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Stability conditions of a twist-bend nematic phase according to Barbero’s theory
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The stability conditions of twist-bend nematics given by Barbero et al. [Phys. Rev. E 92, 030501(R) (2015)]
lead to doubtful conclusions when the influence of the magnetic field on the NTB structure is analyzed. For this
reason, the stability criteria have been redetermined in the present paper. The calculations have revealed that some
of the conditions presented by Barbero and his co-workers are incorrect. It has been shown that the parameters
boK33 and η must be positive to induce the formation of a stable twist-bend nematic phase. Furthermore, some
additional criteria concerning the value of η have been derived. The phenomenon of the shift of the stability
interval in the magnetic field has been analyzed in detail.
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I. INTRODUCTION

In the last years twist-bend nematics (NTB) have become
a popular subject of research. This unique liquid-crystalline
phase was theoretically predicted in 1973 by Meyer [1]
and then experimentally discovered in 2011 by Cestari and
co-workers [2]. Twist-bend nematics are characterized by
heliconical structure [3–5], in which the director n sponta-
neously precesses around a certain axis t, but the orientation
of these unit vectors is not perpendicular—they form an acute
angle θ , called a heliconical angle or a tilt angle. The spatial
periodicity can be described with a parameter p called a pitch
which is extremely small, about a few nanometers [6]. The
coexistence of twist and bend deformations is necessary to fill
the whole space [7]. The molecular arrangement in twist-bend
nematics is seemingly similar to the structure of smectics
C*, but in the case of the NTB phase there is no positional
order and the layers are not distinguishable [8]. Twist-bend
nematics are usually formed by achiral flexible molecules
(dimers, trimers, and tetramers) which have highly curved
shape [9,10].

The characteristic parameters of a twist-bend nematic
(such as the heliconical angle and the pitch) can be calculated
only if the formula for the free-energy density of a liquid
crystal is known. This formula is also essential to recognize
the influence of external fields on the structure of the NTB

phase. Many papers have been devoted to these issues. The
models of elastic properties of twist-bend nematics have been
proposed by Dozov [3], Shamid [11], Parsouzi [12], Meyer
[8], Virga [13], Barbero [14], Longa [15], Čopič [16], and
Vaupotič [17]. These theories have been reviewed in Ref. [18].

II. INFLUENCE OF MAGNETIC FIELD

The motivation for the analysis of stability of the NTB phase
presented below is the article written by Zola et al. [19]. In this
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paper the authors apply Barbero’s theory to the description
of deformations occurring in twist-bend nematics when the
magnetic field is directed along the helix axis. According
to their considerations, the main field-induced effect is con-
nected with the shift of stability interval towards lower values
of parameter η measuring the strength of coupling between
the usual nematic director n and the helix axis t. Moreover,
the authors of Ref. [19] present how the quantity sin2θ and
the wave number q = 2π/p depend on the magnetic-field
intensity H :

sin2θ = −
b0K33 ∓ K22q0

√
b0K33

η+H2μ0�χ

K22 − K33
, (1)

q = ±
√

η + H2μ0�χ

b0K33
, (2)

where b0 = 1 + 2ν4/K33; q0 = κ2/K22; K22 is the twist elastic
constant; K33 is the bend elastic constant; μ0 is the vacuum
permeability; �χ is the magnetic susceptibility anisotropy;
and ν4, κ2 are other phenomenological elastic constants intro-
duced by Barbero in his formula for the free-energy density.
The upper signs are chosen when q0 > 0; otherwise, the lower
ones are suitable. The sign of q defines the handedness of the
material.

Zola et al. [19] do not reveal the consequences resulting
from Eqs. (1) and (2), so the corresponding analysis is
performed in the following, starting from the stability criteria
of twist-bend nematics given in Ref. [14]. For q0 > 0 the
conditions for the formation of the NTB phase take the
following form:

K22 > K33,

K22q0 >
√

ηboK33,

η > 0,

boK33 > 0, (3)
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FIG. 1. Sine squared of tilt angle sin2θ and wave number q of twist-bend nematic phase as a function of magnetic field H , calculated
from Eqs. (1) and (2). In (a) the material parameters satisfy conditions (3): K22 = 3 pN, K33 = 0.5 pN, ν4 = 0.2 pN (b0K33 = 0.9 pN),
η = 6 × 105 N/m2, K22q0 = 0.001 N/m, �χ = 10−6. In (b) material parameters correspond to conditions (4): K22 = 3 pN, K33 = 0.5 pN,
ν4 = −0.7 pN (b0K33 = −0.9 pN), η = −6 × 105 N/m2, K22q0 = 0.001 N/m, �χ = 10−6.

or

K22 > K33,

K22q0 >
√

ηboK33,

η < 0,

boK33 < 0. (4)

The above inequalities correspond to sin2θ and q given by

sin2θ = −
b0K33 − K22q0

√
b0K33

η

K22 − K33
, (5)

q =
√

η

b0K33
. (6)

The further analysis is conducted for �χ > 0. When the
formulas (1) and (2) are used with parameters satisfying the
inequalities (3), then sin2θ decreases and q increases with
the field intensity H . These effects are illustrated in Fig. 1(a)
plotted for typical values of material parameters character-
ising a twist-bend nematic phase. In a very strong magnetic
field, sin2θ reaches zero and the NTB-N phase transition takes
place. Such an effect is commonly described in the literature
for an electric field (for example, by Meyer [8] and Pająk
[15]). For this reason the analogous phenomenon occurring
in a magnetic field could be expected; however, the necessary
field strength (108 A/m) seems unreachable.

When the parameters satisfy the inequalities (4), the for-
mulas (1) and (2) yield some surprising results, namely sin2θ

increases and q decreases when H becomes larger, as shown
in Fig. 1(b). For a certain value of the magnetic-field intensity,
sin2θ becomes equal to unity. This could indicate that the
external field induces a phase transition from the twist-bend
nematic to the cholesteric structure. However, none of the
papers mentions this phenomenon. For this reason, the deriva-
tion of the stability criteria of the NTB phase as well as the
expressions for sin2θ and q have been investigated in detail
starting from Barbero’s theory.

III. STABILITY CONDITIONS OF THE NTB PHASE

According to Barbero’s theory, the formula for the free-
energy density of a twist-bend nematic can be written as

f (x, q) = f1 − 1
2 K22q2

0 − 1
2η(1 − x) + 1

2 K22(q0 − qx)2

− 1
2 K33q2(x2 − b0x), (7)

where x = sin2θ and f1 is the uniform part of the free-energy
density of a liquid crystal, independent of the orientation of
the director n and the helix axis t and therefore insignificant
for the further considerations [14]. Equation (7) has been
derived under the assumption that n and t are expressed by
the formulas n = sin θ cos qzx̂ + sin θ sin qzŷ + cos θ ẑ and
t = ẑ, which describe the typical structure of the NTB phase
with the fixed helix axis parallel to the certain direction
in the space (conventionally the z axis of the coordinate
system).

The conditions for the minimum of the free-energy density
are, according to the multivariable calculus, as follows:

∂ f

∂x
= 0,

∂ f

∂q
= 0,

∂2 f

∂x2
> 0,

det H =
∣∣∣∣∣∣

∂2 f
∂x2

∂2 f
∂x∂q

∂2 f
∂q∂x

∂2 f
∂q2

∣∣∣∣∣∣ > 0. (8)

In other words, the first-order partial derivatives must be
equal to zero in the minimum and at the same time the Hessian
matrix H should be positive definite. The application of these
conditions to Eq. (7) leads to the system of equations and
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inequalities:

1
2η + K22q(qx − q0) − 1

2 K33q2(2x − b0) = 0,

K22x(qx − q0) − K33q(x2 − b0x) = 0,

(K22 − K33)q2 > 0,

q2(K22 − K33)[K22x2 − K33(x2 − b0x)]

−[K22(2qx − q0) − K33q(2x − b0)]2 > 0. (9)

As a result of some mathematical operations, the following
four nontrivial solutions of (9) can be obtained:

x =
−b0K33 + K22q0

√
b0K33

η

K22 − K33
,

q =
√

η

b0K33
,

K22 > K33,

K22q0 >
√

ηboK33,

η > 0,

boK33 > 0, (10)

x =
−b0K33 − K22q0

√
b0K33

η

K22 − K33
,

q = −
√

η

b0K33
,

K22 > K33,

K22q0 < −
√

ηboK33,

η > 0,

boK33 > 0, (11)

x =
−b0K33 + K22q0

√
b0K33

η

K22 − K33
,

q =
√

η

b0K33
,

K22 > K33,

K22q0 < −
√

ηboK33,

η < 0,

boK33 < 0, (12)

x =
−b0K33 − K22q0

√
b0K33

η

K22 − K33
,

q = −
√

η

b0K33
,

K22 > K33,

K22q0 >
√

ηboK33,

η < 0,

boK33 < 0. (13)

The results (10) and (11) relate to two variants of the NTB

structure having opposite handedness—right handed (q > 0)
and left handed (q < 0), respectively. The in-depth analysis of
solutions (12) and (13) indicates that x takes negative values,
so these cases are nonphysical and they must be rejected. It
can be concluded that a stable twist-bend nematic phase is
formed only if parameters η and boK33 are positive, as in (10)
and (11). This fact differs from that presented by Barbero
et al. [14], who predict the stability of the NTB phase also
for negative values of η and boK33. The detailed calculations
indicate that the free-energy density does not reach minimum
for the values of x and q given by Eqs. (5) and (6) when the
criteria (4) are satisfied. In this situation the determinant of
the Hessian matrix remains negative and thus the twist-bend
nematic phase is not stable.

The same conclusions can be formulated after the analysis
of graphs presenting how the free-energy density f of the
NTB phase depends on sin2θ and q (Fig. 2). When η > 0 and
boK33 > 0 [Fig. 2(a)], the values of sin2θ and q calculated
from Eqs. (5) and (6) actually correspond to the minimum of
f . In the case of negative values of η and boK33 [Fig. 2(b)],
there exists only a saddle point, the achievement of which does
not ensure the stability of a twist-bend nematic phase.

It should be noticed that the condition ensuring x < 1 is
not given in any papers devoted to Barbero’s theory and its
consequences. For both cases (10) and (11) this criterion takes
a simple form:

η >
b0K33K2

22q2
0

(K22 − K33 + b0K33)2 . (14)

After the equivalent transformation of the condition
K22q0 >

√
ηboK33 (or K22q0 < −√

ηboK33), it can be con-
cluded that the NTB phase appears when the coupling
parameter η satisfies the inequality

b0K33K2
22q2

0

(K22 − K33 + b0K33)2 < η <
K2

22q2
0

b0K33
. (15)

It is noteworthy that the upper limit for η guarantees that
x > 0.

Unfortunately, the incorrect stability conditions have been
applied by other scientists in their own research. For example,
Lelidis and Kume have analyzed the case boK33 < 0 in their
study on the linear electro-optic effect occurring in the NTB

phase [20]. This indicates that the knowledge of the stability
criteria of a twist-bend nematic is especially important when
the deformations in external fields are considered from the
theoretical point of view.

It is worth examining which liquid-crystalline phases ap-
pear when η takes values from outside the stability interval
(15). The cholesteric phase (N*) becomes stable in the fol-
lowing case:

η � b0K33K2
22q2

0

(K22 − K33 + b0K33)2 . (16)
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FIG. 2. Free-energy density f of twist-bend nematic as a function of sine squared of tilt angle sin2θ and wave number q. In (a) material
parameters satisfy conditions (3): K22 = 3 pN, K33 = 0.5 pN, ν4 = 0.2 pN (b0K33 = 0.9 pN), η = 6 × 105 N/m2, K22q0 = 0.001 N/m. In
(b) material parameters fulfill conditions (4): K22 = 3 pN, K33 = 0.5 pN, ν4 = −0.7 pN (b0K33 = −0.9 pN), η = −6 × 105 N/m2, K22q0 =
0.001 N/m. Cross signs indicate the values of sin2θ and q calculated from Eqs. (5) and (6), corresponding to minimum (a) and saddle point
(b) of free-energy density. Values of f at contour lines are expressed in kJ/m3.

The uniform nematic structure is formed when

η � K2
22q2

0

b0K33
. (17)

These conclusions have been formulated after the compar-
ison of the values of the free-energy density f calculated for
various liquid-crystalline phases:

fNTB = f1 +
K2

22q2
0 − 2b0K33|K22q0|

√
η

b0K33
+ η(K22 − K33 + b0K33)

2(K33 − K22)
(18)

for twist-bend nematics,

fN = f1 − 1
2η (19)

for nematics, and

fN∗ = f1 − K2
22q2

0

2(K22 − K33 + b0K33)
(20)

for cholesterics. Figure 3 shows how f depends on η when
typical values of material parameters are assumed. The phase
which is characterized by the smallest value of the free-energy
density is formed in reality. When η is increased, the following
sequence of liquid-crystalline structures is revealed: N∗ →
NTB → N . Similar results have been obtained in computer
simulations based on Barbero’s model.
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FIG. 3. Free-energy density f of twist-bend nematics (NTB),
cholesterics (N*), and ordinary nematics (N) as a function of cou-
pling parameter η. Material parameters are as follows: K22 = 3 pN,
K33 = 0.5 pN, ν4 = 0.2 pN (b0K33 = 0.9 pN), K22q0 = 0.001 N/m.
It is assumed that uniform part of free-energy density f1 = 0.

When the magnetic field is applied to the liquid crystal,
the term due to the magnetic free-energy density, μ0�χH2,
should be added to η in (15):

b0K33K2
22q2

0

(K22 − K33 + b0K33)2 < η + μ0�χH2 <
K2

22q2
0

b0K33
. (21)

The inequality (21) can be rewritten in the equivalent form:

b0K33K2
22q2

0

(K22−K33 + b0K33)2 −μ0�χH2 < η <
K2

22q2
0

b0K33
− μ0�χH2.

(22)

Figure 4 presents how the limiting values ηlower and ηupper

depend on the square of the magnetic-field intensity H2. As
shown in Ref. [19], the magnetic field shifts the stability
interval of twist-bend nematics towards lower values of η, but

FIG. 4. Lower limit ηlower (dashed line) and upper limit ηupper

(dotted line) of stability interval of twist-bend nematics (NTB) as
a function of square of magnetic-field intensity H2. Above ηupper

ordinary nematic phase (N) is stable. Below ηlower cholesteric struc-
ture (N*) is formed. Material parameters are as follows: K22 = 3 pN,
K33 = 0.5 pN, ν4 = 0.2 pN (b0K33 = 0.9 pN), K22q0 = 0.001 N/m,
�χ = 10−6.

its width remains constant. The analysis of this phenomenon
indicates that the magnetic field can induce not only the NTB-N
transition, but also the transformation from the cholesteric to
the twist-bend nematic structure. Indeed, when the magnetic
susceptibility anisotropy �χ is positive, the magnetic torque
tends to align the director parallel to the vector of the field
intensity so the tilt angle decreases and thus the N*-NTB

transition occurs while the reverse transition is impossible.
Moreover, it should be noticed that in a very strong magnetic
field the NTB phase can be stable even when η is negative.
This statement is not in contradiction to the above consid-
erations which concern twist-bend nematics in the absence
of external fields.

IV. CONCLUSIONS

To sum up, the formulas for the characteristic parameters of
the NTB phase and the conditions for its stability are gathered
in the final form:

x =
−b0K33 ± K22q0

√
b0K33

η

K22 − K33
,

q = ±
√

η

b0K33
,

K22 > K33,

boK33 > 0,

b0K33K2
22q2

0

(K22 − K33 + b0K33)2 < η <
K2

22q2
0

b0K33
. (23)

In particular, the inequalities for the parameter η have been
derived. The upper signs should be chosen when K22q0 > 0,
the lower ones when K22q0 < 0.

It has been shown that the negative values of η and boK33

do not lead to the formation of the stable NTB structure in the
absence of external fields. The phase transition from twist-
bend nematics to cholesterics does not occur in magnetic
field. For η > 0 and boK33 > 0, the NTB-N transition has
been theoretically predicted, but the production of the nec-
essary magnetic-field strength seems unfeasible, especially
when η is small. The analysis of the shift of the stability
interval in the magnetic field reveals that the N*-NTB transition
is also theoretically possible. When the coupling parameter
η is smaller than the lower limit of the stability interval,
the cholesteric phase is formed. When η exceeds the upper
limit of the stability interval, the uniform nematic structure
is stable.

Further research could be directed towards the compari-
son of the stability criteria obtained from various elasticity
models and further analysis of the phenomena occurring in
external fields.
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