√

3/(2kb) for the sheet, which gives the bending energy the
form

Eb(n̂i jk, n̂ikl ) = 1

2

(
4√
3

A0

A
B

)
|n̂i jk − n̂ikl |2, (A14)

previously stated in Eq. (5), which we call the modified Grin-
spun (mG) model. Appendix C demonstrates that as the mesh
size tends to zero, the bulk bending modulus of the sheet
converges to the target value for B. By allocating the stiff-
ness of each hinge spring according to the surrounding mesh
topology, we can use this local deformation-based model to
approximate a continuous sheet with rigidity B.

There have been critiques of Seung and Nelson’s treatment
of the Gaussian rigidity in mapping the continuous bending
model to the discrete one [45]. However, in spite of this
critique of the SN bending model, we find that both the SN
model [Eq. (A12)] and the mG model [Eq. (A14)] perform
well numerically and demonstrate convergence as a function
of mesh size, as discussed in Appendix C.
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APPENDIX B: NUMERICAL DETAILS

Here we briefly summarize the numerical approach used to
model the twisting of thin ribbons in this work. Simulations
of twisted ribbons are performed using a custom code devel-
oped previously to study the crumpling of thin sheets [30].
The code is implemented in C++ and multithreaded using
OpenMP [46]. As noted in the main text, the mesh topology
of the ribbons is generated by randomly seeding a rectangular
domain with nodes and constructing a Delaunay triangulation
via the Voro++ library [31,32]. The random triangulation is
regularized using Lloyd’s algorithm, an iterative method that
incrementally steers the triangles to a more uniform shape and
size [33].

To evolve the dynamics of the ribbon in time under applied
tension and twist, the equations of motion [Eq. (8)] are solved
numerically using a hybrid integration scheme, as presented in
Ref. [30]. In this approach, we recognize that the ribbon de-
forms slowly and smoothly for the majority of the simulation,
which permits a quasistatic approximation of the equations of
motion such that ai ≈ 0 for a node i in the sheet. The resulting
equations of motion,

ẋi = vi,

F i = 0, (B1)

describe a differential-algebraic system of equations, or DAE,
which contains both differential equations (ẋi = vi) and al-
gebraic constraints (F i = 0) that must be simultaneously
satisfied. Due to the presence of algebraic constraints, DAEs
are typically solved using implicit methods, and a backward
differentiation formula (BDF) is used to discretize and inte-
grate this system. The solution vector (xi, vi ) at each new
time step is computed iteratively using Newton’s method, and
each Newton iteration entails a solving a linear system. The
linear systems are solved using the conjugate gradient method,
which is well suited for large, sparse, symmetric, positive-
definite systems as occur in our problem. Small performance
boosts are also obtained through preconditioning of the linear
system and are described in greater detail in Ref. [30].

While a majority of the deformations during twisting, such
as the onset of longitudinal wrinkles, are smooth, a rapid de-
formation occurs during transverse buckling of the sheet, and
possibly self-contact. In these cases, the local velocity at any
point in the ribbon may be large, and the quasistatic approx-
imation no longer holds. The breakdown of the quasistatic
approximation is detected by monitoring the maximum rate
of change in velocity at each time step and identifying if it
exceeds a specified threshold. When the threshold is exceeded,
the fully dynamic equations of motion [Eq. (8)] are solved
instead using a standard explicit Runge-Kutta method. Both
the implicit and explicit methods employ adaptive step control
by measuring the discrepancy between a lower and higher
order solution at each step. We refer to Ref. [30] for complete
details on this method.

APPENDIX C: MODEL VALIDATION

Three modulus tests are employed to probe the response
of both types of spring models under different loading con-
ditions across various mesh resolutions: uniaxial stretching;

TABLE III. Dimensions of the four test meshes used to perform
the three types of modulus tests. All meshes had Young’s modulus
Y = 1.00 GPa and thickness h = 1.00 mm. The theoretically pre-
dicted value of Poisson ratio for any triangular lattice is ν = 1/3
[20,24]. Square test meshes (type A) were used for the stretching
and shearing tests, whereas long, thin test meshes (type B) were used
in the bending tests.

Mesh type Aspect ratio Node spacing range (mm)

Regular A 0.996 [0.500, 2.50]
Random A 1.00 [0.577, 2.24]
Regular B 8.66 [0.600, 5.00]
Random B 10.0 [0.707, 3.16]

uniformly loaded, simply supported bending; and pure shear-
ing. In all tests the sheet is loaded with an appropriate stress
to produce a deformation well within the Hookean regime for
the sheet (i.e., well modeled by an analytical solution linear
in ε); in every test the target strain is ε = 2.5 × 10−5. These
tests probe the small-deformation stress-strain response of our
sheet and demonstrate convergence as a function of mesh
resolution for both spring models.

To test how well our MSM produces the expected bulk
material properties, we track the displacement of each node
in the mesh. Ideally the discretized mesh will deform ex-
actly as a continuous sheet would under the specified loading
conditions. We compare the actual position of each node to
the final homogeneous-deformation position. The error of the
entire mesh is then calculated as a scaled L2 norm using the
formula

E =
√√√√ 1

3A

N∑
i=1

At
i

∥∥xi − xh
i

∥∥2

2, (C1)

where A is the area of the entire sheet, the sum is over each
node i, At

i is the area of the undeformed triangles adjacent to
a node, xi is the position of a node, and xh

i is the position
the node should have under a homogeneous deformation. The
prefactor of 1/3 counteracts the triple counting of At

i .
We fit the error to the form

E = adb, (C2)

where d is the characteristic length scale of the mesh (mean
spacing of the nodes, or exact spacing in the case of a regular
lattice) and a and b are fitting parameters. The value of b
tells us the order of convergence of the numerical method
with the chosen spring model. Two types of meshes were
tested: a regularly packed triangular lattice, and a randomly
seeded triangular lattice. The regular meshes were generated
to have similar nonequilateral triangles at each corner, to
reduce the errors contributed by nonregular spring lengths at
the boundary. Five sets of random meshes with different seeds
were generated to fit the convergence across the random-type
mesh.

Table III gives the dimensions of the test meshes used.
“A”-type meshes were used for the stretch and shear tests, “B”
types were used in the bend test. All sheets had a Young’s
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FIG. 12. Uniaxial stretching errors in the regular (left, triangular
markers) and random (right, X markers) meshes as a function of
mesh resolution. For both meshes the mVG model (blue, lower point
clouds) error has a smaller magnitude than the SN model (red, upper
point clouds).

modulus of Y = 1.00 GPa and thickness of h = 1.00 mm
(with corresponding bending rigidty B = 3.00 Nm).

The stretching and shearing effects are dependent only on
the sheets’ in-plane springs. In Figs. 12–14 we test the SN
model for stretching [Eq. (1)] versus the modified Van Gelder
(mVG) model [Eqs. (4) and (A9)].

The expected deformation of the sheet under uniaxial
stretching in the y direction is

Fstretch(x0, y0, z0) → ((1 − νεst )x0, (1 + εst )y0, z0), (C3)

FIG. 13. Percent errors in the measured Poisson ratio compared
to the expected value of ν = 1/3 in the regular (left, triangular
markers) and random (right, cross markers) meshes. The mVG model
(blue, lower point clouds) more reliably produces the expected Pois-
son ratio than the SN model (red, upper point clouds).

FIG. 14. Pure shearing errors in the regular (left, triangular mark-
ers) and random (right, cross markers) meshes as a function of mesh
resolution. For both meshes the SN model (red, lower point clouds)
has smaller magnitude of errors and converges at a higher order than
the mVG model (blue, upper point clouds).

where εst = �L
L is the target strain. The stress applied to the

edges of the sheet is thus σst = Y εst. Figure 12 plots the error,
Eq. (C1), across a range of mesh resolutions. On the left, in tri-
angular markers, are the errors for a regular mesh, and on the
right, with cross markers, are the random mesh errors across
all five random sheets. For both mesh topologies the mVG
model has smaller magnitude of error than the SN model,
and for the regular mesh, the mVG model also converges at
a slightly greater order.

As an additional metric, during the stretch test we also
measure the percent error in the actual Poisson ratio compared
to the analytically dictated value of ν = 1/3 [20,24]. Here the
percent error of ν is calculated from bulk measurements of
the sheets’ width and length. Figure 13 shows that in all cases
the mVG model more consistently reproduces a mesh with
ν = 1/3.

A sheet subjected to pure shear along all four edges should
deform as

Fpure shear(x0, y0, z0) → (x0 + εshy0, εshx0 + y0, z0), (C4)

where εsh = 1
2 ( �W

L + �L
W ) is the target strain. The shear stress

applied to the edges is therefore σsh = 2Gεsh, with G the shear
modulus. In this case we see in Fig. 14 that the SN model has
errors of smaller magnitude than the mVG model and also
converges at a greater order. However, in the regular mesh
case (left, triangular markers), the mVG model performs more
consistently than the SN model.

Throughout this paper we implemented the mVG model
for stretching because of its advantages in reproducing the
expected Young’s modulus and Poisson effect. Although the
mVG model has a disadvantage under shear deformations,
shear is not particularly relevant for our twisted ribbon studies.
Further, the differences between the models are slight for the
random meshes, so we concede one less-relevant disadvantage
to employ two salient advantages.
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The bending effects are dependent only on the sheets’
out-of-plane rigidity, from the hinge edge pseudosprings. As
shown in Fig. 15, we test the SN model for bending [Eq. (2)]
versus the mG model [Eqs. (5) and (A14)].

A uniformly loaded, simply supported plate (rotation is
allowed at the free edges, but edges are fixed in the z direction)
has a bent profile of

zss(y) = − εb

5L3
(5L4 − 24L2y2 + 16y4), (C5)

where y ∈ [−L/2, L/2] and εb = �zmax
L is the target strain. The

stress applied across the sheet is σb = 1024
15

B
L3 εb, with B the

bending rigidity. Therefore the expected deformation of the
sheet is

Fss bend(x0, y0, z0) → (x0, y0, zss(y0)). (C6)

Figure 15 shows that the mG model performs better in the
regular mesh than the SN model. For random meshes the
models converge at the same order, but generally the mG error
has a smaller magnitude. Thus, we implement the mG model
for bending in this paper because its error is generally less
than the SN bending model.

While we find the definition of error in Eq. (C1) to most
thoroughly quantify the amount of error across the sheet, we
can also calculate the percent error of the modulus of interest.
The average node spacing of our ribbon meshes is d = 1 mm.
For a test mesh of similar node spacing, the mVG/mG models

FIG. 15. Uniformly loaded, simply supported plate bending er-
rors in the regular (left, triangular markers) and random (right, X
markers) meshes as a function of mesh resolution. For the regular
mesh the mG model (blue, lower point clouds) has a smaller mag-
nitude of error and greater order of convergence than the SN model
(red, upper point clouds). The random meshes converge at the same
order, but in general the magnitude of the error is smaller when using
the mG model.

give average error ≈4.5% for Young’s modulus, ≈1.5% for
shear modulus, and ≈1.9% for bending modulus.
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