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Impact of composite soft-rigid elastic projectiles: A numerical study
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We study by numerical simulation the impact of a one-dimensional composite projectile, composed of two
superposed homogeneous parts, on an infinitely rigid and massive wall. The coefficient of restitution and the
contact time are systematically measured as functions of the contrasts of mass and stiffness between the two
parts. For purely elastic parts, these quantities show complex trends associated with different dynamics of
the deformation waves propagating inside the projectile. A significant portion of the initial kinetic energy
can be trapped in the deformation modes: the coefficient of restitution is lowest, about 0.2, when there is
a strong stiffness contrast between the two parts and the stiff and soft parts are at the leading and trailing
edges of the projectile respectively. In this case, we highlight the presence of multiple bounces, whose number
increases as the proportion of the soft part increases. Finally, viscoelastic parts can be implemented in the same
numerical framework to successfully recover the results obtained in real composite projectile impact experiments
[D’Angelo et al., Phys. Rev. E 103, 053005 (2021)].
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I. INTRODUCTION

If an impact between two objects is known to conserve mo-
mentum, it is not always the case of the translational kinetic
energy of the system. Energy can be dissipated or transmitted
to other forms of energy as expected in inelastic collisions
[1]. There are evidences that systems driven by conservative
forces can lead to bad restitution due to a significant amount
of the initial kinetic energy spread among the internal modes
of the system. This is the case at the microscopic level with
impacts of clusters of particles: they can generate transiently
very high pressure, density and temperature conditions and
activate chemical reactions [2–5]. At the macroscopic level,
the lost of the initial translational kinetic energy of a system is
quantified by the coefficient of restitution e = va/vb defined
as the ratio of the relative speed after impact to the relative
speed before impact. If we consider the case of the impact
of homogeneous elastic objects, such as spheres and disks,
with a very rigid and massive wall, the coefficient of restitu-
tion remains close to 1 as long as the impact velocity vb is
small compared to the speed of sound c [6–10]. This is what
observed Falcon et al. [11] in experiments with centimetric
tungsten carbide beads impacting an aluminium wall at typi-
cally 0.01 m s−1.

The case of heterogeneous projectiles seems particular. In
the simplest geometry of 1D elastic solids, the coefficient of
restitution equals one except at high impact speed if unhar-
monic effects are accounted for [12–14]. Basile and Dumont
[13] have shown in simulation that the introduction of a softer
part at the leading edge of 1D elastic chains can decrease
significantly the coefficient of restitution, around 0.6, even for
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harmonic solids. In experiments, D’Angelo et al. [15] have
shown that cylindrical projectiles made of the superposition
of a soft part on top of a rigid one can have a very low co-
efficient of restitution, around 0.2, although the impact speed
remains very low and the two parts are rather elastic taken
separately. These results found an echo with the work of Ruan
and Yu [16] who found strong variations of the coefficient of
restitution with a two-degree-of-freedom mass-spring system
depending on the parameters. These bicomposite projectiles
seem to have particular energy transmission properties in
other situations for which they are accelerated [17,18].

The goal of this paper is twofold. We first consider a 1D
harmonic solid with a contrast of elastic modulus between
the upper and lower parts that is systematically varied. In
particular, we look for the optimal configuration to decrease
the coefficient of restitution and favor the transfer of en-
ergy to the internal modes of deformation, which is obtained
with the soft-on-top configuration. In this configuration, we
highlight the presence of multiple bounces, whose number
increases with the stiffness contrast and the proportion of soft
material. Second, to rationalize the experimental results of
D’Angelo et al. obtained with the soft-on-top configuration
[15,19], viscoelastic parts are implemented with the same
numerical framework. The simulations are in very good
agreement with the experimental data without any fitting pa-
rameters and allow to rationalize an empirical factor used until
now.

II. BASIC EQUATIONS

The deformation dynamics is described by the one-
dimensional momentum balance or wave equation for the
displacement field u(y, t ) [20]:

ρ(y)∂2
tt u(y, t ) = ∂y[E (y)∂yu(y, t ) + η(y)∂y∂t u(y, t )]. (1)
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Here y ∈ [0, L] is the position, oriented upward, inside the un-
deformed linear projectile of length L. ρ(y), E (y), and η(y) are
the local density, Young modulus and viscosity respectively.
This equation accounts for the rheology of a Kelvin-Voigt
solid with a local force given by E∂yu + η∂y∂t u. The dynamics
is subject to the following boundary conditions due to the
impact at t = 0 and velocity vb with an infinitely massive and
rigid wall situated below:

BCs

⎧⎪⎨
⎪⎩

u(0, t ) = vbt
∂t u(y, 0) = 0

∂yu(y, t )
y→L→ 0

. (2)

In what follows, we consider the case of an heterogeneous
projectile composed of two homogeneous parts separated by
a sharp interface. Such a bilayered projectile is composed of
a part P1 of length L1 with parameters ρ1, E1, and η1 at the
bottom and of a part P2 of length L2 with parameters ρ2, E2,
and η2 on top. The interface is located at yc = L1 and the
displacement dynamics is driven by the equation

1

c2
i

∂2
tt u = ∂2

yyu + τi∂
3
yyt , (3)

with ci = √
Ei/ρi the wave speed and τi = ηi/E the viscoelas-

tic relaxation time in part i = 1 or 2. There is an additional
boundary condition,

E1∂y−u(yc, t ) + η1∂
2
y−t u(yc, t) = E2∂y+u(yc, t ) + η2∂

2
y+t u(yc, t),

(4)
to account for the continuity of the force at the interface y =
yc. In what follows, we consider ρ1 = ρ2 = ρ so that the com-
position factor x = L2/(L1 + L2) = m2/(m1 + m2) represents
the ratio between the length/mass of the top part and the total
length/mass. With the same idea, we note α = E2/(E1 + E2)
the stiffness ratio.

In this approach, the coefficient of restitution e is directly
associated with the deformation at y = 0, ε0(t ) = ∂yu(0, t ).
If the projectile takes off at tc, the takeoff velocity va of the
center of mass writes

va = −vb − E1

ρ(L1 + L2)

∫ tc

0
ε0(t )dt

− η1

ρ(L1 + L2)

∫ tc

0
ε̇0(t )dt (5)

following the integration of Newton’s second ρ(L1 +
L2) dv

dt (t ) = −E1ε0(t ) − η1ε̇0(t ), with v the velocity of the
center of mass. Gravity is neglected in this equation, which is
valid as long as gtc/vb � 1 with g the standard gravity. Given
that ε0(0) = ε0(tc) = 0, this leads to

e = −1 − c2
1

(L1 + L2)vb

∫ tc

0
ε0(t )dt . (6)

Note that it is possible for a projectile to reconnect to the
wall after a first takeoff. Consequently, we might observe
successive stages of reconnection and separation between 0
and tc. The contact time tc is thus defined as the time of the
last contact with the wall.

III. NUMERICAL IMPLEMENTATION

The projectile consists of a one-dimensional chain of N
masses m connected to each other by an elastic spring in
parallel to a viscous damper (Fig. 1). The equilibrium length
of the springs is noted l0; the elastic and viscous constants
are noted ki and k′

i with i = 1 and 2 in the parts P1 and
P2, respectively. The chain is composed of N1 elements (k1,
k′

1) superposed by N2 elements (k2, k′
2). The link between

the microscopic parameters of the discrete approach and the
physical parameters of Eq. (3) are easily established: the
wave speeds velocities and viscoelastic relaxation times write
ci =

√
kil2

0 /m and τi = k′
i/ki. With this discrete approach the

composition and stiffness ratios write x = N2/(N1 + N2) and
α = k2/(k1 + k2). In what follows, all displayed quantities are
dimensionless so that we take m = 1, l0 = 1 and k1 + k2 = 1
without loss of generality. In practice, both x and α are varied
in the interval [0.005 ; 0.995] with steps �x = �α = 0.005.
The total number of elements N = N1 + N2 is kept constant
and equal to 104, a number large enough to neglect finite
size effects (Appendix A). The position y j (t ) of a mass j
follows the second law of Newton: mÿ j (t ) = −Fj, j−1(t ) +
Fj+1, j (t ) with Fj, j−1 = ki(y j − y j−1 − l0) + k′

i (ẏ j − ẏ j−1) the
viscoelastic force exerted by mass j on mass j − 1. With our
notations, (ki, k′

i) equals (k1, k′
1) or (k2, k′

2) if the mass j is in
part P1 or in P2, respectively. This relation is modified on the
edges of the projectile. At the upper end, the mass N follows
mÿN (t ) = −FN,N−1(t ), while at the lower end, the expression
of the force is modified whether the projectile is in contact
or not with the wall situated at y0 = 0. If the projectile is not
in contact (y1 > l0), mÿ1(t ) = F2,1(t ), while the contact force
−F1,0(t ) is added in case of contact with the wall (y1 < l0).
Initially, each mass j of the chain is separated by the distance
l0 from its neighbors and has a velocity −vb: y j (0) = jl0 and
ẏ j (0) = −vb for j ∈ [1; N]. The dynamics of the system is
solved with the Beeman algorithm [21]. To ensure precise
results within the numerical approach, simulation parameters
need to be adjusted. First, the time step dt between two itera-
tions needs to be smaller than the smallest physical time of the
system. We took dt = min(2π

√
m/k1, 2π

√
m/k2)/100. Sec-

ond, the total simulation time must be larger than the largest
physical time. If we note ti = Nil0/ci the time for the fastest
deformation wave to travel through part Pi, the simulation is
stopped after a total time equal to max(t1, t2) ∗ 20. Finally
the impact velocity must remain significantly smaller than
the deformation speeds and we took vb = min(c1, c2)/200.
As observed in experiments [15], the dynamics can exhibit
successive stages of reconnection and separation. To quantify
the intermediate bounces, we note Nb the total number of
stages, with Nb = 1 the classical case of a single rebound.
Finally, the velocity after impact is obtained with the ex-
pression va = 1

N

∑N
j=1 ẏ j (tc). The software VMD is used for

visualization of the position of each mass [22]. For ease of
observation, we choose N = 100 and duplicated the chain in
order to represent four identical chains next to each other.
Each mass has a color corresponding to the deformation ε j =
(y j−y j−1 )−l0

l0
of the associated spring. In Fig. 1(b), we observe

such an image sequence obtained with VMD. The projectile
is first represented before the impact (image 1). The masses
have a white color corresponding to a spring at rest. After
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(a) (b) (c)

FIG. 1. (a) Diagram of a mass-spring chain with N = 5 and x = 0.4. (b) Image sequence and (c) space-time diagram of an homogeneous
projectile (α = 0.5) with N = 100 highlighting the propagation of a deformation wave, whose front position and propagation direction are
indicated by a green arrow. The white color indicates no deformation. The red, respectively blue, color indicates a negative, respectively
positive, deformation.

the impact (image 2), a compression wave starts propagating
in the chain. Its direction is indicated by a green arrow and
the masses are displayed in red corresponding to a negative
deformation. At some point, the wave reaches the top of the
projectile and is reflected downwards (image 3). The masses
then turn white following a relaxation wave that resets the
deformation to 0. This wave finally reachs the bottom of the
projectile (image 4) and the mass 0 (the wall) becomes blue.
The blue color corresponds to an elongation of the spring,
except for the mass 0 where it indicates that the projectile is
no longer in contact with the wall. Finally, the projectile takes
off (image 5) and all the masses are white which means that no
energy is trapped in the deformation modes of the projectile
as expected for a homogeneous 1D chain. In Fig. 1(c), the
space-time diagram obtained from the VMD image sequence
allows an easy representation of the full dynamics. The gray
circles indicate the takeoff time and the intermediate stages of
reconnection and separation if any.

IV. RESULTS FOR HOMOGENEOUS PROJECTILES

Inside an homogeneous projectile, Eq. (3) reduces to

∂2
tt u = c2∂2

yyu + c2τ∂3
yyt u (7)

with c = √
E/ρ the wave speed and τ = η/E the viscoelastic

relaxation time. Any physical parameter is therefore a func-
tion of c, τ , L and vb only. Given that the system is linear,
the takeoff velocity is proportional to vb and the coefficient of
restitution e is only a function of the dimensionless number
τc/L. The coefficient of restitution of a homogeneous projec-
tile is obtained following the numerical approach introduced
in Sec. III. In Fig. 2(a), we observe that e decreases from
1 to 0 as τc/L increases from 0 to 1 following the trend

1 − e � (τc/L)1/2. We can gain some intuition by looking
at the deformation dynamics ε0(t ) at the contact. Following
Eq. (6), the coefficient of restitution of an homogeneous pro-
jectile writes

e = −1 − c2

Lvb

∫ tc

0
ε0(t )dt . (8)

This expression shows that the coefficient of restitution de-
pends on the area under the curve ε0(t ). For a material with
negligible dissipation (τ � L/c), the contact time tc corre-
sponds to 2L/c the time for the wave to go back and forth
inside the projectile and ε0(t ) = −vb/c during this time inter-
val [1]. As a consequence

∫ tc
0 ε0(t )dt = −2 Lvb

c2 and e = 1. If
dissipation needs to be accounted for, ε0(t ) needs two finite
times to go from 0 to −vb/c and from −vb/c to 0 during the
initial/final stages of the impact [Fig. 2(b)]. The first time is
proportional to the viscoelastic relaxation time τ . The second
time is quantified by the duration tε for ε0 to vary from −vb/2c
to 0 and is found to vary as tε ∝ (τL/c)1/2 [insert of Fig. 2(b)].
The second time is thus the largest in the limit τ � L/c as
illustrated in Fig. 2(b). As a consequence, the deviation of
the coefficient of restitution from 1 is proportional to tεc/L
in this limit, 1 − e ∝ tεc/L, which retrieves the result found
with the numerical approach. We give a simple argument to
explain the scaling obtained for tε. The two terms in the right
side of Eq. (7) have a different physical meaning. The first
is associated with the propagation of waves at speed c and
the second with a diffusive process and a diffusion coefficient
c2τ . In the limit τ � L/c, the propagation term is dominant
at the leading order approximation which results in the prop-
agation at speed c of a sharp perturbation front following the
impact with the wall. The diffusive term has a second order
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FIG. 2. (a) 1 − e as a function of τc/L for an homogeneous pro-
jectile (blue dots). Inset: same data (blue dots) in a logarithmic scale
and best fit (yellow solid line) obtained by applying a power law with
an exponent 1/2. (b) Rescaled deformation at the contact ε0(t )c/vb

as a function of the dimensionless time tc/L for a simulation with
τc/L = 0.1 (solid line). Insert: tεc/L as a function of τc/L in a
logarithmic scale (blue dots) and best fit (yellow solid line) obtained
by applying a power law with an exponent 1/2.

effect that broadens the width of the propagation front. If we
call w this width, we expect w(t ) ∝

√
c2τ t . At the takeoff

time tc � 2L/c, the perturbation front went back and forth in
the projectile and its width equals w(tc) ∝ √

τLc. This leads
to a typical duration w(tc)/c ∝ √

τL/c for the deformation
at contact to relax in agreement with the scaling measured
for tε.

V. RESULTS FOR ELASTIC BILAYERED PROJECTILES

In this section, we focus on perfectly elastic bilayered
projectiles (τ1 = τ2 = 0) and study systematically the contact
time tc, the total number of bounces Nb and the coefficient of
restitution e as functions of the composition and rigidity ratios
x and α. With our notations, the time to travel trough part P1,
respectively P2, is written t1 = L1/c1, respectively t2 = L2/c2.

A. Typical dynamics

In Fig. 3, we have displayed space-time diagrams for sev-
eral values of x and α. For each of them, we see the initial

compression front propagating from the bottom-left corner,
the reflection/transmission at the P1-P2 interface followed
by successive events. In all cases, we observe propagation
back and forth inside both parts with reflections at y = 0
and y = L1 + L2, and refraction at y = yc, whose order of
events depends on x and α. When the deformation at con-
tact ε0 equals 0, the projectile takes off. The takeoff might
be definitive [Figs. 3(a), 3(b), and 3(d)] or several stages of
reconnection/separation can be observed [Fig. 3(c)].

B. Contact time

For the case of an homogeneous, linear and purely elas-
tic projectile, the contact time is given by the time for the
deformation wave to travel back and forth inside the object
(Sec. IV). To compare the results with this reference case,
we define the dimensionless contact time t̃c = tc/(2t1 + 2t2).
In Fig. 4(a), we observe that t̃c = 1 for a large range of α

regardless of the value of x. Deviations are observed only
for strong differences in elastic modulus, typically α � 0.1 or
α � 0.8. For α � 0.1, t̃c < 1 is mainly observed for x < 0.4
where inertia of the lower and more rigid part dominates. In
this region, the contact time is shorter than 2t1 + 2t2. This
means that the projectile bounces before the deformation wave
propagating through the upper and softer part is coming back
to the contact zone. In practice, this means that the dynamics
is strongly dominated by the properties of the lower and more
rigid part and that the contact time should be a multiple of 2t1,
the time for a deformation wave to travel inside the lower part.
Indeed, we observe that this region is well characterized by
tc = 2t1 with a single travel through the lower part [Fig. 3(a)].
For α � 0.8, t̃c > 1 regardless of x and the strongest variations
to the reference case are observed in the top/right corner of
the (x; α) diagram where inertia of the upper and more rigid
part dominates. As seen in the image sequence of Fig. 3(d),
such cases exhibit dynamics with multiple wave travels inside
the lower part and only one single travel inside the upper part
(for this example, there are two travels back and forth inside
the lower part). From this observation, we suggest to define n1

from tc = n1t1 + 2t2 to quantify the number of travels inside
the lower and softer part. In Fig. 4(b), we observe that the
larger x and α, the higher n1 and that this quantity takes
mainly even values 4, 6, 8,. . . consistent with the hypothesis
of multiple travels inside the lower part. In the top/left corner
n1 is not an integer and takes values in the range [2; 4]. In this
case, the dynamics is more complex and several wave travels
inside the upper part occur as well.

C. Number of bounces

The study allows a full characterization of multiple
bounces that occur in certain cases before the projectile defini-
tively leaves the wall [e.g., in Fig. 3(c)]. This measurement is
very sensitive to numerical artifacts that trigger fast changes in
the sign of ε0(t ) when this quantity is small, in absolute value,
with respect to vb/c. Only relevant bounces are recorded by
setting the criterion that the time between a separation event
and a reconnection event must be greater than min(t1, t2), the
minimum physical time for a given set of parameters. The
number of bounces Nb as a function of x and α is plotted in
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FIG. 3. Space-time diagrams that illustrate the dynamics with (a) x = 0.2, α = 0.05, and tc = 2t1; (b) x = 0.3, α = 0.3, and tc = 2t1 + 2t2;
(c) x = 0.4, α = 0.05, and tc = 2t1 + 2t2; (d) x = 0.6, α = 0.8, and tc = 4t1 + 2t2. The solid gray circles indicate the separation or reconnection
events. The green dotted lines indicate the path of the deformation wave that triggers the final takeoff. In (c), the three solid gray circles indicate
the first separation, the reconnection and the final takeoff. In (d), note that between 2t1 + 2t2 and 4t1 + 2t2, the color at the contact is not white
but very light red.

Fig. 5. For α ∈ [0.2; 0.8], Nb equals 1. Associated with tc =
2t1 + 2t2, this region remains similar to the reference case of
an homogeneous linear object. For α ∈ [0.8; 1], Nb equals 1
as well. In these two regions, isolated cases associated with
Nb = 2 are observed but correspond to numerical artifacts.
Nb = 1 is also retrieved in the bottom/left corner associated
with tc = 2t1. Otherwise, we observe that multiple bounces
appear in the bottom/right corner of the (x; α) diagram where
tc is mostly equal to 2t1 + 2t2. Remarkably, Nb increases in
this region as x increases or α decreases. Actually this number
saturates at Nb = 5 but this saturation might be associated to
the fact that we do not resolve the bounces if the time be-
tween separation/reconnection events becomes smaller than
min(t1, t2). In this corner, the lower and rigid part can bounce
easily since the soft part on top is not rigid enough to prevent
this part from bouncing on a short timescale but still exerts
an elastic force that repulses the lower part towards the wall
on a larger timescale (but short with respect to tc) and trigger
an additional bounce. This behavior becomes more and more
pronounced as the inertia of the lower/rigid part diminishes
(x → 1). This behavior is consistent with experiments per-
formed by D’Angelo et al. [15] with cylindrical projectiles
made of a rigid plastic at the bottom superposed with a soft
hydrogel on top: Nb was found to increase as x was increased.

D. Coefficient of restitution

Figure 6(a) displays the coefficient of restitution e as a
function of x and α. Again, we can distinguish three regions
of interest. In the central region, the coefficient of restitution
remains close to one. In the upper region, e can be as low as
0.8. In the lower region, the effect can become very strong
and e can be as low as 0.2, a value obtained for x = 0.4 and

α → 0. This observation is consistent with experiments and
toy models that suggest a minimum restitution with the soft
element on top of a rigid element [15,16,19]. In Fig. 6(b),
we focus on the lower part of the (x; α) diagram, where
variations are the strongest. Plotting e as a function of x for
a given α reveals successive line segments, whose number
increases and the variations in orientation are more exacer-
bated as α decreases. As explained in Sec. VI, the positions
of the end points between line segments are associated with
specific values of traveling time inside the projectiles for
α � 0.5, while it is also associated with additional stages of
reconnection/separation in the limit α → 0. For a given α, we
call emin the minimum value of e and xmin the value associated
with this minimum. Both quantities are plotted as a function
of α in Fig. 7 for the whole range α ∈ [0; 1]. We noticed that
(xmin, emin) corresponds to the first change of slope when e is
plotted as a function of x for a given α [Fig. 6(b)].

VI. MODEL FOR ELASTIC BILAYERED PROJECTILES

A. General considerations

The dynamics is intrinsically correlated to the time evo-
lution of the deformation at the contact, ε0(t ). At t = 0, the
contact is subject to the compression exerted by the wall and
the deformation equals εi = −vb/c1 [1]. From this instant, a
deformation wave travels inside the projectile with a sharp
front between the underformed and deformed regions. At t =
t1, it reaches the P1-P2 interface, which gives rise to a reflected
wave of amplitude R12εi traveling at velocity −c1 in P1 and
to a transmitted wave of amplitude T12εi traveling at velocity
+c2 in P2. The reflection and transmission coefficients (R12;
T12) for waves traveling from P1 to P2 and (R21; T21) for
waves traveling from P2 to P1 are functions of α only and
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(a)

(b)

FIG. 4. (a) Dimensionless contact time t̃c = tc/(2t1 + 2t2) as a
function of x and α. (b) n1 = (tc − 2t2)/t1 as a function of x and α.
The black circles indicate the typical cases detailed in Sec. V A. The
black lines are isovalue lines whose values are shown in the color
bar.

expressed in Appendix B. For t ∈ [0; 2t1[, ε0(t ) = εi. At t =
2t1, the reflected wave generated at the interface P1-P2 at t = t1
reaches the contact zone and modifies the deformation at
the contact by adding a component 2R12εi and ε0(t � 2t1) =
(1 + 2R12(α))εi. Note that this is only possible if 1 +
2R12(α) � 0 so that the contact zone remains in compression.
Actually this quantity becomes negative for α � 0.1 and ex-
plains what is observed at the bottom of the (x; α) diagram.
In this region, the projectile leaves the wall at t = 2t1. In the
left part of the 0.1 � α region, x < 0.25–0.4, this separation
is definitive as characterized by tc = 2t1 and Nb = 1, while
in the rest several reconnection/separation stages occur as
characterized by tc > 2t1 (mostly tc = 2t1 + 2t2) and Nb > 1
(Figs. 4 and 5). If the projectile remains in contact, α > 0.1,
the state of the contact will change again at t = 4t1 if t1 < t2
or at t = 2t1 + 2t2 if t1 > t2. In the (x; α) diagram, a change
of behavior is thus expected for

x1 =
√

α√
α + √

1 − α
, (9)

which corresponds to t1 = t2. If t1 < t2 (x > x1), an ad-
ditional 4R2

12εi will contribute to the deformation at the
contact associated with an additional reflection of amplitude

2R2
12 at the P1-P2 interface; in this case ε0(t � 4t1) = (1 +

2R12 + 4R2
12)εi. If t1 > t2 (x < x1), the state of the inter-

face is first modified by the wave that has traveled through
P2 and reaches the contact zone at t = 2t1 + 2t2 with the
amplitude −T21T12εi; in this case ε0(t � 2t1 + 2t2) = (1 +
2R12 − 2T21T12)εi. Such reasoning is helpful to give insights
and understand the results for certain values of x and α. For
the rest, the numerical approach is required to deal with the
complexity of multiple waves traveling through the material
and the description of the separation/reconnection stages. For
instance, solving (1 + 2R12 − 2T21T12) = 0 gives α = 0.82 as
marked by a transition in the top-left of the (x; α) diagram
(limit of the region tc = 2t1 + 2t2 with x < x1).

B. Central region 0.1 � α � 0.8

Such simple reasoning can be used to understand what
happens in the central region 0.1 � α � 0.8, characterized
by tc = 2t1 + 2t2 and no additional reconnection/separation
stage [Fig. 3(b)]. If t1 > t2 or x < x1, ε0(t ) equals εi between 0
and 2t1 and (1 + 2R12)εi between 2t1 and 2t1 + 2t2. If t1 < t2,
the state will depend on the number of travels of the waves
inside P1 and the subsequent modification of the deformation
at the contact before tc and separation from the wall. Due to
multiple reflections inside the part P1, the contact deformation
is modified every k ∗ 2t1 with k = 1, 2, 3, . . . due to the
arrival at the P1-wall contact of a wave of amplitude Rk

12εi.
The deformation at the contact is thus modified by addition
of 2Rk

12εi due to the rigid boundary condition (Appendix B).
This leads to the expression of the contact deformation ε0,k in
the interval [k ∗ 2t1; (k + 1) ∗ 2t1]

ε0,k =
(

1 +
k∑

i=1

2Ri
12

)
εi =

(
−1 +

k∑
i=0

2Ri
12

)

εi = 1 + R12 − 2Rk+1
12

1 − R12
εi. (10)

If we note n the greatest integer less than or equal to t2/t1,
n = floor(t2/t1), the coefficient of restitution is obtained from
Eq. (6) and writes

e = −1 − c2
1

(L1 + L2)vb

(
2t1

n∑
k=0

ε0,k + 2(t2 − nt1)ε0,n+1

)
.

(11)

If we note Fk (α) = 1+R12−2Rk+1
12

1−R12
and given that εi = −vb/c1

and t2/t1 = x
√

1−α

(1−x)
√

α
, e(x) = an(α)x + bn(α) with the slope an

and the intercept bn for a given n, both functions of α such as

an(α) = −2

(
n∑

k=0

Fk

)
+ 2nFn+1 + 2Fn+1(α)

√
1 − α

α
,

bn = −1 + 2

(
n∑

k=0

Fk

)
− 2nFn+1.

A direct consequence is that for a given α and a given n, e is
a linear function of x that changes slope for discrete values xn
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FIG. 5. (a) Number of bounces Nb as a function of x and α: full diagram on the left and enlarged view around the zone of interest on the
right. (b) Number of bounces Nb as a function of x for α → 0 (α = 0.005).

corresponding to t2 = nt1:

xn(α) = n
√

α

n
√

α + √
1 − α

.

This is in agreement with the line segments observed with the
numerical approach [Fig. 6(b)] and allows to find expressions
of xmin(α) and emin(α) for α in the central region 0.1 � α �
0.8, given that xmin = x1, emin = a0x1 + b0, and F0 = 1.

xmin(α) = x1 =
√

α√
α + √

1 − α
, (12)

b0 = 1 and a0(α) = −2

(
1 − F1(α)

√
1 − α

α

)
, (13)

emin(α) = e(xmin) = 1 − 2

(√
α − F1(α)

√
1 − α√

α + √
1 − α

)
. (14)

These equations are successful in describing the central region
(Fig. 7).

C. Lower region α � 0.1

For α � 0.1, the upper part is significantly softer than the
lower part. As a consequence, the reflected wave at the P1-P2

interface is poorly modified by the presence of the upper and

softer part so that the projectile takes off at 2t1 as expected if
part P1 was alone (Sec. VI A).

For the smallest x, the takeoff is definitive since the up-
per and softer part is not massive enough to push back the
lower part toward the wall. As a consequence, the dynamics
is characterized by one single wave travel through the lower
and stiffer part and tc = 2t1 [Fig. 3(a)]. In this case, the defor-
mation at contact equals εi = −vb/c during the whole impact.
From Eq. (6), we deduce that

e(x) = 1 − 2x, (15)

whatever α in this region in agreement with the results of
Fig. 6. This expression is consistent with predictions expected
in the limit α → 0, meaning t1 � t2, which considers the
lower and stiffer part as a perfectly rigid object that changes
velocity on a much shorter timescale than the upper and
softer part [19,23]. In this case, the velocity of the rigid part
switches from −vb to vb following the impact with the wall
while the upper and softer part keeps its velocity −vb. The
velocity of the center of mass after impact equals va = (1 −
x)vb − xvb = (1 − 2x)vb, which leads to the expression of the
coefficient of restitution given by Eq. (15) if no additional
reconnection/separation stage occurs.

For intermediate values of x, the upper and softer
part is more massive so that it projects again the lower
part toward the wall. One or a few additional stages of
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FIG. 6. Coefficient of restitution e as a function of x and α.
(a) Full diagram. (b) Several profiles for fixed values of α < 0.5.

reconnection/separation occur and the projectile takes off
definitively at a time tc close to 2t1 + 2t2, the time for the
wave to travel back and forth through the whole projectile
[Fig. 3(c)]. When plotting e(x) as a function of x for a given
α [Fig. 6(b)], the positions of the end points between line
segments are now both associated with specific values of
traveling time inside the projectile and to additional stages
of reconnection/separation. The lower α, the larger the slope
changes between consecutive line segments. The larger x for
a given α, the lower the length of the line segments. In the
limit of a perfectly rigid lower part (α → 0), the stages of
reconnection/separation are instantaneous and each of them
reverses immediately the sign of the velocity of the lower part
by an exchange of momentum with the wall. As detailed in
Appendix C, the number of such stages in this limit is an
increasing and discontinuous function of x. Consequently, the
coefficient of restitution is a discontinuous function of x too.
Nevertheless, the speed at reconnection decreases with the
number of reconnection/separation stages due to the interac-
tion with the upper part so that the exchange of momentum
with the wall, and thus the amplitude of the discontinuities in
e, decreases as x increases.

For the largest x, the upper and softer part is now
significantly more massive than the lower part. A lot of
reconnection/separation stages occur and the projectile takes
off definitively and exactly at tc = 2t1 + 2t2 [Fig. 3(c)]. The
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FIG. 7. (a) xmin and (b) emin as functions of α. The solid lines
are the expressions expected in the central region 0.1 � α � 0.8,
Eqs. (12) and (14).

line segments become so small that they appear as one single
line that reaches e = 1 for x = 1 [Fig. 6(b)]. The lower α and
the steeper the asymptote, which writes e(x) = x in the limit
α → 0. Again we can consider the limit of a perfectly rigid
lower part (α → 0). As detailed in Appendix C, for x larger
than typically 0.6–0.7, the motion of the lower and rigid part is
damped following the multiple exchanges of momentum with
the wall and the interaction with the upper part. Consequently,
the velocity of the lower part equals 0 at tc while the upper
and softer part has switched its velocity from −vb to vb. This
retrieves the expression e(x) = x of the simulation results in
the limit α → 0 [Fig. 6(b)].

VII. RESULTS FOR VISCOELASTIC BILAYERED
PROJECTILES

The case of nondissipative bilayered projectiles was con-
sidered in Secs. V and VI. It was obtained by setting τ1 =
τ2 = 0 for the viscoelastic relaxation times in both parts P1

and P2 or, equivalently, e1 = e2 = 1 for the coefficients of
restitution of each part taken separately. In this section, we
now consider the case of viscoelastic bilayered projectiles.
In each part Pi, τi is now adjusted to fix the coefficient of
restitution of the homogeneous projectile of total length L to
the desired values e1 and e2 (Sec. IV) so that e(x = 0) = e1
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FIG. 8. Coefficient of restitution e as a function of x for α =
0.005: (a) e2 = 1 and e1 is varied between 0.4 and 1; (b) e1 = 1 and
e2 is varied between 0.4 and 1.

and e(x = 1) = e2 for the two limits of a bilayered projectile
of total length L. In what follows we keep the total length
L constant and restrict the analysis to high rigidity contrast
(α = 0.005 if not indicated otherwise) with the rigid part at
the bottom.

A. Systematic study

The effect of e1 and e2 on the coefficient of restitution
(Fig. 8) and contact time (Fig. 9) is studied systematically.
The case e1 = e2 = 1 corresponds to dissipative-less projec-
tiles and is characterized by the asymptotes e(x) = 1 − 2x in
the limit x → 0 and e(x) = x in the limit x → 1 (Sec. VI).
If e2 is set to 1 while e1 is varied, the coefficient of restitu-
tion keeps approximately the same asymptote at large x and
the same initial slope at small x [Fig. 8(a)]. The opposite is
observed if e1 is set to 1 while e2 is varied [Fig. 8(b)]. The
transition zone between the two asymptotes, characterized by
strong variations of e, are shifted to larger x if e2 decreases
and to smaller x if e1 decreases. The effect on the contact
time is shown in Fig. 9. In all cases, the two limit regimes
are retrieved: tc = 2t1 for small x and tc = 2t1 + 2t2 for large
x. Again, the limit between the two regimes is shifted to larger
x if e2 decreases and to smaller x if e1 decreases.
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FIG. 9. Dimensionless contact time tc/(2t1 + 2t2) as a function
of x for α = 0.005: (a) e2 = 1 and e1 is varied between 0.4 and
1; (b) e1 = 1 and e2 is varied between 0.4 and 1. The dashed lines
correspond to the equation tc = 2t1.

B. Comparison with experiments

Simulations in the limit α → 0 are compared with ex-
perimental data from D’Angelo et al. [15] obtained with
cylindrical projectiles. The value of e1 = 0.94 and e2 =
0.72 are deduced from experimental measurements by
extrapolating the asymptotes in the limits x → 0 and x → 1,
respectively. The coefficient of restitution and the number of
bounces are shown in Fig. 10. We observe that the agreement
is very good for recovering fine details like local variations
in e or the staircaselike trend in Nb, although there is no
additional fitting parameters.

VIII. DISCUSSION AND CONCLUSION

This one-dimensional numerical study reveals that bilayer
elastic projectiles exhibit novel properties when the contrast
between the elastic moduli is large and the rigid and soft
parts are located at the leading and trailing edges, respec-
tively. This includes the occurrence of multiple bounces and
a maximum of absorption for a specific composition ratio.
This allows to put in the same context the results obtained
with composite objects, either in experiments or in simple
models [13,15,16,19]. The absorption can be very strong with
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FIG. 10. (a) Coefficient of restitution e and (b) number of
bounces Nb as functions of x. Simulations are performed in the limit
α → 0 and experimental data are taken from D’Angelo et al. [15].

a coefficient of restitution as low as 0.2, showing that most
of the initial kinetic energy can be trapped in the internal
deformation modes if the composition and stiffness ratios are
fixed at specific values. In a more general context, this study
strengthens the ideas that bilayered elastic objects can exhibit
particular properties, very different from the properties of the
two parts taken separately, as already shown in ejection exper-
iments [17,18]. Finally, viscoelastic parts can be studied in the
same framework and give similar results with a composition
ratio at minimum restitution that can be slightly adjusted in
either direction by changing the dissipative properties of either
part.
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APPENDIX A: FINITE-SIZE EFFECTS

In Fig. 11, we observe the coefficient of restitution as a
function of the number of elements N for the case of a purely

101 102 103 104
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0.980

0.985

0.990

0.995

1.000

e

α = 0.5

101 102 103 104

10−3

10−2

1
−

e

1 − e = 0.11N−0.56

FIG. 11. e as a function of N for α = 0.5 and τ = 0. In the inset,
1 − e as a function of N in a logarithmic scale. The red line is the
best power law fit.

elastic and homogeneous chain (α = 0.5 and τ = 0), whose
coefficient of restitution is expected to be 1 in theory. We
observe that the error is about 1% for N = 50. We set this
value as the minimum number of elements in a given part.
With α = 0.005 and 0.995 for the extreme values, this means
that taking N = 104 for the whole chain should keep the error
below 1% in all simulations.

APPENDIX B: WAVE APPROACH FOR PURELY ELASTIC
PROJECTILES

Three interfaces are found in this problem: the P1-wall
interface at y = 0, the P1-P2 interface at y = xL and the P2 free
interface at y = L. For each of them, velocity and/or force
continuity imposes specific conditions for the amplitude of
the deformation wave reflected or transmitted at the interface.
At the P1-wall interface [Fig. 12(a)], a wave of amplitude
ε traveling with velocity −c1 gives rise to a reflected wave
of amplitude ε traveling with velocity +c1. At the P2 free
interface [Fig. 12(b)], a wave of amplitude ε traveling with
velocity +c2 gives rise to a reflected wave of amplitude −ε

traveling with velocity −c2. At the P1-P2 interface, a wave
of amplitude ε traveling with velocity +c1 [Fig. 12(c)] gives
rise to a reflected wave of amplitude R12ε and to a transmitted

FIG. 12. Descriptive diagram of the reflection and transmission
of deformation waves at the interfaces of the projectile. Cases
(a)–(d) are described in the text.
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wave of amplitude T12ε traveling with velocity −c1 and +c2,
respectively. In addition, a wave of amplitude ε traveling
with velocity −c2 [Fig. 12(d)] gives rise to a reflected wave
of amplitude R21ε and to a transmitted wave of amplitude
T21ε traveling with velocity +c2 and −c1, respectively. The
reflection and transmission coefficients at this interface are
only functions of α and write

R12(α) =
√

α − √
1 − α√

α + √
1 − α

and

T12(α) = 2(1 − α)3/2

α
√

1 − α + (1 − α)
√

α
, (B1)

R21(α) = −
√

α − √
1 − α√

α + √
1 − α

= −R12(α) and

T21(α) = 2α3/2

α
√

1 − α + (1 − α)
√

α
. (B2)

APPENDIX C: CALCULATIONS IN THE LIMIT α → 0

This Appendix is dedicated to perfectly elastic bilayered
projectiles in the limit α → 0 as discussed in Sec. VI C. In
this case, t1 � t2 and the lower and stiffer part P1 can be
considered as a rigid and undeformable object. We note y1, y2

and v1, v2 the position and velocity of the center of mass of
the part P1, P2 respectively.

Since t1 � t2 the interaction of part P1 with the wall can
be considered as instantaneous and reverses the sign of v1.
Once part P1 is separated from the wall, it is only subjected
to the interaction with P2 and the dynamics of its center
of mass follows ρL1

dv1
dt (t ) = E2∂y+u(yc, t ). As long as the

deformation wave does not reach back the P1 − P2 interface
(t < t1 + 2t2 � 2t2), the deformation at the interface on the P2

side writes ∂y+u(yc, t ) = − v1+vb
c2

[1] and v1 satisfies

dv1

dt
+ v1

τrelax
= − vb

τrelax
, (C1)

with τrelax = L1/c2 the relaxation time of this dynamics. We
recover the equation of a falling object inside a viscous fluid
[15] to describe how the upper part P2 pushes the lower part
P1 towards the wall. If the object leaves the solid wall with
a velocity v1,i at time t1,i, the solution of Eq. (C1) during the
bounce is written as

y1(t ) = L1/2 + τrelax(vb + v1,i )(1 − e−(t−t1,i )/τrelax )

− vb(t − t1,i ), (C2)

with L1/2 the position of the center of mass of part P1 at con-
tact with the wall. From these considerations, we can build a
time sequence of events describing the full motion of the rigid
part P1. At t = t1,1 = 0, its velocity v1(t1,1) switches from
−v1,1 = −vb to v1,1 = vb. Between t1,1 and t1,2, the motion is
described by Eq. (C2) until P1 enters again into contact with
the wall at t = t1,2 defined by y1(t1,2) = L1/2. At this instant,
its velocity v1(t1,2) switches from −v1,2 to v1,2 followed again
by a motion described by Eq. (C2). This recursive approach
leads to the trajectory displayed in Fig. 13(a). We observe
that the amplitude of the motion decreases as the number
of reconnection/separation stages increases. In Fig. 13(b),
v1,i/vb is plotted as a function of t1,i/τrelax. It confirms that
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FIG. 13. (a) Dimensionless time evolution of the rigid part po-
sition as a function of time, as predicted by Eq. (C2). (b) Velocities
v1,i/vb in function of t1,i/τrelax (black dots). The red solid line indi-
cates the function e−t1,i/3τrelax .

the larger i, the smaller v1,i and the smaller the time between
two contacts with the wall. Actually, the data can be interpo-
lated with the function v1,i/vb = e−t1,i/3τrelax , which shows that
the motion of the lower and rigid part P1 is damped over a
characteristic time 3τrelax.

If we perform the same analysis with the part P2, as long
as the deformation waves does not reach back the P1 − P2

interface, v2 satisfies

ρL2
dv2

dt
= E2

v1 + vb

c2
. (C3)

Integrating this equation, between 0 and t gives v2(t ) =
−vb + y1(t )−y1(0)

t2
+ vb

t
t2

. This can be used to calculate the co-
efficient of restitution e = (1 − x)v1(tc) + xv2(tc) with tc =
2t1 + 2t2 � 2t2 in the limit α → 0. Given that the ratio
tc/τrelax is an increasing function of x, the number of
reconnection/separation stages is an increasing function of
x too. The abrupt changes in the curve e(x) between x =
0.4 and 0.7 are thus attributed to changes in the number of
reconnection/separation stages [see α = 0.005 in Fig. 6(b)].
In the limit t2 
 3τrelax, we can consider that the motion of the
rigid part P1 is damped so that v1(tc) � 0 and y1(tc) � y1(0) =
L1/2. In this case, we find the expression of an asymptote of
the coefficient of restitution, e(x) = x, in this limit. Actually,
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this asymptote is a good approximation of the coefficient of
restitution as long as tc � 2t2 > 3τrelax, which is equivalent to

L2 > 1.5L1 or x > 0.6, in agreement with the behavior of e(x)
for α = 0.005 in Fig. 6(b).
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