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Substrate-mediated leg interactions play a key role in insect stability on granular slopes
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Locomotion on granular inclines is a subject of high relevance in ecological physics as well as in biomimmet-
ics and robotics. Enhancing stability on granular materials represents a huge challenge due to the fluidization
transition when inclination approaches the avalanche angle. Our motivating example is the predator-prey system
made of the antlion, its pit, and its prey. Recent studies have demonstrated that stability on granular inclines
strongly depends on the pressure exerted on the substrate. In this work we show that for multilegged locomotion,
along with pressure, the distance between the leg contacts on the substrate also plays a major role in the
determination of the stability threshold. Through a set of model experiments using artificial sliders, we determine
a critical distance below which stability is importantly affected by the interactions between the perturbed regions
generated by each contact point. A simple model based on the Coulomb method of wedges allows us to estimate
a stability criterion based on pressure, interleg distance, and substrate characteristics. Our work suggests that
mass to leg-length allometric relationships, as the ones observed in ants, may be an important key in determining
the locomotion success of multilegged locomotion on granular inclines.

DOI: 10.1103/PhysRevE.108.014903

I. INTRODUCTION

Ubiquitous in nature, locomotion in granular media has
drawn the attention of the scientific community in recent years
[1–3]. Because of their complex nature [4], interactions with
granular materials offer a rich field of study. In nature, solid-
fluid transitions in granular media are masterly exploited by
the antlion larvae in order to catch prey [5–7]; they dig a coni-
cal pit into the sand and wait at the bottom for their victims to
fall down. In fact, for most of the antlion’s prey, locomotion on
the inclined pit walls represents an insurmountable challenge.
The antlion builds its pit with an inclination near the avalanche
angle, and thus, small perturbations generated by prey at the
leg-substrate contact points can generate local deformations,
making locomotion almost impossible and, in some cases,
causing prey to fall all the way down to the bottom of the trap
[8]. The efficiency of the antlion’s trap depends on different
parameters, including pit architecture, the behavior of antlion
larvae, and prey characteristics [9,10]. Moreover, not only
prey physical characteristics such as weight and size can play
an important role in the capture success of the antlion’s pit
[10], but prey gate pattern adaptations to locomotion on gran-
ular inclines can also be important [11]. Understanding the
physical principles determining locomotion stability on gran-
ular inclines is thus of high relevance for ecological physics,
as well as for biomimetics and robotics [2,12,13].

In a previous work, Crassous et al. [14] showed that the
stability of an inert disk with density ρs and height h lying on
a granular slope with density ρ and grain size δ depends on
three main parameters: the nondimensional pressure exerted
by the object on the substrate P∗ = ρsh/ρδ, the inclination
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angle difference from the avalanche �θ , and the object area
in contact with the substrate �. The authors observed that the
stability of light objects on the granular incline did not follow
the Amonton’s law. In the case of very light objects, P∗ � 1,
they do not perturb the surface and stability is achieved only
by friction between the object and the granular media. In
contrast, for heavy objects, P∗ � 1, stability is obtained by
the formation of a rim in front of the object due to the large
deformation of the media. However, for intermediate objects,
P∗ ∼ 1, the pressure exerted on the substrate destabilizes the
medium, causing the object to slide down the slope. In the
latter case, the object slides despite the formation of a frontal
rim. Pressure-dependent stability on granular inclines is of
great interest in the study of animal locomotion, and in partic-
ular in the case of insects (i.e., ants climbing an antlion’s pit),
for whom the pressures exerted on the granular media lie at
the frontier between this unstable region and the stable region
defined by the presence of rims. An important aspect in the
walking stability of multilegged animals on granular slopes
is the interaction between the rims generated by each one of
the leg contacts on the granular. The existence of rim interac-
tions due to the proximity of contact points could potentially
modify the animal’s stability. In the present work we address
this problem by studying the influence of rim interactions on
the static stability of multilegged artificial objects on inclined
granular planes. We focus on the influence of the different
parameters that are relevant in ecological settings: the pressure
exerted on the substrate, the interleg distance, and the grain
size.

II. MATERIALS AND METHODS

Experiments are carried out using a box of dimensions
30 × 30 × 3.5 cm (width-length-height) in which we pour
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FIG. 1. (a) Scheme of the experimental device. (b) and (c) Image of the artificial slider in its extreme configurations of maximum and
minimum values of L, respectively. Dashed lines are a guide to the eye to identify the plexiglass structure joining the four plexiglass disks.

glass beads of different diameters (δ = 0.5, 1, and 2 mm)
and density ρ = 2500 kg/m3. Once the box is fully filled
with granular beads, we use a ruler to take away the excess
of beads in order to obtain a regular flat surface. The final
granular preparation presents a solid volume fraction of ϕ =
0.6 ± 0.05 with a mean avalanche angle of θa = 28.3◦ ± 0.8◦
for the δ = 0.5 mm beads, θa = 26.2◦ ± 0.5◦ for the δ =
1 mm beads, and θa = 29.2◦ ± 0.8◦ for the δ = 2 mm beads.
In a typical experiment, after the surface has been flattened,
the granular preparation is tilted up to an angle of θ < θa so
that �θ = θa − θ = 3◦. A four-legged artificial slider is then
gently put on the granular surface near the top edge of the
box [Fig. 1(a)]. The slider consists of four plexiglass disks
fixed together through a rigid plexiglass structure. Two differ-
ent artificial sliders with different disk diameters of D = 7.5
and 15 mm are used. The distance between the disks can be
varied in order to obtain an interdisk distance in the range
0 < L < 10 cm (see Fig. 1). Following the work of Crassous
et al. [14], the mass of the artificial slider is chosen to be
such that the exerted pressure is P∗ ∼ 2.5, thus lying near
the unstable-stable transition zone. The mass of each slider
is adjusted depending on the disk diameter and grain size in
order to preserve a constant value of P∗.

In all cases we verify that the thickness of the disks is
bigger than the penetration depth into the granular media. The
outcome of each experiment is dichotomous: a value of 1 is
assigned if the slider falls all the way down the slope reaching
the bottom border of the box or 0 if the previous condition is
not fulfilled, as in Crassous et al. [14]. In general, the artificial
slider slips a distance of ∼D before reaching full stability on
the granular incline. The sliding probability for each set of
interdisk distance L and grain size δ is obtained by repeating
each experiment ten times.

III. RESULTS

The sliding probability of the artificial sliders as a function
of the nondimensional parameter L/D is shown in Fig. 2. The
choice of using D as the typical distance to normalize L will
be discussed further. For all grain sizes and disk diameters
we observe a transition from the unstable to the stable region
as the distance L increases. For very close contacts, such as
in Fig. 1(c), the sliding probability is maximal (p ∼ 1) and
starts to decrease as the distance increases. At some critical

distance, the sliding probability reaches a minimum (p ∼ 0),
remaining constant as L is further increased. We observe a
good collapse of data when L is normalized by D, indepen-
dently of the grain size. Our experiments show that stability
is reached despite grain size when the distance between the
disks is about 2.5 times the diameter of the disk. During
experiments with small interdisk distances (small L/D), we
could observe grain displacements in the inside of the entire
squared region defined by the four disk contacts. That is,
the perturbation zone generated by each contact merged with
the neighboring perturbations, defining a single perturbation
zone. Also, the frontal rims generated by contiguous disks
tend to form a unique rim. In contrast, for high values of L/D,
the perturbation zones generated by each disk do not interact
and independent rims at each disk can be easily identified.
The size of the perturbation zone created around each contact
point, thus, obviously plays an essential role in the stability
of the slider. More precisely, the question is: how does this
perturbation distance compare to the interdisk distance L?

A. Perturbation size

A first postulate is that the extent of the perturbation zone
around the contact between each disk and the granular surface
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FIG. 2. Sliding probability as a function of the nondimensional
parameter L/D. The substrate inclination is fixed to �θ = 3◦.
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FIG. 3. (a) Schema of the experimental setup used for the estimation of the perturbation distance λ and the rim height ε. (b) Lateral view
of the disk deforming the granular surface. Only the red channel of the RGB image is shown. The rim height ε is obtained from the laser
projection on the granular surface. (c) Binarized image of the perturbation extent produced by the sliding disk on the granular bed. The image
is obtained from the difference between the top view images before and after the deposition of the disk on the granular surface. (d) Plot of the
normalized perturbation lengths λ f /D (solid points) and λl/D (empty points) as a function of the normalized disk diameter D/δ for a constant
nondimensional pressure P∗ = 2.5 and for three different grain sizes: �, δ = 0.5 mm; ◦, δ = 1 mm; and �, δ = 2 mm. The equations of the
linear regressions are λ f = 0.85D + 10δ and λl = 0.4D + 9δ. (e) Plot of the normalized perturbation lengths λ f /D (solid points) and λl/D
(empty points) as a function of the normalized pressure P/ρgD. The equation of the linear regression is λ f = 3.45P/ρg + 0.9D.

is expected to depend on both the grain size and the disk
diameter, as observed in the case of velocity fields of objects
into granular media [15]. We can also expect the perturba-
tion size to depend on the pressure exerted by the disk on
the granular substrate [16]. To explore these dependencies,
we carried out two sets of experiments. In the first one, we
placed single circular plexiglass disks of different diameters
(D = 5, 10, 15, 20, 25, and 30 mm) on an inclined granular
bed (�θ = 3◦) composed of the same spherical glass beads
of diameters δ = 0.5 mm, δ = 1 mm, and δ = 2 mm used in
the slider experiments. The mass of each disk was adjusted
in order to keep a constant pressure, P∗ = 2.5 (the same as in
the sliding probability measurements). In the second set of ex-
periments, the disks with diameters D = 7.5, 15, and 30 mm
were loaded with additional masses on top in order to generate
nondimensional pressures P∗ in the range 0.8 < P∗ < 5.6.
For both sets of experiments, the perturbation generated on
the granular bed was measured by comparing the top view
images of the granular surface before and after the deposition
of the circular objects [see Figs. 3(a) and 3(b)]. Thus, our

measurements indicate the extent at which glass beads moved
from their initial position after the deposition of the disks on
the substrate. In the second set of experiments (varying P∗),
besides measuring the perturbation extent λ, we also measured
the height of the frontal rim ε f generated after deposition of
the disks on the granular surface. These measurements were
carried out using the classical technique of laser profilometry
shown in Figs. 3(a) and 3(c). Our experiments show that the
perturbation zone has an ellipselike form defined by a frontal
perturbation distance λ f (measured in the direction of the
slope) and a lateral distance λl (perpendicular to λ f ). Both
distances, λ f and λl , were measured from the border of the
disk to the beginning of the region where no more grain move-
ments were observed [see Fig. 3(c)]. In the case of stable disk
conditions, λ f and λl correspond to the perturbation lengths
at the instant of complete arrest. For nonstable conditions
(disks sliding all the way down to the end of the slope),
these measurements correspond to the maximum perturbation
length observed during the disk displacement. The results of
our first set of experiments (varying D and δ with P∗ fixed) are
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FIG. 4. (a) Nondimensional depth ε f /D as a function of P/ρgD. Symbols represent different experimental conditions: � → D = 15 mm
and δ = 0.5 mm, ◦ → D = 15 mm and δ = 1 mm, � → D = 30 mm and δ = 1 mm, and ♦ → D = 7.5 mm and δ = 0.5 mm. Empty and
solid symbols represent arrest and sliding conditions, respectively. The linear regression is calculated only for arrest conditions, ε f /D =
βP/ρgD + 0.1, with β = 0.47 ± 0.02, and R2 = 0.86. (b) Temporal evolution of the nondimensional depth ε f /D (points) and slider position
x/D (lines) for two different pressures: P∗ = 1.35 (solid points and solid line) and P∗ = 5.4 (empty points and dashed line).

shown in Fig. 3(d). We observe that the perturbation length in
both directions λ f and λl linearly increase with the disk and
grain diameters (D and δ, respectively). These results show
that the effects of the disk diameter on the frontal perturbation
length λ f start to be dominant for D/δ > 10. The latter may
explain the good collapse of the probability curve (Fig. 2)
when the interdisk distance L is normalized with respect to
D, as the slider experiments lie in the range 7.5 < D/δ < 30.
We also find a better collapse of data when choosing D as
the characteristic length for the variable pressure experiments.
In Fig. 3(e) we present the evolution of λ f /D and λl/D as a
function of the nondimensional pressure P/ρgD. The choice
of ρgD as characteristic pressure also allows us to integrate
the results of our first set of experiments in the plot. Both
perturbation lengths λ f /D and λl/D are observed to vary lin-
early with pressure as σP/ρgD, with σ = 3.45 ± 0.28. As for
the perturbation extension, the height of the frontal rim also
appears to be dependent on pressure [Fig. 4(a)]. After being
deposited on the surface, disks start to slide downwards while
penetrating into the granular media due to pressure. During
this initial displacement, the ploughed material accumulates
in front of the disk, generating a rim of height ε f with respect
to the bottom of the disk [see Fig. 4(b)]. We observe that for
small pressures, the rim height is not enough to keep the disks
from sliding down the incline [these cases are represented as
solid points in Fig. 4(a), where ε f is taken as the mean height
value during the disk motion]. This contrasts with heavier
disks [empty points in Fig. 4(a)], which generate a sufficiently
high frontal rim to come to a full stop. In the latter case the
rim height is measured at the moment of complete arrest.
Interestingly, the unstable-stable transition occurs at a rim
height of ε f /D ∼ 0.15, which corresponds to the nonlinear
to linear transition of the relation between penetration depth
and force resistance observed in the case of the penetration
of solids in granular media [17]. The linear regression of the
experimental data for the complete arrest cases [empty points
in Figure 4(a)] gives ε f /D ∼ βP/ρgD, with β = 0.47 ± 0.02.

B. Rim force

A stability criterium for the artificial slider used in our
experiments can be found by balancing the component of its
weight in the direction tangential to the sliding plane and the
force exerted by the rim generated in front of it. In order
for the slider to stay still on the incline, the component of
its weight tangential to the sliding plane T = Nπ/4PD2 sin θ ,
where N is the number of disks and P is the total pressure,
must be lower than the sum of the resistive forces generated
at the frontal rims formed at each contact point. Let fr be
the force of an individual rim. Using the Coulomb method
of wedges [18], the force exerted by the rim on a single disk
can be estimated as

fr = ρgε2
f

2
D cos(θ ) fmin(μ, ζ , κ ), (1)

where ε f is the height of the frontal rim, μ = tan θa, and
ζ = tan θ . Equation (1) represents the minimal force needed
to move a block of volume V = Dε2

f (κ2/ tan �θ + (1 −
κ )2/ tan α)/2 up the sliding plane of inclination α with respect
to the undeformed surface [where κ is the proportion of the
rim height beneath the level of the undeformed surface, see
Fig. 5(a)]. In our experiments, the displaced volume is com-
posed of two parts: the first one corresponds to the volume
of ploughed material in front of the disk [hatched region in
Fig. 5(a)]. During the initial sliding, the ploughed granular
material cumulates, forming a wedge with an angle of �θ =
θa − θ with respect to the inclined undeformed surface. The
height of this upper wedge is κε f (a fraction of the total
measured rim height ε f , with 0 < κ < 1) and its length is
κε f / tan �θ . The second part of the displaced volume is the
wedge formed beneath the level of the undeformed surface
and defined by the slip plane angle α and the penetration
depth of the disk into the granular material (1 − κ )ε f . The
function fmin in Eq. (1) is obtained by minimization with
respect to α (refer to Ref. [18] for a detailed description of

014903-4



SUBSTRATE-MEDIATED LEG INTERACTIONS PLAY A … PHYSICAL REVIEW E 108, 014903 (2023)

FIG. 5. (a) Structure of the frontal rim. The hatched region over the flat plane corresponds to the ploughed volume during the initial sliding.
The wedge lying beneath the surface is defined by the slip plane angle α. (b) Evolution of the slip plane angle αmin as a function of κ for different
grain sizes. Each grain size implies a different value of θa: for δ = 0.5 mm, θa = 28◦; for δ = 1 mm, θa = 26◦; and for δ = 2 mm, θa = 29◦. In
all three cases �θ = θa − θ = 3◦. Inset: Ratio of the upper (hatched) and lower (gray) wedge lengths as a function of the proportion parameter
κ . (c) Value of fmin as a function of κ for different grain sizes. (d) Lower wedge length (1 − κ )ε f / tan αmin compared to λ f using κ = 0.5
and αmin = 2.6◦. Symbols represent different experimental conditions: � → D = 15 mm and δ = 0.5 mm, ◦ → D = 15 mm and δ = 1 mm,
� → D = 30 mm and δ = 1 mm, and ♦ → D = 7.5 mm and δ = 0.5 mm.

the procedure). The values of α minimizing f are presented
in Fig. 5(b) as a function of κ . The steepest inclination of the
slip plane is obtained when the granular surface beneath is
undeformed (i.e., κ = 0). The presence of ploughed material
on top of the surface leads to a reduction of the slip angle αmin

as the value of κ increases. This effect was also observed in
previous studies [19,20] in the case of a vertical plate dragged
through a granular bed. Also in agreement with these works,
the Coulomb method of wedges estimation presented here
shows that the length of the upper and lower wedges tend to
the same value as κ increases [inset in Fig. 5(b)]. Moreover,
a decreasing value of the slip plane inclination angle leads
to a decrease of fmin [Fig. 5(c)]. In the present work κ is
not a controlled parameter but the result of the penetration
dynamics of the disks after deposition on the inclined granular
surface. In our experiments the measured value of κ remains
fairly constant, κ ∼ 0.5, despite the changes of the applied

pressure. For this value of κ we get an estimated value of the
slip plane angle of αmin = 2.6◦. Using these values we can
estimate the wedge length as (1 − κ )ε f / tan αmin, which is in
good agreement with the perturbation extension λ f measured
throughout our experiments [Fig. 5(d)].

C. Rim interaction

In what follows we assume that for big interdisk distances,
i.e., L/D � 1, the rim force on each one of the disks of the
artificial slider is given by Eq. (1). This force can, however, be
affected as L → min {λ f , λl}, due to the interaction between
rims. A simple geometrical approach allows one to determine
the total rim force in the two extreme cases presented in
Figs. 1(b) and 1(c). In the limit L → 0 [Fig. 1(c)], the four
disks form a compact object of width 2D, so that the total force
on the slider is Ft = 2 fr . In contrast, when L � D [Fig. 1(b)],
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FIG. 6. (a) Schema of the experimental setup. (b) Lateral views of the artificial slider deforming the granular surface. The normalized
distance between the disks is L/D = 3.3 (upper image) and 0.5 (bottom image). (c) Evolution of the rear rim height of the leading disk (disk 1)
as a function of the nondimensional distance L/D. The blue points in the plot represent the normalized height of the leading disk edge. The inset
shows the frontal rim heights of the leading and trailing disks (ε f 1: solid points; ε f 2: empty points) as a function of L/D. (d) Nondimensional
force Ft/T as a function of L/D [defined in Eq. (3)]. The point codes for the different experimental parameters are the same as those in Fig. 2.

four independent rims form at each one of the disks, doubling
the total force to Ft = 4 fr . However, the evolution of the
rim force between these two extreme cases is not trivial. In
an attempt to shed some light on this question, we carried
out a set of experiments and measured the evolution of the
frontal and rear rim heights ε f and εr , respectively, as a
function of L [see Fig. 6(a)]. For this, we used two artificial
sliders with disk diameters D = 10 and D = 15 mm on a
grain bed of δ = 0.5 mm and constant pressure P∗ = 2.5. The
interdisk distance L was varied in the range 0 < L/D < 3.5.
The substrate deformation was measured using the same laser
profilometry technique used in the ε f vs P experiments. The
pictures of the deformed surface presented in Fig. 6(b) show
that, for high interdisk distance values (e.g., L/D = 3.3), the
rims generated by the leading and trailing disks (defined in the
sense of the sliding direction as disk 1 and disk 2, respectively)
are almost identical. As the interdisk distance is reduced (e.g.,
L/D = 0.5), the extent of the frontal rim generated by the
trailing disk (disk 2) starts to be limited by the leading disk
(disk 1). A signature of this interaction may be recognized
through the evolution of the rear rim depth of the leading
disk εr1. Results presented in Fig. 6(c) show that the rear

rim height εr1 increases as the frontal rim of the trailing disk
starts to interact with the leading disk for a typical interdisk
distance of L � 1.5D = λ f [with λ f being estimated through
the regression coefficents presented in Fig. 3(d)]. In contrast,
the heights of the frontal rims of the leading and trailing disks
are slightly modified when L → 0 with no particular trend,
and tend to quickly stabilize as L increases. The latter suggests
that the height of the frontal rim is barely affected by the lat-
eral distance between disks (in the direction perpendicular to
the sliding). Still, the profile measurements being performed
exclusively in the slope direction do not allow us to verify
this.

D. Total force

In the particular case of the four-legged slider used in our
experiments, the total rim force may be estimated as the sum
of the forces acting on the four disks: two leading disks and
two trailing disks. Based on the results presented before, we
assume that the force acting on the two leading disks does
not change as a function of the interdisk distance and may be
defined as flead = 2 fr , where fr is the force defined in Eq. (1).
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Trying to estimate the force on the trailing disks using the
same method is not straightforward, mainly due to the fact
that the rear edge of the leading disk cuts the wedge generated
by the trailing disk as L decreases under a certain threshold.

For the sake of simplicity, here we assume that, for L in the
range 0 < L < λ f , the volume of grains displaced in front of
the trailing disks is V ∼ DL(ε f 2 + εr1)/2, and so the total rim
force acting on the trailing disks can be expressed as

ftrail =
{

2 frL/λ f for L � λ f ,

2 fr otherwise. (2)

The total force acting on the artificial slider Ft is equal to
the sum of the forces acting on the two leading disks ( flead)
and the two trailing disks ( ftrail). Assuming ε f 1 
 ε f 2 = ε f ,
normalization of Ft with respect to the tangential component
of the slider’s weight T gives

Ft/T =

⎧⎪⎨
⎪⎩

f (μ,ζ )ε̂2
f [1+L/λ f ]

π P̂ tan θ
, for L � λ f ,

2 f (μ,ζ )ε̂2
f

π P̂ tan θ
, otherwise,

(3)

with P̂ = P/ρgD and ε̂ f = ε f /D. Figure 6(d) shows an es-
timation of the evolution of Ft/T as a function of the
normalized interdisk distance L/D for the sliding probability
experiments shown in Fig. 2. To calculate the total force the
values of ε f were obtained using the regression coefficients
presented in Fig. 4(e). Figure 6(d) shows that despite the
underestimation of the substrate forces (all cases lie below
the stop condition Ft/T � 1), our model fairly captures the
influence of the perturbation interactions on the global stabil-
ity of our sliders on a granular incline. The trend observed
for the force estimations presented in Fig. 6(d) corresponds
to the slipping probability curves in Fig. 2. As the interdisk
distance decreases below the threshold L/D � 1.5, the total
force exerted by the substrate on the slider starts to decrease,
followed by an increase in sliding probability.

IV. DISCUSSION

Our results point out the importance of substrate-mediated
interactions on the stability of a multilegged artificial slider
on a granular incline. These interactions are driven by the
extent of the perturbation zones around the points of appli-
cation of pressure on the granular surface. As seen through
our experimental results, the substrate inclination makes per-
turbations generated in the front of the object (in the direction
down the slope) determinant. Based on the agreement between
the Coulomb method of wedges theory and our experimental
observations, the extent of the frontal perturbation may be
approximated as λ f ∼ ε f / tan αmin. The role of pressure in
the evolution of λ f is then evident, as it plays an essential
role in determining the intrusion depth ε f . So, for a given
disk contact area, heavier sliders generate bigger perturba-
tion zones around the contact zones. An important aspect is
also the role played by the substrate inclination on stability.
Figure 7 shows that the evolution of the slipping plane inclina-
tion drastically decreases as the inclination angle approaches
the avalanche angle. The perturbation extent is expected to
grow with plane inclination, promoting the interaction be-
tween pressure points. In this work we did not explore the
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FIG. 7. Evolution of the slip plane angle α minimizing the rim
force [Eq. (1)], as a function of the substrate inclination angle θ and
the penetration proportion κ for an avalanche angle of θa = 28◦.

dependency of λ f on substrate inclination but it should indeed
be studied in further studies. Our force model fairly captures
the impact of the interdisk distance on the total force exerted
by the rims on the artificial slider. The force remains constant
as long as L > λ f and then starts to monotonically decrease
down to one-half of its original value as L → 0. This force
loss can be crucial near the stable-unstable transition on a
granular incline. This is verified by the qualitative agreement
between our sliding probability experiments and our force
model. Our model only includes the rim force exerted on
the slider, neglecting friction between the bottom of the disks
and the granular material. A full model of the substrate force
should indeed include the friction force, which will need ad-
ditional experimental force measurements. Nevertheless, the
absence of the friction force in the model presented here does
not affect the aim our work, as it should be independent of the
distance between disks.

The previous results are relevant in understanding loco-
motion on granular media and, more precisely, in the case
of granular inclines so commonly encountered by animals in
nature. We have shown through model experiments that the
interactions between contact zones on inclined granular media
can markedly affect stability. For the four-legged slider used
in our experiments, the pressure threshold defining stability
can be affected by a factor of 2, depending on the interdisk
distance. In the case of insects (six legs), for example, the
pressure threshold may be affected up to a factor of 3, depend-
ing on the distance between tarsi in contact with the granular
surface.

Different from our experiments, where the artificial walker
parameters were tuned in order to keep a constant pressure
on the substrate, the physical characteristics of living crea-
tures are closely related through allometric relationships [21].
Whilst for mammals (in the range of ∼30 g up to ∼100 kg)
isometry prevails (typical length scales as body mass to the
power 1/3), negative and positive allometries can often be
found in the case of insects [22–24]. Recent studies have
shown how allometry may impact locomotion patterns in
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walking arthropods [25]. Our results suggest that positive leg
length versus mass allometries would be advantageous for
locomotion on granular inclines. Indeed, as it was shown
in our experiments, longer legs for a given body weight
(higher values of L/λ) would enhance stability by avoiding
the interaction of the perturbed regions around the leg contact
points. In the case of ant locomotion on granular inclines,
previous works have pointed out the importance of the ant’s
mass in the probability of escaping out from the antlion’s
pit [10,26]. In their study about ant locomotion on artificial
granular inclines, Botz and collaborators [26] reported higher
falling occurrences for heavier ants (Camponotus) than for
lighter ants (Tapinoma sessile). The authors also observed the
influence of the grain size on the falling occurrences, which
appeared to be higher for small-sized grains. Even though no
explicit information about the specimen’s leg length is given
in their work, some general information about the allometry
of these two species’ subfamilies can be found in Kaspari’s
and Weiser’s work [22] on the grain size hypothesis. For
the Formicinae subfamily (to which Camponotus belongs),
they found a negative allometry between the ant’s leg length
and the ant’s weight: leg length proportional to mass to the
power 0.21. In contrast, for the Dolichoderinae subfamily
(to which Topinoma sessile belongs), a positive allometry
is reported: leg length proportional to mass to the power
0.56 (this last result is, however, not statistically significant
due to the low number of measured specimens). In a more
recent work, Humeau et al. [10] explored the capture proba-
bility of ants falling into an antlion’s pit as a function of the
ant mass. They found that the capture probability exhibits a
maximum for intermediate weights, supporting the idea of
the pressure-dependent stability discussed in Ref. [14]. In
Humeau et al.’s work [10], the ant mass range varies from
0.5 to 10 mg and includes five different ant species. Interest-
ingly, the species that showed the lower capture probability
was Topinoma erratum, from the Dolichoderinae subfamily
(positive allometry), while the species with the higher cap-
ture probability (Lasius brunneus) belongs to the Formicinae
subfamily, which presents a negative allometry. However, the
heaviest species (Formica polyctena also from the Fromic-
inae subfamily) again presented low capture ratios. In the
middle-weight species, Humeau et al. [10] also report capture
probabilities for Aphaenogaster subterranea from the Myr-
micinae subfamily, which, following Ref. [22], also present
positive allometries, and Lasius emarginatus from the Formic-
inae family (negative allometry). Both species present similar
mean weights: 1.85 mg for L. emarginatus and 1.81 mg for A.
subterranea, but different capture rates: 51% for L. emargina-
tus (N = 135) and 45% for A. subterranea. This difference
is, however, not statistically significant (χ2

(1) = 1.08, p =
0.29). The latter suggests that leg length to weight relations
may be another useful clue in understanding the success of
some species in walking up granular inclines. However, more

precise experiments with detailed measurements of mass and
leg length, as well as on substrate penetration by the tarsi,
should be done in order to confirm this hypothesis.

Although object interactions in granular media is a field
that has been vastly studied in recent years [27–30], the inter-
action of pressure points at the surface of granular inclined
planes remains unexplored. Further studies on this subject
should include the dynamics of locomotion. Indeed, the rim
formation and interaction strongly depends on the dynamics
of the interaction between the legs and the granular media. In
our experiments, for example, the artificial walker systemat-
ically slided through a typical distance of order ∼D before
reaching stability. Rims are not formed immediately after
deposition on the granular surface but after these short slides,
mainly due to the plane inclination as can be seen in Fig. 4(b)
for the depth measurements. We observe that before complete
arrest, heavy objects (P∗ = 5.4) slide through a distance of
∼2.5D before the frontal rim’s height is enough to stop the
object. After a complete stop, inertial effects generate a slight
reduction of the rim height as can be seen on the rim height’s
time evolution [empty squares in Fig. 4(b)]. In contrast, light
objects (P∗ = 1.3) develop a frontal rim whose height is insuf-
ficient to avoid sliding. In the latter case, the object continues
sliding down the slope at constant speed with a frontal rim of
constant height.

V. CONCLUSIONS

We have shown through experiments the importance
of substrate-mediated interactions on the stability of a
multilegged slider on a granular incline. The perturbation
extent generated around each contact depends mainly on the
applied pressure. For inclined granular surfaces like the one
studied here, the perturbation zones are not symmetric and
tend to be larger in the direction of the slope. Our experiments,
as well as a physical model based on the Coulomb method
of wedges, show that the total force exerted by the substrate
on the walker’s “legs” decreases when the interleg distance
L is lower than the characteristic perturbation length λ f . This
force reduction agrees with the global stability of the walker
on the incline, as shown in our sliding probability experiments
where we observe an increase of the sliding probability as
the interleg distance L decreases. These results are of high
relevance to the global stability as well as to the locomotion
efficiency of multilegged organisms and robots on granular
inclines.
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