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Density-mediated spin correlations drive edge-to-bulk flow transition in active chiral matter
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We demonstrate that edge currents develop in active chiral matter due to boundary shielding over a wide
range of densities corresponding to a gas, fluid, and crystal. The system is composed of spinning disk-shaped
grains with chirally arranged tilted legs confined in a circular vibrating chamber. The edge currents are shown
to increasingly drive circulating bulk flows with area fraction as percolating clusters develop due to increasing
spin-coupling between neighbors mediated by frictional contacts. Edge currents are observed even in the dilute
limit. While, at low area fraction, the average flux vanishes except within a distance that is of the order of a
particle diameter of the boundary, the penetration depth grows with increasing area fraction until a solid-body
rotation is achieved corresponding to the highest packing, where the particles are fully caged with hexagonal
order and spin in phase with the entire packing. A coarse-grained model, based on the increased collisional
interlocking of the particles with area fraction and the emergence of order, captures the observed flow fields.
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I. INTRODUCTION

Chiral active matter is composed of particles or organisms
that intrinsically spin [1–6]. These materials are naturally out
of equilibrium; energy and rotation are constantly supplied
to the system on the scale of the particle, and dissipated by
the global motion of the particles. The intrinsic rotation of
each particle causes colliding particles to rotate about one
another in a preferred direction. Consequently, locally in-
creasing particle density also increases the local vorticity. The
corresponding rheology of the chiral material is described
by a dissipationless odd viscosity and odd elasticity [7,8].
The study of these systems gives insight into nonequilibrium
pattern formation [9,10], may be relevant for the ecology of
certain organisms [11,12], and aids the design of robots that
couple translation to rotational modes [13,14].

Collections of chiral grains moving on a vibrated sub-
strate, as in Fig. 1, provide an avenue by which to reach a
deeper understanding of how particle rotation at an individual
level can manifest itself collectively [1,15]. While collections
of granular rods can self-assemble to form chiral structures
which spin collectively [16], particles with tilted legs and
bumpy sides, which promote frictional particle-particle in-
teractions, have been demonstrated to spin, self-organize,
and give rise to further collective motion [17–19]. However,
many simple questions on the effect of particle concentration
and differences on bulk versus boundary interactions remain
unanswered. In vibro-fluidized granular systems, interactions
occur only during contact and present the opportunity to in-
vestigate density effects over a wide range of area fractions, in
contrast to systems in which secondary flows in the interstitial
medium can give rise to attraction and other system-specific
effects [11,20].

Here we examine the increasing effect of particle-particle
density and spin correlations on the global flow in a mono-
layer of chiral active matter as their area fraction φ increases
from that of a gas to a crystal. Past work, using similar ex-

perimental designs [17–19,21], have exclusively studied the
dynamics of active chiral particles at relatively high area
fractions, above ≈0.3. Consequently, these experiments give
little insight into how the edge current emerges and changes
across the phases of chiral matter. To better understand the
onset of global motion and systematic variation of the edge
current across phases of active chiral matter, we measure the
translational and rotational motion of particles as the area
fraction increases from 0.078 to 0.746, which is the densest
packing that could be practically achieved in our experiment.
A coarse-grained model captures the systematic variation of
the translational motion of particles across all area fractions
examined. However, neither this model nor existing contin-
uum theories predict the variation of particle angular velocity
across the phases.

II. MATERIALS AND METHODS

A. Particle design and fabrication

A schematic of the chiral particles used in our study is
shown in Fig. 1(a). The particles are designed specifically to
achieve two tasks: each particle is to spin on average in a
desired direction, and each particle should be able to interact
with other particles and exchange angular momentum. The
particles are composed of a solid gear cap with outer radius
r0 = 0.6 cm with mass m = 0.28 g and moment of inertia
I = 0.04 g cm2. The seven slanted legs (length 3.3 mm, width
0.8 mm, angle 30◦) are arranged in a circular pattern beneath
the circular cap (height 2 mm, diameter 10 mm). Because the
legs are slanted, striking the particle from below causes it to
spin as it accelerates upwards off the plate [22]. Grain inter-
actions are augmented using 25 triangular gear spokes (spoke
length 1 mm) that can couple grains that are in contact with
each other. To ensure that these particles are nearly identical,
they are fabricated using a Formlabs 3D printer with a clear
photopolymer resin. A white sticker is centered on the top of
each grain to assist with tracking position; a black circle is
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FIG. 1. Chiral particles are confined to a quasi-two-dimensional
circular chamber. (a) A schematic of the chiral matter design viewed
from the side and bottom. (b) A top view of a 3D-printed chiral
particle. A white sticker with a black marker is added to find its
location and spin rate. (c) Top view image of chiral particles in
the circular chamber. The chiral particle monolayer sits atop the
sandblasted aluminum plate and is confined by a clear acrylic lid.

drawn slightly off-center to assist with tracking the individual
rotation as shown in Fig. 1(b).

B. Container and vibration system

Particles are confined within a quasi-two-dimensional
cylindrical chamber of radius Rc = 8.75 cm that oscillates
vertically with frequency f = 60 Hz and amplitude A =
0.17 mm. We vary the number of particles Np from 20 to
191. These particles are placed in a quasi-two dimensional
chamber which is connected via a linear bearing to an elec-
tromagnetic shaker (Labworks Inc. Model PA-141) connected
to an Agilent waveform generator [16]. The linear bearing
ensures that the vibrations are purely vertical as tested with
an accelerometer to within 1%. This chamber is composed of
an aluminum base that is bolted to clear acrylic walls and a
cap. The aluminum base was lightly sandblasted to excite the
diffusive motion of the particles and dyed black to contrast
with the particles. The height of the chamber, 6.35 mm is

slightly greater than the particle height, which is 5 mm. The
chamber is vibrated at 60 Hz. The amplitude is adjusted such
that the maximum of the measured acceleration is 2.5-times
the Earth’s gravitational acceleration.

A PixelLink camera above the chamber records the two-
dimensional motion of the particles. An example is shown in
Fig. 1(c). Images are acquired at 50 ms intervals over 10-min
time intervals.

C. Particle tracking

We begin by describing the tracking of the particles.
The white 6 mm sticker placed on the center of each par-
ticle are sharply contrasted with the opaque particles and
dark substrate. Knowing the radius of each sticker allows
one to quickly identify their centers by applying a Circular
Hough Transform. The pairwise distances between particles
in sequential frames are then computed. The assignment of
instantaneous locations to particle tracks is performed using
Munkres’ Assignment Algorithm. In the rare circumstances
that a particle is not found in a particular frame, its position is
interpolated from is positions immediately before and after the
missing frame. In a typical experiment, fewer than 0.06% of
particle positions are interpolated. At the lowest area fractions
examined, where the particle velocity is greatest, as many as
1.6% of positions are interpolated.

A similar method is used to track particle orientation. A
small black spot is drawn on each sticker at a point about
halfway between its center and edge. After the center of the
particle is found, the mean intensity of the sticker is radially
averaged to give the mean intensity as a function of orientation
about the center of the particle. The dark spot appears as
a minimum in the intensity at a particular angle. Fitting a
parabola to the minimum allows one to track the spot with
subpixel resolution. These measurements are assembled into
trajectories, which show the change in particle orientation
from the beginning of the experiment.

To move to a reference frame that rotates with the collec-
tive motion of the particles (as in supplementary videos SV2
and SV3), we first calculate the velocity v of each particle
in the laboratory frame. We then find the average angular
velocity of the average flow as � = 〈v × (r × ẑ)/r2〉, where
r is the vector from the center of the chamber to a particular
particle, and ẑ is normal to the vibrating plate. We then change
coordinates to one that rotates with the instantaneous angular
velocity �.

D. Kinetics of isolated particles

Isolated particles are found to spin counterclockwise on av-
erage when viewed from above with a mean angular velocity
of ω0 = 7.61 ± 0.01 s−1. Particles diffuse with translational
diffusion coefficient D = 0.134 ± 0.07 cm2/s and rotational
diffusion coefficient Dr = 3.4 ± 0.4 rad2/s.

III. RESULTS

A. Variation of packing geometry and global flow
with packing fraction

Figure 2 shows representative snapshots of the system cor-
responding to gas, fluid, and crystal phases with increasing φ,
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FIG. 2. The dynamics of a chiral material is examined across the phases of gas (left column), fluid (center), and crystal (right). Panel
(a) shows the distribution and angular velocities (colored spots), and contact network (solid black lines) of 60 particles in a dilute gas (φ =
0.23). The scale bar is 1 cm. Panels (b) and (c) show the corresponding particle locations, angular velocities, and contact networks in a fluid
of 148 particles (0.57 < φhex) and a crystal of 191 particles (φ = 0.74 > φhex), respectively. Note that the mean and variance of the angular
velocities decrease with φ. The bottom row shows the radial velocity profile for the (d) gas, (e) fluid, and (f) crystal. Red lines are fits to the
coarse-grained model [Eqs. (1)–(4)]. The insets show the pair correlation function g(R). The location first peak, which is insensitive to φ, is
found at a distance 1.08 ± 0.05 cm. This value is between inner (1 cm) and outer (1.2 cm) particle diameters.

and a corresponding video can be found in Supplemental Ma-
terial video SV1 [23]. We have further superimposed the spin
angular velocity ω on the tracked position of each particle.
We observe that the system becomes increasingly ordered not
only in the way the particles are arranged, but also in terms of
their spin, with the highest φ showing hexagonal crystalline
order and little variation in ω. We construct the contact net-
work from instantaneous positions of the particles, taking two
particles to be in contact if their center to center distance is
less than 2.2r0, and is also shown in Figs. 2(a)–2(c). As φ is
further increased, the contact network becomes ordered and
the disordered fluid becomes a crystal.

To characterize the emergence of flow and its nature,
we calculate the tangential velocity of each particle as it
moves about the center of the chamber. Averaging these in-
stantaneous measurements over 10-min trials, we find the
steady-state velocity profile vt as a function of distance r from
the chamber center. The corresponding profiles are shown
in Figs. 2(d)–2(f), nondimensionalized by the characteristic
speed v0 = r0ω0 = 4.6 cm/s of an isolated particle’s edge. In
all cases, particle speed is maximum within a particle diameter
of the chamber wall, where they move with flux jedge = 2r0vt .
The overall collective rotation in the chamber is in the same
direction as the individual particle spin, which implies that
the flow is driven by particle-particle collisions rather than
particle-boundary interactions [24]. The measured vt of each
data set obtained between φ = 0.078 and 0.746 can be found
in Fig. 9. Our results provide the first experimental investiga-

tion of flows driven by chirality as the density varies widely,
corresponding to a chiral gas, fluid, and crystal states.

To quantify these transitions, we plot in Fig. 3(a) the six-
fold orientational correlation function Q6(R) = 〈q6(R)q∗

6 (0)〉,
where q6(rk ) = N−1

k �
Nk
j=1ei6θk, j , R is the position vector (of

magnitude R) between the centers of two particles, Nk is the
number of particles that particle k contacts, rk is the position
vector of the particle k from the center, and θk, j is the angle be-
tween particles k and j, which are in contact with one another.
As shown in Fig. 3(b), particle orientation becomes correlated
at a critical area fraction of φhex = 0.64 over the scale of the
chamber Rc and the hexagonal packing of particles becomes
apparent as in Fig. 2(c). The pair-correlation function g(R),
which describes the density variation as a function of distance
R from a particle, is shown in the insets of Figs. 2(d), 2(e), and
2(f). They are observed to be consistent with those of a gas,
fluid and crystalline solid, respectively, with the appearance of
peaks growing at R = 2r0, 2

√
3r0, and 4r0 corresponding to a

hexagonal lattice. (The measured pair correlation function can
be found in Fig. 10 for each experiment.) The small secondary
peak is absent at the lowest area fraction examined.

Because colliding particles tend to rotate about one
another, collisions transfer angular momentum from the in-
dividual rotation of particles to the global rotation about the
chamber. As the contact network grows and spatial correla-
tions increase with φ, the average spin angular velocity 〈ω〉
and its root-mean fluctuations decreases as shown in Fig. 3(c).
We measure the particles’ instantaneous two-dimensional
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FIG. 3. Cluster geometry and particle motion vary systematically
with area fraction. (a) The magnitude and correlation length of the
orientation of particle contacts grows with area fraction. (b) The
formation of a single rotating crystal is identified from the point at
which Q6(Rc ) increases discontinuously. (c) Average angular veloc-
ity particles (blue line) and the typical fluctuations (shaded region)
decrease as the size of the contact network grows. (d) As area
fraction increases, the rotational motion is slowed more quickly
than translational components. The black line, shown as a guide to
the eye, is 〈Ur/U 〉 = 0.55 − 1.03φ4. (e) The edge current jedge is a
nonmonotonic function of φ which changes abruptly at φhex. (f) The
integrated particle flux Jtot is maximized at φ = 0.69. The black line
shows the predictions of Eqs. (1)–(4).

translational kinetic energy Ut = 1
2 mv2

2D, where v2D is the
instantaneous translational speed of a particle, the rotational
kinetic energy Ur = 1

2 Iω2, and the total measured energy
U = Ur + Ut . As shown in Fig. 3(d), the partitioning of energy
between translational and rotational motion 〈Ur/U 〉 = 0.55 in
the gas phase, and decreases quartically with φ in the fluid
phase. As the packing becomes crystalline—close to φhex—
and ω of the particles locks in phase with the solid-body
rotation, 〈Ur/U 〉 becomes similar to 1/3, the value predicted
by the equipartition theorem.

In the dilute limit of a chiral gas, particle collisions are
dominated by two-body interactions. Because the corotation
of isotropically colliding particles generates no net flow, the
velocity field vanishes in the interior of the chamber [21].
The presence of the chamber wall breaks this symmetry.
Because a particle near the wall can only be struck from
the chamber interior, the outer ring of particles slip over the
chamber walls as they are pushed from the interior. Since
this mechanism does not reference a particular φ, one may
expect an edge current even at vanishing densities. Edge

FIG. 4. Retrograde motion is observed in particles centered a dis-
tance rN−1 = Rc − 3r0. (a) The tangential velocity profile is shown
on a much finer scale than in Figs. 2(d)–2(f) to highlight the retro-
grade. (b) The ratio of tangential velocities of particles in the two
outermost annuli increases monotonically from −1, correspond to
elastic two-body collisions (blue dashed line), to 7/8, which corre-
sponds to solid-body rotation (red dashed line).

currents have been shown to develop in a numerical study
of a dilute (φ ≈ 0.12) gas of driven rotors interacting with
Yukawa potential [4]. Figure 3(e) shows that edge currents
form at area fractions as low as 0.078 even in systems which
interact sterically. We find that jedge increases approximately
linearly with φ, and jedge apparently can extend to vanishing
densities provided particle-particle collisions are present. The
corresponding flux Jtot = 2π

∫
φvt rdr is shown in Fig. 3(f).

Our experiments show that a thin edge current (2r0 wide) is
maintained by short-range particle-particle interactions in a
dilute gas. Confinement induced packing structure has been
shown numerically to give rise to oscillatory flows at interme-
diate φ, but were not clearly realized in their corresponding
experiments [21].

Interestingly, we observe a clear signature of oscillatory
flow for φ < 0.5 with a weak counterclockwise flow for
11 < r/r0 < 12 as a reaction to the clockwise edge current.
To highlight this slight retrograde motion, Fig. 4(a) shows
the average tangential velocity vt of dilute particles near the
outer boundary of the chamber. Rescaling these measurements
by the speed vN of the outermost ring of particles collapses
the velocity profile onto a similar form. These profiles show
retrograde motion vN−1 < 0 of particles at a distance rN−1 =
Rc − 3r0 from the center of the chamber, which correspond
to the annulus of particles that contact the outermost ring
of particles. As the area fraction of particles increases, the
ratio vN−1/vN increases monotonically and retrograde motion
vanishes at an area fraction of 0.5. This ratio is bounded from
below by vN−1/vN > −1, which corresponds to elastic two-
particle collisions. The upper bound vN−1/vN < (N − 1)/N
corresponding to solid-body rotation. The chamber studied
here fits N = 8 concentric annuli of particles. Note that the
retrograde motion is attenuated in Figs. 2(d)–2(f), where the
tangential velocity is averaged over the width of a particle
rather than evaluated at the midpoints of concentric annuli.

As φ rises, the edge current and associated flux, initially
grows and extends through the system [Figs. 3(e) and 3(f)].
We observe that a disordered contact network [Fig. 2(b)]
maintains flow in the bulk, and thus conclude that bulk flow
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does not require the percolation of solid-like regions (see Ap-
pendix B). Rather, around an area fraction of 0.5, the contact
network spans the chamber and the outermost particles cannot
move independently of those in the interior. However, the
loose contact network permits the relative motion of particles.
As the outermost shell of particles is pushed around the exte-
rior of the chamber, it drags the loose network. In this regime,
velocity gradients begin to extend through the entire material
[Fig. 2(e)].

Finally, in the dense regime, φ > φhex = 0.64, steric in-
teractions arrest the relative motion of particles, velocity
gradients are suppressed, and particles cease to rotate inde-
pendently of the lattice except near defects. The amplitude of
the edge current decays quickly with particle concentration
[Fig. 3(e)] and the crystal moves as a solid body [Fig. 2(f)].
Interestingly, solid-body rotation is maintained even as system
scale dislocations form (see Supplemental Material video SV2
[23]). In the crystalline limit, particles rotate in phase with
the solid-body rotation except near topological defects (see
Supplemental Material video SV3 [23]).

B. Coarse-grained model

To understand the variation in the particle flux with in-
creasing area fraction, we develop a coarse-grained model.
According to this model, particles are confined by steric in-
teractions to move around the center of the chamber along
concentric circular paths, which we call lanes. Collisions
between particles transfers momentum between neighboring
lanes and particles are slowed as they move relative to the
chamber floor. The simple geometry assumed by this coarse-
graining scheme makes it possible to calculate torque balance
on each particle and on each lane, which is sufficient to de-
termine the steady-state translational and angular velocities of
each particle.

We first motivate this coarse-graining scheme, which re-
spects the finite size of particles and the emergent crystalline
structure, from the measured trajectories of particles. At par-
ticle concentrations above φ > φhex, particles rotate about the
chamber in eight concentric lanes [Fig. 5(a)]. The outermost
lane—at a distance of one particle radius from the outer
wall—is apparent even at the lowest concentration examined.
Multiple lanes become apparent around φ ≈ 0.5 at which
contact networks begin to span the system [Fig. 5(a)]. We
coarse-grain this system in a manner in which each lane—
having a width of one particle diameter and the outermost lane
is centered one particle radius from the outer wall—is densely
occupied with the average particle concentration as illustrated
Fig. 5(b).

Consider the torque balance on particles in the ith lane
from the center with velocity vi and spin angular velocity
ωi, where i < N and N ≈ Rc/(2r0) is the number of lanes
that fit in the experiment. The rotation of these particles is
slowed at rate αp if the speed of its edge is faster than those of
its neighbors. The corresponding nondimensionalized torque
balance on the particles, as derived in Appendix A, is

ωi + αp

αb
(vi−1 − vi+1 + ωi−1 + 4ωi + ωi+1) = 1, (1)

FIG. 5. Particles rotate about the center of the chamber in con-
centric lanes. Lanes form from the outer boundary and grow inwards
with increasing φ. (a) The probability density function ρ for particle
density for all experiments analyzed is shown. The dashed lines
show the expected locations of lanes. (b) A schematic of particles
interacting between lanes. Each particle moves in a circular path at
velocity vi and rotates about its axis at angular velocity ωi.

where αb is the rate that particle rotation is slowed by the
bottom of the chamber. In the outermost lane, particle rotation
is only slowed by collisions from the interior, within its lane,
and the bottom of the chamber. The boundary condition on
particle rotation at the wall is

ωN + αp

αb
(vN−1 − vN + ωN−1 + 3ωN ) = 1. (2)

We assume that ω is smooth and continuous near r = 0.
Similarly, vt is slowed at rate βp if a particle’s edges move

more quickly than the edges it contacts. The corresponding
torque balance on lane i < N requires

vi = βp

βb
(vi−1 − 2vi + vi+1 − ωi+1 + ωi−1), (3)

where βb is the rate that the translational velocity is slowed
by the bottom of the chamber. Again, the outermost particles
are only affected by particles in the lane centered at rN−1. The
corresponding boundary condition is

vN = βp

βb
(vN−1 − vN + ωN−1 + ωN ). (4)

The boundary condition at the center of the chamber requires
the angular velocity � = vt/r to be smooth and continuous.

In the continuum limit Rc � r0, Eqs. (1)–(4) predict an
exponentially decaying edge current with penetration depth
λc = r0

√
[βp(2α + 1)/(3α + 1)]/βb. In this limit, as α and β

grow, the penetration depth grows from the particle scale [as
in Fig. 2(d)] to scales much larger than the system size, which
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FIG. 6. The rates at which particle (a) angular velocity and
(b) translational velocity relax to the speeds of the neighboring edges
both diverge at the maximum area density. The red lines are fits to
power laws. The insets show the same data on logarithmically scaled
axes.

corresponds to solid-body rotation [see Fig. 2(f)]. This result
is similar in form to the prediction for continuum models of
active chiral materials [25] in which the penetration depth is√

(η + ηo)/βb, where η is the sheer viscosity and ηo is the odd
viscosity.

C. Comparison of experiment and theory

Equations (1)–(4) uniquely determine the tangential veloc-
ity and the angular velocity of particles in each lane. We fit
the dimensionless relaxation rates α = αp/αb and β = βp/βb

to match the measured velocity profile. Three representative
fits are shown in Figs. 2(d)–2(f), and all the trials are shown in
Fig. 9. Remarkably, this model reproduces the velocity profile
even in the dilute regime and correctly predicts the slight
retrograde motion in the N − 1 lane [Figs. 2(d) and 4].

Intuitively, the relaxation rates α and β should increase
with particle density as increasing the number of collisions
similarly increases the rate particles are slowed by their
neighbors. As shown in Fig. 6, α and β increase faster
than exponentially with area fraction. These trends are well
fit by power law divergences α(φ) = α0(φc − φ)−γ /2 and
β(φ) = β0(φc − φ)−γ , where α0 = 1.53, β0 = 0.17, γ = 3,
and φc = 0.76.

Figure 3(f) shows that the particle flux predicted by the
power law divergences of α and β approximates the measured
flux reasonably well. The predicted flux is not monotonic [26]
and is maximized at φ ≈ 0.69 and is similar to the value φs =
0.711 at which a large two-dimensional lattice of hard spheres
transitions from diffusive behavior to caging, as discussed by
Reis et al. [27]. The slightly lower value could result from
the difference in particle shapes and finite size effects. This
similarity suggests that flux is maximized when the rate of
particles collisions is maximized before the relative motion of
particles is arrested.

At an area fraction of φc = 0.76 the rate coefficients α and
β diverge and the system is stationary. While this value is
substantially less than the maximum area fraction π

√
3/6 ≈

0.907 of disks in an infinite plane, it is slightly greater than
the densest packing that could be practically achieved (0.74).
This values corresponds to 196 particles, five more than are

FIG. 7. The average angular velocity of particles (blue dots)
decreases as the area fraction increases. The red line shows the pre-
dictions of Eqs. (1)–(4), which assumes a dense packing of particles.
The black line shows a three parameter fit to the model of Liu et al.
[21], which treats the material as a disordered fluid.

shown in Fig. 2(c). We conjecture that α and β diverge at the
maximum packing fraction and the smaller value found here
is due to the finite size of the chamber.

Finally, we compare the predictions of the coarse-grained
model to the measured angular velocities of particles. The
average angular velocities of particles decrease smoothly with
increasing area fraction (see Fig. 7). The inferred rotation
speed at vanishing area fraction is slightly less than ω0 as a
result of friction between particles and between particles and
the chamber walls. The average angular velocities predicted
by the power-law divergence of α and β systematically under-
estimate the actual angular velocity for two reasons. The first
is because the best fit power-law divergences of α and β are
nonzero at vanishing area fraction. Consequently, particles are
predicted to rotate with angular velocity ≈0.1ω0. Rescaling
the predicted mean angular velocity by this factor gives the
red line shown in Fig. 7. Although agreement is good for
φ > φhex, the predictions of our coarse-grained model con-
tinue to underestimate the angular velocity at low density.
For comparison, the black line shows a three parameter fit
to a model proposed by Liu et al. [21], which relies on an
expansion of the pair correlation function for a low densities
fluid. The fit gives a good representation of angular velocity
at low density but fails as expected at high densities.

IV. CONCLUSION

In conclusion, we have analyzed the evolution of edge cur-
rent and bulk flow across three phases of active chiral matter.
Edge currents are observed even at vanishing densities due
to occasional particle collisions and shielding of particles at
the boundaries. In the dilute limit (φ < 0.4), particle-particle
collisions generate a global flow that is confined within a
narrow band within the width of a single particle of the cham-
ber boundary. Both convection at low densities and the linear
dependence is nonintuitive, and have not been anticipated.
Only simulations [4] of particles with Yukawa interactions
show edge currents similar to what we observe. Collisions
between particles near the boundary and those in the interior
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FIG. 8. The contact network percolates. (a) The weight P is the
probability that a randomly selected particle is in a spanning network.
It grows with area fraction. (b) Cluster sizes are most widely dis-
tributed at φperc ≈ 0.5. Nc is the number of particles in a nonspanning
cluster.

produces slight retrograde motion in the bulk. This motion is
suppressed at intermediate area fractions where steric interac-
tions prevent the independent motion of particles. Upon the
onset of system-scale orientational order, the edge current is
quickly arrested and particles rotate as a solid body.

A coarse-grained model, which respects the emergent crys-
talline order and the finite particle size, accurately fits the
measured velocity profile across these phases. These fits re-
veal that the rates α and β that particles are slowed by
collisions with neighbors increase faster than exponentially
with area fraction and appear to diverge at a value φc slightly
greater than what could be practically achieved.

The comparison of this model to the measured motion of
particles leaves open two questions which should be addressed
by future work. First, it is unclear if α and β diverge at the
maximum packing fraction, as we suspect, or if φc separates
two distinct phases of chiral material. Increasing the size
of chamber relative to the particle size would address this
question. Next, the divergences of α and β are well fit by the
relation α2 ∝ β. We lack any physical model to explain this
curious coincidence.

Finally, neither our coarse-grained model nor the contin-
uum model of chiral fluids composed of particles similar to
those studied here [21] is sufficient to understand particle rota-
tion across the phases. While our coarse-grained model, which
assumes a density of particles that is sufficient to maintain
circular trajectories, fits that data well at high concentrations,
it fails in the fluid regime. By contrast, the continuum model,
which assumes a disorder fluid, fails for crystalline packings
of particles. The experimental results presented here provide
a strong test for any further theory to be developed to describe
the fluid-solid transition of active chiral materials.
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APPENDIX A: DERIVATION OF THE COARSE-GRAINED
MODEL

In this section we derive Eqs. (1)–(4) of the main text and
discuss their fit to the measured velocity profile. According to

our model, a particle is accelerated and spun if its edge moves
at a different speed than those of its neighbors. Particles in
the ith lane are characterized by a velocity vi = ri�i, where
�i is the angular velocity of the lane about the center of the
chamber, and composed of particles that rotate about their
centers with angular velocity ωi. The speed of a particle’s
outer edge is vi + ωir0 and the speed of its inner edge is
vi − ωir0.

Each particle experiences a torque τb when it is struck by
the vibrating plate, which causes it to rotate with an average
angular velocity ω0 = τb/(Iαb), where I is the moment of
inertia and αb is a rate coefficient. At steady state, this torque is
balanced by friction with other particles and the bottom plate.
The angular velocity of particle in the ith lane increases if its
edges spin more slowly than those if its neighbors. Particles
experience a torque from the interior lane of

τ− = −Iαp[(vi−1 + ωi−1r0) − (vi − ωir0)]/r0, (A1)

where αp is a rate coefficient. The corresponding torque from
the exterior lane is

τ+ = −Iαp[(vi+1 − ωi+1r0) − (vi + ωir0)]/r0. (A2)

A particle is also slowed by collisions within its lane, which
exert a torque

τ0 = −2Iαpωi. (A3)

Friction with the base plate exerts a drag

τD = −Iαbωi. (A4)

Torque balance on the particle requires τb + τ+ + τ− + τ0 +
τD = 0, or equivalently

αp(vi−1 − vi+1 + r0ωi−1 + 2r0ωi + r0ωi+1) + αbr0ωi

= αbr0ω0. (A5)

After nondimensionalizing vi by r0ω0 and ωi by ω0, this
analysis yields Eq. (1) of the main text. At the outer boundary,
where τ+ = 0, torque balance requires

αp(vN−1 − vN r0 + r0ωN−1 + 3r0ωN ) + αbr0ωM = αbr0ω0,

(A6)

which gives Eq. (2) of the main text. Note that we have
ignored friction with the outer wall. We additionally assume
that that ωi is smooth and continuous at r = 0 such that it can
be locally expanded as A + Br2

i , for some unknown factors A
and B. It follows that(

r2
2 − r2

3

)
ω1 + r2

3ω2 − r2
2ω3 = 0, (A7)

which gives the boundary condition at the center of the
chamber.

Particles in the ith lane are accelerated by the particles
in neighboring lanes and slowed by friction with the bottom
surface. The interior lane exerts a tangential force on the ith
lane of

F− = mβp[(vi−1 + ωi−1r0) − (vi − ωir0)], (A8)

where βp is a rate coefficient and m is the mass of a particle.
Similarly, the exterior lane exerts a force

F+ = mβp[(vi+1 − ωi+1r0) − (vi + ωir0)]. (A9)
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FIG. 9. The measured velocity profile for the various area fractions ranging from dilute gas to dense crystal and corresponding fits to the
coarse-grained model.

The drag on the ith lane is

FD = −mβbvi. (A10)

At steady state, the total torque on each lane is ri(F+ + F− +
FD) = 0. Thus,

βp(vi−1 − 2vi + vi+1 + ωi−1r0 − ωi+1r0) − βbvi = 0.

(A11)
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FIG. 10. The measured pair correlation function for the various area fractions ranging from dilute gas to dense crystal.

Nondimensionalizing velocity by ω0r0 and angular velocity
by ω0 yields Eq. (3) of the main text. Particles in the outermost
lane only interact with the interior lane. The correspond-
ing torque balance, which requires τN = rN (F− + FD), yields

Eq. (4) of the main text. Again, we assume that � is smooth
and continuous at the center, implying

(
r2

2 − r2
3

)
�1 + r2

3�2 − r2
2�3 = 0. (A12)
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Thus, torque balance on each particle [Eqs. (1) and (2) in
the main text] and lane [Eqs. (3) and (4) in the main text] along
with continuity of particle motion at the center [Eqs. (A7) and
(A12)] define 2N linear equations for a system composed of
N lanes. These equations can be trivially rewritten as

M
(

v
ω

)
=

(
0
1

)
, (A13)

where M is a matrix composed of elements that vary with
α and β, v is vector with elements vi, and ω is vector with
elements ωi. For given values of α and β, we invert M to find
the speed and angular velocity of particles in each lane.

This model is fit to the measured velocity profile by least
squares. We provide the fits of the velocity profile for each
experiment in Fig. 9. The fitting constants α and β are plotted
in Fig. 6 in the main text. Excellent agreement is observed
over the entire range of φ.

APPENDIX B: FORMATION OF A SPANNING CONTACT
NETWORK

We find the contact network in each frame of the experi-
ment from the observed particle locations. Two particles are
in contact if their centers are within 10% of a particle diame-
ter. We then identify disjoint clusters (collections of particles
in the same contact network). At small area fractions, most
clusters contain fewer than three particles. At the highest area
fraction, a single cluster is observed. We take a cluster to
be spanning if the furthest distance separating the constituent
particles is greater than 3Rc/4. Figure 8(a) shows the weight
P of spanning clusters as the fraction of particles in a span-
ning cluster. We also measure and plot the variance of the
sizes of nonspanning clusters Nc in Fig. 8(b). Averaging these

measurements over the length of the experiment, we find that
cluster sizes are most widely distributed at an area fraction
of φperc ≈ 0.5. The precise value at which spanning clusters
form is sensitive to parameter choices; however, the reported
value for the percolation transition is in accord with visual
inspection.

APPENDIX C: SUPPLEMENTAL VIDEOS

Three videos of the motion of particles are provided in the
Supplemental Material [23].

(1) Video SV1.mp4 shows three representative experi-
ments at three different area fractions, corresponding to the
panels of Fig. 1 of the main text.

(2) SV2.mp4 shows the solid-body motion of a crystal
composed of 185 particles (φ = 0.723). The image is rotated
with the instantaneous angular velocity of the crystal. The
contact network is shown with thin black lines. The thick
black like shows the orientation of each particle in the rotating
frame. Note that particle orientation changes only slightly
over the course of the experiment, indicating that particles
rotate at a similar speed of the crystal. Many defects in the
lattice are apparent. A system scale dislocation, which appears
halfway through the video, is highlighted with a red dashed
line.

(3) SV3.mp4 shows that, at the highest packing fraction
(191 particles, φ = 0.746), particle spin is in phase with the
solid-body rotation of the crystalline packing. The thick black
lines show the orientation of the particles in the rotating frame.
Note that most particles appear stationary in the rotating
reference frame, which indicates they spin with the surround-
ing lattice. A few particles close to lattice defects rotate
quickly.
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