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Ratchet effect in an asymmetric two-dimensional system of Janus particles
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We consider a disk-like Janus particle self-driven by a force of constant magnitude f , but an arbitrary
direction depending on the stochastic rotation of the disk. The particle diffuses in a two-dimensional channel
of varying width 2h(x). We applied the procedure mapping the 2 + 1-dimensional Fokker-Planck equation onto
the longitudinal coordinate x; the result is the Fick-Jacobs equation extended by the spatially dependent effective
diffusion constant D(x) and an additional effective potential −γ (x), derived recursively within the mapping
procedure. Unlike the entropic potential ∼ ln h(x), γ (x) becomes an increasing or decreasing function also in
periodic channels, depending on the asymmetry of h(x) and thus it visualizes the net force driving the ratchet
current. We demonstrate the appearance of the ratchet effect on a trial asymmetric channel; our theory is verified
by a numerical solution of the corresponding Fokker-Planck equation. Isotropic driving force f results in the
monotonic decrease of the ratchet current with a growing ratio α = DR/DT of the rotation and the translation
diffusion constants; asymptotically going ∼1/α2. If we allow anisotropy of the force, we can observe the current
reversal depending on α.
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I. INTRODUCTION

Active particles [1,2] represent an intriguing realm of non-
equilibrium many-particle phenomena. In spite of superficial
similarity to ensembles of particles driven by thermal noise,
ensembles of active particles exhibit features forbidden by
fundamental laws of equilibrium thermodynamics [3–5], due
to inherent openness and steady input of energy. A paradig-
matic example of experimental realization are Janus particles
[6,7] which can be modeled as tiny spheres moving in a
viscous environment under the influence of a force, direction
of which randomly fluctuates, while its absolute value remains
constant.

The tricky behavior of active matter in unbounded space
becomes even more subtle when it is confined by a complex
geometry [8,9]. Indeed, in the ensembles well known from the
equilibrium statistical mechanics, the boundary conditions be-
come irrelevant in the thermodynamic limit (with provision of
critical phenomena and phase coexistence). On the contrary,
the state of the ensemble of active particles is fundamentally
determined by the geometry of the area they are confined to.
Indeed, active particles within a container generically accu-
mulate close to the walls. If we look at the mass transport
by the particles, boundary currents can dominate over the
bulk contribution. Hence, the geometry of the boundaries is
essential.

Here, we will study the active Janus particles in quasi-one-
dimensional pore with modulated profile. Various modifica-
tions of such setup were investigated experimentally [10–18].
From the theoretical side, such systems were already amply
studied by numerical simulations [19–28], but analytical re-
sults are scarce [21,29].

Here, we aim at a concise analytical description based
on projection techniques, namely using the dimensional re-

duction along the lines of Fick-Jacobs (FJ) approach. This
methodology was already successfully used for active parti-
cles in channels [30–35], but we will push the method further
by projecting out not just the transverse, but also angular
degrees of freedom, as done in the simplified setups [36–38].
As mentioned above, the active particles tend to accumu-
late at walls and this feature represents a challenge for the
mapping technique, which enables us to reach a nontrivial
result in the higher-order corrections to the basic FJ approx-
imation. Indeed, we will show that including higher order
terms is essential in order to grasp the nature of the active
particles.

For simplicity we will work in a two-dimensional (2D)
space. The generalization to the truly three-dimensional case
brings a few difficulties, which are, however, of rather tech-
nical and not fundamental nature. We consider here a Janus
particle placed in a 2D channel of width 2h(x) varying along
the longitudinal coordinate x. The particle is represented by
a disk of radius R � h(x) rotating stochastically, character-
ized by the rotational diffusion constant DR. Aside from the
(translational) diffusion inside the channel with the diffu-
sion constant DT , it is self-driven by the force of a constant
magnitude f , acting in a direction depending on the angle
position φ of the active spot on the disk. Recently, several
simplified models were solved [36–38], where mainly orien-
tation of the force was reduced either only to the longitudinal
or to the transverse directions. Combining the techniques
developed in these specific cases enables us to study the
dynamics of the true Janus particle driven in an arbitrary
direction.

Our study is based on a mapping of the Fokker-Planck
equation in two spatial coordinates and the angle φ describing
the system onto the longitudinal coordinate x. The result is the
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generalized FJ equation [39–41],

∂t p(x, t ) = ∂xA(x)D(x)∂x
p(x, t )

A(x)
, (1.1)

governing the marginal probability density p(x, t ) of particles
along the channel. Information about rotation of the particle,
as well as its transverse motion near the curved boundaries,
responsible for any nontrivial effects, is comprised in the
position-dependent effective diffusion coefficient D(x) and
the function A(x). In the simplest case of a diffusing pas-
sive particle, it is interpreted as the Boltzmann factor of
the entropic potential Ue(x) = − ln A(x). For active particles
[36–38], additional terms appear in such potential. These
terms reflect the stochastic self-propulsion and are directly re-
lated to the effective force driving the ratchet current. Hence,
calculation of the ratchet current from the one-dimensional
(1D) projected equation, Eq. (1.1), is much easier than solving
the fully dimensional problem numerically.

The projection technique is based on scaling of the trans-
verse coordinate(s) by a small parameter

√
ε (or equivalently,

the diffusion coefficient by 1/ε). For the diffusion of a pas-
sive particles alone [42–44], the transverse relaxation in the
limit ε → 0 becomes infinitely fast, immediately equilibrat-
ing (flattening) the transverse profile of the 2D probability
density. Having integrated the 2D diffusion equation across
the channel and applying the flattened profile, we arrive at
the basic FJ equation (1.1) with D(x) = DT and A(x) = 2h(x)
[39]. The finite ε slows down the transverse relaxation, so the
transverse profile starts to deflect from the equilibrium. These
deviations of the 2D density, depending on p(x, t ), h(x) and
its derivatives, can be expressed as a series controlled by ε,
calculated recursively. If applied in the integrated 2D diffusion
equation, we obtain Eq. (1.1) with the spatial dependent D(x)
expanded in ε, including the corrections due to varying width
of the channel and a nontrivial flow near the curved walls.

A similar procedure can be developed for our system with
Janus particles. The corresponding Fokker-Planck equation is
integrated not only across the channel, but also over the an-
gle φ of the rotating disk. Thus φ has to be scaled, too, as
well as the spatial transverse coordinate y (and the transverse
force, [45,46]). The limit ε → 0, providing the infinitely fast
transverse relaxation, makes also the rotation of the disk so
fast that the self-propelling force acts in random direction,
effectively with zero mean. The particle in this limit behaves
as passive and thus the basic FJ approximation can be found.
Nonzero ε > 0, slowing rotation and transport to or from the
boundaries, enables the self-propulsion to reflect the particle’s
hitting the walls, rectifying its motion. It is described by the
corrections to the basic FJ. To derive them, one can adjust the
mapping procedure formulated for confined diffusion driven
by nonconservative forces [47]. It introduces a gauge function
γ (x) added to the entropic potential Ue(x); its expansion in ε

is derived recursively together with deviations from the zeroth
order density and D(x). For periodic profiles h(x), the function
γ (x) can be decomposed in two contributions, the first being
spatially periodic with the same period as h(x), while the
second is a linear function of x. It is the latter contribution
that gives rise to the ratchet effect.

We formulate precisely the problem in Sec. II and develop
the theory outlined above. In Sec. III, we arrive at analytic

FIG. 1. Scheme of the considered device. An active (red) spot on
the disk drives the particle in the opposite direction by the force f .
The particle diffuses in a channel bounded by −h(x) < y < h(x) and
also rotates stochastically in the angle φ.

formulas for the effective force driving the ratchet effect, en-
abling us to determine easily the ratchet current. Then we test
the results on a trial channel, asymmetric in the longitudinal
direction; they are also verified by a numerical solution of
the fully dimensional problem. By construction, our theory
describes well the region of an asymptotically large ratio
α = DR/DT , i.e., the quickly rotating particles, exhibiting the
decay of the current J ∼ 1/α2. Validity of our formulas is also
restricted to small driving forces f , taking only the leading
terms ∼ f 2. If we allow anisotropy of the driving force, the
current reversal can be observed at some value of α.

II. THE MAPPING PROCEDURE

We start with a definition of the model. The particle
diffuses in a 2D channel symmetric with respect to the longi-
tudinal x axis; its transverse position y is bounded by −h(x) <

y < h(x), see Fig. 1. The shaping function h(x) is supposed
analytic and positive. The particle is represented by a tiny disk
of the radius negligible with respect to the typical half-width
h(x), rotating randomly in angle φ. The disk is self-propelled
from some spot on its circumference by a force of constant
magnitude F and the direction depending on the angle φ. So
the fully dimensional probability density ρ(x, y, φ, t ) depends
on three spatial variables and time. It is governed by the
Fokker-Planck equation

∂tρ(x, y, φ, t ) = DR∂2
φρ(x, y, φ, t ) + DT [∂x(∂x − f cos φ)

+ ∂y(∂y − f sin φ)]ρ(x, y, φ, t ), (2.1)

describing the stochastic rotation of the disk and the transla-
tional diffusion driven by the force f = F/kBT acting in the
angle φ; T is the temperature. The rotation and the translation
parts are proportional to the diffusion constants DR and DT ,
respectively. The time can be rescaled by the diffusion con-
stant, DT t → t , then DR is replaced by the ratio α = DR/DT .
Equation (2.1) is supplemented by the no-flux boundary con-
ditions (BC)

[(∂y − f sin φ)∓h′(x)(∂x − f cos φ)]ρ(x, y, φ, t )|y=±h(x) = 0

(2.2)

at both boundaries for any angle φ; we also require periodicity
ρ(x, y, φ, t ) = ρ(x, y, φ + 2π, t ).
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The key point of the mapping is the controlling of the
transverse diffusion by a small dimensionless parameter ε.
In the case of the translation diffusion alone [42–44], typ-
ically the transverse lengths y, h(x) are scaled as y →√

εy, making the transverse relaxation infinitely fast in
the limit ε → 0. Consistently for the driven diffusion, the
transverse component of the force, has to be scaled in-
versely, f sin φ → ( f sin φ)/

√
ε, keeping the scalar potential

Uφ (x, y) = − f (x cos φ + y sin φ) unscaled [45,46] for a given
φ. For the Janus particles, Eq. (2.1), we intend to consider
the angle φ as the next transverse coordinate, but its scaling
looks dubious. Still, we can apply an alternative interpreta-
tion: scaling of the transverse lengths by

√
ε is equivalent to

introducing anisotropy of the diffusion constant DT by scaling
its transverse component to DT /ε. Correspondingly, we have
to introduce also an auxiliary anisotropy of the force �f =
( f cos φ, g sin φ), where the transverse amplitude g = √

ε f
corresponds to the (scaled) isotropic case. Now we can con-
sider the angle φ as another “transverse” coordinate by scaling
DR → DR/ε, or equivalently, we define the scaled ratio q2 =
εα = εDR/DT in Eq. (2.1). Finally, we arrive at the scaled
equation

∂tρ =
[
∂x(∂x − f cos φ) + 1

ε
∂y(∂y − g sin φ)

]
ρ + q2

ε
∂2
φρ,

(2.3)

supplemented by the BC

[(∂y − g sin φ) ∓ εh′(x)(∂x − f cos φ)]ρ|y=±h(x) = 0; (2.4)

the prime denotes the derivative according to x.
Our aim is to reduce Eqs. (2.3), (2.4) to an equation in the

only spatial coordinate x, governing the marginal (1D) density

p(x, t ) =
∫ 2π

0
dφ

∫ h(x)

−h(x)
ρ(x, y, φ, t )dy. (2.5)

Integrating Eq. (2.3) over y and φ, using integration by parts,
periodicity of ρ in φ and BC (2.4), we get

∂t p(x, t ) = ∂x

[
∂x p(x, t ) −

∫ 2π

0
dφ

(
h′(x)

× [ρ(x, h(x), φ, t ) + ρ(x,−h(x), φ, t )]

+ f cos φ

∫ h(x)

−h(x)
ρ(x, y, φ, t )dy

)]
. (2.6)

The crucial task now is to express ρ(x, y, φ, t ) using p(x, t ) to
close the equation.

The first step is the basic FJ approximation. In the limit
ε → 0, the relaxation across the channel as well as the
stochastic rotation of the disk becomes infinitely fast. Still,
finding the corresponding zeroth order density ρ0(x, y, φ, t )
is not trivial. The equilibrium for a given orientation φ is
proportional to exp[−Uφ (x, y)], but also φ is changing rapidly,
influencing the density ρ0 depending on the ratio q2 between
the fast rotation and translation diffusions. The searched ρ0

can be found by solving Eq. (2.3) with BC (2.4) in the limit
ε → 0, i.e., keeping only the terms ∼1/ε,[

q2∂2
φ + ∂y(∂y − g sin φ)

]
ρ0 = 0,

(∂y − g sin φ)ρ0|y=±h(x) = 0. (2.7)

The solution periodic in φ can be found in the form of expan-
sion in powers of g, namely,

ρ0 =
[

1 + g
sinh qy sin φ

q cosh qh
+ g2

(
qh cosh qy − sinh qh

2q3h cosh qh

+ (cosh qh cosh qy − cosh 2qy) cos 2φ

6q2 cosh2 qh

)
+ · · ·

]

× p(x, t )

A0(x)
= ω0(x, y, φ)

p(x, t )

A0(x)
, (2.8)

see the Appendix for more details. For brevity, we omit
writing the obvious arguments; the dots “· · · ” denote here
the higher order terms in g. The factor p(x, t )/A0(x) is an
integration constant (in the variables y and φ); it is fixed to
make the normalization (2.5) consistent, hence

A0(x) = 4πh(x). (2.9)

Applying the (pseudo-)equilibrated density ρ0, Eq. (2.8), in
the integrated equation (2.6), we obtain the basic FJ equation
after some algebra,

∂t p = ∂x

[
A0∂x − 4πh′

(
g2 (qh − tanh qh)

2q3h
− · · ·

)]
p

A0
.

(2.10)

Unlike the mapping of the diffusion alone [42,43] or in a
conservative field [45,46], the use of A0 fixed by normaliza-
tion does not convert here the mapped equation to the FJ
form (1.1). Similar to diffusion driven by the vortex forces
[47], one has to calibrate A0(x) by some function γ0(x),
AFJ (x) = A0(x)eγ0(x), to eliminate the terms not containing the
derivative ∂x in the square brackets of Eq. (2.10). Then after
setting

γ ′
0(x) = h′

h

(
g2 (qh − tanh qh)

2q3h
− · · ·

)
, (2.11)

we transform Eq. (2.10) into the desired form ∂t p =
∂xAFJ∂x(p/AFJ ).

For ε > 0, the transverse diffusion and rotation of the disk
become slower, unable to relax the full dimensional density
ρ(x, y, φ, t ) to ρ0 immediately after any changes of p(x, t ).
We express formally the deviations from ρ0 by a series of
corrections controlled by ε,

ρ(x, y, φ, t ) = eγ (x)ω̂
p(x, t )

A(x)
= eγ (x)

∞∑
n=0

εnω̂n
p(x, t )

A(x)
;

(2.12)

each of them calculated by an operator ω̂n(x, y, φ, ∂x ) act-
ing on the solution p(x, t )/A(x) of the reduced 1D problem.
Again, we introduced here A(x) instead of A0(x), which is now
calibrated by a function γ (x) also expanded in ε,

A(x) = A0(x)eγ (x) = A0(x) exp

[ ∞∑
n=0

εnγn(x)

]
, (2.13)

enabling us to write the final mapped equation in the de-
sired FJ form. We find below that except for the zeroth
order ω̂0 = ω0, Eq. (2.8), the higher correcting operators ω̂n

also contain the derivatives ∂k
x up to the k = n-th order. It

is convenient to separate the term which does not contain
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the derivatives, splitting the expression as ω̂n(x, y, φ, ∂x ) =
ω̃n(x, y, φ, ∂x )∂x + ωn(x, y, φ), where the last term is just a
bare function.

Applying the relations above in Eq. (2.6), we get

∂t p(x, t ) = ∂xA(x)

[
∂x + A′

0(x)

A0(x)
+ γ ′(x) −

∫ 2π

0

dφ

A0(x)

×
(

h′(x)[ω̂(x, h(x), φ, ∂x ) + ω̂(x,−h(x), φ, ∂x )]

+ f cos φ

∫ h(x)

−h(x)
dy ω̂(x, y, φ, ∂x )

)]
p(x, t )

A(x)
.

(2.14)

The form of the generalized FJ equation [45–47],

∂t p(x, t ) = ∂xA(x)[1 − Ẑ (x, ∂x )]
p(x, t )

A(x)
,

Ẑ (x, ∂x ) =
∞∑

n=1

εnẐn(x, ∂x ), (2.15)

is achieved after eliminating the functional parts ωn(x, y, φ)
by the proper choice of γ ′

n(x) in each order of εn; the re-
maining terms containing ω̃n define Ẑn. In the zeroth order
we recover Eq. (2.11), while in the higher orders we have

γ ′
n(x) =

∫ 2π

0

dφ

A0(x)

[
h′(x)

(
ωn|y=h(x) + ωn|y=−h(x)

+ f cos φ

∫ h(x)

−h(x)
ω(x, y, φ)dy

)]
,

Ẑn(x, ∂x ) =
∫ 2π

0

dφ

A0(x)

[
h′(x)

(
ω̃n|y=h(x) + ω̃n|y=−h(x)

+ f cos φ

∫ h(x)

−h(x)
ω̃(x, y, φ, ∂x )dy

)]
. (2.16)

Finally, the operators ω̂n are calculated within the re-
currence procedure based on a requirement that the density
ρ(x, y, φ, t ), obtained from any 1D solution p(x, t ) of
Eq. (2.15) by the backward mapping relation (2.12), has to
satisfy the original fully dimensional problem, Eqs. (2.3),
(2.4). Substituting there accordingly and expressing the terms
∼1/ε, we find

1

ε

[
∂y(∂y − g sin φ) + q2∂2

φ

]
ω̂

p

A

=
[
ω̂

1

A
∂xA(1 − Ẑ )∂x − e−γ ∂x(∂x − f cos φ)eγ ω̂

]
p

A
.

(2.17)

The time derivative ∂t is commuted here with the spatial oper-
ators to the right up to ∂t p, which is replaced by the right-hand
side (RHS) of Eq. (2.15). This equation has to be satisfied for
any p/A, so it relates the operators ω̂n. Expanding ω̂, γ , and Ẑ
in ε and collecting the terms at the same powers εn, we obtain
the recurrence relations for ω̂n+1.

Let us demonstrate the calculation on the first order. The
terms ∼ε0 give the operator equation for ω̂1,[

∂y(∂y − g sin φ) + q2∂2
φ

]
ω̂1

= ω0

[
∂x + A′

0

A0
+ γ ′

0

]
− e−γ0∂x(∂x − f cos φ)eγ0ω0

= R1,1(x, y, φ)∂x + R1,0(x, y, φ); (2.18)

commutation of ∂x on the RHS to the right and applying
Eqs. (2.8)–(2.11) for ω0, A0 and γ ′

0 result in the explicit for-
mulas for the functions R1,1, R1,0. Then the partial differential
equation is solved by ω̂1 expanded in g, also satisfying the
BC (2.4) taking the terms ∼ε1, see the Appendix for details.
The formulas for ω̂1 are rather complicated even in the lowest
orders of g; the leading terms ∼g0 are

ω̂1 =
[

(3y2 − h2)
h′

6h
− f cos φ

q2
+ · · ·

]
∂x

− f h′ cosh qy cos φ

q sinh qh
+ · · · . (2.19)

The result has the expected structure ω̂1 = ω̃1∂x + ω1, so we
can apply the formulas (2.16) to obtain

Ẑ1 = h′2

3
− f 2

2q2
− g2h′2

12q5h3

[
3 tanh qh − 3qh(1 + tanh2 qh)

+ 6q2h2 tanh qh

cosh2 qh
− 2q3h3

(
2

cosh2 qh
− 1

)]
+ · · · ,

(2.20)

γ ′
1 = − f 2h′

2q2h
+ g2h′

12q5h2

[
qh′′ tanh qh

(
[3 − 2q2h2] tanh qh

− 3qh

cosh2 qh

)
+q2h′2

(
3 tanh qh − qh

2 cosh4 qh
[cosh 4qh

− 3 cosh 2qh+8 + 4qh sinh 2qh]+3 f 2(tanh qh − qh)

]

+ · · · , (2.21)

up to the order ∼g2. Complexity of the formulas quickly
grows with growing orders in g, as well as ε, so we restrict
our calculations to the terms ∼ f 2 and ∼g2, i.e., the results are
valid for small self-propelling forces. For our next considera-
tions, we need yet the term ∼g0ε2,

γ ′
2 = f 2

12q4h2
[2qh′3(2qh − 3 coth qh) + 2h′h′′(q2h2

+ 3qh coth qh + 3) − 6hh(3) + 3 f 2hh′] + · · · . (2.22)

Notice that integration of the derivatives γ ′
n(x) is not necessary

within the recurrence procedure.
It is worth to analyze some important limits of the rather

complicated formulas (2.20)–(2.22). The term h′2/3 in Ẑ1,
independent of the driving force, reproduces the leading
Zwanzig-Reguera-Rubí (ZRR) correction to the diffusion co-
efficient D(x) in corrugated channels for the diffusion alone
[40,41]. The second term −ε f 2/2q2 = − f 2/2α corresponds
to the leading correction of D(x) due to the flipping longitudi-
nal force [37] (notice that α means there the frequency of the
flipping, which is analogous but not identical to α = DR/DT

here).
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Let us recall that after the scaling of α = q2/ε, the expan-
sion of Ẑ and γ in ε means correcting their values for infinitely
fast stochastic rotation due to (small) nonzero 1/α. So our
results describe well especially the region of large α and it
is useful to look for their asymptotics in the limit α → ∞.
For Ẑ1, we get

εẐ1 
 ε

3
h′2 − f 2

2α
− g2

6α
h′2 + · · · . (2.23)

As we are also restricted to consider only a small trans-
verse force g because of truncation of our series above g2,
the corrections of Ẑ due to the self-propelling force become
negligible with respect to the ZRR terms [41,43],

1/DZRR(x) = (1 + εh′3)1/3 
 1 + εh′2/3 + · · · , (2.24)

which will be used in our next calculations.
We focus our analysis mainly on the function γ (x).

Equation (1.1) can be interpreted as the Smoluchowski equa-
tion with a varying diffusion coefficient D(x), then −γ (x)
becomes a part of the 1D effective potential. Its derivative
represents the local force effectively driving the particle along
the channel, also giving rise to the ratchet current. Notice that
γ ′

n = 0 for zero f , g. Keeping the unscaled α = q2/ε finite
and g = √

ε f , we obtain the terms

εγ ′
1+ε2γ ′

2 → −
(

f 2

2α
− f 4

4α2

)
h′

h
− f 2

2α2

(
h′3

h3
− 2h′h′′

h2
+ h(3)

h

)

in the spatial FJ limit, ε → 0, corresponding to the compara-
ble terms of γ in the model of fluctuating longitudinal force
[36,37]. It is useful again to find the asymptotics of γ ′

n for large
α at a fixed nonzero ε,

γ ′
1 = − f 2h′

2q2h
− g2

q2

(
h′3

3h
+ h′h′′

6
− h′3

4qh2
− h′h′′

4q2h2

)
+ · · · ,

γ ′
2 = f 2

q2

(
h′3

3h
+ h′h′′

6
− h′3

2qh2
+ h′h′′

2qh
+ h′h′′

2q2h2
− h(3)

2q2h

)

+ · · · , (2.25)

q2 = εα. Notice that for the scaled isotropic force, g = √
ε f ,

the terms ∼εkg0, εk−1g2, . . ., ε0g2k sum with one another;
all of them have to be derived to receive a consistent result.
Specifically here, the terms ∼g2/q2 and f 2/q2 in γ ′

1 and γ ′
2,

respectively, cancel one another, influencing finally the power-
law asymptotics.

Finally, let us comment dimensionality of the problem.
Rescaling the time by DT and the force by kBT , we are work-
ing with only lengths here; the dimension of f , q,

√
α is the

inverse length. The length unit is left arbitrary; it is convenient
to derive it from the period of the channel (L = 1 or 2π ). Then
f reflects the energy of a particle gained by driving over L
and α says about the mean squared angle in which the particle
rotates while the spatial mean squared displacement reaches
L2. The formulas for Ẑn and γ ′

n point to other important quanti-
ties, f /q influencing the convergence of the expansion, or the
mean h(x)q, restricting validity of the asymptotic behavior.
Still, usability of our (truncated) expansion is also determined
by the shape of the channel, i.e., the derivatives of h(x), similar
to the mapped spatial diffusion alone [48,49].

III. THE RATCHET EFFECT

We demonstrate now the appearance of the ratchet ef-
fect in a periodic corrugated channel shaped by the function
h(x) = h(x + L), where L is the spatial period. The ratchet
current is driven by the nonzero increment of the effective 1D
potential Ue(x) = − ln A0(x) − γ (x). Because A0(x) is always
periodic with the same period as h(x), the non-zero incre-
ment originates solely from the gauge function γ (x). For the
mirror-asymmetric shape h(x) we can get a nonzero increment

γ = γ (x + L) − γ (x) over one period L, which determines
the effective 1D mean force driving the ratchet current. It
reflects the hits of the particles to the walls, rectifying the
self-propulsion �f (whose value averaged over the orientation
φ is zero).

The increasing components of γ appear after an inte-
gration of γ ′

n(x), derived by the mapping procedure. It is
easy to see that γ0(x) has no such component. Its derivative
(2.11) is of the form γ ′

0(x) = G0[h(x)]h′(x), hence γ0(x) =∫
G0[h(x)]h′(x)dx = ∫

G0[h]dh is explicitly a function of
only h(x) and so periodic. In the higher orders, we analyze
the asymptotics (2.25) for the isotropic force, g = √

ε f . Inte-
grating the leading contributions to γ (x), Eqs. (2.25):

εγ1 + ε2γ2 + · · · =
∫ [

− ε f 2h′

2qh
+ ε2 f 2

2q3

(
h′h′′

h
− h′3

2h2

+ 3h′h′′

2qh2
− h(3)

qh

)
+ · · ·

]
dx

= − ε f 2

2q2
ln h + ε2 f 2

2q4

(
qh′2

2h
− h′′

h

+ h′2

4h2
+

∫
h′3

2h3
dx

)
+ · · · , (3.1)

we find a term, which cannot be expressed explicitly for
a generic h(x). Unlike the other terms composed from the
derivatives of h(x) and so periodic, it can give the nonzero
increment


γ = f 2

4α2

∫ L

0

h′3

h3
dx + · · · (3.2)

in the channels with asymmetric h(x); it is demonstrated on
a trial function below. Notice that for symmetric channels,
h(x) = h(L − x), this integral [and similar in the higher or-
ders, e.g., Eq. (A6)] are zero; the ratchet effect is caused by
breaking the mirror symmetry x ↔ −x of the channel [50,51].

Thus in 1D projection, we observe diffusion in a slanted
washboard potential Ue(x) = − ln A0(x) − γ (x) modified by
the position-dependent diffusion coefficient D(x). Assuming
normalization by one particle per period L, the stationary
current can be expressed using the Stratonovich [52,53] or the
Lifson-Jackson [54] formulas

J = (1 − e−
γ )

[ ∫ L

0
A(x)dx

∫ L+x

x

dx′

A(x′)D(x′)

]−1


 
γ

[ ∫ L

0
A0(x)eγ (x)dx

∫ L

0

e−γ (x)dx

A0(x)D(x)

]−1

, (3.3)

(the last one holds for small 
γ ); see the Appendix.
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(a)

(b)

FIG. 2. (a) Inverse effective diffusion coefficient 1/D(x) accord-
ing to Eq. (2.20) (solid line) for the trial shaping function (3.4),
compared to the Reguera-Rubí formula (2.24) (dotted line) and its
first order (Zwanzig) approximation (dashed line). (b) Correction
γ (x) (solid line) to the entropic potential ∼ ln h(x) (dashed line),
obtained by integration of Eqs. (2.11), (2.21), and (2.22) for the same
function and parameters. The dotted line marks decrement of γ (x)
over one period.

Our theory is demonstrated on the shaping function

h(x) = 2 − cos x + a sin 2x, (3.4)

depicted in Fig. 1. Asymmetry of the channel is controlled
by the parameter a; we used a = 0.2. Figures 2(a) and 2(b)
show the functions 1/D(x) and γ (x), respectively, which en-
ter the generalized FJ equation (1.1). The effective diffusion
coefficient D(x) [Fig. 2(a)] is calculated here for a large force
f = g = 1 and rather small α = 4 in order to better visualize
the effect of the self-propelling force. Its main effect is the
shift of the function 1/D(x) by an amount proportional to
f 2/α [see Eq. (2.23)], with respect to 1/D(x) valid for the
diffusing passive particle, which is well approximated by the
Reguera-Rubí formula (dotted line). For f = 0.1 and large
α, as considered in our next calculations, this shift becomes
negligible and we use Eq. (2.24). Figure 2(b) depicts the
function γ (x) (solid line) integrated up to the second order,
Eq. (2.22), for the same parameters ( f = g = 1 and α = 4),
compared with ln h(x) proportional to the entropic potential.
We can observe a tiny decrement 
γ 
 −0.00478 over one
period, which effectively drives the ratchet current.

Figure 3 describes the decrement |
γ | (divided by f 2 to
enhance the leading terms, the left scale) depending on the

FIG. 3. Potential decrement 
γ over one period of the channel
(3.4) (the left scale) and the corresponding ratchet current J , Eq. (3.3)
for one particle per period (the right scale), depending on the ratio
α = DR/DT of the rotation and translation diffusion constants of the
Janus particle. The long dashed line describes the results up to the
second order according to Eqs. (2.21) and (2.22); the next order
is added in the solid line. The dotted and the short dashed lines
correspond to the asymptotics (3.2) and with Eq. (A6) added, respec-
tively. The numerical solutions of the fully dimensional problem are
depicted by the orange triangles ( f = 0.1, 0.2, 0.5), green diamonds
( f = 1), and blue disks ( f = 2).

ratio α = DR/DT , calculated by various methods. The right
scale assigns the corresponding values of the ratchet current
J of all depicted lines using the Lifson-Jackson formula (3.3)
with 1/D(x) approximated by Eq. (2.24), making the mobility
∼J/
γ almost constant, depending only on geometry of the
channel. The calculated lines are compared with numerical so-
lutions of the fully dimensional problem (2.1) (color marks).
The numerical data are almost identical in a wide range of
the force f , from 0.1 (red triangles) to 2 (blue disks), what
indicates that the leading terms ∼ f 2 or g2 are dominant and
truncating our series in g2 is justified. The leading contribution
to 
γ (or the current J , long dashed line) obtained by numeri-
cal integration of Eqs. (2.21), (2.22) is very well approximated
by the asymptotics (3.2) (dotted line), but both give slightly
shifted results with respect to the numerical data. This dif-
ference is satisfactorily corrected by the next terms ∼ε2g2

and ε3g0 (full line), which are already too complicated; their
asymptotics (short-dashed line), added to the formula (3.2)
are stated in the Appendix. As expected, Fig. 3 documents
that our theory describes well especially the region of large
α, i.e., particles whose angular diffusion is much faster than
the spatial diffusion. We can see that for the parameters of
the channel we use, our predictions hold well till α > 4. The
range of usability of our formulas does, of course, depend on
the specific shape of the channel given by the function h(x).

Figure 4 shows the usability of the results depending on the
scaling parameter ε; the self-propelling force is kept isotropic,
g = √

ε f . A smaller ε improves convergence of the series, and
so also the dominance of the considered leading terms. On the
other hand, ε → 0, also included in q = √

εα in the formulas
for γ ′

n(x), has the same effect as taking α small, i.e., out of
the region where the expansion is applicable. Similar to the
ratchets driven by the fluctuating dichotomic force [37], we
see optimum reliability for ε slightly smaller than 1 for the
presented geometry.

014606-6



RATCHET EFFECT IN AN ASYMMETRIC … PHYSICAL REVIEW E 108, 014606 (2023)

FIG. 4. Potential decrement 
γ over one period and the ratchet
current J vs. α = DR/DT for ε = 1 (blue), 0.25 (orange), 0.04
(green), and 0.01 (red), calculated according to Eqs. (2.21) and
(2.22) (dashed and solid lines). The asymptotics (3.2) is described
by the dotted line. The symbols (red triangles, green diamonds,
orange squares, and blue disks) depict the numerical data for the
corresponding values of ε.

FIG. 5. (a) Contour plot of the 2D density ρ̄(x, y) averaged over
the orientation of the force (color scale) in the upper half-channel
shaped by h(x), Eq. (3.4), ε = 0.25 and g = f /2. The streamlines
depict the corresponding averaged current density �j(x, y). (b) The
same plot for the channel shaped by h(x)/2, but with ε = 1 and
g = f . Black arrows here depict polarization. The net flux in both
cases J = −6.33 × 10−6 f 2 (c) Deflection δ of the polarization from
the normal to the boundary (in radians, dashed line), gradient of the
averaged density along the boundary, ρ̄ ′ = d ρ̄[x, h(x)]/dx (dotted
line), and the current density j at the boundary (solid line).

FIG. 6. The ratchet current J vs. α for an anisotropic self-
propulsion; g = 0.1 >

√
ε f = 0.05. Full line represents the leading

terms, given by Eqs. (2.21), (2.22), the dashed line contains the next
order corrections added. The dots depict the numerical solution of
the problem.

The 2D density ρ̄(x, y) averaged over the orientation φ of
the force f , as well as the averaged flux densities, are shown
in Fig. 5(a) (color scale and streamlines, respectively). They
are calculated within the backward mapping, Eq. (2.12), (see
the Appendix for details) for ε = 0.25 and isotropic scaling,
g = f /2 = 0.3. The expected accumulation of the particles
near the boundaries is observed, especially at the extremities
of the width of the channel, which act effectively as traps.
Although it cannot be easily seen by a qualitative analysis,
the active particles can escape from these traps more easily
in one direction than in the opposite one. This behavior de-
pends on the asymmetry of the function h(x) and gives rise
to the ratchet current. Figure 5(b) shows the same plot for the
channel twice narrower (shaped by the function h(x)/2), but
isotropic, ε = 1 and g = f . The same net flux J , distribution
of the density ρ̄, as well as the flux patterns are observed. It
demonstrates physical meaning of the scaling; taking ε < 1
describes an isotropic channel

√
ε-times narrower with the

transverse component of the force scaled as g = √
ε f .

We also looked at the local polarization �P(x, y) =∫ �f (φ)ρ(x, y, φ)dφ/
∫

ρ(x, y, φ)dxdydφ (see the Ap-
pendix for details of the computation) which is depicted
by black arrows in Fig. 5(b). We can see that the absolute
value of the polarization increases from the center toward
the walls. Just at the walls, it is nearly, but not exactly,
perpendicular to the walls. In Fig. 5(c) we show (dashed line)
the tiny deflections δ from the normal direction depending on
the curvature of the shaping h(x). The deflection δ strongly
correlates with the gradient of the density along the boundary,
measured by the derivative d ρ̄[x, h(x)]/dx (dotted line in
Fig. 5(c)). The resulting flux along the boundary appears due
to a subtle imbalance of the internal driving (measured by
polarization) and the gradient of the density.

Finally, we touch on the possibility of the current reversal
in this model. This question arose in the study of the par-
ticles driven by the fluctuating dichotomic transverse force
in a corrugated 2D channel [38]. The corresponding ratchet
current flows in the opposite direction in comparison to the
longitudinal driving in the same geometry [37]. The results
presented for the isotropic force with the transverse compo-
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nent scaled as g = √
ε f exhibit monotonic decay ∼α−2 for

large α = DR/DT . To test the possible appearance of current
reversal, we artificially introduce the anisotropy in the driving
force, setting g >

√
ε f . As we see in Fig. 6, the transverse

component pushing the particles to the right for larger α is
overcome by influence of the longitudinal component, in-
verting direction of the current in smaller α. However, the
supposed anisotropy of the force strongly harms convergence
(and reliability) of our truncated series, but still, the effect of
the current reversal, also supported by the numerical solution
of the fully dimensional problem (dots), remains visible.

IV. CONCLUSION

We presented here a study of dynamics of active Janus par-
ticles moving in a 2D channel bounded by functions −h(x) <

y < h(x) varying in the longitudinal coordinate x. We focused
especially on the appearance of the ratchet effect in periodic
but mirror-asymmetric h(x). We showed that the motion of the
active particles can be mapped on a strictly 1D problem of a
passive Brownian particle in an effective potential − ln A(x)
and with position-dependent diffusion coefficient D(x).

Our mapping method extends the technique of dimensional
reduction developed for simpler systems, as passive particles
diffusing alone [42,43], driven by conservative [45,46] or
vortex forces [47]. The technique projects out the transverse
coordinates, deriving the 1D generalized FJ equation (1.1).
Its coefficients A(x) and D(x) involve information about the
transverse motion of particles, causing peculiarities of the
transport along the channel. They are calculated recursively,
expanded in a small parameter ε, scaling the diffusion con-
stants in the transverse directions. We showed here that the
angular coordinate, describing direction of the self-propelling
force of the Janus particle, can be considered as an additional
transverse coordinate and treated on the same basis as the
spatial transverse diffusion.

Although ε can be understood just as an auxiliary param-
eter, controlling the recurrence procedure, it is worth also
to discuss its possible physical interpretation. Basically, it
represents the ratio between the longitudinal and transverse
diffusion constant, which is equivalent to a scaling of the
transverse lengths (and correspondingly the forces) by

√
ε,

as shown in Figs. 5(a) and 5(b). So it is often interpreted
as the ratio between the typical transverse and longitudinal
lengths. Then the parameter α = DR/DT , the ratio between
the rotational and translational diffusion constants, can be
compared to the number of orbits the particle makes while
diffusing along the typical longitudinal length, e.g., the period
of the channel. Finally, introducing q2 = εα, representing the
scaling of the angular diffusion constant, enables us to collect
the relevant correction terms with the same power of ε in the
final formulas for A(x) and D(x). On the other hand, let us
note that for a fixed finite q, taking a small value of ε simulta-
neously restricts the validity of the expansion to large α.

The mapping procedure generates an effective 1D potential
− ln A(x) = − ln A0(x) − γ (x). Unlike the passive particle
diffusing in a conservative field, the standard entropic con-
tribution − ln A0(x) is extended here by the gauge term γ (x)
in an analog to the system of particles driven by a non-
conservative force [47]. We found that γ (x) expanded in ε

has the form of a slanted washboard potential; its increment

γ over one spatial period drives the nonzero ratchet current.
Then the net flux is calculated straightforwardly using the
Stratonovich or the Lifson-Jackson formulas (3.3). So the
ratchet current can be estimated within our theory from a
simple formula (3.2), which is its main advantage in compar-
ison to questionable qualitative analyses or lengthy numerical
computations. We compared our results up to the order ∼ε3 f 2

with the direct numerical solution of the original 2D problem
of the Janus particle; a very good agreement is observed
for larger parameters α > 4 in our trial geometry (3.4). The
leading nonzero term of 
γ of order ε2 determines the asymp-
totics of the ratchet current J ∼ 1/α2 for α → ∞, which is
also verified numerically.

The backward mapping onto the 2D problem enables us to
obtain the full distribution of particles in the channel, Fig. 5.
We observed the expected accumulation of particles at the
walls and their minimum density at the axis of the channel.
The complex vortices of the particle current density appear
due to the interplay of active propulsion and the concentration
gradient in a confined geometry.

Our method is by construction suitable for large values of
the parameter α, i.e., for rapidly rotating particles. In practice,
however, α is determined by the physical properties of the sys-
tem, like the size of the particles, viscosity of the surrounding
liquid. So, it would be desirable to continue the calculation
somehow to the range of smaller α. In principle, this may be
achieved by finding directly a differential equation for γ (x),
avoiding the expansion in ε, as suggested in the Appendix of
Ref. [36] for a simpler ratchet model driven by the fluctuating
longitudinal force only. It can serve as an inspiration for our
study in the future.
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APPENDIX: COMPUTATIONAL DETAILS

Several technical details omitted in the main text are
documented here. First, is a derivation of the operators
ω̂n(x, y, φ, ∂x ) from the recurrence scheme (2.17). If ω̂, Ẑ , and
γ (also included in A) are expanded in ε and the derivatives
∂x commuted to the right, acting directly on p/A, the terms
∼εn−1 give the equation of the form[

∂y(∂y − g sin φ) + q2∂2
φ

]
ω̂n(x, y, φ, ∂x ) = R̂n(x, y, φ, ∂x ),

(A1)

fixing the operator ω̂n. R̂n = ∑n
k=0 Rn,k (x, y, φ)∂k

x are com-
posed of the lower order coefficients ω̂n, Ẑn, γ ′

n, and their
derivatives. In the zeroth order, Eq. (2.7) is recovered taking
R̂0 = 0.

We expand ω̂n and the related Ẑn, γ̂ ′
n, R̂n also in g,

ω̂n(x, y, φ, ∂x ) =
∞∑

k=0

gkω̂n,k (x, y, φ, ∂x ). (A2)
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For the coefficients, we obtain the chain of equations

[
∂2

y + q2∂2
φ

]
ω̂n,k =

{
sin φ ∂yω̂n,k−1 + R̂n,k (for k > 0),

R̂n,0,

(A3)

which is solved readily after transformation to the complex
plain, z = qy + iφ, z̄ = qy − iφ, simplifying Laplacian on the
left-hand side to 4q2∂z∂z̄. After integrations over z, z̄ and
returning back to y, φ, we have to provide periodicity in φ

by eliminating the terms proportional to the powers of φ,
adding the corresponding solutions f (z) + c.c. of the Lapla-
cian. Next, the BC

[∂yω̂n,k − sin φ ω̂n,k−1 ∓ B̂n,k]y=±h(x) = 0, (A4)

where B̂n,k is the coefficient at εngk of the operator

B̂ = εh′e−γ (∂x − f cos φ)eγ ω̂, (A5)

coming from Eq. (2.4), and ω̂n,−1 = 0, are satisfied for any
φ by adding the proper linear combination of elz, elz̄, l =
−n − k, . . . , n + k. Finally, the constant is fixed to hold the
normalization,

∫ h(x)
−h(x) dy

∫ 2π

0 dφ ω̂n,k for any n, k except of
n = k = 0.

Complexity of the expressions quickly grows for the higher
n, k; we derived them by the computer algebra systems up to
the terms ∼ε3g0 and ε2g2, giving the next order corrections to
γ1, γ2, Eqs. (2.21), (2.22), depicted in Fig. 3. The asymptotics
of these terms for the isotropic force g = √

ε f in the leading
order of ∼ f 2 are then given by

γa,3

f 2
=

∫ [
1

q3

(
h′5

16h2
− h′3h′′

4h

)
− 1

q4

(
h′3h′′

4h2
+ h′h′′2

4h

+ h′2h(3)

6h
+ h′h(4)

12

)
− 1

q5

(
15h′h′′2

16h2
+ h′2h(3)

h2

− 13h′′h(3)

4h
− h′h(4)

h

)
+ 1

q6

(
11h′h(4)

16h2
− h(5)

2h

)]
dx

=
∫ (

h′h′′(hh′′ − 5h′2)

12q4h2
+ 3h′h′′2

16q5h2
+ 3h′h(4)

16q6h2

)
dx

− h′4

16q3h
− 1

q4

(
h′2h′′

6h
+ h′h(3)

12
− h′′2

24

)

+ 1

q5

(
h′h(3)

h
+ 9h′′2

8h

)
− h(4)

2q6h
; (A6)

the leading contribution to 
γ coming from the formally un-
integrable terms ∼ε3/q4 = ε/α2 corrects the shift of Eq. (3.2)
with respect to the numerical data in Fig. 3.

Next, we extend the Stratonovich formula (3.3) for the
spatial dependent D(x) and give some notes on drawing of the
fully dimensional stationary solution ρ̄s(x, y) and the currents
in Fig. 6. The generalized FJ equation (1.1) enables us to write
the 1D stationary solution ps(x) as

ps(x)

A(x)
= ρ0 −

∫ x

0

J dx′

A(x′)D(x′)
. (A7)

In a periodic channel, h(x + L) = h(x), we set the integration
constant ρ0 to fix one particle per period L. We also require pe-
riodicity of the 1D stationary density ps(x) = ps(x + L). Thus

for a nonzero 
γ = γ (x + L) − γ (x), A(x) (unlike A0(x) and
D(x)) is not periodic,

A(x + L) = A0(x + L)eγ (x+L) = A(x)e
γ . (A8)

If it is applied in the condition of periodicity, we find

(1 − e−
γ )ρ0 =
∫ L

0

J dx′

A(x′)D(x′)
,

and after using Eq. (A8) and some algebra

ps(x)

A(x)
= J

(e
γ − 1)

∫ L

x−L

dx′

A(x′)D(x′)
. (A9)

Normalization
∫ L

0 ps(x)dx = 1 gives Eq. (3.3).
Determining the stationary 1D density ps(x), we can re-

construct the corresponding 2D density by the backward
mapping, Eq. (2.12). The net 2D stationary density ρ̄s(x, y),
plotted in Fig. 5 is its integral over φ,

ρ̄s(x, y) = eγ (x)
∫ 2π

0
dφ ω̂(x, y, φ, ∂x )

ps(x)

A(x)
. (A10)

The components of polarization �P are given by averaging
cos φ and sin φ weighted by ρ over the orientation,

Px(x, y) = f eγ (x)
∫ 2π

0
cos φ dφ ω̂(x, y, φ, ∂x )

ps(x)

A(x)
,

Py(x, y) = f eγ (x)
∫ 2π

0
sin φ dφ ω̂(x, y, φ, ∂x )

ps(x)

A(x)
, (A11)

and the components of the stationary net current density, de-
picted as streamlines, are calculated according to

jx(x, y) =
∫ 2π

0
dφ ( f cos φ − ∂x )eγ (x)ω̂(x, y, φ, ∂x )

ps(x)

A(x)
,

jy(x, y) = eγ (x)

ε

∫ 2π

0
dφ (g sin φ − ∂y)ω̂(x, y, φ, ∂x )

ps(x)

A(x)
.

(A12)

To get consistent results, we need to truncate the expansion of
jx and jy in ε such that �∇ · �j = 0. Taking the terms up to ε1,
as done in Fig. 6, requires us also to express the operator Ẑ2

within the recurrence scheme.
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