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Correlations of tensor field components in isotropic systems with an application
to stress correlations in elastic bodies
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Correlation functions of components of second-order tensor fields in isotropic systems can be reduced to an
isotropic fourth-order tensor field characterized by a few invariant correlation functions (ICFs). It is emphasized
that components of this field depend in general on the coordinates of the field vector variable and thus on the
orientation of the coordinate system. These angular dependencies are distinct from those of ordinary anisotropic
systems. As a simple example of the procedure to obtain the ICFs we discuss correlations of time-averaged
stresses in isotropic glasses where only one ICF in reciprocal space becomes a finite constant e for large sampling
times and small wave vectors. It is shown that e is set by the typical size of the frozen-in stress components normal
to the wave vectors, i.e., it is caused by the symmetry breaking of the stress for each independent configuration.
Using the presented general mathematical formalism for isotropic tensor fields this finding explains in turn the
observed long-range stress correlations in real space. Under additional but rather general assumptions e is shown
to be given by a thermodynamic quantity, the equilibrium Young modulus E . We thus relate for certain isotropic
amorphous bodies the existence of finite Young or shear moduli to the symmetry breaking of a stress component
in reciprocal space.
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I. INTRODUCTION

A. Tensorial foundation of science and engineering

The fundamental laws of physics and the constitutive re-
lations of engineering are formulated in terms of tensors and
tensor fields (assigning a tensor to each point of the mathe-
matical space) [1–4] which by construction guarantees them
to hold independently of the specific coordinate system used
for their description. Moreover, also instabilities and failure
in materials science and engineering, e.g., for granular piles
and silos [5] or plastic deformation in soft or glassy materials
[6–10], must be described by appropriate tensorial invariants
of tensor fields and this should also be crucial in principle
for mesoscopic computer models [11,12] of localized plastic
failure of a broad range of systems.

B. Isotropic systems

Isotropic systems, such as generic isotropic elastic bodies
[4,13], simple and complex fluids [14,15], amorphous metals
and glasses [16], polymer foams and networks [15], or, as a
matter of fact, our entire universe [3], are described (at least
on some scales) by isotropic tensors and isotropic tensor fields
[1,2,4]. Let us assume for simplicity that the system is not
only isotropic but also spatially homogeneous [17], achiral
[13], stationary in time, and embedded in a d-dimensional
Euclidean vector space described by an orthonormal Cartesian
tensor basis [4]. A point in this vector space is either called
r (real space) or q (reciprocal space). It is well known that
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the components of isotropic tensors remain unchanged under
an orthogonal coordinate transformation [4]. For instance, the
component E1212 of the fourth-order elastic modulus tensor
Eαβγ δ of an isotropic body [4,13] is always given by the shear
modulus μ, i.e., an invariant material property (see Secs. II D
and V C for details). Interestingly, this does in general not hold
for the components of isotropic tensor fields [2] which may
depend (in real space) not only on the length r of the field
vector r but also on the (normalized) coordinate dependent
components r̂α of its direction r̂ = r/r. This implies that
mathematically and physically legitimate isotropic tensor field
components may depend on the orientation of the coordinate
system and this, as we shall see, holds in a related manner
both in real and in reciprocal space. As we shall empha-
size these angular dependencies differ from those of ordinary
anisotropic systems with frame-invariant angular-dependent
material functions, say for crystalline solids [13].

C. Invariant correlation functions

Tensor fields are probed experimentally or in computer
simulations by means of correlation functions of some of
their components. For instance, as shown in Fig. 1 for an
isotropic elastic body discussed in more detail below, one
may investigate the spatial correlations of the shear-stress
component of the stress tensor field [8,18–26]. For isotropic
systems such correlation functions must be isotropic tensor
fields. They may thus depend on the orientation of the co-
ordinate systems as demonstrated by the example given in
panel (b) of Fig. 1. Another example of current interest are
the correlations of strain tensor field components of a broad
range of isotropic systems which have also been shown to
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FIG. 1. Autocorrelation function c̄1212(r) of time-averaged shear-
stress fields σ̄12(r) of a two-dimensional isotropic elastic body:
(a) Unrotated frame with coordinates (r1, r2), (b) frame (r′

1, r′
2) ro-

tated by an angle α = 30◦ (rotations marked by “′”). Albeit the
system is isotropic, the correlation function is strongly angle depen-
dent revealing an octupolar symmetry and depends, moreover, on the
orientation of the coordinate system. While each pixel corresponds
in panels (a) and (b) to the same spatial position r, the correlation
functions differ by the angle α. c̄1212(r) is negative (blue) along the
axes and positive (red) along the bisection lines of the respective
axes. The theoretical prediction Eq. (1) is indicated by thin lines.

reveal “anisotropic” correlation functions [8,27–33]. Impor-
tantly, correlation functions of tensor components describe
the linear response due to a small perturbation [14], say an
inclusion in an elastic body [34,35]. Such a tensorial response
field may thus be angle-dependent for systems and source
terms which are both perfectly isotropic (see Sec. II G for a
comparison of tensorial response fields and associated corre-
lation fields in isotropic systems). As we shall remind [22]
and emphasize in this study, while the isotropy of the system
may not be manifested by one correlation function of ten-
sor field components it is nevertheless present in the general
mathematical structure of the complete set of all correlation
functions of the investigated tensor field. While this makes
the interpretation of observed tensor field pattern, like the
ones given in Fig. 1, more intricate, the good news is that
this complete set of correlation functions is determined by
a small number of “invariant correlation functions” (ICFs)
[19,21,22]. We emphasize here that theory and computational
studies should focus on these ICFs and this in a first step in
reciprocal space (cf. Appendix A). The real-space correlations
are then obtained by inverse Fourier transformation (FT).

D. Specific case considered

We demonstrate the general procedure by an analysis of
stress field correlations in two-dimensional (d = 2) simulated
isotropic elastic bodies [4,13]. While previous work character-
izes correlations of the instantaneous stress field [18–21,24–
26] or of the stress field of the system’s “inherent states”
(local energy minima) [22,23], we rather compute the time-
averaged stress fields σ̄αβ (q) in reciprocal space (q being the
wave vector) for each independent configuration c and analyze
their correlation functions c̄αβγ δ (q). This is best done using
“natural rotated coordinates” (NRC) aligned with q allow-
ing the precise determination of the ICFs characterizing the
isotropic tensor field. Importantly, only one of these ICFs is

shown in the hydrodynamic limit and for sufficiently large
sampling times �τ to become a finite constant e > 0. This
phenomenological constant characterizes the typical size of
the frozen stress components normal to each wave vector q,
i.e., it measures the (continuous) symmetry breaking of the
stress field in reciprocal space for each independent config-
uration. This finding and a proper treatment of tensor field
correlations reflecting the material isotropy directly imply that
the stress correlations in real space must be long-ranged. For
instance, the correlation function of the shear-stress field must
decay as

c̄′
1212(r) � − e

4πr2
cos[4(θ − α)] (1)

for sufficiently large r = |r| with θ being the angle of the field
vector r in the unrotated physical system, Fig. 1(a), and α the
rotation angle of the coordinate system, Fig. 1(b) (rotations
of the coordinate system are marked by primes “′”). We thus
confirm recent computer simulations on stress correlations in
binary Lennard-Jones glasses [22,23,25,36,37] and more gen-
eral theoretical considerations [18–21] on supercooled liquids
and amorphous elastic bodies.

E. Outline

We begin by reviewing in Sec. II general features of tensor
fields relevant for isotropic and achiral systems [1,2,4,38]. The
main computational points (model system, data production)
are summarized in Sec. III before we turn in Sec. IV to our
central numerical results. Taking advantage of recent theoret-
ical studies [18–21,25] we explain in Sec. V why the only
phenomenological parameter e needed to fit our data should be
similar to a thermodynamic quantity, the equilibrium Young
modulus E . A summary of the presented work and an outlook
are given in Sec. VI. Appendix A summarizes some properties
of FTs [39,40] while Appendix B addresses the FT of the
relevant correlation functions in d = 2. More details on our
simulation model and on the computation of the local stress
fields are given in Appendix C and Appendix D.

II. REVIEW OF ISOTROPIC TENSOR FIELDS

A. Introduction

1. Generalities

Familiarity with the general ideas and notations of tensor
algebra and analysis, as developed systematically in the stan-
dard textbooks [1,2,4,38], is taken for granted. We remind that
a tensor field assigns a tensor to each point of the mathe-
matical space, in our case a d-dimensional Euclidean vector
space [2]. An element of this vector space is denoted by the
“spatial position” r in real space or by the “wave vector” q for
the corresponding Fourier transformed reciprocal space. The
relations for tensor fields are formulated below in reciprocal
space since this is more convenient both on theoretical and
numerical grounds due to the assumed spatial translational
invariance. The properties of the corresponding real-space
tensor field are then obtained by inverse FT.
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2. Tensor components and basis

We assume for simplicity Cartesian coordinates with an
orthonormal basis {e1, . . . , ed} [1,2,4]. Greek letters α, β, . . .

are used for the indices of the tensor (field) components. A
twice repeated index α is summed over the values 1, . . . , d ,
e.g., q = qαeα with qα standing for the vector coordinates.
This work is chiefly concerned with tensors

T(o) = Tα1...αoeα1 . . . eαo (2)

of “order” (or “rank”) o = 2 and o = 4 and their correspond-
ing tensor fields with components depending either on r or q.
As common we refer to a tensor (field) T(o) by indicating its
components Tα1...αo . The order of a component is given by the
number of suffixes. Note that

Tα1...αo (q) = F[Tα1...αo (r)] (3)

for the do components in real and reciprocal space.

3. Transforms

We consider linear orthogonal coordinate transformations
(marked by “∗”) e∗

α = cαβeβ with matrix coefficients cαβ

given by the direction cosine cαβ ≡ cos(e∗
α, eβ ) [2]. cαβ = δαβ

if nothing is changed. For a simple reflection of, say, the
1-axis and a rotation in the 12-plane by an angle θ we have,
respectively,

reflection : c1β = −δ1β, (4)

rotation : c11 = c22 = cos(θ ),
(5)

c12 = −c21 = sin(θ ),

and cαβ = δαβ for all other indices. We remind that [2]

T ∗
α1...αo

(q) = cα1ν1 . . . cαoνoTν1...νo (q) (6)

under a general orthogonal transform. For a reflection of the
1-axis we thus have, e.g.,

T ∗
12(q) = −T12(q), T ∗

11(q) = T11(q),
(7)

T ∗
1222(q) = −T1222(q), T ∗

1221(q) = T1221(q),

i.e., quite generally we have sign inversion for an odd number
of indices α, β, . . . equal to the index of the inverted axis.
Please note that the field vector q = qαeα = q∗

αe∗
α remains

unchanged by these “passive” transforms albeit its coordinates
change.

4. Outline

We come back to this issue in the next subsection, Sec. II B.
The symmetries of tensors and tensor fields relevant for the
present work are summarized in Sec. II C. Isotropic tensors are
presented in Sec. II D, general isotropic tensor fields of order
1 � o � 4 in Sec. II E and, more specifically, fourth-order
isotropic tensor fields Tαβγ δ (q) for d = 2 in Sec. II F. Finally,
Sec. II G outlines some general relations for second-order
tensor fields Rαβ (r) corresponding to the “linear response”
caused by a pointlike “source term” Sαβ (r) = sαβδ(r) in real
space.

B. Isotropic tensors and tensor fields

1. Isotropic tensors

Isotropic systems are described by “isotropic tensors” and
“isotropic tensor fields.” Components of an isotropic tensor
remain unchanged by any orthogonal coordinate transforma-
tion [2,4], i.e.,

T ∗
α1...αo

= Tα1...αo. (8)

As noted at the end of Sec. II A the sign of tensor components
change for a reflection of one axis if the number of indices
equal to the inverted axis is odd. Consistency with Eq. (8)
implies that all tensor components with an odd number of equal
indices must vanish, e.g.,

T12 = T1112 = T1222 = T1234 = T1344 = 0. (9)

2. Isotropic tensor fields

The corresponding isotropy condition for tensor fields is
given by [2]

T ∗
α1...αo

(q1, . . . , qd ) = Tα1...αo (q∗
1, . . . , q∗

d ), (10)

which reduces to Eq. (8) for q = 0. Please note that the
fields on the left-hand side of Eq. (10) are evaluated with the
original coordinates while the fields on the right-hand side
are evaluated with the transformed coordinates. Another way
to state this is to say that the left hand fields are computed
at the original vector q = (q1, . . . , qd ) while the right hand
fields are computed at the “actively transformed” vector q∗ =
(q∗

1, . . . , q∗
d ). It is for this reason that Eq. (9) does not hold in

general for tensor fields, i.e., finite components with an odd
number of equal indices, e.g., T1222(q) �= 0, are possible in
principle for finite wave vectors.

3. Natural rotated coordinates

Fortunately, there are convenient coordinates, called “nat-
ural rotated coordinates” (NRC), where the nice symmetry
Eq. (9) for isotropic tensors can be also used for tensor fields.
Let us assume that the wave vector q points into the direction
of one of the axes, say, q = qδ1β with q = |q|. (This may be
achieved by a first rotation of the coordinate system.) Let us
denote by “¬” arbitrary inversions of axes in this frame. We
may thus rewrite Eq. (10) as T ¬

α1...αo
(q1) = Tα1...αo (q¬

1 ) since
q2 = q¬

2 = . . . = qd = q¬
d = 0. If we now assume in addition

that Tα1...αo (q) is an even function of its field variable q this
becomes

T ¬
α1...αo

(q) = Tα1...αo (q), (11)

i.e., both sides only depend on the same scalar parameter.
We may thus use for each q the same reasoning as for tensor
components.

4. Product theorem for isotropic tensor fields

Let us state a useful theorem for a general tensor field
C(q) = A(q) ⊗ B(q) with A(q) and B(q) being two isotropic
tensor fields and ⊗ standing either for an outer product,
e.g., Cαβγ δ (q) = Aαβ (q)Bγ δ (q), or an inner product, e.g.,
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Cαβγ δ (q) = Aαβγ ν (q)Bνδ (q). Hence,

C∗(q) = (A(q) ⊗ B(q))∗ = A∗(q) ⊗ B∗(q)
(12)= A(q∗) ⊗ B(q∗) = C(q∗),

using in the second step a general property of tensor (field)
products, due to Eq. (6), and in the third step Eq. (10) for
the fields A(q) and B(q) where q∗ stands for the “actively”
transformed field position. We have thus demonstrated that
C(q) is also an isotropic tensor field. This theorem allows to
construct isotropic tensor fields from known isotropic tensor
fields A(q) and B(q).

5. Multilinear forms

Alternatively, isotropic tensor fields may be constructed
using multilinear forms [2,4]

L(v1, . . . , vo; q) = Tα1...αo (q) v1
α1

. . . vo
αo

(13)

of order o where L stands for a linear and (first order) homo-
geneous functional of a d-dimensional vector space [2,4] and
v1, . . . , vo are o arbitrary vectors of this vector space (with
superscripts exceptionally used here for the numbering of
these vectors). For tensor fields this functional also depends on
the tensor field vector q. The goal is then to construct generic
isotropic tensor fields associated with multilinear forms. This
is done in a first step by means of additive terms of all pos-
sible scalars formed with the vectors v1, . . . , vo and q, e.g.,
inner products v1 · v2, v1 · q or q · q or triple products such
as [v1v2q]. In a second step all contributions are eliminated
which are yet incompatible with Eq. (10) and other imposed
symmetries. We shall illustrate this below in Sec. II E.

6. Kronecker and Levi-Civita tensors

We note for later convenience that the Kronecker symbol
δαβ is an invariant tensor, δ∗

αβ = δαβ , for any orthogonal trans-
form [2]. As a consequence, any tensor field, only containing
additive terms such as i(q)δαβδγ δ with i(q) being an invariant
scalar, is an isotropic tensor field. The same applies for tensor
fields with terms containing one or several factors q̂α since in
agreement with Eq. (10) this implies, e.g.,

(i(q)q̂α q̂βδγ δ )∗ = i(q)q̂∗
α q̂∗

βδγ δ, (14)

where Eq. (6) was used. The situation is more intricate for
terms containing the Levi-Civita (“permutation”) tensor εαβγ

[1] which is only invariant for the rotation subgroup but in
general not for reflections [2].

C. Assumed symmetries

All second-order tensors in this work are symmetric, Tαβ =
Tβα , and the same applies for the corresponding tensor fields
in either r- or q-space. This is, e.g., the case for the stress
fields σαβ (q). We assume for all fourth-order tensor fields that

Tαβγ δ (q) = Tβαγ δ (q) = Tαβδγ (q), (15)

Tαβγ δ (q) = Tγ δαβ (q), and (16)

Tαβγ δ (q) = Tαβγ δ (−q). (17)

Let us remind that fourth-order tensor fields are often con-
structed by taking outer products [4] of second-order tensor
fields. We consider, e.g., correlation functions

Tαβγ δ (q) = 〈T̂αβ (q)T̂γ δ (−q)〉, (18)

with T̂αβ (q) being an instantaneous (not ensemble-averaged)
second-order tensor field. Equation (15) then follows from
the symmetry of the second-order tensor fields. Evenness,
Eq. (17), is a necessary condition for achiral systems. It im-
plies that Tαβγ δ (q) is real if Tαβγ δ (r) is real and, moreover,
Eq. (16) for correlation functions since 〈T̂αβ (q)T̂γ δ (−q)〉 =
〈T̂γ δ (q)T̂αβ (−q)〉. As already emphasized, it is assumed that
all our systems are isotropic. This implies that Eqs. (8)–(10)
must hold for the ensemble-averaged tensor fields. Since our
systems are also achiral, Eq. (11) applies and tensor field
components with an odd number of equal indices must vanish
if one axis points into the direction of the wave vector. We
consider in the following subsections isotropic tensors and
tensor fields respecting the above symmetries.

D. Isotropic tensors

Isotropic tensors of different order are discussed, e.g., in
Sec. 2.5.6 of Ref. [4]. While all tensors of odd order must
vanish, we have

Tαβ = k1δαβ, (19)

Tαβγ δ = i1δαβδγ δ + i2(δαγ δβδ + δαδδβγ ), (20)

where k1, i1 and i2 are invariant scalars. Please note that all
symmetries stated above hold, especially also Eq. (9). An
example for an isotropic second-order tensor is the isotropic
stress tensor σαβ = −Pδαβ (with P being the average normal
pressure) which is assumed in the present work. Note that the
symmetry Eq. (15) was used for the second relation, Eq. (20).
Importantly, this implies that only two coefficients are needed
for a fourth-order isotropic tensor. As further discussed in
Sec. V C, the elastic modulus tensor Eαβγ δ is thus completely
described by two elastic moduli, say λ and μ, and the stress re-
laxation modulus tensor Eαβγ δ (τ ) by two relaxation functions,
say the “mixed relaxation function” M(τ ) and the “shear-
stress relaxation function” G(τ ) [41].

E. Tensor fields for isotropic achiral systems

We begin by summarizing the relevant isotropic tensor
fields for 1 � o � 4 compatible with the assumed symmetries
(cf. Sec. II C). With ln(q), kn(q), jn(q) and in(q) being invari-
ant scalar functions of q we have

Tα (q) = l1(q) qα, (21)

Tαβ (q) = k1(q) δαβ + k2(q) qαqβ, (22)

Tαβγ (q) = j1(q) qαδβγ + j2(q) qβδαγ

+ j3(q) qγ δαβ + j4(q) qαqβqγ , (23)

Tαβγ δ (q) = i1(q) δαβδγ δ

+ i2(q)(δαγ δβδ + δαδδβγ )

+ i3(q)(qαqβδγ δ + qγ qδδαβ )
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+ i4(q) qαqβqγ qδ

+ i5(q)(qαqγ δβδ + qαqδδβγ

+ qβqγ δαδ + qβqδδαγ ), (24)

with qα ≡ q · eα . Let us first check that the stated relations
are reasonable. All relations reduce (continuously) for q → 0
to the isotropic tensors stated in Sec. II D; all are, according
to the discussion in the last paragraph of Sec. II B, isotropic
tensor fields consistent with Eq. (10) and all symmetries stated
in Sec. II C for the second- and fourth-order tensor fields are
satisfied. All tensor fields of even (odd) order are even (odd)
with respect to q. Hence, tensor fields of odd order vanish for
q → 0 consistently with Sec. II D. Note that the terms due
to the invariants k1(q), i1(q), and i2(q) are strictly isotropic
and, hence, independent of the coordinate system. All other
terms depend on the components qα and thus on the coordinate
system.

Following Refs. [2,42] let us first show that Eq. (22) holds.
According to Eq. (13) one may represent a general second-
order tensor field by a bilinear form L(u, v; q). Invariant with
respect to orthogonal transformations are the scalars q · q =
q2, q · u, q · v and, additionally, the triple product [uvq] for
three-dimensional systems. We obtain thus the general bilin-
ear form

L(u, v; q) = k1u · v + k2(q · u)(q · v) + k3[uvq]

= Tαβ (q)uαvβ, with (25)

Tαβ (q) = k1δαβ + k2qαqβ + k3εαβγ qγ ,

with k1, k2, and k3 being scalar coefficients. While the first two
terms of Tαβ (q) are fine with respect to Eq. (10), the last term
must be eliminated since εαβγ changes sign for a reflection at
one axis [2].

The indicated relations for the other fields are obtained in
a similar manner [2]. Note that using the product theorem,
Eq. (12), one may obtain the isotropic tensor fields of third
and fourth order as sums of products of lower-order isotropic
tensor fields. For instance, let Aαβ (q) and Bαβ (q) be two
second-order isotropic tensor fields according to Eq. (22). It
is readily seen that Aαβ (q)Bγ δ (q) + Aγ δ (q)Bαβ (q) immedi-
ately implies the first four terms of Eq. (24), i.e., i5(q) = 0 if
Tαβγ δ (q) is only constructed from two isotropic second-order
tensors. For the indicated more general isotropic fourth-order
tensors Eq. (24) with i5(q) �= 0 we have included contribu-
tions due to products Tα (q)Tβγ δ (q) of isotropic first- and
third-order tensor fields.

Let us check that terms containing the Levi-Civita
tensor εαβγ cannot contribute additional terms to a fourth-
order tensor field Tαβγ δ (q) obeying the assumed symme-
tries. The fourth-order multilinear form L(u, v, s, T; q) =
Tαβγ δ (q)uαvβsγ tδ may indeed a priori contain in d = 3 terms
of products of invariants such as

(u · v) [sTq] = δαβεγ δνqν, uαvβsγ tδ, (26)

[uvq] [sTq] = εαβνεγ δμqνqμ, uαvβsγ tδ. (27)

Terms of the first type are disallowed for the same reason as
argued for the second-order isotropic tensor, Eq. (25). Note
also that such terms would not be compatible with Eq. (17).

Terms of the the second type, Eq. (27), can be expressed using
Sarrus’ law as

εαβνεγ δμqνqμ = δαγ δβδq2 + δαδqβqγ + δβγ qαqδ

− δαδδβγ q2 − δαγ qβqδ − δβδqαqγ .

This is, however, in conflict with Eqs. (15) and (16). To
enforce, e.g., the α ↔ β-symmetry the multilinear form
must also contain a term [vuq][sTq] which is equal to
−[uvq][sTq]. All contributions of the second type needed for
symmetry reasons thus exactly cancel.

Finally, let us note that for physical reasons it is useful to
rewrite for finite wave vectors (q �= 0) the isotropic fourth-
order tensor field Eq. (24) in terms of the components q̂α =
q̂ · eα of the normalized wave vector q̂. It is thus convenient to
bring in factors of q and to redefine i3(q) → i3(q)/q2, i4(q) →
i4(q)/q4 and i5(q) → i5(q)/q2. We thus rewrite Eq. (24) as

Tαβγ δ (q) = i1(q) δαβδγ δ

+ i2(q)(δαγ δβδ + δαδδβγ )

+ i3(q)(q̂α q̂βδγ δ + q̂γ q̂δδαβ )

+ i4(q) q̂α q̂β q̂γ q̂δ

+ i5(q)(q̂α q̂γ δβδ + q̂α q̂δδβγ

+ q̂β q̂γ δαδ + q̂β q̂δδαγ ). (28)

Now all in(q) have the same physical units. As we shall see,
the in(q) become often constant, in(q) → in, or negligibly tiny
for sufficiently small (but finite) q.

F. Isotropic Tαβγδ(q) in two dimensions

We have stated in Eq. (28) the general form of fourth-
order tensor fields consistent with the assumed symmetries.
As shown here, not all indicated terms are needed for the
two-dimensional systems studied numerically in this work. To
see this let us, following the discussion in Sec. II B, rotate
the coordinate system such that the 1-axis points into the
direction of q, i.e., q′

α = qδ1α with the prime “′” marking the
rotated frame. Using this coordinate system we define the four
functions [21]

cL(q) ≡ T ′
1111(q)

cN(q) ≡ T ′
2222(q)

c⊥(q) ≡ T ′
1122(q)

cT(q) ≡ T ′
1212(q)

⎫⎪⎪⎬
⎪⎪⎭

for q′
α = qδ1α. (29)

Since the system is isotropic, these functions depend on the
wavelength q but not on the direction q̂ of the wave vector q.
In other words, they are invariant under rotation and they do
not change either (being only dependent on q) if one of the
coordinate axes is inverted. Importantly, all other components
T ′

αβγ δ (q) are either by Eqs. (15) and (16) identical to these
invariants or must vanish for an odd number of equal indices
due to Eq. (11) as discussed in Sec. II B. The do = 16 com-
ponents T ′

αβγ δ (q) are thus completely determined by the four
invariants and this for any q. The tensor field Tαβγ δ (q) in the
original frame may then be obtained by the inverse rotation of
T ′

αβγ δ (q) to the original unrotated frame using Eq. (6). Let us

015002-5



WITTMER, SEMENOV, AND BASCHNAGEL PHYSICAL REVIEW E 108, 015002 (2023)

define the coefficients in(q) using

cL(q) = i1(q) + 2i2(q) + 2i3(q) + i4(q),

cN(q) = i1(q) + 2i2(q),

c⊥(q) = i1(q) + i3(q),

cT(q) = i2(q),

(30)

which is equivalent to the inverse relations

i1(q) = cN(q) − 2cT(q),

i2(q) = cT(q),

i3(q) = c⊥(q) − cN(q) + 2cT(q),

i4(q) = cL(q) + cN(q) − 2c⊥(q) − 4cT(q). (31)

Consistently with Ref. [21] it is then seen that

Tαβγ δ (q) = i1(q) δαβδγ δ

+ i2(q)(δαγ δβδ + δαδδβγ )

+ i3(q)(q̂α q̂βδγ δ + q̂γ q̂δδαβ )

+ i4(q) q̂α q̂β q̂γ q̂δ,

(32)

which agrees with Eq. (28) if we set i5(q) ≡ 0.

G. Response to point sources

Isotropic tensor fields may also be constructed by taking
the (inner or outer) product of a tensor field and a (constant)
tensor. We focus here on the second-order tensor field

Rαβ (q) = 1

V
Cαβγ δ (q) sγ δ, (33)

obtained from a fourth-order tensor field Cαβγ δ (q) and a
second-order tensor sαβ and where (as always) summation
over repeated indices is implied. For later convenience we
have introduced the volume V of the system. The results
presented below are readily generalized for different types of
products of tensor fields and tensors and for dimensions other
than d = 2.

If both Cαβγ δ (q) and sαβ are isotropic, then the product
theorem Eq. (12) discussed in Sec. II B implies that Rαβ (q)
must also be an isotropic tensor field. Under the additional
assumptions stated in Sec. II C Rαβ (q) is then given by
Eq. (22) in terms of two invariants k1(q) and k2(q). These
invariants can in turn be expressed in terms of the invariants
of Cαβγ δ (q) and sαβ . It is important to emphasize that albeit
being closely related Rαβ (q) and Cαβγ δ (q) have in general
different angular dependencies. This may be readily seen by
focusing on the specific cases R12(q) and C1212(q). It follows
from Eq. (22) that R12(q) ∝ q̂1q̂2 ∝ sin(2θ ) with q̂1 = cos(θ )
and q̂2 = sin(θ ) and from Eq. (32) that C1212(q) = i2(q) +
i4(q)q̂2

1q̂2
2 is given by an angular-independent scalar plus a

term proportional to cos(4θ ). In other words, R12(q) is a
quadrupolar field whereas C1212(q) is octupolar [43]. Both
fields thus reveal distinct angular patterns.

For reasons which will become obvious below we shall call
Rαβ (q) the “response,” Cαβγ δ (q) the “correlation function” or
“propagator” and sγ δ the “source” or “perturbation.” Up to
now we have not used that the field vector q refers to the
wave vector characterizing fields in reciprocal space. Using
Eq. (A5) it is seen that the tensor sαβ/V in reciprocal space

corresponds to a “point source” Sαβ (r) = sαβδ(r) in real space
where we have used Dirac’s delta function. The response
Rαβ (r) = F−1[Rαβ (q)] in real space is then given by

Rαβ (r) = Cαβγ δ (r)sγ δ, (34)

using the correlation function Cαβγ δ (r) = F−1[Cαβγ δ (q)] in
real space. For a more general source term Sαβ (r) we have of
course a convolution relation

Rαβ (r) = 1

V

∫
dr′Cαβγ δ (r − r′) Sγ δ (r′), (35)

which reduces to Eq. (34) for a point source. Importantly, all
statements made above for the reciprocal space remain valid
in real space, i.e., that Rαβ (r) is an isotropic tensor field if
Cαβγ δ (r) and Sαβ (r) are isotropic and, more specifically, that
R12(r) is a quadrupolar field while C1212(r) is octupolar.

Importantly, in many physical situations the source is in
fact not isotropic and thus in turn the response field not con-
sistent with Eq. (22). We remind that, e.g., the mechanical
response of amorphous solids under loading proceeds from lo-
cal and irreversible rearrangements, resetting disorder locally
thus generating a highly nontrivial mechanical noise (“shear
transformation zones”) [6–8,11,12]. According to a popular
model of localized plastic failure two orthogonal twin force
dipoles of opposite signs may be imposed at the origin [8].
This suggests to relax the isotropy condition for sαβ . Since
the source tensor is still symmetric it may be diagonalized
by an appropriate rotation of the coordinate system where
s12 = s21 = 0 and s11 and s22 become the two (in general not
identical) eigenvalues. Hence,

Rαβ (q) = s11Cαβ11(q) + s22Cαβ22(q)

with the isotropic correlation tensor field still being given by
Eq. (32). Specifically, this implies

R12(q) = q̂1q̂2
[
i3(q)(s11 + s22) + i4(q)

(
s11q̂2

1 + s22q̂2
2

)]
.

For s11 = s22 the underlined term becomes a constant and we
recover the isotropic and quadrupolar response field discussed
above. Interestingly, for eigenvalues of opposite sign, s11 =
−s22, we obtain

R12(q) = s11i4(q) q̂1q̂2
(
q̂2

1 − q̂2
2

) ∝ sin(4θ ). (36)

The (nonisotropic) response field R12(q) thus has in this case
the same multipole pattern as the (isotropic) correlation field
C1212(q) albeit shifted by an angle π/8 [43]. It is readily seen
by inverse FT that the same behavior applies in real space.

In summary, two different types of angular dependence of
a response field must be distinguished. If the angular depen-
dence is consistent with Eq. (22), this behavior should not be
called “anisotropy” since the angle dependence is basically a
trivial consequence of the fact that tensor field components are
measured. If, however, Rαβ (q) is not consistent with Eq. (22),
this suggests that either the correlation tensor field Cαβγ δ (q)
and/or the source tensor sαβ are not isotropic. In many physi-
cal situations this is in fact expected for the source term while
the correlation fields may be assumed to be isotropic. The
physical behavior of response and correlation fields, albeit
closely related, then differ and should thus not be lumped
together.
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FIG. 2. Two-dimensional (d = 2) square lattice with agrid being
the lattice constant and nL = L/agrid the number of grid points in
one spatial dimension. The filled circles indicate microcells of the
principal box, the open circles some periodic images. The spatial
position r of a microcell is either given by the r1- and r2-coordinates
(in the principal box) or by the distance r = |r| from the origin (large
circle) and the angle θ .

III. COMPUTATIONAL ISSUES

A. Algorithm and systems

We present below numerical data obtained for amorphous
glasses formed by polydisperse Lennard-Jones (pLJ) particles
[25,44] simulated by means of Monte Carlo (MC) simulations
[45]. See Appendix C for details (Hamiltonian, units, con-
figuration preparation, data averaging). We focus on systems
containing n = 10 000 particles at a working temperature T =
0.2 much lower than the glass transition temperature Tg ≈
0.26, i.e., for our largest sampling time �τ = 107 the systems
behave as solid elastic bodies and all stochastic processes
are stationary [44]. Importantly, all Nc = 200 completely in-
dependent configurations c are quenched and tempered by
means of a mix of local and swap MC hopping moves [44,46]
(being thus effectively kept adiabatically at thermal equilib-
rium) while the data production runs are sampled only using
local MC moves. For each c we store several time-series
containing each Nt = 10 000 frames t .

B. Data sampling and analysis

In a first step various instantaneous properties are com-
puted for each t which are then “t-averaged” over the
correlated t and finally “c-averaged” over the independent c.
We thus characterize, e.g., the elastic modulus tensor Eαβγ δ by
means of the stress-fluctuation formalism [47–52] from which
a finite Young modulus E ≈ 45 is obtained (cf. Sec. V C).
Similarly, we compute in turn

(1) for each c and t the stress tensor field σαβ (r, t )|c (cf.
Appendix D) using a regular square grid as shown in Fig. 2
with a lattice constant agrid ≈ 0.2,

(2) the t-averaged fields σ̄αβ (r)|c,

(3) by Fast-Fourier transform the corresponding stress
fields σ̄αβ (q)|c = F[σ̄αβ (r)|c] in reciprocal space,

(4) the correlation functions c̄αβγ δ (q)|c in reciprocal space
for each configuration c, cf. Eq. (C2),

(5) the c-average c̄αβγ δ (q), cf. Eq. (C3),
(6) and finally by inverse FT c̄αβγ δ (r) = F−1[c̄αβγ δ (q)]

the correlation functions in real space.
To obtain the correlation functions in rotated coordinates

we rotate first σ̄αβ (q)|c → σ̄ ′
αβ (q)|c and perform then all the

subsequent steps as before. We note finally that real and re-
ciprocal space correlation functions have the same dimension
due to our FT convention (cf. Appendix A).

IV. MAIN NUMERICAL RESULTS

A. Determination of ICFs in NRC

Before we shall have a closer look at c̄αβγ δ (q) in standard
unrotated or rotated coordinates let us first characterize the
correlations in NRC, i.e., for each wave vector q the coor-
dinate system is rotated until the 1-axis coincides with the
q-direction. We mark these new tensor field components by
“◦” to distinguish them from standard rotated tensor field
components (marked by primes “′”) using the same rota-
tion for all q. Note that q◦

α = qδ1α . The ICFs c̄◦
αβγ δ (q) =

〈σ̄ ◦
αβ (q)σ̄ ◦

γ δ (−q)〉 are thus obtained using the “invariant stress
fields” (ISFs) σ̄ ◦

αβ (q)|c rotated differently for each q. Impor-
tantly, for strictly isotropic systems c̄◦

αβγ δ (q) only depends on
the magnitude q of q but not on its direction q̂. Consistent with
Eq. (29) and following Ref. [21], we define

c̄L(q) ≡ 〈c̄◦
1111(q)〉q̂,

c̄N(q) ≡ 〈c̄◦
2222(q)〉q̂,

c̄⊥(q) ≡ 〈c̄◦
1122(q)〉q̂, and (37)

c̄T(q) ≡ 〈c̄◦
1212(q)〉q̂,

where we average over all q̂ with |q| ≈ q (using a bin width
similar to the lattice spacing of the grid in reciprocal space).
The q̂-averaged four ICFs are shown in the main panel of
Fig. 3 for our largest sampling time �τ . The central observa-
tion is that c̄L(q), c̄⊥(q) and c̄T(q) vanish for sufficiently large
�τ while c̄N(q) remains finite. Moreover, as emphasized by
the bold solid line in the main panel

βV c̄N(q) � e ≈ 45 for q � 1, (38)

with β = 1/T being the inverse temperature, V the system
volume and e a phenomenological constant characterizing the
plateau in the hydrodynamic limit. As shown in the inset
of Fig. 3 for c̄◦

2222(q, θ ) and α = 0◦, we have checked for
several tensor field components c̄◦

αβγ δ (q, θ ) that the expected
θ -independence for isotropic systems holds (within statistical
accuracy).

B. Sampling time dependence and symmetry breaking

The dependence of the ICFs on �τ is summarized in Fig. 4.
Let us first note that the (t-averaged) force ḡα (r) = ∂βσ̄αβ (r)
acting on each material element becomes in reciprocal space

ḡ◦
α (q) = iq◦

β σ̄ ◦
αβ (q), (39)
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FIG. 3. ICFs c̄N(q), c̄L(q), c̄⊥(q) and c̄T(q) for a large sampling
time �τ = 107 and n = 10 000 particles. Horizontal solid lines indi-
cate the phenomenological constant e ≈ 45. Inset: c̄◦

2222(q, θ ) does
not depend on θ while c̄1212(q, θ ) is well described by Eq. (43)
(dashed line). Main panel: c̄L(q), c̄⊥(q) and c̄T(q) vanish while
βV c̄N(q) � e > 0 for q � 1. A thin solid line emphasizes the peak
of c̄N(q) at q ≈ 6.5.

using NRC. Since q◦
1 = q is finite (for q �= 0), finite σ̄ ◦

11(q)
and σ̄ ◦

12(q) correspond to finite forces ḡ◦
α (q) which in turn

generate fluxes. Finite σ̄ ◦
11(q,�τ ) and σ̄ ◦

12(q,�τ ) must thus
rapidly vanish, as seen from the corresponding trajectories in
the inset of Fig. 4, and therefore c̄L(q,�τ ), c̄⊥(q,�τ ), and
c̄T(q,�τ ) also vanish for large �τ (main panel) [25]. Since
q◦

2 = 0 for all q the normal stress σ̄ ◦
22(q,�τ ) may be finite

without violating static mechanical equilibrium. As shown in
the inset, the σ̄ ◦

22(q,�τ ) thus have in general finite attractors

FIG. 4. �τ -dependence in reciprocal space using NRC and
q ≈ 0.06. Main panel: �τ -dependence of ICFs demonstrating that
c̄N(q, �τ ) remains finite while all other ICFs decay inversely with
�τ . Inset: σ̄ ◦

11(q, �τ ), σ̄ ◦
12(q, �τ ), and σ̄ ◦

22(q, �τ ) in the complex
plane (horizontal axis for real part, vertical axis for imaginary part)
as a function of �τ (using a logarithmic scale for the data points) for
one q and one c. σ̄ ◦

11(q,�τ ) and σ̄ ◦
12(q, �τ ) vanish for large �τ , i.e.,

converge to the origin of the complex plane, while σ̄ ◦
22(q,�τ ) has a

finite attractor σ̄
◦q
22 (q).

σ̄
◦q
22 (q). As emphasized by the superscript “q,” these are for

realistic �τ essentially quenched stresses. (Only for �τ of
order of the α-relaxation time τα these attractors become
weakly time-dependent diffusively decaying for symmetry
reasons towards the origin of the complex plane. Note that
�τ � τα for T = 0.2.) Since the large-�τ limit of c̄N(q,�τ )
is the typical squared magnitude of the σ̄

◦q
22 (q) in the complex

plane, this implies

e = βV
〈
σ̄

◦q
22 (q)σ̄ ◦q

22 (−q)
〉
. (40)

This means that e is a finite �τ -independent static property
characterizing the typical size of the (continuous) symmetry
breaking associated with the stress components normal to the
wave vectors for each configuration c. Note that e does thus
not depend on whether we use, e.g., a momentum conserv-
ing or an overdamped simulation scheme [45]. In general,
it is a fitting parameter depending on the distribution of the
σ̄

◦q
22 (q) caused by the preparation history. Interestingly, it is

observed that e is similar to the Young modulus E . This
result is in fact expected from recent studies on equilibrium
viscoelastic fluids (including supercooled liquids and glasses)
[21,25] showing that the ICFs may be expressed in the small-q
limit in terms of invariant macroscopic relaxation functions
[15,18–21,25]. Naturally, this requires additional assumptions
the crucial point being here that the systems must be at thermal
equilibrium. See Sec. V for more details.

C. Reciprocal space correlation functions

We turn now to a coordinate system rotated as in Fig. 1(b)
by the same angle α for all q. As shown in Sec. II F and using
the form-invariance of isotropic tensor fields, cf. Eq. (10), the
four ICFs determine in d = 2 the isotropic fourth-order tensor
field [21]

c̄′
αβγ δ (q) = [c̄N − 2c̄T] δαβδγ δ

+ c̄T(δαγ δβδ + δαδδβγ )

+ [c̄⊥ − c̄N + 2c̄T](q̂′
α q̂′

βδγ δ + q̂′
γ q̂′

δδαβ )

+ [c̄L + c̄N − 2c̄⊥ − 4c̄T] q̂′
α q̂′

β q̂′
γ q̂′

δ, (41)

with q̂′
α being the α component of q̂′ = q̂ in rotated coordi-

nates. The α rotation changes the terms in the last two lines of
Eq. (41). (Minor generalizations are needed for d > 2.) Using
the known values of the ICFs of our system Eq. (41) reduces
to

βV c̄′
αβγ δ (q) � e(δαβδγ δ − q̂′

α q̂′
βδγ δ − q̂′

γ q̂′
δδαβ + q̂′

α q̂′
β q̂′

γ q̂′
δ )

(42)

for q � 1 and large �τ . According to Eq. (42) we thus obtain,
e.g., for the shear-stress autocorrelation function

8βV c̄′
1212(q) = e (1 − cos[4(θ − α)]) (43)

for all α. As seen from the inset of Fig. 3 for α = 0◦, this
prediction (bold dashed line) agrees perfectly with our data
(triangles).
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FIG. 5. Rescaled shear-stress autocorrelation function
β c̄′

1212(r, θ )r2 as a function of x = θ − α comparing data for
different r and α with the prediction (bold solid line).

D. Real-space correlation functions

We return now to the correlations c̄′
αβγ δ (r) =

F−1[c̄′
αβγ δ (q)] in real space. As already stated in the

Introduction, cf. Eq. (1), inverse Fourier transformation
(cf. Appendix B) implies

−β c̄′
1212(r) � e

4πr2
cos[4(θ − α)] for r � 1 (44)

with θ being the angle indicated in Fig. 1(a). The same
large-�τ limit holds for −β c̄′

1122(r) and for β(c̄′
1111(r) +

c̄′
2222(r))/2. Moreover,

β(c̄′
1111(r) − c̄′

2222(r))/2 � 2
e

4πr2
cos[2(θ − α)] (45)

for r � 1 and for large �τ . The angle dependence for the
shear-stress autocorrelation function in real space is inves-
tigated in Fig. 5 where we plot using linear coordinates
β c̄′

1212(r, θ )r2 as a function of x = θ − α for different r and
α. The data compare well with the prediction, Eq. (44). Natu-
rally, the statistics deteriorates with increasing r.

E. Asymptotic r-dependence

A more precise check of the r-dependence is obtained
using the θ -average

P[ f , p](r) ≡ 2

π

∫ π

0
dθ f (r, θ ) cos(pθ ) (46)

for p = 2 and p = 4. For convenience the prefactor of the
integral is chosen such that P[cos(2θ ), 2] = P[cos(4θ ), 4] =
1. (On the discrete grid the integral is replaced by the sum
over all grid points in a distance interval [r − δr/2, r + δr/2]
which is finally normalized by half the number of grid points.)
All correlation functions f (r) presented in Fig. 6 are rescaled
to make their projections collapse on the same power law
e/4πr2 (bold solid lines). The main panel presents different
correlation functions for n = 10 000. The negative signs for
c̄1212 and c̄1122 are implied by Eq. (44). Consistently with
Eq. (45) the projection for (c̄1111 − c̄2222)/2 is additionally
rescaled with a prefactor β/2. Focusing on f (r) = −β c̄1212(r)

FIG. 6. P[ f (r), p](r) for rescaled correlation functions f (r) and
mode number p as indicated (α = 0◦). A double-logarithmic repre-
sentation is used. Only data for 1 < r < L/2 are given. The bold
solid lines represent e/4πr2. Main panel: Various projections for
n = 10 000. Inset: Projection for f (r) = −β c̄1212(r) and p = 4 for
different particle numbers n.

and p = 4 we verify in the inset the system-size independence
of these results. Data for a broad range of particle numbers
n are presented. As can be seen, all data nicely collapse on
e/4πr2, confirming thus the predicted long-range correlations
for asymptotically large simulation boxes. Similar results (not
shown) have been found for the projections of other c̄αβγ δ (r).

V. WHY AND WHEN e ≈ E HOLDS

A. Introduction

The phenomenological parameter e was defined in Sec. IV
by the limit Eq. (38). Note that e has the same dimension
energy/volume as the stress or an elastic modulus. We have
verified (cf. Fig. 4) that e indeed becomes �τ -independent
for sufficiently large sampling times �τ for our pLJ particle
glasses. Having fitted the value e ≈ 45 and using that the
ICFs c̄L(q), c̄⊥(q) and c̄T(q) vanish, all numerical results for
sufficiently large �τ , small q or large r can be explained
without any additional physical insight. We have observed,
however, that e is similar to the (equilibrium static) Young
modulus E . Albeit not strictly necessary for the main thrust
of this work, a demonstration that both constants should be
similar or even equal—under to be specified assumptions and
approximations—must be an important finding allowing to
estimate a priori the angular dependence of the correlation
functions. This can indeed be done following Refs. [21,25]
and in agreement with a different and complementary ap-
proach developed in Refs. [18–20]. Naturally, this requires
additional physical input. We remind first in Sec. V B how
the correlation functions c̄(�τ ) of time-averaged fields, the
focus of the present work, are related to the correlation func-
tions c(τ ) of instantaneous fields under the assumption that
the relevant stochastic processes are stationary [41]. A short
recap of linear viscoelasticity is given in Sec. V C. Using the
general theoretical predictions for the ICFs of instantaneous
stress fields [21,25], reminded in Sec. V D, it is shown (cf.
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Sec. V E) that e ≈ E for equilibrated viscoelastic fluids with
a sufficiently broad elastic plateau.

B. Instantaneous and time-averaged fields

1. General connection for stationary processes

We discuss in this work spatial correlation functions c̄
(both in real and reciprocal space) of time-averaged stress
fields computed over Nt = �τ/δτ instantaneous configu-
rations. The various correlation functions thus depend in
principle on the sampling time �τ as we have seen in Fig. 4.
As shown elsewhere [44] assuming a stationary stochastic
process (both for global properties as for fields) the �τ -
dependence of c̄(�τ ) can be traced back via

c̄(�τ ) = 2

�τ 2

∫ �τ

0
dτ (�τ − τ ) c(τ ) (47)

to the time dependence of the corresponding correlation func-
tion c(τ ) of the instantaneous fields. Please note that Eq. (47)
is closely related to the equivalence of the Einstein relation,
corresponding to c̄(�τ ), and the Green-Kubo relation, cor-
responding to c(τ ), for transport coefficients [14,44,45]. We
thus study in this work correlations within the Einstein pic-
ture. This has the advantage that the integral Eq. (47) filters
irrelevant high frequencies, i.e., c̄(�τ ) is a natural smoothing
function of the instantaneous field correlation function c(τ )
on which previous work has focused on [18–26,36,37].

2. Plateau values and asymptotic behavior

Obviously, Eq. (47) implies that c(τ ) is constant iff c̄(�τ )
is constant and both constants are equal. Importantly, this even
holds if c(τ ) and c̄(�τ ) are only constant for a finite but
sufficiently large time window [44]. Hence, if c(τ ) becomes
constant in the large-time limit c̄(�τ ) as well becomes con-
stant, i.e.,

lim
τ→∞ c(τ ) = lim

�τ→∞
c̄(�τ ) ≡ c∞, (48)

with c∞ being the common asymptote [53]. Thus,
c̄L(q,�τ ) ≈ c̄⊥(q,�τ ) ≈ c̄T(q,�τ ) � 0 for large �τ

implies cL(q, τ ) ≈ c⊥(q, τ ) ≈ cT(q, τ ) � 0 for large τ and
visa versa. Similarly,

βV cN(q, τ ) � e ⇔ βV c̄N(q,�τ ) � e (49)

for the ICFs of the transverse normal stresses in the low-q
limit for, respectively, τ → ∞ and �τ → ∞ [53].

3. Generalized Maxwell model

It follows directly from Eq. (47) for c(τ ) = cp exp(−τ/τp)
that [44]

c̄(�τ ) = cpD(�τ/τp), with

D(x) = 2[exp(−x) − 1 + x]/x2 (50)

being the “Debye function” well known in polymer science
[15,54]. For systems with overdamped dynamics, such as for
our MC simulations, one expects the relaxation dynamics to
be described by a linear superposition of exponentially decay-
ing Maxwell modes [15,55]. For such a “generalized Maxwell

model” Eq. (50) generalizes to the superposition [44]

c̄(�τ ) = c∞ +
pmax∑
p=1

cpD(�τ/τp), (51)

with cp being the amplitude and τp (with 0 < τp < ∞) the
relaxation time of a mode p. Note that c∞ corresponds to the
modes with virtually infinite relaxation times. We remind that
given a sufficiently high number of modes p (or a distribu-
tion of modes) it is in principle always possible to fit any
reasonable c̄(�τ ) using the standard numerical techniques
[25,55,56]. In any case, for �τ � τ� with τ� = τ1 being the
largest (Maxwell) relaxation time Eq. (51) leads to

c̄(�τ ) � c∞ + 2

�τ

pmax∑
p=1

cpτp, (52)

i.e., c̄(�τ ) − c∞ ultimately decays inversely with �τ . This
decay is emphasized by the dashed-dotted line in Fig. 4.

C. Linear elasticity and viscoelasticity

1. Static elastic moduli

Consistently with Sec. II D, the elastic modulus tensor
Eαβγ δ for isotropic systems is completely described by two
invariants, say the two Lamé moduli λ and μ. Using Eq. (20)
Eαβγ δ may thus be written as [4,13]

Eαβγ δ = λδαβδγ δ + μ(δαγ δβδ + δαδδβγ ). (53)

We have determined λ and μ by means of the stress-
fluctuation formalism described elsewhere [47–52]. This
shows that for our pLJ particle systems at T = 0.2 we have
λ ≈ 39 and μ ≈ 14. The latter value is indicated by the bold
horizontal line in Fig. 7. (We have verified that the fluctuations
of λ and μ between different independent configurations c
are negligible.) Alternatively, one may describe the elastic
response of a body by means of the creep compliance tensor
Jαβγ δ being the inverse of the elastic modulus tensor:

Jαβγ δEγ δα′β ′ = 1
2 (δαα′δββ ′ + δαβ ′δα′β ). (54)

For isotropic bodies [4,13],

Jαβγ δ = 1 + ν

2E
(δαγ δβδ + δαδδβγ ) − ν

E
δαβδγ δ, (55)

with E being the Young modulus and ν Poisson’s ratio. Con-
sistently with Eq. (54) the two sets of invariants (λ,μ) and
(E , ν) are related in d dimensions by

ν = λ

2μ + λ(d − 1)
, (56)

E = λ + 2μ − (d − 1)λν. (57)

For d = 3 the usual formulas given in the standard textbooks
[4,13] are recovered, while

ν = λ

λ + 2μ
and E = 4μ

λ + μ

λ + 2μ
for d = 2. (58)

Using the known values for λ and μ for our pLJ particle
systems at T = 0.2 this implies E ≈ 45 and ν ≈ 0.6. Please
note that the values λc and μc obtained for each independent
configuration c only differ very weakly for n > 2000 from
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FIG. 7. Comparison of the standard MC algorithm only in-
cluding local hopping moves (circles) [49] with the dramatically
more efficient variant including swap MC hopping moves (squares)
[44,46] for pLJ systems with n = 10 000 particles focusing on the
shear-stress relaxation function G(τ ) at T = 0.2. G(τ ) is computed
using the shear-stress autocorrelation function and an additive con-
stant [25,44,51,52]. G(τ ) ≈ μ ≈ 14 for τ � 103 (solid horizontal
line) if only local moves are used while G(τ ) → 0 (dashed horizontal
line) if the unphysical swap MC moves are added. Including swap
MC moves for the quenching and tempering of the systems thus
allows to bring the systems close to (liquid) equilibrium at T = 0.2.
The final production runs are sampled only using local moves.

the c-ensemble averages λ = ∑
c λc/Nc and μ = ∑

c μc/Nc.
We may thus determine E either by first obtaining for each
c a Young modulus Ec using λc and μc and from this E =∑

c Ec/Nc or by directly applying Eq. (58) for the c-averages
λ and μ.

2. Stress relaxation tensor for isotropic systems

The static elastic modulus tensor Eαβγ δ can be generalized
in the time domain as discussed systematically and in more
detail in the literature [15,54,55,57,58]. This is important
in general for viscoelastic fluids but also for the dynam-
ical response of (crystalline or amorphous) solid bodies.
The fourth-order stress relaxation tensor Eαβγ δ (τ ) character-
izes the time-dependence of the stress increment δσαβ (τ ) as
a function of an imposed strain εαβ (τ ) [41]. Generalizing
Eq. (53) for isotropic systems we may write

Eαβγ δ (τ ) = M(τ ) δαβδγ δ + G(τ )(δαγ δβδ + δαδδβγ ), (59)

with M(τ ) being the “mixed relaxation modulus” and G(τ )
the “shear-stress relaxation modulus.” The macroscopic linear
response tensor is thus fully determined by (again) two invari-
ant response functions. It is useful to additionally introduce
the “longitudinal relaxation modulus” L(τ ) = M(τ ) + 2G(τ ).
Note that G(τ ) = E1212(τ ), M(τ ) = E1122(τ ) and L(τ ) =
E1111(τ ) = E2222(τ ). The relaxation modulus Eαβγ δ (τ ) re-
duces (continuously) to the static modulus Eαβγ δ for large
times, i.e., the invariant relaxation functions become

L(τ ) → λ + 2μ, G(τ ) → μ, M(τ ) → λ for τ → ∞, (60)

with λ and μ being the known Lamé moduli. That this is the
case can be seen for G(τ ) in Fig. 7 for two different MC vari-
ants. As expected for equilibrium liquids the shear modulus
vanishes, μ = 0, for the variant with swap MC hopping moves
(squares) used for the equilibration of our systems. The total
ensemble of independent configurations c thus corresponds to
a liquid system while each configuration c being confined in
a metabasin if only local moves are included is an (isotropic)
elastic body. We note for later convenience that, hence,

L(τ ) − M(τ )2

L(τ )
→ λ + 2μ − λ

λ + 2μ
= 4μ

λ + μ

λ + 2μ
, (61)

due to Eq. (58) being equal to the Young modulus E in two
dimensions.

3. Experimental relevant timescales

Strictly speaking, μ = E = 0 holds for all systems in-
cluding amorphous glasses or even standard solids, if the
mathematical limit “τ → ∞” is read “for times much larger
than any instrinsic relaxation time of the system” [15]. In
practice, the largest “terminal” relaxation time τ� (for glasses
called “α-relaxation time” [55]) for many viscoelastic sys-
tems is commonly much larger than any reasonable typical
experimental or computational measurement time τexp. More-
over, for many viscoelastic systems the relaxation moduli are
approximatively constant over many orders of magnitude in
a time window τ1 � τ � τ2. This means especially that the
system can support a finite shear stress in this time window. It
is common that τ1 is given by the time τA needed to relax the
“affine strains” applied at τ = 0 or by the relaxation time τb

within a meta-basin in glassy materials [25,44,49–52] and τ2

by the already mentioned terminal relaxation time τ�. (Obvi-
ously, much more complicated scenarios exist [15,55,57].) We
assume in the following for the simplicity of the discussion
that this intermediate plateau regime becomes very broad such
that τ2 ≈ τ� exceeds τexp by many orders of magnitude. This
is indeed the case, e.g., for the shear-stress relaxation modulus
G(τ ) shown in Fig. 7 for local MC moves (circles). The
meaning of “τ → ∞” is thus (here as elsewhere in this work)
“for times much larger than τ1 but yet much smaller than τ2”.
In this sense Eqs. (60) and (61) are still valid with λ, μ, or E
referring now to the (finite) plateau values. It is these plateau
values which are computed by means of out-of-equilibrium
methods or by means of stress or strain fluctuation formulas
[45] using times series with sampling times τ1 � �τ � τ2.

D. Key relations for overdamped motion

Previous studies [18–21,25] have focused on the correla-
tion functions c◦

αβγ δ (q, τ ) of the instantaneous ISFs σ̂ ◦
αβ (q, τ )

in NRC. Importantly, it has been shown [21] that the four
ICFs,

cL(q, τ ) ≡ 〈c◦
1111(q, τ )〉q̂,

c⊥(q, τ ) ≡ 〈c◦
1122(q, τ )〉q̂,

cT(q, τ ) ≡ 〈c◦
1212(q, τ )〉q̂, and (62)

cN(q, τ ) ≡ 〈c◦
2222(q, τ )〉q̂,
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averaged over all q of similar magnitude q (within a given
bin width δq), can be expressed for small wave vectors in
terms of two independent invariant relaxation functions (“ma-
terial functions”) [21] characterizing the system. Naturally,
these relations are formulated in Fourier-Laplace space. As
in Ref. [25] we use here the modified Laplace transform

f (s) = L[ f (τ )] = s
∫ ∞

0
dτ f (τ )e−τ s, (63)

called “s-transform” [25] or “Laplace-Carson transform” [59],
for which due to the prefactor s the original function f (τ )
and its Laplace transform f (s) have the same dimension. We
note by L(s) = L[L(τ )] = M(s) + 2G(s), M(s) = L[M(τ )]
and G(s) = L[G(τ )] the Laplace transforms of the invari-
ant relaxation moduli introduced in Sec. V C. In the present
work MC simulations have been used, i.e., not a momen-
tum conserving dynamics as assumed in Refs. [21,25] but an
overdamped simulation dynamics where the drift velocity of
particles is proportional to the imposed body force. Due to this
the slightly modified relations become

βV cL(q, s) = sL(s)

s + q2L(s)/ζ
, (64)

βV c⊥(q, s) = sM(s)

s + q2L(s)/ζ
, (65)

βV cT(q, s) = sG(s)

s + q2G(s)/ζ
, (66)

βV cN(q, s) = L(s) − q2M(s)2/ζ

s + q2L(s)/ζ
, (67)

with ζ being the friction constant of the overdamped dynamics
[60]. All relations hold for momentum conserving dynamics
if ζ is substituted by the term ρs due to inertia with ρ be-
ing the mass density. For momentum conserving dynamics,
Eq. (66) is well-established [57,58]; its derivation based on
the “fluctuation-dissipation theorem” (FDT) [42,54,58,61] is
given in Ref. [62] in the context of viscoelastic hydrodynamic
interactions in polymer liquids. The first relation Eq. (64) was
already mentioned in Ref. [63]. We note finally that these
findings agree (where a comparison is possible) with an in-
dependent and complementary approach to long-wavelength
stress-correlations in viscoelastic fluids at equilibrium based
on the Zwanzig-Mori projection operator formalism [18–20].

E. Long-time limit for viscoelastic plateau

1. Asymptotic limit

As noted in Sec. V C we focus on the long-time limit of the
four key relations where in a large time window τ1 � τ � τ2

all relaxation moduli are approximatively constant. Due to the
Laplace-Carson transform, Eq. (63), Eq. (60) implies

L(s) → λ + 2μ, G(s) → μ, M(s) → λ (68)

for small s (with τ1 � 1/|s| � τ2). Using the final-value the-
orem of Laplace transforms we get

cL(q, τ ) ≈ c⊥(q, τ ) ≈ cT(q, τ ) � 0, (69)

βV cN(q, τ ) → L(τ ) − M(τ )2

L(τ )
� E (70)

for small q and large τ [53] [Eq. (61) was used in the last
step of Eq. (70)]. Using in addition Eq. (48) or Eq. (49) we
have thus demonstrated that for general viscoelastic fluids at
thermal equilibrium the phenomenological parameter e, cf.
Eq. (38), is indeed given by the Young modulus E in two di-
mensions. As mentioned above (cf. Sec. IV), these results are
qualitatively understood by the facts that finite c̄L(q), c̄⊥(q),
and c̄T(q) for large �τ would violate mechanical equilibrium
while a finite c̄N(q) is possible since a finite transverse normal
ISF σ̄ ◦

22(q) cannot induce a force on a volume element—due
to Eq. (39) and q◦

2 = 0 in NRC for all q—and, hence, no
deterministic flux.

2. Predictions for leading deviations

Importantly, the limits Eqs. (69) and (70) do not depend (to
leading order) on the simulation dynamics, e.g., of whether we
have used a momentum conserving or overdamped dynamics.
As emphasized by the dash-dotted line in Fig. 4 c̄L(�τ ),
c̄⊥(�τ ), and c̄T(�τ ) vanish inversely with �τ as one expects
for uncorrelated fluctuations. We show in the remainder of
this subsection that these leading deviations for finite �τ are
quantitatively described using Eqs. (64)–(67). To do this let us
introduce the characteristic times

τL ≡ ζ/q2(λ + 2μ) and τT ≡ ζ/q2μ, (71)

characterizing, respectively, the longitudinal and the trans-
verse overdamped relaxation. Using Eq. (68) this leads to

βV cL(q, s) � (λ + 2μ)
s

s + 1/τL
, (72)

βV c⊥(q, s) � λ
s

s + 1/τL
, (73)

βV cT(q, s) � μ
s

s + 1/τT
, (74)

βV cN(q, s) − E � λν
s

s + 1/τL
. (75)

The Laplace-Carson transformation L[exp(−t/τ )] = s/(s +
1/τ ) thus gives

βV cL(q, t ) � (λ + 2μ) exp(−t/τL), (76)

βV c⊥(q, t ) � λ exp(−t/τL), (77)

βV cT(q, t ) � μ exp(−t/τT), (78)

βV cN(q, t ) − E � λν exp(−t/τL) (79)

for the ICFs of the instantaneous ISFs. Hence, Eq. (50) leads
to

βV c̄L(q,�τ ) � (λ + 2μ) D(�τ/τL), (80)

βV c̄⊥(q,�τ ) � λ D(�τ/τL), (81)

βV c̄T(q,�τ ) � μ D(�τ/τT), (82)

βV c̄N(q,�τ ) − E � λνD(�τ/τL) (83)

for the ICFs of the time-averaged ISFs.
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FIG. 8. Scaling of ICFs c̄L(q,�τ ), c̄N(q, �τ ), c̄⊥(q, �τ ), and
c̄T(q, �τ ) for large �τ . We present the rescaled ICFs y =
βV c̄L/(λ + 2μ), (βV c̄N − E )/λν, and βV c̄⊥/λ vs x = �τ/τL and
y = βV c̄T/μ vs x = �τ/τT assuming ζ = 900 for q = qmin and
q ≈ 0.18 (filled symbols). The bold dashed line indicates the De-
bye relation, the dashed-dotted line shows the expected asymptotic
power-law decay.

3. Numerical test of predicted deviations

These relations should allow a reasonable fit for large �τ

while additional modes may be relevant in general. We test
in Fig. 8 the suggested scaling for q = qmin ≈ 0.06 and q ≈
0.18. The scaling variable x of the horizontal axis is �τ/τL

for c̄L, c̄N and c̄⊥ and �τ/τT for c̄T. For the scaling of c̄N

we have to subtract E and, unfortunately, the scaling function
y = (βV c̄N − E )/λν (circles) is less accurate than the scaling
functions of the other three ICFs. Using the known elastic
moduli of our systems and fitting for only one parameter, the
friction coefficient ζ ≈ 900, we obtain for sufficiently large
x and small q a good data collapse on the Debye function
(bold dashed line). Due to the limited system size we have
only achieved good data collapse for qmin � q < 0.2. Larger
system sizes are clearly warranted in future work to verify
over more than a decade the expected q-dependence of the
relaxation times τL,T ∝ 1/q2. See Ref. [25] for the discussion
of other possible caveats leading to small deviations.

VI. CONCLUSION

A. Summary

After presenting in Sec. II a survey of general useful math-
ematical relations for isotropic tensor fields we have focused
in Sec. IV on the numerical description of spatial correlations
of stress tensor fields in isotropic pLJ particle systems as
described in Sec. III and Appendix C. The phenomenological
parameter e was related to the Young modulus E in Sec. V.
Several general results deserve to be emphasized.

B. Angular dependencies

As demonstrated by our computational example, correla-
tion functions of tensor field components of perfectly isotropic
systems must generally depend on the components of the field

vector and not only on its magnitude, cf. Eq. (41). They thus
depend both on the direction of this vector in the physical
system (angle θ ) and on the orientation of the coordinate
system (angle α) as shown in Fig. 1. Importantly, the angu-
lar dependence of all correlation functions boils down to a
dependence on the difference θ − α for all θ and α as shown
in panel (b) of Figs. 1 and 5. Obviously, this simple scaling
(without characteristic angles) cannot hold for true anisotropic
systems which have material functions depending explicitly
on the direction of the field vector. Unfortunately, many recent
studies do not clarify, e.g., simply by rotating the coordinate
system or equivalently the orientations of the experimental
devices measuring the local tensor field components, which of
these two mathematically and physically very different types
of “anisotropy” is involved.

C. Invariant correlation functions

Just as the invariance of a tensor under orthogonal transfor-
mations is only revealed by the full set of tensor components,
one component of the correlation tensor field may appear to be
inconsistent with the assumed isotropy which becomes only
manifested for the total set of correlation functions. Fortu-
nately, this set is completely characterized by a few (4 in d =
2 and 5 in d > 2) ICFs, cf. Eq. (24). Only if a measured subset
of correlation functions cannot be consistently expressed by
ICFs a legitimate claim of “anisotropy” can be made. As we
have seen, these ICFs are best described both theoretically
and numerically (cf. Fig. 3) in reciprocal space using NRC.
The investigated system was deliberately simple since only
one ICF, namely the normal stress ICF c̄N(q), remains finite
for large �τ and, moreover, constant for sufficiently small q,
Eq. (38). This plateau in reciprocal space explains directly
(cf. Appendix B) the long-ranged 1/r2-decay of the stress
correlations in real space demonstrated in Fig. 6 [64]. Only
one phenomenological parameter e is needed for the fitting of
our data in the large-�τ limit, cf. Eq. (38).

D. Time-averaged stress fields

We have studied in this work correlation functions
c̄αβγ δ (q,�τ ) of time-averaged stress fields σ̄αβ (q,�τ ) and
not the correlation functions cαβγ δ (q, t ) of instantaneous
fields σαβ (q, t ). As reminded in Sec. V B, for stationary
processes c̄αβγ δ (q,�τ ) and cαβγ δ (q, t ) are closely related,
cf. Eq. (47), and both correlation functions have the same
asymptote for large (sampling) times, cf. Eq. (48), i.e., the
same static properties are probed. From the numerical side
c̄αβγ δ (q,�τ ) basically has the advantage that irrelevant high
frequencies are filtered off (as it is usually the case for Einstein
relations compared to Green-Kubo relations [45]). Compared
with the common method to determine the system’s inherent
quenched stresses by quenching to the local energy minima
[22,23] this has the advantage that we measure the relevant
stresses at the given finite temperature and not at a different
thermodynamic state. We believe that this method is therefore
not only simpler (no additional quench required) but thermo-
dynamically and conceptionally better defined. The technical
downside is that time-series of many frames need to be stored.
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E. Symmetry breaking

The main physical reason for focusing on t-averaged
stress fields σ̄αβ (q,�τ ) is, however, that the systematic time-
averaging naturally allows to focus on the quenched stresses
σ

q
αβ (q) for each independent configuration c by projecting out

the trivial instantaneous thermal stress fluctuations using that
σ̄αβ (q,�τ ) → σ

q
αβ (q) for large �τ . Importantly, the param-

eter e is set by Eq. (40) in terms of the typical size of the
quenched normal stresses σ̄

◦q
22 (q) in reciprocal space using

NRC. Due to Eq. (39) these stresses may be finite without
violating static mechanical equilibrium as shown by the finite
attractor in Fig. 4.

F. Connection to thermodynamic response properties

Interestingly, e was found to be numerically similar to
the macroscopic Young modulus E at thermal equilibrium in
d = 2. As discussed in Sec. V, this finding was theoretically
anticipated [25] since the predictions for equilibrium vis-
coelastic fluids, must hold approximatively for our glasses due
to the swap MC moves used for the system preparation. (The
same identification is obtained by an independent and comple-
mentary approach to long-wavelength stress-correlations in
glass-forming liquids based on the Zwanzig-Mori projection
operator formalism [18–20].) Altogether this implies

E = e � βV
〈
σ̄

◦q
22 (q)σ̄ ◦q

22 (−q)
〉

(84)

for sufficiently small wave vectors. The existence of a finite
equilibrium Young modulus E (and, hence, of a finite shear
modulus μ) and the broken (continuous) symmetry of the
stress field in reciprocal space, characterized by the typical
size of the quenched stresses σ̄

◦q
22 (q), are thus intimately con-

nected.

G. Outlook

The presented work suggests several natural extensions:
(a) The given tensor fields relations for isotropic systems

naturally generalize to higher spatial dimensions, to tensor
fields of different order and to cross-correlation functions of
different tensorial fields (say, between stress and strain fields)
for which the major suffix symmetry Eq. (16) may not hold
(which merely introduces one additional ICF).

(b) We have focused in the present work on Euclidean
spaces and Carthesian coordinates. It is possible to gener-
alize our relations for systems embedded in non-Euclidean
spaces, say for glasses on spheres [65,66], and more general
curvilinear coordinate systems [1,3]. Assuming the system to
be locally isotropic the goal is always to construct from the
available correlation functions the local (tangent) isotropic
invariants and to check whether this can be done consistently
with all available data sets.

(c) The proposed methodology could, e.g., also be used
for irreversibly crosslinked polymer networks [15] or active
nonequilibrium systems [67,68] which are both isotropic and
highly viscous or even jammed. e is in such cases just a fit-
ting parameter characterizing the typical size of the quenched
stresses.

(d) The presented work is also of relevance for the
correlations of strain tensor fields [28,32,33] and for the

characterization of plastic deformations [9,10,64]. It can be
shown that the strain correlations of any isotropic elastic body
are characterized by two ICFs which are, moreover, set by
means of the general equipartition theorem [61] in the large-
wavelength limit by the Lamé coefficients λ and μ. This leads
again to an octupolar correlation field pattern as seen in Fig. 1
for the stress.

(e) The low-q limit e(�τ ) of βV c̄N(q,�τ ) becomes only
a strictly �τ -independent constant for permanently quenched
invariant stress fields σ̄

◦q
22 (q), e.g., for permanent polymer

networks [15]. By contrast, the quenched attractors σ̄
◦q
22 (q)

of low-temperature glasses become for �τ similar to the α-
relaxation time slow �τ -dependent fields σ ◦s

22 (q,�τ ). This is,
e.g., of relevance for higher temperatures T of the presented
pLJ particle model where after a transient plateau e(�τ )
ultimately vanishes, i.e., the long-range stress correlations dis-
appear [25]. Future work should focus on the distributions of
the σ̄ ◦

αβ (q,�τ, T ) as a direct means to systematically project
out fast relaxation modes independently of the coordinate
system.
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APPENDIX A: FOURIER TRANSFORMATION

1. Continuous Fourier transform

Following Refs. [25,69] but at variance with Ref. [21]
we define in this work the Fourier transform (FT) f (q) =
F[ f (r)] of a (real-valued) function f (r) in real space by

f (q) = 1

V

∫
dr f (r) exp(−iq · r), (A1)

with V being the volume of the system and q a wave vector
commensurate with the simulation box. The inverse FT is then
given by

f (r) = F−1[ f (q)] = V

(2π )d

∫
dq f (q) exp(iq · r). (A2)

Note that f (r) and f (q) have the same dimension. For nota-
tional simplicity the function names remain unchanged. Let us
denote by f without argument the macroscopic field average.
Due to Eq. (A1) we thus have the “sum rule”

f (q = 0) = f ≡ 1

V

∫
dr f (r). (A3)

We note for later convenience the FTs

F
[

∂

∂rα

f (r)

]
= iqα f (q), (A4)

F[δ(r − v)] = 1

V
exp(−iq · v), and (A5)

F
[∫ 1

0
ds δ(r − vs)

]
= 1

V

1 − exp(−iq · v)

iq · v
, (A6)

with δ(r) being Dirac’s δ function. Let us consider the spatial
correlation function

c(r) = 1

V

∫
dr′g(r + r′)h(r′), (A7)
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where the fields g(r) and h(r) are assumed to be real. Accord-
ing to the “correlation theorem” [40] this becomes

c(q) = g(q)h�(q) = g(q)h(−q) (A8)

in reciprocal space (with � marking the complex conjugate).
For auto-correlation functions, i.e., for g(r) = h(r), this sim-
plifies to (“Wiener-Khinchin theorem”)

c(q) = g(q)g�(q) = |g(q)|2, (A9)

i.e., the Fourier transformed auto-correlation functions are
real and � 0 for all q. Moreover, we shall consider correlation
functions c(r), Eq. (A7), being even in real space, c(r) =
c(−r), and thus also in reciprocal space, c(q) = c(−q) =
c�(q), i.e., c(q) is real.

For many reasons it is convenient to consider correlation
functions c(r) which vanish for large r = |r|. This is achieved
here by replacing in Eq. (A7) g(r) by g̃(r) = g(r) − g and
h(r) by h̃(r) = h(r) − h with g and h being field averages
according to Eq. (A3). We thus probe in this work correlation
functions

c(r) = 1

V

∫
dr′g̃(r + r′)h̃(r′)

= 1

V

∫
dr′g(r + r′)h(r′) − gh, (A10)

using a real offset gh. Eq. (A8) thus becomes

c(q) = g̃(q)h̃(−q) =
{

g(q)h(−q) for q �= 0,

0 for q = 0,
(A11)

where we have used that g = g(q = 0) and h = h(q = 0).

2. Discrete FT on microcell grid

Numerically, all fields f (r) are stored on a regular equidis-
tant grid as shown in Fig. 2. Periodic boundary conditions are
assumed [45]. The discrete FT and its inverse become

f (q) = 1

nV

∑
r

f (r) exp(−iq · r), (A12)

f (r) =
∑
q

f (q) exp(iq · r), (A13)

with
∑

r and
∑

q being discrete sums over nV = V/ad
grid grid

points in, respectively, real or reciprocal space. With nL being
the number of grid points in each spatial direction α, i.e., nV =
nd

L and L = nLagrid, we have

rα

agrid
= nα and qαagrid = 2π

nL
nα, (A14)

with integers nα = 0, 1, . . . , nL − 1. To take advantage of the
implemented fast Fourier transform (FFT) routines [40] nL is
an integer power of 2. The real-space correlation function c(r)
on the discrete grid is

c(r) = 1

nV

∑
r′

g(r + r′)h(r′) − gh, (A15)

being an operation of order O(n2
V ). Importantly, the period-

icity of all fields must be taken into account. It is obviously
much more efficient to first FFT the discrete fields g(r) and

h(r) or g̃(r) and h̃(r) and to apply then Eq. (A8) [40,45].
In this manner c(q) is automatically periodic in all spatial
directions of the simulation box and the same applies to the
correlation function c(r) = F−1[c(q)] in real space computed
using Eq. (A13).

APPENDIX B: FOURIER TRANSFORMS IN
TWO DIMENSIONS

1. Correlation functions in reciprocal space

As shown in Fig. 3 all four ICFs in d = 2 become con-
stant in reciprocal space for sufficiently small wave vectors q
and large sampling times �τ , but only βV c̄N(q) � e remains
finite. According to Eq. (31) of Sec. II F we thus have

βV c̄αβγ δ (q) � e(δαβδγ δ − q̂α q̂βδγ δ − q̂γ q̂δδαβ + q̂α q̂β q̂γ q̂δ )

(B1)

for the correlation functions in the “old” (unrotated) reference
frame. Hence, we have, e.g.,

βV c̄1212(q) =
βV c̄1122(q) � e q̂2

1q̂2
2, (B2)

βV c̄1111(q) � e
(
1 − 2q̂2

1 + q̂4
1

) = eq̂4
2, (B3)

βV c̄2222(q) � e
(
1 − 2q̂2

2 + q̂4
2

) = eq̂4
1, (B4)

βV c̄1112(q) � −e q̂1q̂3
2, (B5)

βV c̄2221(q) � −e q̂3
1q̂2. (B6)

Let us rewrite these cases in terms of the angle θq of the nor-
malized wave vector q̂ = (cos(θq), sin(θq)). Using standard
trigonometric relations it is readily seen that

−βV c̄1212(q) =
−βV c̄1122(q) � e

8
[cos(4θq) − 1], (B7)

βV [c̄1111(q) + c̄2222(q)]/2 � e

8
[cos(4θq) + 3], (B8)

βV [c̄1111(q) − c̄2222(q)]/2 � − e

2
cos(2θq), (B9)

βV [c̄1112(q) + c̄2221(q)]/2 � − e

4
sin(2θq), (B10)

βV [c̄1112(q) − c̄2221(q)]/2 � e

8
sin(4θq) (B11)

in the above-mentioned limits. More generally, all correlation
functions in two dimensions can be expressed by a linear
superposition of the orthogonal basis functions cos(pθq) and
sin(pθq) with p = 0, 2, and 4.

2. Inverse Fourier transform

To obtain the correlation functions in real space we thus
have to compute the inverse FT in d = 2 dimensions for

f (q) = 1

V
v(q) bp(θq), (B12)

with bp(θq) standing for the basis functions cos(pθq) or
sin(pθq) with p = 2 and 4. The constant terms (p = 0) in
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Eqs. (B7) and (B8) are irrelevant for our considerations lead-
ing merely to δ contributions at r = 0. The yet unspecified
auxiliary function v(q), with v(q) → e for q → 0, will be
chosen below in a convenient manner to take advantage of
special mathematical functions [39]. Hence, using Eq. (A2)
we have

f (r) = 1

4π2

∫
dq qv(q)

∫ 2π

0
dθq bp(θq)

× exp[iqr cos(θq − θr )], (B13)

with θr being the angle of r̂ = (cos(θr ), sin(θr )). We make
now the substitution θ = θq − θr and use that [39]

cos(pθ + pθr ) + cos(−pθ + pθr ) = 2 cos(pθ ) cos(pθr ),

sin(pθ + pθr ) + sin(−pθ + pθr ) = 2 cos(pθ ) sin(pθr ).

We remind that following Eq. (9.1.21) of Ref. [39] the integer
Bessel function Jp(z) may be written

Jp(z) = i−p

π

∫ π

0
dθ cos(pθ ) exp[iz cos(θ )]. (B14)

This leads to

f (r) = ip

2π
bp(θr )

∫
dq qv(q) Jp(rq). (B15)

We use next Eq. (11.4.28) of Ref. [39]∫ ∞

0
e−(at )2

tμ−1Jν (bt )dt

= �[(ν + μ)/2] (b/2a)ν

2aμ�(ν + 1)
M[(ν + μ)/2, ν + 1,−(b/2a)2]

(B16)

for �(μ + ν) > 0 and �(a2) > 0 relating the general Bessel
function Jν (bt ) to the confluent hypergeometric Kummer
function M(a, b, z). (�(x) denotes the standard � function
[39].) To take advantage of Eq. (B16) we finally set v(q) =
e exp[−(aq)2]. Note that v(q) → e for aq → 0, i.e., the auxil-
iary variable a becomes irrelevant for small q. We thus rewrite
Eq. (B15) as

f (r) = e
ip

2π

�(p/2 + 1)(r/2a)p

2a2�(p + 1)
bp(θr )

× M[p/2 + 1, p + 1,−(r/2a)2] (B17)

in terms of Kummer’s function M. Following Eq. (13.1.5) of
Ref. [39],

M(a, b, z) = �(b)

�(b − a)
(−z)−a(1 + O(|z|−1) (B18)

for a real part �(z) < 0. Using this expansion in Eq. (B17)
finally leads to

f (r) � e
ip p

2πr2
bp(θr ) (B19)

for sufficiently large r and p > 0. We note that the auxiliary
variable a indeed drops out, that f (r) = f (−r) and that f (r)
is real for even p.

3. Correlation functions in real space

Using Eq. (B19) we can finally restate Eqs. (B7)–(B11) in
real space as

−β c̄1122(r) = −β c̄1212(r) = β[c̄1111(r) + c̄2222(r)]/2

� e

4πr2
cos(4θr ), (B20)

β[c̄1111(r) − c̄2222(r)]/2 � e

2πr2
cos(2θr ), (B21)

β[c̄1112(r) + c̄2221(r)]/2 � e

4πr2
sin(2θr ), (B22)

β[c̄1112(r) − c̄2221(r)]/2 � e

4πr2
sin(4θr ), (B23)

for r > 0 and �τ → ∞. Some of these relations are shown in
Figs. 5 and 6 in the main part of this work.

APPENDIX C: ADDITIONAL COMPUTATIONAL DETAILS

1. Simulation model

We consider systems of polydisperse Lennard-Jones (pLJ)
particles in d = 2 dimensions where two particles i and j
of diameter Di and Dj interact by means of a central pair
potential [25,44,49,70–72]

u(s) = 4ε

(
1

s12
− 1

s6

)
, with s = r

(Di + Dj )/2
(C1)

being the reduced distance according to the Lorentz rule [14].
This potential is truncated and shifted [45] with a cutoff scut =
2smin given by the minimum smin of u(s). Lennard-Jones units
[45] are used throughout this study, i.e., ε = 1 and the average
particle diameter is set to unity. The diameters are uniformly
distributed between 0.8 and 1.2. We also set Boltzmann’s
constant kB = 1 and assume that all particles have the same
mass m = 1. The last point is irrelevant for the presented
Monte Carlo (MC) simulations [45]. Time is measured in units
of MC cycles throughout this work.

2. Operational parameters

We focus in the present work on configurations with n =
10 000 particles albeit we have sampled a broad range of par-
ticle numbers n between n = 100 and n = 160 000 (cf. inset
of Fig. 6). Nc = 200 independent configurations c have been
obtained by quenching configurations equilibrated at a high
temperature T = 0.55 in the liquid limit. This is done using
a combination of local MC moves [45] and swap MC moves
exchanging the sizes of pairs of particles [44,46]. In addition
an MC barostat [45] imposes an average normal stress P = 2
[44,49].

3. Working temperature

At the working temperature T = 0.2 we first thoroughly
temper over �τ = 107 all configurations with switched-on
local, swap and barostat MC moves and then again over �τ =
107 with switched-on local and swap moves and switched-
off barostat moves. The shear-stress relaxation function G(τ )
[25,44,51,52] for this tempering run is shown in Fig. 7. As
can be seen (squares), G(τ ) rapidly decays to a shear modulus
μ = 0 (dashed line) as expected for an equilibrium liquid. The
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final production runs are carried out at constant volume V
only keeping the slow local moves. Importantly, T = 0.2 is
well below the known glass transition temperature Tg ≈ 0.26
assuming only local MC hopping moves [44,49]. As shown by
the circles in Fig. 7 only keeping the local moves essentially
traps the (equilibrated) configurations in local metabasins
where they behave as elastic bodies with a finite shear mod-
ulus μ ≈ 14 (solid line). Due to the barostat used for the
quenching of the configuration the box volume V = Ld differs
slightly between different configurations c while V is identical
for all (correlated) configurations t of the time-series of the
same independent configuration c. In all cases the number
density is of order unity, i.e., the particle number n and the
volume V are similar. This implies that the ideal pressure
Pid = T n/V ≈ 0.2 is much smaller than the imposed total
pressure P = Pid + Pex = 2. As shown elsewhere [25,44,70–
72] our systems are homogeneous and isotropic and crystal-
lization is irrelevant.

4. Data sampling

For each of the Nc = 200 independent configurations c we
sample and store four ensembles of time series containing
each Nt = 10 000 instantaneous “frames” t . These are ob-
tained using the equidistant time intervals δτ = 1, 10, 100,
and 1000 [41]. This implies for each time series a largest
sampling time �τ = Ntδτ , i.e., �τ = 107 for the largest time
interval. This was chiefly done to check that all correlation
functions c̄αβγ δ (r) become indeed �τ -independent as shown
in Figs. 4 and 8. The time-averaged stress tensors σ̄αβ |c and
stress tensor fields σ̄αβ (r)|c are obtained by averaging over
the corresponding instantaneous σαβ (t )|c and σαβ (r, t )|c using
each frame t of a time-series. We thus obtain first

c̄αβγ δ (q)
∣∣
c =

{
σ̄αβ (q)

∣∣
c
σ̄γ δ (−q)

∣∣
c

for q �= 0,

0 for q = 0,
(C2)

for each c according to Eq. (A11), take then the c-average

c̄αβγ δ (q) = 1

Nc

Nc∑
c=1

c̄αβγ δ (q)
∣∣
c, (C3)

and perform finally the inverse FFT to real space,

c̄αβγ δ (r) = F−1[c̄αβγ δ (q)]. (C4)

APPENDIX D: CONSTRUCTION OF STRESS FIELD

1. Macroscopic stresses

Carets “â” mark here instantaneous properties and the ar-
gument t is dropped. Let us first remind the Irving-Kirkwood
formula for the total macroscopic (q = 0) stress tensor σ̂αβ

[45,73]. Note that the total system Hamiltonian is the sum of
an ideal contribution, depending only on the momenta, and an
excess contribution, depending only on the particle positions.
This implies [45] that the total stress tensor σ̂αβ = σ̂ id

αβ + σ̂ ex
αβ

is a sum of an ideal stress σ̂ id
αβ and an excess stress σ̂ ex

αβ . The
ideal contribution is [45]

σ̂ id
αβ = − 1

V

n∑
a=1

pa
α pa

β

m
, (D1)

with pa
α being the α component of the momentum of particle

a. This contribution is naturally not accessible in an MC
simulation. Since we want anyway ultimately to time-average
all instantaneous stresses, Eq. (D1) may be replaced without
loss of information by its ensemble average 〈σ̂ id

αβ〉 = −Pidδαβ

with Pid = T n/V [45]. The excess contribution is given by the
sum σ̂ ex

αβ = ∑
l wl

αβ/V over all interacting pairs l of particles
a < b. Let us denote by rl = rb − ra the vector from the
position ra of a to the position rb of b, by rl = |rl | its length
and by r̂l

α a component of its unit vector. The contribution wl
αβ

of the interaction l to the excess stress is then [45]

wl
αβ ≡ rlu

′(rl )r̂
l
α r̂l

β, (D2)

with u′(r) being the first derivative of the pair potential.

2. Stress tensor fields in reciprocal space

The corresponding stress tensor field σ̂αβ (q) = σ̂ id
αβ (q) +

σ̂ ex
αβ (q) in reciprocal space may be directly obtained from the

local momentum equation [13,14]

∂

∂t
P̂α (r) = ∂

∂rβ

σ̂αβ (r) (D3)

as shown long ago [14,47]. Note that the momentum density
P̂α (r) is defined by [14]

P̂α (r) =
n∑

a=1

pa
αδ(r − ra) (D4)

in terms of the individual particle momenta and positions.
Rewritten in Fourier space Eq. (D3) becomes

iqβσ̂αβ (q) = ∂

∂t
P̂α (q) (D5)

= −iqβ

1

V

n∑
a=1

pa
α pa

β

m
exp(−iq · ra)

+ 1

V

n∑
a=1

ṗa
α exp(−iq · ra). (D6)

The first term in the previous relation gives the ideal stress
contribution [14,47]

σ̂ id
αβ (q) = − 1

V

n∑
a=1

pa
α pa

β

m
exp(−iq · ra). (D7)

As before for the macroscopic ideal stress we may integrate
out the momenta {p} and replace Eq. (D7) by

σ̂ id
αβ (q) = −T

V
δαβ

n∑
a=1

exp(−iq · ra), (D8)

which is used for our MC simulations. Using Newton’s second
law for ṗa

α and a total potential energy given by pair interac-
tions such as Eq. (C1) the excess stress in reciprocal space
is obtained from the second term in Eq. (D6) as shown in
Refs. [14,47]. This gives

σ̂ ex
αβ (q) = 1

V

∑
l

wl
αβ

e−iq·rb − e−iq·ra

−iq · (rb − ra)
. (D9)
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Let us define ml = (ra + rb)/2 and hl = (rb − ra)/2. As
noted by Lemaître [36] the previous relation may be rewritten
more conveniently as

σ̂ ex
αβ (q) = 1

V

∑
l

wl
αβ

sin(q · hl )

q · hl
e−iq·ml

. (D10)

We remark first that σ̂ id
αβ (q) and σ̂ ex

αβ (q) reduce properly for
q → 0 to the macroscopic stress contributions noted above.
Note also that the term sin(x)/x → 1 for x = q · hl � 1, i.e.,
for wavelengths 2π/q larger than the typical interaction range
of order unity in the present model. In this limit Eq. (D10)
further simplifies to

σ̂ ex
αβ (q) ≈ 1

V

∑
l

wl
αβe−iq·ml

, (D11)

i.e., only the mean position ml of two particles matters, not
their relative orientation. Since this study anyway focuses
on the universal large-wavelength limit, the approximation
Eq. (D11) should be sufficient.

3. Computation in reciprocal space

Using Eqs. (D8) and (D10) or Eq. (D11) one may directly
compute σ̂αβ (q) for a given configuration using a discrete grid
of linear length nL as shown in Fig. 2. Since we anyway need
the stress fields in reciprocal space to obtain the correlation
functions, Eq. (A11), this is the most direct method and a
useful exercise to test less direct definitions and approxima-
tions. Unfortunately, this is numerically not the most efficient
procedure since it evolves nd

L × n � V 2 operations. It is com-
putationally much faster to first obtain the stress fields in real
space with a number of operations of order n ∝ V and then to
FFT transform with a number of operations of order V log(V ).

4. Stress tensor fields in real space

We thus need to state the corresponding relations in real
space. Inverse Fourier transformation yields for Eq. (D7)

σ̂ id
αβ (r) = −

n∑
a=1

pa
α pa

β

m
δ(r − ra) (D12)

and for the preaveraged ideal stress, Eq. (D8),

σ̂ id
αβ (r) = −T δαβ

n∑
a=1

δ(r − ra). (D13)

One confirms using Eq. (A6) that Eq. (D9) becomes

σ̂ ex
αβ (r) =

∑
l

wl
αβIl (r), with

Il (r) =
∫ 1

0
ds δ(r − (ra + rl s)) (D14)

being a line integral between the two particle positions ra and
rb of the interaction l . This relation has an old history going
at least back to the work by Kirkwood and Buff [74] for the
layer-resolved slabs of microcells [45]. Various rediscover-
ies, reformulations and generalizations (e.g., for multibody
potentials and constraint dynamics) of the inverse Fourier

transform Eq. (D14) are discussed elsewhere [36,73–80]. If
we use instead the approximation Eq. (D11) the line integral
is replaced by

Il (r) ≈ δ(r − ml ). (D15)

We emphasize that this coarse-grained expression is com-
pletely sufficient for most applications. (The δ functions in
Eq. (D14) or Eq. (D11) are sometimes “blurred” using more
general weighting distributions [36].) Please note that for all
stated expressions the volume averages are identical to the
macroscopic relation, i.e.,

σ̂ id
αβ = 1

V

∫
dr σ̂ id

αβ (r) = σ̂ id
αβ (q = 0), (D16)

σ̂ ex
αβ = 1

V

∫
dr σ̂ ex

αβ (r) = σ̂ ex
αβ (q = 0) (D17)

hold exactly without approximation.

5. Discrete grid implementations

The numerical calculation of the above continuous space
relations on a discrete grid of linear length nL (cf. Fig. 2)
is obvious for the ideal contributions, Eqs. (D8) and (D13),
and also for the excess contribution Eq. (D10) in reciprocal
space or the coarse-graining approximations Eq. (D11) or
Eq. (D15). Slightly less trivial is the implementation of the
line integral Eq. (D14). Different variants exist for distributing
the information of an interaction l on the grid as discussed
in the literature [45,75]. In our view this issue is not crucial
since the corresponding small wavelengths have no universal
physical meaning being due to an artificial computer model
and are, moreover, readily renormalized away as shown by
Eq. (D11). An important technical point is only that any
reasonable method must strictly obey Eq. (D17), i.e., that the

FIG. 9. Rescaled ICF βV c̄N(q) comparing different methods and
agrid = L/nL . The method “qA” uses Eq. (D10) directly in reciprocal
space (solid line), the method “rA” the line integration Eq. (D14)
in real space (open symbols), the method “rB” the coarse-graining
approximation Eq. (D15) in real space (filled symbols). The same
result is obtained in all cases for sufficiently small q. The position of
the peak of βV c̄N(q) at q ≈ 6.5 is very similar to the position of the
main peak of the structure factor S(q) as shown in Ref. [72].
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contributions to all grid points from the line integral must be
properly weighted. We use a simple numerical rendering of
Eq. (D14) on the grid: for each of k equidistant points on the
continuous line between ra and rb the closest grid point is
incremented by wl

αβ/k. We do not care if sometimes a grid
point gets several or even all contributions (which happens if
agrid is large) or none (which happens especially if the grid is
too fine). All data presented in other parts of this work have
been obtained using Eqs. (D12) and (D14) with k = 20 and
a grid spacing agrid ≈ 0.2. Different variants are compared
in Fig. 9 where we focus on the rescaled ICF βV c̄N(q). We
compare results obtained with

(1) method “qA” using Eq. (D8) and Eq. (D10),

(2) method “rA” using Eq. (D13) and Eq. (D14),
(3) method “rB” using Eq. (D13) and Eq. (D15)

for different grid constants agrid = L/nL as indicated. Method
qA (nL = 128, solid line) required a month of computation
on a local workstation cluster with 64 nodes while all other
examples were computed within a couple of hours on the same
cluster. Most importantly, all methods are seen to yield similar
results for small q and the differences are minor for wave vec-
tors up to q ≈ 1. The observed differences between the exact
relation Eq. (D10) and the coarse-graining approximation are
naturally expected for q of order unity and larger i f a grid
spacing agrid much smaller than the typical interaction range
between particles is used.
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