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Translational and rotational non-Gaussianities in homogeneous freely evolving granular gases
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The importance of roughness in the modeling of granular gases has been increasingly considered in recent
years. In this paper, a freely evolving homogeneous granular gas of inelastic and rough hard disks or spheres
is studied under the assumptions of the Boltzmann kinetic equation. The homogeneous cooling state is studied
from a theoretical point of view using a Sonine approximation, in contrast to a previous Maxwellian approach.
A general theoretical description is done in terms of d, translational and d, rotational degrees of freedom, which
accounts for the cases of spheres (d, = d, = 3) and disks (d, = 2, d, = 1) within a unified framework. The
non-Gaussianities of the velocity distribution function of this state are determined by means of the first nontrivial
cumulants and by the derivation of non-Maxwellian high-velocity tails. The results are validated by computer
simulations using direct simulation Monte Carlo and event-driven molecular dynamics algorithms.
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I. INTRODUCTION

Granular systems are themselves worth studying from me-
chanical, physical, and mathematical points of view. They
are very commonly observed in nature, where different ge-
ometries can take place. Grains, from a dynamical point of
view, move in a three-dimensional space, but constraints make
two-dimensional problems become real and of special interest
[1-10].

We will focus on the description of granular systems at
low-density fluidized states, where the assumptions under-
lying the Boltzmann equation apply [11-28]. The simplest
collisional model for interactions in granular gaseous flows
is the inelastic hard-sphere model, where the granular gas is
assumed to be composed by inelastic and smooth identical
hard disks, spheres, or hyperspheres in d; translational space
dimensions [28—32]. However, this description might be limit-
ing and can be improved by considering rotational degrees of
freedom, which may play an important role in the dynamics of
granular gases by means of surface roughness. Here, we will
use the simplest collisional model that implements roughen-
ing, the inelastic and rough hard-sphere model. In the latter
model, the inelasticity is parameterized by a constant coeffi-
cient of normal restitution, o (in common with the inelastic
hard-sphere model), and roughness is introduced by means of
a coefficient of tangential restitution, 8. Although, in general,
the effective coefficient of tangential restitution depends on
the impact angle because of friction [33,34], here we adopt
the simplest model with constant g, as frequently done in the
literature [12,28,32,35-44].

*albertom @unex.es
fandres @unex.es

2470-0045/2023/108(1)/014902(17)

014902-1

Whereas in the inelastic hard-sphere model, the d;-
dimensional description of an inelastic gas of smooth and
spinless hard (hyper)spheres is straightforward, in the case
of rough spheres, where angular velocities come into play,
rotational degrees of freedom, d,, need to be introduced. A
description in terms of d; and d, becomes highly dependent
on the geometry and constraints of the system as antecedently
reported [43—-46]. As in Ref. [45], we will derive the general
description to be valid just for the two relevant cases of hard
disks and hard spheres. For hard disks, angular velocities are
constrained to the direction orthogonal to the plane of motion,
so d; =2 and d, = 1. For hard spheres, on the other hand,
angular and translational velocities are vectors of a Euclidean
three-dimensional vector space, i.e., d; = d, = 3.

It is widely known and studied that the homogeneous
Boltzmann equation—for both smooth and rough models—
admits a scaling solution in which the system cools down
continuously and the whole evolution is driven by the granular
temperature. This state is known as the homogeneous cooling
state (HCS), and has been of interest for the granular gas
community in the last three decades [28,32,39,42,43,47-56].
It is worth mentioning that, very recently, the HCS has been
experimentally observed in microgravity experiments by Yu
et al. [57]. In that paper, both Haff’s cooling law and the
exponential high-velocity tail of the velocity distribution func-
tion (VDF) as predicted by kinetic theory together with the
inelastic hard-sphere model are confirmed. In Ref. [57], while
the results were compared with the constant and velocity-
dependent models for the coefficient of normal restitution, it
was concluded that the latter model had a negligible influ-
ence on the results, supporting the approximation of constant
coefficients of restitution. In fact, the system in Ref. [57]
is compatible with a constant o = 0.66, highlighting that
the latter approximation is not subjected only to quasielastic
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systems. Moreover, the authors proposed a possible influence
of surface roughness in the collisional rules due to an over-
estimate of the relaxation time from the inelastic hard-sphere
model as compared with the experimental outcomes. Thus,
they claimed that the rotational degrees of freedom could be
an answer to these deviations.

Theoretically, some of the early attempts to study the
Gaussian deviations of the HCS VDF of a granular gas of
rough particles were done in Refs. [12,35] using a Sonine
expansion, that is, an isotropic expansion around a two-
temperature—translational and rotational—Maxwellian VDF.
However, although velocity correlations were not originally
assumed for hard spheres, they were proved to be present [36].
More recently, the first nontrivial velocity cumulants were
studied for freely evolving hard spheres [39]. Throughout the
present paper, we will expose the results of those cumulants
in a common frame for both disks and spheres from the
collisional-moment point of view, and we will analyze results
for hard disks.

In the case of freely cooling inelastic granular gases, de-
viations of the HCS VDF from a Maxwellian derived from
the inelastic hard-sphere model are not only accounted for by
the first nontrivial cumulants, but also an exponential high-
velocity tail for this distribution was predicted by kinetic
theory and computer simulations [48,49,51,58,59] and satis-
factorily observed experimentally not only for freely evolving
granular gases [57] as commented above, but also for uni-
formly heated systems [60]. Results in Ref. [39] put into
manifest a highly populated tail for the marginal VDF of an-
gular velocities in the inelastic and rough hard-sphere model,
accompanied by high values of the fourth angular velocity
cumulant for some values of the pair («, ). However, this
marginal distribution was interpreted as being consistent with
an exponential form [39], similarly to what occurs in the
inelastic hard-sphere model with the total (translational) VDF
[48,49,58]. In this paper, we study the high-velocity tail for
the marginal VDF of the translational and angular velocities,
and for their product as well, where theory indicates algebraic
tails for the two latter marginal distributions.

The study of the non-Gaussianities of the HCS VDF is
also motivated by recent research in nonhomogeneous states
[45,46,61] from Chapman—Enskog expansions around the
HCS solution. Linear stability analyses of the homogeneous
state hydrodynamics show that the Maxwellian approximation
of the first-order VDF might not work for the hard-disk case
[46] and for some very small region of the parameter space
for hard spheres, yielding a wrong prediction of a completely
unstable region in the parameter space. Therefore, it was con-
jectured that non-Gaussianities might be crucial in the cited
region of parameters, this effect being more important for
disks than for spheres [46]. This hypothesis was supported
by high values of the first relevant cumulants in hard-sphere
systems [39] and by results from the smooth case, where
the homogeneous VDF is generally more disparate from a
Maxwellian for disks than for spheres [62].

The present paper is structured as follows. In Sec. II, the
inelastic and rough hard-sphere model and the binary colli-
sional rules are introduced. Afterwards, the framework of the
homogeneous Boltzmann equation is described in Sec. III and
the hierarchy of evolution equations, the Sonine expansion

of the VDF, and the definitions of cumulants are formally
presented. Section IV is devoted to the Sonine approximation,
where the infinite expansion is truncated beyond the first few
nontrivial coefficients, the associated collisional moments are
explicitly written for hard disks, and the HCS cumulants are
obtained. Next, we study the forms of the marginal VDF
from the Maxwellian and Sonine approximations, as well
as their high-velocity tails in Sec. V in the context of the
Boltzmann equation. In Sec. VI, we compare the theoretical
predictions with direct simulation Monte Carlo (DSMC) and
event-driven molecular dynamics (EDMD) computer simula-
tions outcomes. Finally, concluding remarks and main results
are summarized in Sec. VII.

II. INELASTIC AND ROUGH HARD PARTICLES

A. System

Let us consider a monodisperse dilute granular gas of hard
disks or spheres, which are assumed to be inelastic and rough,
their dynamics being described by their translational and an-
gular velocities, v and o, respectively. Whereas for spheres
(d; = d, = 3), both v and w are vectors in a Euclidean three-
dimensional space, this is not the case for disks (d; = 2, d, =
1), where @ is a one-dimensional vector orthogonal to the
two-dimensional vector space spanned by v. In general, how-
ever, all vector relations will be written in a three-dimensional
Euclidean embedding space.

The gas is considered to be formed by a fixed large number
of identical hard d; spheres with mass m, diameter o, reduced
moment of inertia k = 4I/mo? (I being the moment of iner-
tia), and whose inelasticity and roughness are characterized
by a coefficient of normal restitution, «, and a coefficient
of tangential restitution, 8, respectively, both assumed to be
constant, and defined by

(@ x gp,) =—B@ x gp), (2.1)

where @ is the intercenter unit vector at contact, gj» = Vi —
%3 X (@1 + wy) is the relative velocity of the contact points
of particles 1 and 2 (with vj; = v; — v,), and primed quan-
tities refer to postcollisional values. Note that, while « is
nonnegative, 8 can be either positive or negative. A negative
value means that the postcollisional tangential component of
the relative velocity maintains the same sign as the precolli-
sional one, implying that the effect of surface friction is not
dramatic. On the other hand, if the particles are sufficiently
rough, the sign of the tangential component is inverted upon
collision. Figure 1 presents a sketch illustrating a collision
between (a) two hard disks and (b) two hard spheres.

(0-g),)=—a(0-gn),

B. Direct collisional rules

The direct binary collisional rules are obtained from the
assumption of conservation of linear and angular momenta at
the point of contact in each collision. They can be expressed
by [28,32,39,42-46,63]

¢, =Bngscia =coF Ap, (2.2a)
1
Wi, = BiagWia =W — o x Ap, (2.2b)
1.2 G T
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FIG. 1. Illustration of a binary collision of (a) two hard disks and
(b) two hard spheres. The (green) thick arrows represent the transla-
tional velocity vectors, while the (red) thin arrows depict the angular
velocities complemented by the sense of rotation portrayed by the
curved (blue) arrows. Notice that in (a) the translational velocities lie
on the plane xy, while the angular velocities are constrained to the z
direction.

where B, 3 is the postcollisional operator acting on a dynamic
quantity and giving the result after a collision, 6 and A, are
defined below, and {c, w} are the velocities reduced by their
thermal value, that is,

v ®

c= ——, W= . 2.3)
v (?) Wy (1)

Here, vy () = /2T, (t)/m, wn(t) = /2T,(t)/I are the ther-
mal translational and angular velocities, 7; and 7, being
the translational and rotational granular temperatures, respec-
tively, which are defined by [28,32,39,42-46,63]

Yrin="0 Lno=Llw),  e4
y M E W = e '

where (---)=n"'[dv [dw(---)f(v, ;1) represents a
one-body average value with respect to the VDF f(v, w;t)

normalized as
n:/dv/dwf(v,w;t),

n being the particle number density. In Eq. (2.2b), 6 = T,/T;
is the rotational-to-translational granular temperature ratio.
Moreover, the mean granular temperature is

(2.5)

4Ti(1) + 4, T.(1)

T@)=
) dird

(2.6)

Finally, the quantity

—~~ T ~—n 0
Ap=u(c-0)0+ 8 |:c12 —(cpp-0)o — 2\/;0 X le]

2.7
is the reduced impulse. In Eq. (2.7), Wy, = %(wl + wy) and

1+« 3= Kk 1+8
2 T

o= (2.8)
are effective coefficients of restitution.

Notice that the sets of vectors {c,w} and {v,w} span
the same vector spaces, respectively. Therefore, the use of
reduced quantities will be algebraically equivalent to the orig-
inal velocity description.

C. Inverse collisional rules

The inverse collisional rules relating precollisional

velocities  {c], w{, ¢5, w;} to postcollisional velocities
{e1, Wy ¢, Wy} are [28,32,39,42-46,63]
Cl g = 812 sCl2=¢C2F A12’ (298.)
1
W1 5 = Bnawl 2 =W — ﬁa x A, (2.9b)
with
- L Dew 55+ 22, (2.10)
= - — = 0)0 + — .
12 =a o ,3 12 ° ,3

From now on, throughout this paper, we will adopt the
notation I = {v, w} and I" = {c, w}.

III. BOLTZMANN EQUATION
A. Basics

We will carry out a description of the system under the
assumption of molecular chaos or Stosszahlansatz [64], bas-
ing the analytical treatment on the homogeneous Boltzmann
equation. As said before, we will generally derive the re-
sults keeping a dependence on the number of degrees of
freedom, d; and d,. The homogeneous Boltzmann equation
reads

af(I;t)
ot

=o' Irlf, f], (3.1

where

Il“l[f,f]Z/drzfd&\(Vlz'&\)< L
+

is the collision operator. Here, fi» = f(T'12), f1 » = f(T,),
the subscript + designates the constraint vy, - @ > 0, and J is
the Jacobian due to the collisional change of velocities [43],
i.e.,

— /i fz) (3.2

2d, /d,
= a|p|*/,

B ‘8(v’1,v’2,w’1,w’2)

_ ' d(vi, va, @, @)
8("15 Vz’ ”)

VL, Vo, 01, @) |
(3.3)

Since the temporal change of the VDF is subjected only to
collisions, it is convenient to change from laboratory time, 7,
to collisional time, s, as given by

st) = %/ dr'v(t"), (3.4)
0

where v(¢) is the (nominal) collision frequency, defined by

V2r o

AN
r(%)

This variable s(¢) quantifies the accumulated average number

of collisions per particle up to time . Furthermore, the treat-
ment based on the reduced velocities, I, allows us to define

v(t) = Kno“on(t), K= (3.3)
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the reduced one-body VDF:
$(T;5) = n~ v (D (O f (T30,

The homogeneous Boltzmann equation for the reduced VDF
then reads

(3.6)

0 0
K “;0) Méz)

daw

-(wo) =TIf[9, ],

3.7
where

My = f dT c"w(c - w) Tz[$. ¢]

1 ~ ~ . —~
__ E/drl/dn/ 45 (1 - 3)pFp ()
+
x (Biog — D[ciw{(er - wi) + dwi(cr - wa)'|
(3.8)

are (reduced) collisional moments. Note that, in the particular
case of disks on a plane, the index r is meaningless due
to the orthogonality between the vector spaces spanned by
translational and angular velocities [see Fig. 1(a)]. However,
from a general point of view, the three-dimensional vector
forms will be maintained.

Upon derivation of Eq. (3.7), use has been made of the
evolution equations for the translational and rotational tem-
peratures,

Kot = -2 nOT Kot =~ 2,07 (3.9)
) st — dt s 2 str — dr:u'()z ry .
which imply
K 0) )
2o g =2 Ho _Ho | (3.10a)
2 d,  d,
K
ST = =T, (3.10b)
where ¢* = 2(uYY) 4+ uiY6)/(d; + d,0) is the (reduced) cool-

ing rate, and thus Eq. (3.10b) represents Haff’s cooling law
[65] for the inelastic and rough hard-sphere model.

From Eq. (3.7), one can directly derive the hierarchy
equations for the evolution of the velocity moments M ,(,;) =
(cPwi(c-w)"):

KoMy (p+ruly)  (q+ruy  wp)

2 0s d; d MY

(3.11)

B. Collisional moments

The collisional change of a certain velocity function can be
obtained by application of the operator B2 = Bi,5 — 1 on
the function. For instance,

8Bg(ct 4+ ¢3) = 2a(@ — 1)(c12 - 0)* +2B(B — 1)
x(T x €12)* + 8322(3 x Wip)?

_ 0
—48(28 — 1)\/;C12 (0 x Wp),
(3.12a)

—2 — =
28" B (B
8Bios(wi +w3) =~ (@ x €1n)” + 8- (— - 1)

K

X (G x W12)2+4Jli_9<2§ - 1)

XW12 . (3 X 012). (312]3)

The results for 8812,3(0‘1‘ + Cg), (Sl’)’lz,g(w‘l1 + wé),
§Bis(ciwi + c3w3), and  8Bpsl(cr - wi)* + (¢z - wo)?]
can be found in the Supplemental Material [66].

Inserting the collisional changes into Eq. (3.8), the colli-
sional moments 1) can be formally expressed in terms of
two-body averages of the form

_ / Jt, / dTy (@), Te @), (.13)

In particular,

B
(0) 30—
Hao = 7”:

2" 23]~ e e W) .

(3.14a)
1 _
(eh) + 2(1 _ f)

x [3((c1aW) — (e (e1 - Wi2)?))] } (3.14b)

ﬂ)] ()

o_BiB|_ Bd-
27 9 o 2

where the factor By = ot / F(d’;r 3) comes from an angular
integral. The formally exact expressions of the collisional
moments ufm), u(()4), and /Lg in terms of two-body averages
are given in the Supplemental Material [66], where also some
related tests for the simulation data are included.

C. Sonine expansion

Assuming isotropy, ¢(f; s) must depend on velocity only
through three scalars: ¢, w?, and (¢ - w)?. This can be made

explicit by the polynomial expansion

[o olNe olENe o}

$(T) = pu(T) aDwO(T), (3.15)
j=0 k=0 ¢=0
where
pu(T) = ;=2 = (3.16)
is the (two-temperature) Maxwellian distribution, a;i) are So-

nine coefficients, and the functions

) _ (2l+d2 —
\Il]k = Lj

Qe+% — )(wz)(c2w2)‘fp2[(u) (3.17)

@,
form a complete set of orthogonal polynomials [39]. Here,
L;E)(x) are associated Laguerre polynomials, u = (¢ - w)/cw
is the cosine of the angle formed by the vectors ¢ and w,
and P;(u) are Legendre polynomials [67]. The orthogonality
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condition is

<‘D(£)|‘l’(w) = N,(-;f)3jj/3kk'3uu (3.18a)
v _ PR+ 5+ )T+ % +4)
T D(PIN($) @+ D!
(3.18b)

where the inner product of two arbitrary real functions @ (I‘ )
and CI>2(F) is defined as
(®1]®s) = / dT (D) D (D) D (D). (3.19)

Note that (®) = (®|¢p/¢dm). Using Eq. (3.18a) in Eq. (3.15),
one can express the Sonine coefficients as

(w5
)
ay = —7 (3.20)
J Njk
In particular, aoo =1, (1%) = afﬁ) = 0, while
4 4
©) 4(c”) ©) 4(w")
=——1, = — —1, 3.21
“ = g+ 2) © = 3 +2) -212)
4(c*w?) 8 1
(0) (1)
== Lo ay = 55| w)?) — 3<c2w2>
(3.21b)

are fourth-order cumulants. Notice that a( ) is only meaningful

in the hard-sphere case and thus it is not expressed in terms of
the number of degrees of freedom.

The evolution equations for the cumulants defined by
Eqgs. (3.21) can be easily obtained from the moment hierarchy,
Eq. (3.11), as

Ko +am) = —4 [ (d + 20 — 0]
5 0 0= g 0 T |
(3.22a)
K 4 i Wos |
—osIn (1 =————|d,+2 — ,
> (1 + ag2) FREAE) _( + 2)io2 T+ a0 |
(3.22b)
K 4 [4. d; J2%5%)
—dyIn (1 = - hatd _ ,
> n(l+ap) drdl|:2M20+ > Moz 1+a11:|
(3.22¢)
Ko [1ran+2a0] = 2| Ly + 2
—0dsIn — | — —
> ain+ 5dg 3| FH0 + SHe
(2)
ij . (3.22d)
1+a11+ aOO

where henceforth we simplify the notation as aE. k) — ajx and

(0)
,bij - Mjk-

D. Homogeneous cooling state

The scaling method in the description of the kinetic equa-
tion suggests that a stationary solution, ¢ = ¢, of Eq. (3.7)
applies for long times (hydrodynamic limit). This is the HCS,

in which the temperature ratio, oH, is constant and the whole
time dependence of the unscaled VDF fH(T';¢) takes place
through the mean temperature 7 (¢) only. On the other hand,
this stationary solution ¢ = ¢™ is not exactly known.

From Egs. (3.10a) and (3.22), it follows that, in the HCS,

H_ &y H i
Moo = 5 oo (di +2)y = T+dt’
(3.23a)
H H
(@ +2nfy = - f: 0;02, ity = - i 22?1, (3.23b)
by = ot (3.23¢)
1 +ajy + 5a(()}))H

Notice that, as expected, Eq. (3.23¢c) is only meaningful for
spheres (d;, = d, = 3).

IV. APPROXIMATE SCHEMES

All the equations presented in Sec. III are formally exact
within the framework of the Boltzmann equation. However,
no explicit results can be obtained unless one makes use of
approximations.

A. Maxwellian approximation

‘The simplest approximation is the Maxwellian one, i.e.,
¢(F) — ¢Mm(T). In that case [45],

K ,  2dkc(1+B) k(1 —p8)
M20 — E{] - +m|:1—9+7
x<1+9)]}, (4.1a)
K

de+p[. 1 1-p/1 1
“02_)Kd,(1+/<)2[1_5+ 2 (5+E>}’(4'1b)

r* K [ _ar @] @i
—_ — - K . .1C
di +d.0 di 1+«

In this Maxwellian approximation, Egs. (3.9) and (3.10) can
be solved to get the evolution of the partial and mean temper-
atures, as well as the HCS value of the temperature ratio 6.
However, by construction, the Maxwellian approximation is
unable to account for the non-Gaussianities of the VDF, either
in the transient evolution to the HCS or in the HCS itself.

B. Sonine approximation

The basic quantities measuring non-Gaussianities are the
cumulants defined in Eqs. (3.21). Therefore, as the sim-
plest scheme to capture those cumulants, we introduce the
Grad-Sonine methodology [28,39,68] and truncate the infinite
Sonine expansion, Eq. (3.15), after j + k + 2¢ > 3, i.e,,

¢ — ¢s = ¢M[1+a20‘1/(0) + aoz‘l’(o) + Cln\l‘(o) + a(l)\l’(l)]

4.2)
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TABLE I. Relevant collisional moments from the Sonine approximation in the hard-disk case.

(P, q) /vaq/\’zﬂ
2.0 a1~ @)+ B~ B 1+ —a —ﬂio—f@+@$
’ 16 K 16 4
— — —2
B B day | ap B 3
02 Pli-B)i-2 a2 (14 2
©2 P K( 16+4) PEAGE T
_ _ 15 —3 15 _ B 223 _ 327
(4,0) 8’ (2 — a)<1 + Eaz()) +38(2— E)(l + E“”) + <a + ‘;) (9 + I—Gazo) - a2<17 + ﬁ@O)
715+ 28 7B @ - —B(14 2 STB( + 2 ) Fo 943 +
-B 16 ay | —4ap@p—oa—p 166120 —4dap ]66120 s 16“20 2 ap
—
_ _ 3 3 6 1 1 1
—42a(1 —a) +3B(1 — ﬁ)](l + 6% + 16111> + 6'37(1 BT + 540 + Edu>
— — — 72 i
1 1 1 1 1 3
0.4) §|:3<1 BTy +ap + 56111) - 3/:(2 - 25 + Z) (1 ~ Tg%o + a0 + 56111) - Egéloz
— -} —3
B B B 3 3 B 15
_39(1_2K+2[{2)<1+16a20+4a11 _3W 1+Ra20
- - —
_ _ — 3 3 _ a 0 1 1 3
(2,2) |:Ol(1 — Ol) + g(l — ﬂ)i| (1 + Eazo + ZLH]) + ((X + 5)2” - ﬁT(l — Eazo + 5(111 + Z(h)z)
— —3
5 23 27 — 3_ 3 %
+§{Z + 51920 + T~ e —o) + ,3<1 - 5/3)]<1 + 1620 + Z“ll) —Z(E-I-B)an} + 3%

=2
_%0 o 7B

16 2

4 k6

x(1 <1+

3)
+2

129

5
4
15 - 3 3
x<1 + Ram) + %[2&(1 —@)+38(1 - 23)](1 + axn+ 7a“)

B 23 3 B
ap) -1+ = 22wl — 38(1 —
112a20> |1+ ggan + zan |+ Z12a(1 —@) +38(1 - B)]

349 ano ap an
(-2 228
16 ) K3( 62" 2)

where the term a&))\IJ((Xl)) is not present in the hard-disk
case. With the replacement given by Eq. (4.2), the two-body
averages appearing in the collisional moments [see, for in-
stance, Egs. (3.14)] can be explicitly calculated as linear and
quadratic functions of the cumulants. Next, our Sonine ap-
proximation is constructed by neglecting quadratic terms, so
only linear terms are retained.

By particularizing to the hard-sphere case (d, = d, = 3),
previous results are recovered [39]. Moreover, we obtain ex-
pressions for hard disks (d; = 2, d, = 1), which are displayed
in Table I. Further details about some of the computations are
available in the Supplemental Material [66].

For consistency with the truncation and linearization steps
carried out in the Sonine approximation, the evolution equa-
tions in the hard-disk case are obtained by inserting the
expressions in Table I into Egs. (3.10a) and (3.22a)—(3.22¢),
and linearizing the bracketed quantities. This gives a closed
set of four differential equations, which are linear in the
cumulants and nonlinear in the temperature ratio. Likewise,
the HCS values are obtained by linearizing Egs. (3.23a) and
(3.23b) with respect to the cumulants. The linear stability of
the HCS versus uniform and isotropic perturbations is proved
in Appendix A.

Figures 2 and 3 show the HCS quantities 6", a4, afh,
and a!l, obtained from the Sonine approximation for uniform
disks (k = %) and spheres (k = %), respectively, as functions
of the coefficients of restitution o and S. In the hard-sphere

case, the cumulant a&))ﬂ is also included. It can be observed

that, typically, hard-disk systems depart from the Maxwellian
state more than hard-sphere systems. Interestingly, both hard-
disk and hard-sphere systems present relatively large values of
all, and a!l, thus signaling a possible quantitative breakdown
of the Sonine approximation, which implicitly assumes small
deviations from the Maxwellian VDF.

|(1.30
0.20

0.10

0.30

0.00

FIG. 2. Theoretical values of (a) 8", (b) ak, (c) afy, and (d) a¥}
as functions of the coefficients of restitution, o and g, for uniform
disks (k = %) in the Sonine approximation.
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quo
0.15
0.10

0.05

0.00

FIG. 3. Theoretical values of (a) 81, (b) aXf,, (c) af},, (d) @}, and
(e) aiy™ as functions of the coefficients of restitution, o and g, for
uniform spheres (x = %) in the Sonine approximation.

V. MARGINAL DISTRIBUTION FUNCTIONS AND
HIGH-VELOCITY TAILS IN THE HOMOGENEOUS
COOLING STATE

A. Marginal distribution functions

As said before, the reduced VDF ¢(f) in isotropic states
depend on the three scalars ¢?, w?, and c>w? [plus (c - w)?
only for spheres]. To disentangle those dependencies, it is con-
venient to define the following marginal distributions [39,41]:

elc) = f dw ¢(ID), (5.1a)
Bu(w) = / de (D), (5.1b)
Bew(x) = / dT 8(2w? — x)¢(T), (5.1¢)

where x represents the product c>w?. Note that, by isotropy,
¢c(c) and ¢y (W) depend only on the moduli ¢ and w, respec-
tively. Moreover, the marginal distributions in E(%s. (5.1) are
directly related to the cumulants ag%), af)g), and ag(i defined by

Egs. (3.21), namely,

/ dec*¢e(e) = w[l +a)], (5.2
/ AW Wy (W) = M[l +al)],  (5.2b)
/ " dx ke () = % [1+4a}]. (5.20)
0

The Maxwellian expressions for these functions are

pem(e) = w42, (5.32)
bw (W) = =2, (5.3b)
Pewm(x) = %Qd, Qq M Ky V),

(5.3¢)

where Q; = 2mx4/? /T (%) is the d-dimensional solid angle and
K,(x) is the modified Bessel function of the second kind. In
the Sonine approximation defined by Eq. (4.2), one has

Pe.s(c) 4c* — 4(d, +2)* + di(d; +2)
=1+axn ,
Pem(c) 8
(5.4a)
Pw,s(W) dw* — 4(d, +2)w? + d,(d, +2)
"~ =1 + ap 5
dw.m(W) 8
(5.4b)
Dew,s(x) ax + 2ap + ap di(d; +2)
¢cw,M(x) 2 8
+dtdr n d.(d, +2)
a agp ——=
7 ntae 3

_ ka#(zﬁ) ax + ap
K0 (24/%) 2
2
d, + d,

(axo + 2a1 + aoz):|- (5.4¢)
While Egs. (5.4) may reproduce the correct behavior of the
HCS in the thermal domain, it is known from the smooth
case [48,49,58] and from hard-sphere results [39] that they
are unable to account for the high-velocity tail.

B. High-velocity tails

Let us now study the high-velocity tail for the marginal
VDF in the HCS, in analogy to previous works for the smooth
case [48,58].

To carry out this asymptotic analysis, we start from the
homogeneous Boltzmann equation, Eq. (3.7), and split the
collisional operator into a loss and a gain term, that is [48,58],

Txl, 91 = IZ 1. ¢] — TEl9. &1, (5.5)
where the loss term can be written as
1t 10,91 = BioE) [(dFacno @ 66)

with B; = i / F("‘T“). The gain term accounts for all the
particles that after a collision have velocities fl. In contrast,
the loss term takes into account the amount of particles with
I'; that, after a collision, are not contributing any more to these
velocities.

Intuitively, one would expect that escaping from the rapid
regime is easier than entering the high-velocity limit, given
the low likelihood of encountering rapid particles compared to
thermal ones. Thus, the main assumption we will use is that,
for high velocities of the HCS, the loss term prevails over the
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gain term. From Eq. (3.2), and following the case of smooth
particles [48], the assumption above can be expressed as

o TDe" @) _

¢ Te"(T3) _ 5.7
€1—>00 Or W1 —>00 ¢H(r1)¢H(r2) ( )

1. Tail of $1(c)

Integrating over w on both sides of the stationary version
of Eq. (3.7), neglecting the gain term, replacing cj» — ¢
in Eq. (5.6), and taking the limit ¢ > 1, we get the linear
differential equation

M12{0 9 H
7&% (¢) ~ —B1¢, (¢), (5.8)
t
whose solution is
X d,B
o)~ A,y = (5.9)
Mo

where A, is an integration constant. This is equivalent to
the result in the smooth case [48,58], except that now ;le”lo
takes into account the influence of surface roughness. The
exponential decay of ¢!(¢) implies that all the cumulants of
the form a'j, are finite.

2. Tail of p¥(w)

Now we integrate over ¢ on both sides of Eq. (3.7) and
neglect again the gain term. This yields

H 0
ot w) + %wmp&(w) ~ —Biei (w)pl (w),
' (5.10)

where
W) = / de, / AT ciodem (@ W)(T).  (.11)

Here, ¢¢w(c|w) is a conditional probability distribution func-
tion defined as

Gejw (€[W)pw (W) = ¢(c, W).

The quantity cj;(w) represents the average relative transla-
tional velocity of those particles with an angular velocity w. It
is a functional of the whole VDF ¢(TI"), so Eq. (5.10) is not a
closed equation for the marginal distribution qbv‘j(w).

The positive values observed in Figs. 2 and 3 for the cu-
mulant af} imply that high angular velocities are positively
correlated to high translational velocities, so ¢1 (W) is ex-
pected to increase with w. However, to estimate the tail of
¢£VI(W), we further assume that the dependence of czi(w)
on w is weak enough as to take 2 (w) & (e, With
this adiabaticlike approximation, Eq. (5.10) becomes a closed
linear equation whose solution is

H ~ —Yw
¢W(W) ~ Aww 14 s

(5.12)

Yw = dr + yc«ClZ»Ha

where A, is the associated integration constant. In the ex-
pression of y,,, we have made use of the HCS condition
,ul(;lz/d, = /leio/dt [see Egs. (3.23a)].

While, in principle, Eqs. (5.13) are approximate because
of the ansatz ¢, (W) &~ ((c12)!, it accounts for an algebraic
decay of ¢ (w) explaining the relatively high values attained

(5.13)

by al,. In fact, Eqs. (5.13) implies that the coefficients of the
form a(I;Ik diverge if 2k > y,, — 1.

3. Tail of ¢, (x)

Whereas the derivation of the high-velocity tail for ¢,
is clean, and the one for ¢y, although approximate, is rea-
sonable, in the case of the distribution ¢.,, the reasoning is
somewhat more speculative. Let us start by introducing the
marginal probability distribution function of the variable w?,
Bur (W?) = (g, /2)w? 2Py (W). According to Egs. (5.13),
the high-velocity tail of ¢!L, (w?) is

dr—yw |

Qq, 5 -

> (w?) >
As can be inferred from Eqgs. (5.9) and (5.13), the tail of angu-
lar velocities is much more populated than that of translational
velocities. Therefore, it is reasonable to expect that the main
contribution to ¢, (c2w?) comes essentially from particles
with thermal translational velocities (¢ ~ 1) and high angular
velocities (w >> 1). Thus, in view of Eq. (5.14), we conjecture
that

o (w?h) ~ A, (5.14)

Qflw(-x) ~ Acwx_y(wv Yew = I+ wadr (515)
This algebraic decay would be responsible for the relatively
large values of @l and implies the divergence of the co-
efficients of the form a']TI]. if j > y.» — 1. An alternative
justification of Eqgs. (5.15) is provided in the Supplemental
Material [66].

While, according to Eq. (5.9), the asymptotic decay of
¢(c) is governed by a velocity scale ¢ ~ )/C’l, Egs. (5.13)
and (5.15) show that the decays of ¢y (W) and ¢, (x) are
scale-free. It can be checked that the exponents y., ¥y, and
Yew are generally smaller for disks than for spheres, meaning
that the high-velocity tails are fatter in the former case than
in the latter. Apart from that, they exhibit a similar qualitative
dependence on the coefficients of restitution.

The consistency of Eq. (5.7) with the tails obtained here is
discussed in Appendix B.

VI. SIMULATION RESULTS

To test the theoretical results, we have run two types of
computer simulation algorithms for a dilute and homogeneous
granular gas of inelastic and rough hard disks (d; = 2,d, = 1)
with different values of the coefficients of restitution « and 8.
In all cases, the disks are assumed to have a uniform mass
distribution, so the reduced moment of inertia is x = %

First, we used DSMC, as proposed by Bird [69,70] and
conveniently adapted to the granular case [39,51], to simulate
a homogenenous and dilute granular gas of inelastic and rough
hard disks, using N = 10* representative particles. Addition-
ally, we carried out EDMD computer simulations with N =
1600 disks in a square box of side length L/o = 565.7, which
correspond to a number density no? = 0.005, thus avoid-
ing spatial instabilities [46]. Whereas the EDMD system has
nonzero density, the solid fraction ¢ = %na2 ~3.9x 1073 is
small enough to expect good agreement with the diluteness as-
sumption. We ran 100 and 50 replicas for DSMC and EDMD,
respectively, for each pair (¢, 8), not observing instabilities in
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FIG. 4. Plots of (a)—(c) the temperature ratio 6", (d)—(f) the cumulant a}, (g)—(i) the cumulant afy, and (j)—(1) the cumulant a!, for uniform
disks (k = %), as functions of the coefficient of tangential restitution . The left [(a), (d), (g), (j)], middle [(b), (e), (h), (k)], and right [(c), (f),
(1), ()] panels correspond to « = 0.9, 0.7, and 0.2, respectively. Symbols represent DSMC (o) and EDMD () results, while the solid lines are
theoretical predictions from the Sonine approximation (SA). Additionally, the dashed lines in (a)—(c) represent the Maxwellian approximation
(MA) for the temperature ratio. Note that a vertical logarithmic scale is used in (a)—(c).

the EDMD simulations. In addition to averaging over replicas,
the stationary HCS values were measured by averaging over
instantaneous values at s = Sipi, Sini + 65, Sini + 265, ..., Sfn
with  (Sini, Sfin, 65) = (500, 1500,5) and (150,200,1) for
DSMC and EDMD, except in the case ¢ = 0.9, 8 = —0.8,

where we took (450,500,1) in the EDMD simulations. In the
construction of histograms for the marginal distributions, we
considered 2% bins in the associated velocity variable.

In the Supplemental Material [66], we present a com-
parison between the Sonine-approximation results [see
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FIG. 5. Same as in Fig. 4, except that the quantities are plotted versus the coefficient of normal restitution o and now the left [(a), (d), (g),
(3)], middle [(b), (e), (h), (k)], and right [(c), (f), (i), (1)] panels correspond to 8 = 0.5, 0, and —0.5, respectively.

Egs. (3.10a) and (3.22)] and simulation data for the temporal
evolution toward the HCS of the temperature ratio and the
cumulants, starting from an equipartioned Maxwellian state.
A generally good agreement is observed, except for agp, near
the HCS if af}, reaches relatively high values. Now we present
results for the relevant quantities in the HCS.

A. Temperature ratio and cumulants

Figure 4 shows the HCS values of 6™, aff, all,, and @'}
versus f for some representative values of «. Figure 5 presents
the same quantities versus « for some illustrative values of
B. We observe that the Maxwellian approximation provides a
good description of #™, although it tends to overestimate it if
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FIG. 6. Simulation histograms for the marginal distributions (a)—(c) ¢., (d)—(f) ¢w, and (g)—(i) ¢P.,, for uniform disks (k = %). The left
[(a), (d), (2)], middle [(b), (e), (h)], and right [(c), (f), ()] panels correspond to B = 0.5, 0, and —0.5, respectively. In each panel, three values
of o are considered: 0.9 (DSMC: o; EDMD: x), 0.7 (DSMC: [J; EDMD: %), and 0.2 (DSMC: A; EDMD: +). The solid lines represent the
marginal distributions in the Maxwellian approximation [see Egs. (5.3a)]. Note that a log-linear scale is used in (a)—(c) and a log-log scale in

(d)=(i).

a < 0.7 [see Figs. 5(a)-5(c)]. Those deviations are satisfacto-
rily corrected by the Sonine approximation.

In the case of the cumulants, their qualitative shape as
functions of both « and g are well accounted for by the Sonine
approximation. The quantitative agreement is good as long
as the magnitude of the cumulants is small, thus validating
the Sonine approximation in those cases. On the other hand,
whenever the Sonine approximation predicts values a}'} =
O(1), the approximation is itself signaling its breakdown.
This situation, which is similar to that already reported in
the case of HS [39]. is especially noteworthy in the cases of
all, and, to a lesser extent, ail, and is clearly indicative of
the high-velocity tails discussed in Sec. VB and confirmed
below.

B. High-velocity tails

To further observe the non-Gaussianities of the HCS state,
Fig. 6 displays the histograms from simulation data of ¢, #H,

and ¢!, for nine combinations of coefficients of restitution

(¢ =0.9,0.7,0.2, and g = 0.5, 0, —0.5). Except in the case
of ¢! for & = 0.9 (where @b}, is small), the deviations from the
Maxwellian tail are quite apparent. In fact, the high-velocity
tails observed in Fig. 6 are consistent with an exponential tail
for ¢!! and power-law tails for ¢! and ¢!l | in agreement with
the analysis in Sec. V B.

A more quantitative test is presented in Fig. 7, where the
three cases with o = 0.7 have been selected and the straight
lines representing the asymptotic tails are included. The theo-
retical predictions for the exponents derived in Sec. V B (with
additional Maxwellian estimates for uglo and ((c;o)T) agree
reasonably well with the fitted values, except for § = —0.5,
in which case the actual decays are slower than predicted.

Figure 8 shows the exponents Y., ¥y, and y,,, as functions
of B (fora = 0.9,0.7,0.2) and « (for 8 = 0.5,0, —0.5). There
exists very good agreement between the theoretical estimates
and the fitting simulation values in the case of the exponent
vw, Which seems to worsen as 8 decreases. However, in the
case of y,. and y,,, the agreement is mainly qualitative. This
might be due to the fact that the tails of ¢! and ¢!l are
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FIG. 7. Same as in Fig. 6, except that only the cases with @ = 0.7 are shown. The dashed lines represent the exponents ., ¥y, and Y.,
obtained by a fit of the DSMC data. The dotted lines represent the theoretical exponents, as given by Egs. (5.9), (5.13), and (5.15), with the

approximations ps ~ ubl \ [see Eq. (4.1a)] and {cio)? ~ (ciohm = V7 /2.

much less populated than that of ¢! (see Figs. 6 and 7) and,
therefore, it is much more difficult to reach values of ¢ and
c?w? high enough to accurately measure the exponents y, and
Yew in the simulations. If that were the case, then the values
of y,. and y,, empirically determined would characterize an
intermediate velocity regime previous to the true asymptotic
behavior. Of course, one cannot discard that our analysis be-
comes more limited as 8 decreases.

Before closing this section, it is worth remarking the ex-
cellent mutual agreement between DSMC and EDMD results.
There are, however, some small deviations for low values
of o, which might be a consequence of the smaller number
of disks in the EDMD simulations and also a reflection of
possible violations of the molecular chaos ansatz in those
highly dissipative systems [71].

VII. CONCLUSIONS

In this paper, we have studied low-density, monodisperse,
and homogeneous granular gases of hard disks and hard
spheres from a kinetic-theory point of view, using a general
framework to express the results in terms of the number
of translational and rotational degrees of freedom, d; and

d,, respectively. Special attention has been paid to the non-
Gaussian features of the HCS, as measured by the fourth-order
cumulants and the high-velocity tails of the marginal distri-
butions. The theory has been complemented by DSMC and
EDMD computer simulations.

The theoretical approach is based on the Boltzmann equa-
tion. First, we have expressed the collisional moments as
formally exact functions of the parameters of the system («,
B, and k) and two-body averages. Next, we have employed
a Grad-Sonine expansion of the complete one-body VDF,
Eq. (3.15). Then, in analogy to Ref. [39], we have defined
the Sonine approximation from the truncation of the So-
nine expansion beyond the first nontrivial cumulants defined
in Eq. (3.21). This contrasts with the Maxwellian approx-
imation, which is based on approximating the VDF by a
two-temperature Maxwellian distribution, i.e., ¢ = ¢u.

Within the Sonine approximation, and neglecting quadratic
terms, the relevant collisional moments have been evaluated,
thus recovering previous results for hard spheres (d; = d; =
3) [39] and obtaining results for hard disks (d; = 2, d, = 1),
as presented in Table I. Cumulant-linearization in Egs. (3.10a)
and (3.22) allows us to deal with a closed set of differential
equation for the evolution of the rotational-to-translational
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FIG. 8. Plots of (a), (b) y.; (¢), (d) Yw; and (e), (f) Yew, for
uniform disks (k = %). The exponents are plotted versus § in the
left [(a), (c), ()] panels and versus « in the right [(b), (d), (f)] panels.
Symbols correspond to DSMC (o, [, A) and EDMD (X, *, +) fitting
values, while lines represent the theoretical exponents, as given by
Egs. (5.9), (5.13), and (5.15), with the approximations ufl ~ ulf
[see Eq. (4.1a)] and {cio)™ = (cio)m = /7 /2.

temperature ratio () and the fourth-order cumulants. Anal-
ogously, the stationary HCS values in the Sonine approxima-
tion have been obtained by linearization in Egs. (3.23). As a
consistency test, we have checked in Appendix A that the HCS
is linearly stable with respect to homogeneous and isotropic
perturbations. The HCS quantities have been shown in Figs. 2
and 3 for uniform disks (¢ = %) and uniform spheres (x = %),
respectively. At a qualitative level, their dependence on « and
B is very similar for disks and spheres, but the values are
generally more extreme in the former system than in the latter.
In both cases, the kurtosis for the angular velocity, af)’z, reaches
values of O(1) in a lobular region of the parameter space with
a vertex at («, 8) = (1, —1), thus announcing a breakdown of
the Sonine approximation in that region.

Moreover, the non-Gaussianities of the HCS have been
studied not only in the context of the first nontrivial cu-
mulants, but also analyzing the tails of the marginal VDF
#i(c), pH(w), and ¢! (c>w?) defined by Egs. (5.1). Using
previous methods developed for the smooth case [48,49,58],
which are based on the prevalence of the collisional loss
term with respect to the gain term, we have obtained the ex-
pected exponential tail ¢1(¢c) ~ e77¢, with formally the same
expression for the exponent coefficient y, as in the smooth
case [see Eq. (5.9)]. On the other hand, we have found much
slower scale-free decays ¢v13(w) ~ w™ " and q)?w(czwz) ~
(c®>w?) 7, with exponents given by Egs. (5.13) and (5.15),
respectively. These algebraic tails of ¢f(w) and ¢! (c2w?)

explain the relatively large values attained by the cumulants
all, and all, especially in the hard-disk case, and predict
divergences in higher-order cumulants which recall the ones
already observed in the case of the three-dimensional inelastic
and rough Maxwell model [72].

To test the theoretical predictions, we have run DSMC and
EDMD computer simulations for hard disks (with ¥ = %), as
described in Sec. VI. First, the quantities 6", all, af}, and
all have been studied for different values of o and B, as
depicted in Figs. 4 and 5. The agreement between the Sonine
approximation and simulation is rather good, except when the
values of the cumulants are not small. Even in those cases, it is
remarkable that the Sonine approximation reproduces qualita-
tively well the shape of the curves. Second, we have extended
the comparison to the three marginal distributions in Figs. 6
and 7, finding that the predicted exponential tail of ¢?(c)
and algebraic tails of ¢!(w) and ¢! (c?w?) are supported
by simulation data. The theoretical and fitting exponents have
been compared in Fig. 8, where a good agreement for y,, has
been observed, while the agreement is more qualitative for y,
and y,,. This might be due to a lack of statistically reliable
simulation data in the high-velocity regime.

To sum up, the HCS VDF of a monodisperse granular gas
of inelastic and rough hard particles is, in general, strongly
non-Maxwellian. Moreover, the non-Gaussianities exposed
in this paper might solve some inconsistencies reported in
the stability analysis of Navier—Stokes hydrodynamics from
a Maxwellian approximation in hard-disk systems [46] and
improve the predictions of the inelastic hard-sphere model for
real experimental systems, such as the one of Ref. [57]. As
a follow-up of the study presented in this paper, we plan to
extend it to driven hard-disk systems (in analogy to a previ-
ous study for hard spheres [41]), whose dynamics has very
interesting implications [73,74]. Finally, we hope this paper
could stimulate further research in all these issues, not only
from theoretical and simulation points of view but also from
experimental setups.

The data that support the findings of this study are openly
available in Ref. [75].
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APPENDIX A: LINEAR STABILITY ANALYSIS OF THE
HOMOGENEOUS COOLING STATE

In this Appendix, we show that, within the Sonine ap-
proximation, the HCS for hard disks is linearly stable
under uniform and isotropic perturbations. Let us define the
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FIG. 9. Plot of the four eigenvalues of the matrix L as functions
of & and B for uniform disks (k = %). (a)—(d) show Re(¥;) for £1—L4,
respectively. The imaginary parts, Im(¢;), are plotted in (e), where all
the eigenvalues are real-valued inside the blank region.

time-dependent set of perturbed quantities:

(s) — oM
ax(s) — ‘15[0
5Y(s) = Al
(s) dor(s) — a (Al)
ayi(s) — ap

Insertion into the Sonine approximation versions of
Egs. (3.10a) and (3.22a)—(3.22c¢), and linearization around the
HCS values, yield

9,0Y(s) = —L - §Y(s), (A2)

where L is a constant matrix, its four eigenvalues, {{;;i =
1,2, 3, 4}, determining the evolution of §Y(s) from an arbi-
trary initial perturbation §Y(0).

The dependence of the four eigenvalues on the coeffi-
cients of restitution is displayed in Fig. 9 for uniform disks
k = %). As can be seen, the real parts are always positive,
thus signaling the linear stability and attractor character of
the HCS under uniform perturbations, as expected on phys-
ical grounds. In turn, since the cuamulant-linearization scheme
within the Sonine approximation is not univocally defined
[51,55], the fact that we get Re(£;) > O reinforces the relia-
bility of the linearization criterion applied to the right-hand
sides of Eqs. (3.22) and (3.23).

The imaginary parts plotted in Fig. 9(e) show the regions
of the parameter space where the decay toward the HCS is

oscillatory. In this respect, the plane (o, 8) turns out to be
split into three disjoint regions: a region where (¢}, £,) make
a pair of complex conjugates but ({3, £4) are real, a region
where ({3, £4) make a pair of complex conjugates but (¢, £)
are real, and, finally, the blank region in Fig. 9(e), where the
four eigenvalues are real.

APPENDIX B: CONSISTENCY OF THE
HIGH-VELOCITY TAILS

In Sec. VB, the high-velocity tails of the HCS marginal
distributions ¢! (c), ¢! (w), and ¢! (c*w?) were obtained by
assuming Eq. (5.7). Here, we test the self-consistency of that
assumption.

L ¢{!(c)
Let us insert Eqgs. (5.9) into the ratio resulting from the
replacement ¢H(I') — ¢! (¢) in Eq. (5.7):
ge () (e3)
de(e)g(e2)

Assuming c; > {1, ¢, wi, wy} in the inverse binary colli-
sional rules, Eq. (2.9a), and after some algebra, one gets

~expl—ye(c{ +¢5 —ci — ). (Bl

—_ —
o~ cl\/l + %(g — 2> cos? 9. + % sin® 9., (B2a)

_2 —2

e o 2 '219
Cy X 14/ —5 cos 19C+Es1n o

" (B2b)

where 9. =cos™![¢, -G|. Therefore, the exponent in
Eq. (B1) is strictly negative, except for smooth particles
(B=—-1) and grazing collisions (cosv, =0). Thus,
apart from those cases with zero Lebesgue measure,
lime, - 00 B¢ (€])e (€5) /@ (€1 (€2) = 0.

2. ¢H(w)
In the rotational case, from Egs. (5.13) we have
PP (ww)
¢v}VI(W1 )¢VI'VI(W2) wiwy ’

Let us take wy > {1, wy, ¢y, ¢2}. Then,

(B3)

wl ~w; |14+ % (% — 2) sin? 9y, (B4a)

wy A wlilsin Tl (B4b)

«|Bl

where , = cos™! |W; - @|. Therefore, lim,,_ o ¢H(W]) x
PH(W))/pH (W) )pH (w,) = 0, except if sin 9, = 0, which has
zero Lebesgue measure in its continuous domain.
3. 08 (x)
From Egs. (5.15), one has

H 7 AH 7" 1N\ Vew
cw('xl )¢cw('x2 ~ <‘x1x2>
Dol (x2) X1x2

(BS)
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If both ¢; and w; are much larger than {1, ¢, w,}, itis possible
to obtain

x| %x1|:1+§<§ —2) coszﬂc+§<§ —2> sin® 9
— - /=
+%g sin’ By — 2% (g — 1)\/§COS ﬁcwi|

_2 J— —
B ., 28 B
X |:1 + 520 sin“ ¥, — ,Bx/@ (,3_1( — 1) COS Oy

(B6a)

(ﬁ — 2) sin’ t}w},
Bk
B 0 [0 a?
Xy & ! sin? 9.4 — sin® 0, —2./ — cos Oy || — cos? ¥,
K6 p2 K K a?

B 0 0
+’3— sin? 9. 4+ — sin® 9, — 2,/ —cos ¥ | |, (B6D)
B2 K K

where ¥, = cos™'[€; - (@ x W)]. Thus, lim,, o ¢ (x]) x
B/l (el (x2) =0, except if sind, =sind, =
cos U, = 0, which again have zero Lebesgue measure.
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