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Evaporation-driven assembly of colloidal nanoparticles into clusters:
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In this work we consider a simulation strategy for assembling Janus nanoparticles in oil-in-water emulsion
droplets by evaporation based on the dissipative particle dynamics method. Our simple method reproduces all
the observed cluster configurations that have been explored experimentally. In addition, the kinetic process of
cluster formation is systematically investigated. We observe a structural transition from spherical packings to
minimal second-moment configurations via visual inspection and a simple angle parameter. We reveal that the
critical volume at which the transition occurs is a cubic function of the number of particles, N . Our approach
also allows us to anticipate higher-order clusters, overcoming the limitations of the standard methods in the
literature. Similarly to small N values, we find that for each N in the range of 16–39, all final clusters have a
unique configuration.
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I. INTRODUCTION

Over the past decades, the assembly of colloidal particles
into intricate structures has emerged as a new subfield of
colloid research [1,2]. Colloidal crystals, resulting from a
long-range ordered arrangement of spherical particles, are the
most widely studied motifs [3,4]. Recently, besides colloidal
crystals, other assemblies of a limited number of identical
or dissimilar component particles, termed colloidal clusters,
have attracted attention because these clusters may be con-
sidered as colloidal analogs to molecules [5–7]. In addition,
they have opened up new possibilities to control the optical,
electric, and magnetic properties of advanced materials [8].

It is common for research on the adsorption of spheri-
cal particles at oil-water interfaces to focus on two types
of particles. The first type consists of particles with a ho-
mogeneous surface that exhibits uniform wettability. The
second type, known as Janus particles, has two surface regions
with distinct wettability characteristics. Homogeneous parti-
cles are highly surface-active but do not possess amphiphilic
properties, while Janus particles are both surface-active and
amphiphilic [9].

Water-in-oil and oil-in-water emulsion droplets have pro-
vided excellent platforms for preparing colloidal clusters.
Velev et al. [10] discovered a particularly potential strategy,
via evaporation of aqueous droplets, to prepare shells of a
large number of homogeneous particles [11]. Colloidal parti-
cles adsorbed at the water-oil interface reduce the free energy.
During the evaporation process of the droplets, the particles
are brought closer together by capillary forces and kept to-
gether by van der Waals interactions. Using this method,
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Manoharan et al. [12] created micron-sized clusters contain-
ing several polystyrene spheres, N . Interestingly, this process,
which has been carried out with various materials [13,14] or
different particle sizes from micro- to nanometers [15–18],
produces defined clusters in which all clusters with the same
N value are unique. Such cluster structure for N � 11 corre-
sponds to dense packings that minimize the second moment
of mass distribution, M2, defined as M2 = ∑n

i=1(ri − rcm)2,
where ri is the center of the mass of the ith and rcm is the
center of the mass of the cluster [19]. Larger cluster packings
do not minimize M2 but produce unique clusters with second-
moment values near the minimum values. To the best of our
knowledge, there have been no experimental investigations
exploring the structures of clusters with N > 15 specifically
assembled through evaporation-driven assembly.

Recent research has attempted to explain the physical
principles underlying the formation of cluster configurations.
Lauga and Brenner [20] performed a numerical simulation
and theoretical calculation of homogeneous particles absorbed
at the droplet surface. During slow evaporation, the colloidal
particles initially organize themselves to obtain maximum
surface density. Specifically, they must be packed in spherical
packing when the droplet volume exceeds a critical volume.
Spherical packing, also known as the Tammes problem, is
to find the arrangement of a certain number of equal cir-
cles on a sphere to maximize the smallest distance between
them [21,22]. However, when the droplet volume decreases
below the critical volume, the interface of the droplet is
deformed. As a result, the particles must rearrange them-
selves [12]. Manoharan et al. [12] suggested that the final
structure of clusters is a collapsed state of the spherical
packing.

Lauga and Brenner [20] indicated that the unique structure
of each N-sphere cluster might be predicted by minimizing the
total surface free energy during drying. The authors consid-
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ered single droplets with various numbers of adsorbed parti-
cles. The model accurately reproduced the experimental pack-
ings for 9 � N � 14 but did not hold for N = 7, N = 8. Fur-
thermore, the computations required to minimize the continu-
ously changing surface between the colloids were complicated
and time consuming. Also, the method seems unsuitable for
N > 15. Using Monte Carlo simulations, Schwarz et al. [18]
investigated the cluster formation of colloidal particles on
droplet surfaces and found good quantitative agreement be-
tween simulation and experimental data for cluster size
distribution. Schwarz et al. [18] were able to reproduce the
cluster structure, which is in agreement with the experiment
for N � 12 except for N = 11. However, because the particles
were trapped on a continuous and smooth surface, there did
not seem to be a pathway for interior spheres to form, in con-
trast to the experimental data. Peng et al. [23] investigated a
two-step simulation procedure to predict the cluster structures
assembled from dumbbell-shaped particles. In the first stage,
the colloidal particles are kept on the surface of a shrinking
spherical shell. In the second stage, when the particles stop
moving after the long-time self-diffusion and the pressure
sharply increases, the minimal condition M2 is applied. The
authors first used the approach on spherical particle clusters
with cluster size 4 � N � 14 and found that the experi-
mentally observed clusters N � 12 agree with the simulated
clusters after M2 minimization. For larger clusters (N > 12),
no apparent match between simulations and experiments can
be observed. The current theoretical and simulation methods
in the literature are generally suitable experimentally at rela-
tively low N values where the minimum condition M2 is satis-
fied. Until now, there are no theoretical or simulation studies
to accurately reproduce the cluster structures at 13 � N � 15
or to enable the prediction of higher-order cluster structures.

In addition to the extensive studies on the assembly
of homogeneous particles, numerous other research works
have focused on the equilibrium behavior of Janus parti-
cles [24–27], revealing a rich self-assembly behavior leading
to various structures such as micelles, vesicles, and lamellar
phases. For example, Sciortino et al. [28,29] investigated the
behavior of the phase diagram when transitioning from a
spherical attractive potential to a Janus potential, as well as the
collective structure and clustering of a Janus particle system.
Rosenthal et al. [30] examined the formation of structures
in the bulk phase of amphiphilic Janus particles and discov-
ered that below a density-dependent aggregation temperature,
the Janus particles in the model self-assemble into a diverse
range of cluster types. However, these studies examined the
equilibrium behavior of Janus particles without taking into
account the assembly process via emulsion droplet evapora-
tion. As a result, the assembled structures they observed differ
from those obtained through the emulsion droplet evaporation
method.

In the current work, we employ dissipative particle dy-
namics to study the evaporation-driven assembly of Janus
nanoparticles into clusters. Each cluster consists of N spher-
ical nanoparticles (4 � N � 39). The final configurations of
clusters match well between simulations and experiments
for the N explored experimentally by Manoharan et al. [12]
(N � 15). For N > 16, the clusters are in unfamiliar packings.
Many of them possess a high-symmetry point group. For all
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FIG. 1. Representative snapshot of one simulated system at the
beginning of the simulation run. Green and purple beads represent
water and oil, respectively. Under the condition of oil-in-water emul-
sions, oil beads form a large spherical droplet. Nanoparticles (NPs)
are shown in smaller spheres, consisting of 96 polar beads (blue)
and 96 nonpolar beads (gray). NPs are firmly attached to the droplet
surface by the surface tension effect. For visual clarity, water beads
are represented at a smaller scale compared to oil beads and apolar-
polar beads.

N values, we observe a structural transition between spherical
packings to M2 or these unfamiliar packings. Also, the critical
volume at which the structural transition occurs increases as a
cubic function of the number of adsorbed particles.

II. MODEL AND METHOD

Figure 1 illustrates a typical initial configuration of the
simulation system, consisting of mesomolecule models of
water, oil (decane), and nanoparticles. The initial condition
prohibits the presence of water particles within the oil
droplets, ensuring a distinct phase separation between the
two components. Fan and Striolo [31] used a degree of
coarse-graining where one DPD bead is equivalent to five
water molecules. Given that the volume of a water molecule
at room temperature is 30 Å3, the volume of a water bead (w)
is 150 Å3. At the standard density of three beads per cubic
length scale, this translates to a fundamental length unit of
Rc = (3 × 150 Å3)1/3 = 7.66 Å, which can be considered
as the radius of all the DPD beads (7.66 Å/2 = 3.83 Å).
Likewise, the mass of a water molecule is 18 amu, and
therefore, the mass of a water bead is 90 amu.

In the coarse-graining approach in Refs. [31,32], the oil
bead is intended to represent the decane. As the volume of
each decane molecule is 323 Å3, two oil beads (o) represent a
single molecule of decane so that all DPD beads have the same
volume. These two beads are coupled by a harmonic spring of
length 0.72Rc and spring constant 350 kBT/Rc, where kB is
the Boltzmann constant and T is the absolute temperature of
the system, in order to preserve the linear form of decane [31].

Each Janus nanoparticle is represented by a hollow rigid
sphere with 192 beads on its surface. By setting the radius of
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nanoparticles to 2Rc, the NPs in the system have a reduced
density of three beads per cubic length scale, similar to the
reduced density of water. Such a number of beads on the NP
surface is adequate to prevent any bead, whether water or
decane, from unphysically penetrating the NP [31]. There are
two types of nanoparticle (NP) beads: polar (p) and nonpolar
(ap), which are distributed on the surface of the nanoparticle
to form distinct regions. The term “Janus” NP was initially
used to describe particles with inhomogeneous wettability,
where the polar and apolar regions were equal in area. By
adjusting the ratio between the number of apolar and polar
beads, denoted by f , the apolar and polar area ratio can be
varied. A higher f value leads to a larger apolar region, while
a lower f value results in a larger polar region.

The equilibrium position of Janus NPs at the water-oil
interface was analyzed in terms of two parameters: the ratio
f and the contact angle between the NP and the interface.
However, as the final assembled structures seem to be min-
imally affected by the contact angle [20], we consider only
the ratio f in our analysis. Two NP types are simulated, all
with radius 2Rc: (1) NPs with 96 polar and 96 nonpolar beads
( f = 0.5) and (2) NPs with 64 polar and 128 nonpolar beads
( f = 0.75). To maintain the spherical morphology of the NP,
all the beads on the NP are restrained to their center by a
harmonic functional form of a few times kBT/Rc in the spring
constant.

We carry out the DPD simulations using the Mesocite
module from the Materials Studio package. The details of the
DPD calculation can be found in the Appendix. The size of the
cubic simulation box is 30 × 30 × 30R3

c with periodic bound-
ary conditions along all three directions. At the beginning of
the simulations, the water beads are distributed randomly in
the simulation box, and the oil beads form a spherical droplet
of radius 12Rc. A given number of NPs N (N = 4 to 39) is
initially located randomly at the droplet surface.

As described in the Appendix, the pair interactions are
represented by combining a dissipative force, random force,
and conservative force. Among these, only the conserva-
tive force depends on the specific bead types involved in
each pair. It is characterized as a soft repulsion and can be
fully described by a single parameter, ai j . Groot and Warren
matched the water compressibility to determine the interac-
tion parameter (aii) of water [33]. For one water bead of
five molecules, aw−w was found to be 131.5 kBT/Rc. Here
we also assign aw−w = ao−o = 131.5 kBT/Rc because the
pressure is constant and oil and water beads have the same
volume. To simplify the parametric calculations, we employ
ap−p = aap−ap = 450 kBT/Rc [34,35].

As suggested by Fan and Striolo [31], the water-oil interac-
tion parameter was parameterized to match the experimental
water-decane interface tension (γ = 51.7 mNm−1) [36],
yielding ao−w = 198.5 kBT/Rc. NP-solvent interaction pa-
rameters, including ao−p, ao−ap, aw−p, and aw−ap, were set
similarly to those reported in Refs. [34,35]. In this proce-
dure, the NP-solvent interaction parameters were determined
to match three-phase contact angles obtained in molecular
dynamics simulations for one silica NP at the decane-
water interface [37]. The numerical values of all interaction
parameters implemented in the simulations are given in
Table I.

TABLE I. Interaction parameters ai− j used in DPD simulations,
expressed in kBT/Rc units, 1 kBT/Rc = 0.08 kcal/(mol Å).

w o ap p

w 131.5 198.5 178.5 110
o 131.5 161.5 218.5
ap 131.5 670
p 450

Our model’s primary aim is to simulate a Pickering emul-
sion scenario. In such emulsions, when oil and water are
mixed, they form small oil droplets that are dispersed through-
out the water, creating an oil-in-water emulsion. Over time,
these droplets will naturally coalesce to reduce the system’s
overall energy. However, the addition of Janus nanoparticles
to this mixture stabilizes the emulsion. These particles ad-
here to the oil-water interface, preventing the droplets from
coalescing. Evaporation in experiments typically refers to
the process of oil droplets dispersed in water transitioning
to a gas state due to an increase in temperature or pressure
drop [12,18]. In our simulations, the term “evaporation” refers
to the process where the oil droplet is gradually removed
from the system. This reduction is implemented by reducing
the number of oil beads in our simulations at a steady rate.
In addition, it is only the oil droplet that undergoes gradual
evaporation, while the water does not evaporate. Furthermore,
we are not explicitly addressing the diffusive nature of evap-
oration. This is a simplified representation, primarily meant
to induce the assembly of Janus nanoparticles, rather than to
capture the full complexity of real-world evaporation dynam-
ics which would involve diffusion and other processes.

All mesoscopic DPD simulations are performed in the
NVT ensemble. Each simulation runs a total 3 × 106 time
steps. In order to mimic the low evaporation observed in
experiments, we implemente a sweep mechanism to control
the evaporation rate. The evaporation amplitude, denoted as
�R, is defined as the ratio between the initial radius of the
nanoparticles and the number of sweeps. During each sweep,
a specific number of oil beads belonging to the spherical shell
is removed from the system. The number of oil beads removed
can be calculated using the equation

4
3πρ{R(t )3 − [R(t ) − �R]3}, (1)

where R(t ) is the radius of the oil droplet at time t , and ρ is
the number density of the oil beads. This mechanism leads
to a slight decrease in the droplet radius. The removal of the
oil beads continues until the droplet completely vanishes after
2 × 106 time steps, equivalent to 20 sweeps. Following this
procedure, we have 106 time steps (10 sweeps) remaining to
examine the stability of the clusters obtained against thermal
fluctuation. In each sweep during evaporation, the polar, non-
polar beads, and NPs rearrange to a new equilibrium. This
strategy replaces the evaporation dynamics with a set of equi-
librium states [20].

For a given number of NPs N (N = 4 to 39), 15 simulations
with different initial configurations are repeated to confirm
the validity of the cluster structures and average the obtained
data. In the DPD model, the beads do not represent real atoms
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Spherical packing Minimal second moment

Spherical packing Minimal second moment

NPs move freely
on the surface

rearrangement

FIG. 2. Simulation snapshots for eight-sphere cluster (first row) and 11-sphere cluster (second row) taken during evaporation process of
the oil droplet, displaying the evolution of the system between states. The water beads are not shown for clarity. NPs move freely over the
droplet’s surface until additional oil evaporates; they close together, assembling in a spherical packing (illustrated by a yellow polyhedron).
Further evaporation leads to a rearrangement of a cluster. The final structure of the two clusters that minimize the second moment is also
shown. The snapshots are taken at various intervals of τ , where τ is the time when the droplet vanishes.

or molecules but, rather, small regions of fluid interacting via
phenomenological forces. All beads have the same mass (m)
and interaction radius (Rc), thus it is convenient to introduce
a reduced system of units in which the bead mass and interac-
tion radius are the units of mass and length. An additional
reference quantity is needed, taken as energy scale (Eref),
which is usually taken as the thermal energy, kBT , at room
temperature. Hence, all properties in our model are reported in
these reduced units m, Rc, and Eref, or combinations thereof.
For example, timescale is measured in units of Rc

√
m/Eref.

To relate our results to a specific physical system, one would
need to substitute the values of m, Rc, and Eref with the ap-
propriate physical units. Here, if we take m = 0.09 kg mol−1,
Eref = 0.59 kcal mol−1, and Rc = 7.66 Å, a timescale in
our model would correspond to 4.61 ps in the physical
time.

A time step of 0.05 in reduced units, which is equiva-
lent to 0.23 ps in physical time units, is used to update the
bead positions and momenta. Therefore, considering that one
simulation run consists of a total of 3 × 106 time steps, the
combined time for both the evaporation process of the oil
droplets and the subsequent examination of cluster stability
against thermal fluctuations amounts to approximately 700 ns.
In relation to the timescales of experiments, which typically
span tens of minutes, the timescales in our DPD simulations
are considerably shorter. This discrepancy in timescales is
a common challenge encountered in many coarse-grained
simulations. However, we do not anticipate this disparity to
significantly impact the validity of our final results.

The dissipation strength γ [see Eq. (A5)] is set to 4.5. In
reality, during the evaporation process, there might be local
variations in the fluid flow around the evaporating droplet due
to factors such as temperature gradients, which can result in
shearlike effects. By applying a shear force in our simulations,
we attempted to take these complex, real-world interactions

into account, thereby making our model more robust and
representative of the actual process. A shear force with a
rate of 0.1 (in reduced units), applied in the y direction and
in the yz shear plane, was determined based on preliminary
simulations to ensure that it allows the oil droplet to deform
but does not cause it to break apart, which would not be
representative of the actual process we aim to model. This
shear force is applied only until the oil droplet reaches a
quasistable state and is then removed for the remainder of
the simulation, allowing the Janus nanoparticles to assemble
under the influence of evaporation alone.

III. RESULTS AND DISCUSSION

Figure 2 displays typical snapshots at different times of
DPD simulations for N = 8 and N = 11. The initial config-
uration at t = 0 is a droplet formed by the oil beads and
NPs trapped at its surface. For N = 8, at times t/τ = 0.1,
t/τ = 0.2, where τ is the time at which the droplet is vanished
completely, NPs move freely on the droplet surface. Until the
droplet size is reduced to a critical value, i.e., at time t/τ =
0.3, eight NPs, each of which acts as a point, are arranged
in a regular square antiprism. Note that the square antiprism,
where two square planes are parallel to each other but the
rotated angle from each other is 45◦, is a structure belonging
to spherical packings (or spherical codes). Further shrinkage
of the droplet then pushed NPs inward, leading to a rearrange-
ment to a cluster. The configuration of this eight-sphere cluster
at t/τ = 1 is a snub disphenoid that minimizes the second
moment of the mass distribution (called the minimal second
moment) (see Supplemental Movie 1 in the Supplemental
Material [38]).

Note also that our intent with continuing the simulation
beyond τ (for instance, at t/τ = 1.5) is to investigate any
potential changes in the final structure of these clusters when
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comparing the scenarios at t/τ = 1.0 and at t/τ = 1.5. After
the characteristic drying time (τ ), nanoparticles in such sys-
tems can experience rearrangement, a phenomenon attributed
to several inherent features of the DPD model. The conser-
vative forces acting between particles, which are crucial for
structural formation, can induce rearrangements due to the
balancing of these forces. In addition, the continuous interplay
between dissipative and random forces, mimicking the effects
of thermal fluctuations and Brownian motion, can also lead
to rearrangements even after reaching equilibrium. The nature
of DPD simulations, where particles interact with their neigh-
bors, further allows changes in the local environment to cause
rearrangements. Residual interactions between nanoparticles
within a cluster, and time step sensitivity in the simulation can
also contribute to such rearrangements.

Despite these factors leading to minor nanoparticle re-
arrangement, our findings do not reveal any significant
alteration in the overall structure of the clusters. These re-
arrangements do not impact the overall cluster integrity and
are not substantial enough to discern a difference between the
cluster structures at t/τ = 1.0 and t/τ = 1.5. The minor re-
arrangements observed in our DPD simulations are indicative
of the system’s dynamic nature, even in the absence of the oil
droplet.

Similarly, the 11-sphere cluster also undergoes a striking
structural change upon evaporation, from spherical packing
to the minimal second-moment configuration. The N = 11
cluster has a striking feature, as it is the lowest-N cluster with
a nonconvex configuration.

Figure 3 compares the different cluster configurations ob-
tained in the final stage of the simulation runs with those
observed via experimental data [12]. Assembled clusters with
varying numbers of NPs and coverage fractions f are shown.
Apparently, the geometry of one given cluster depends only on
the number N of particles that it contains, not on the coverage
fraction. We find that for N � 6 the clusters have a triplet
(N = 3) (not shown), tetrahedron (n = 4), triangular bipyra-
mid (N = 5), and octahedron (N = 6). These clusters have
the same configurations as spherical packings [19], Thomson
structures [39], and Lennard-Jones structures [40], suggesting
that small N-sphere cluster structures are insensitive to the
optimal problems. For larger N , the configuration of the snub
disphenoid is observed for N = 8, the triaugmented triangu-
lar prism for N = 9, the gyroelongated square bipyramid for
N = 10, the nonconvex polyhedron for N = 11, and the icosa-
hedron for N = 12. In particular, we monitored the NP, which
is internal to the 11-sphere cluster configuration, and realized
that it is positioned by six other neighboring NPs (maximum
coordination number). The strongly repulsive force of the
surrounding NPs makes it the weakest spot in the clusters
under a force toward the center of the droplet. A common
feature of all the clusters with N � 11 is that their packings
follow the minimal second-moment distribution.

For N � 12, the clusters observed in the simulation runs
and experiments differ from the minimal second-moment rule,
but they lower their second moment during the packing pro-
cess. For instance, for N = 12, we find the icosahedron, which
is not a member of the minimal moment structures. We sup-
pose that because all NPs positions are equivalent to each
other in icosahedral symmetry, there is no weak position as
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FIG. 3. Cluster structures corresponding at each N . At N � 12,
the two first columns show the cluster structure as obtained by DPD
simulations at f = 0.5 and f = 0.75, respectively. For comparison
purposes, the third column is an electron micrograph of the clusters
from the experiment of Manoharan et al. [12]. Adapted with per-
mission from Ref. [12]. For N > 12, only clusters with f = 0.75 are
shown. The right columns are corresponding model illustrations. For
greater clarity, the spheres have been reduced in size, and the spheres
have been connected by bonds. We consider a bond between two
spheres when their center-to-center distance is smaller than 1.3σNP,
where σNP is the diameter of NPs.

the droplet collapses. The arrangement of spheres into small
clusters can yield a diverse array of structures, especially
when considering finite packings. The mathematical “kissing
problem” [41] exemplifies this: while the surface of a cen-
tral sphere can theoretically accommodate nearly 15 spheres,
in practice only 12 spheres fit, leaving a significant amount
of coordination area unused. These 12 spheres can adopt
numerous configurations, including the highly symmetrical
icosahedral packing and the less symmetrical “weary icosa-
hedron.” In the case of our 13-sphere clusters, we observed
“weary icosahedron” structures, which might be considered
suboptimal in terms of symmetry. However, when additional
constraints or conditions are in play, such as pairwise attrac-
tive forces, different structures can become more favorable.
For instance, with a Lennard-Jones 6–12 potential, an icosa-
hedron configuration is the most stable [42]. The “weary
icosahedron” structures for N = 13 can be understood in the
context of reducing the second moment of the mass dis-
tribution. This configuration results from the vertices of a
regular icosahedron rolling down towards the south pole un-
til reaching an equilibrium position [19,43]. The 14-sphere
cluster is obtained by adding one sphere to one of the faces
of the 13-sphere cluster. The cluster containing 15 spheres is
a high-symmetry (D3h group point) structure formed by two
nine-sphere clusters (triaugmented triangular prism) sharing
a face. For N � 15, our approach reproduces precisely all of
the configurations examined in the experiment by Manoharan
et al. [12], overcoming the limitations of the model given by
Laura et al. [20], Peng et al. [23], and Schwarz et al. [18].
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FIG. 4. Same as Fig. 3 but for N = 16–28 and f = 0.75. Right
columns illustrate the polyhedra.

After having shown the reliability of our model, we study
the structure of higher-order clusters. In Figs. 4 and 5, for
N = 16, the cluster has a mirror plane that includes the north-
south axis through the internal sphere (Cs point group). The
17-sphere cluster is a snub square antiprism (D4d point-group
symmetry) in addition to one internal sphere. It is one of
the Johnson solids (J85) that can be constructed as a square
gyrobianticupolae, connecting two anticupolae with gyrated
orientations. The 17-sphere cluster was observed in the
coordination polyhedron of NaHg16 [44]. For N = 18, we
refer to the structure as “double icosahedra,” which is built
from two complete icosahedra joined at an internal pentagon
face. It can also be considered as two gyroelongated pentag-
onal pyramids joined at the pentagonal face. This structure
possesses the high-symmetry point group C5v . It is also the
lowest-N cluster that contains two interior spheres. Notable
high symmetries are observed for N = 21, 26, 31, 35 and 38,
while lack of symmetry for N = 19, 22, 23, 24, 28, 29, 30, 32,
33, 36, 37. At N = 38, the structure is a truncated octahedron
with Oh symmetry group. Its surface has eight hexagonal
close-packed and six square facets (see Supplemental Movie
2 [38]). Interestingly, the global minimum for the Lennard-
Jones [42], Pacheco and Prates-Ramalho [45], and Girifalco
potentials [46] at N = 38 is also the truncated octahedron.
Finally, we give a brief comparison with the optimal spherical
packings. For N � 7, these clusters are essentially the same
as ours. The clusters are quite different for N > 7, except for
N = 12. While all the M2-minimal packings at N � 11 are
identical to those. A typical characteristic of high-order clus-
ters is that interpenetrating motifs of slightly distorted pentag-
onal, hexagonal, or icosahedral symmetry may be recognized.

In the last step of simulations, when cluster configurations
have reached a stable state, the component NPs align so that

N Simula�on Model Polyhedron N Simula�on Model Polyhedron
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38

39

29

30

31

32

33

34

FIG. 5. Same as Fig. 3 but for N = 29–39.

their apolar beads face each other to decrease the total poten-
tial energy. Utilizing an orientational order parameter [47],

P =
〈

1

N

N∑
i=1

ni · rcm − ri

|rcm − ri|

〉
, (2)

where ri is the center of mass of ith NP, rcm is the center
of mass of the cluster, and ni is the unit vector pointing in
the direction of apolar beads of NP ith. The angular brackets
represent an average across all simulation runs that are made
up of N NPs. For an utterly spherical cluster where all NPs
directional vectors point toward the cluster’s center, P = 1
holds. If P � 0.9, we regard clusters as spherical (denoted as
S). Otherwise, we consider any cluster with 0.5 � P < 0.9
nonspherical and label it NS. Finally, P < 0.5 clusters are
regarded to have randomly oriented.

In Fig. 6 we plot two of the most representative geometrical
properties for the clusters shown in Figs. 3–5: the orientational
order parameter and the average coordination number. Notice
that all the clusters with N � 15, except for N = 14, belong to
the spherical cluster, while the clusters with 15 � N � 39 are
nonspherical, and none of them is randomly oriented. This is
intuitively reasonable since high-order clusters generally have
less symmetry and contain interior spheres that reduce the
orientational order parameter. The spherical and nonspherical
clusters are fascinating micelles [48]. The average coordina-
tion number, Nb, increases quickly with an increase of N for
the spherical clusters but increases slowly in the nonspherical
clusters. The average coordination number is in the range of
3.1–3.7 at N > 15. Table II summarizes the results on the
geometrical properties of all the clusters obtained by the DPD
simulations. Numerical coordinates for all these clusters are
included in the Supplemental Material [38].

Our findings also confirm the experimental observation of
Manoharan et al. [12] and simulations of Lauga et al. [20]
that because every N-particle droplet system undergoes a
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TABLE II. Total number of bonds, average bond number, symmetry, and cluster type classified based on the orientational bond order P for
the structures from N = 4 to 39.

Schoenflies Schoenflies Schoenflies
N Nb Nb point group P N Nb Nb point group P N Nb Nb point group P

4 6 1.5 Td S 16 48 3 Cs NS 28 97 3.46 C1 NS
5 9 1.8 D3h S 17 48 2.82 D4d NS 29 98 3.38 C1 NS
6 12 2 Oh S 18 56 3.11 C5v NS 30 107 3.57 C1 NS
7 16 2.28 D5h S 19 58 3.05 C1 NS 31 106 3.42 C3 NS
8 18 2.25 D2d S 20 65 3.25 Cs NS 32 110 3.43 C1 NS
9 21 2.33 D3h S 21 74 3.52 C2v NS 33 114 3.45 C1 NS
10 24 2.4 D4d S 22 74 3.36 C1 NS 34 121 3.58 C2 NS
11 31 2.81 C2v S 23 76 3.30 C1 NS 35 127 3.63 C2v NS
12 30 2.5 Ih S 24 82 3.41 C1 NS 36 128 3.55 C1 NS
13 38 2.92 Cs S 25 87 3.48 Cs NS 37 135 3.65 C1 NS
14 41 2.92 C1 NS 26 85 3.27 D3h NS 38 144 3.79 Oh NS
15 42 2.8 D3h S 27 91 3.37 C2 NS 39 144 3.69 C1 NS

spherical packing, each N-sphere cluster looks precisely the
same. We observe that this remark also holds as 15 < N � 39.
The initial spherical packing is unique for the regime we
investigate, and the subsequent evolution of the NPs is so
highly restrained that only one resulting packing is compat-
ible with the restraint. The final configurations observed are
independent of the coverage fraction and the initial state of
the nanoparticles on the droplet surface. If the evaporation
process proceeds slowly enough, the NPs should be arranged
in spherical packing to maximize the distance between the
nearest pair of points. To verify this hypothesis, we calcu-
lated the cosine of the minimal angular distance θmin (i.e.,
the inner product of the closest points) as a function of time.
The cos θmin function [Fig. 7(a)] shows a decrease in time
and achieves constant values at certain times depending on
the number of constituent nanoparticles. In particular, for
N = 7, 8, 10, and 11, the curves have a minimum, while for
N = 4, 5, 6, and 9, they evolve smoothly without a minimum
point. Note that in the clusters with 4, 5, 6 and 9 spheres, the
optimal structure for both the spherical packing and minimal-

FIG. 6. Structural properties as a function of the cluster size. The
black line is the orientational order parameter, and the blue line is
the average coordination. The dashed line indicate the criteria to
distinguish between the spherical cluster and nonspherical cluster.

moment packing is the same. However, for N = 7, 8, 10, and
11, their optimal structures for both packings are different.
Therefore, the minimum point in the cosine of the minimal
angular distance (denoted by an asterisk) can be used as a
useful parameter to detect the transition time between the two
packings. For N > 12 where the minimal-moment rule may
no longer hold, but they lower their second moment during
the packing process [Fig. 7(b)], whenever the minimum point
appears, the structural transition should occur. Numerical evo-
lution of the θmin and the second moment M2 as a function of
time settles down to a steady value, indicating stable packings
of clusters. We determine the critical volume VC of the oil
droplet at which the structural transition from the spherical
packing (SP) to the minimal second packings (M2) and/or
(U) packing. In Fig. 8 the two-structure regions are clear
for N � 6 and N = 9, and the SP-M2 structure separation
region is found at N = 7, 8, 10, and 11. The optimal phys-
ical quantity underlying the observations remains unknown
for N > 13, which is denoted as the undefined U structure.
Figure 8 shows that VC/VNP, where VNP is the volume of one
nanoparticle, increases as a function of the number of NPs
on the droplet. A mathematical function fitted to the observa-
tion is given by the equation VC/VNP = 1.2333 + 0.6166N +
0.1028N2 + 0.0057N3 with R2 of 0.999. The coefficients of
the third-order polynomial depend on the nearest neighboring
distance between the NPs. As a consequence, they can be
controlled by tuning interparticle interaction parameters ai−i

or the ratio between the number of nonpolar and polar beads
in the nanoparticle.

IV. CONCLUSIONS

In conclusion, we have performed a dissipative particle
dynamics simulation to investigate the structure assembled
by nanoparticles restricted to the interface of oil emulsion
droplets distributed in an aqueous phase during evaporation.
The simulation approach accurately reproduces the structures
of N-sphere clusters compared to those obtained experimen-
tally (N � 15). It also confirmed the experimental observation
of Manoharan et al. [12] and several experimental studies
reported in the literature that each N-sphere cluster is identical
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FIG. 7. (a) Cosine of the minimal angular distance of different N-sphere clusters and (b) the second moment of the mass distribution as a
function of time.

because each N-particle cluster must go through an optimal
spherical packing, regardless of the initial distribution of NPs
on the droplet. We observe that this remark also holds as
15 < N � 39. Many cluster structures have interesting high
symmetry, e.g., N = 17, 18, 26, 35, 38 that are possibly
members of a set of magic numbers known from in atomic
scales [49].

We have calculated the minimal angular distance between
the nearest pair of nanoparticles and found that it can be
used as an indicator to distinguish the structural transition
between the spherical packings to the M2-minimal packings.

FIG. 8. Critical volume VC depends upon the number of NPs (in
units of the NP volume VNP). The regions corresponding to different
optimal pickings are colored accordingly. The line represents the best
fit to the data.

Although for N > 12 the cluster structures no longer obey the
M2-minimal rule, those structures lower their second moment.
Finally, the critical volume at which the structural transition
occurs is determined to be a cubic function of the number
of constituent nanoparticles. While a number of effects, such
as the effect of the evaporation rate and self-self interac-
tion parameters, are certainly not included in our model, the
molecular insights provide a tentative anticipation of clus-
ters with precisely defined structures. Future work could be
directed towards a larger number of spheres to determine
whether the phenomena of magic numbers commonly known
in atomic clusters may extend to the domain of colloids.
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APPENDIX: THE DPD SIMULATION METHOD

DPD represents a dynamic particle simulation
method [33,50]. It involves the calculation of particle
movement by solving the corresponding equations of motion
over a specific time duration. These equations delineate
the behavior of particles under the influence of various
forces. The distinctive feature of DPD is the simulation of
particle motion at a constant temperature, with the forces
encompassing those from a unique thermostat. DPD employs
a momentum-conserving and stochastic thermostat, which
sets it apart from Brownian or molecular dynamics.

Let’s consider an assembly of interacting beads, each with
a uniform mass m. If we denote the position of bead i as ri and
its velocity as vi, the changes in these parameters over time are
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described by the motion equations

∂ri

∂t
= vi,

∂vi

∂t
= fi

m
, (A1)

where fi represents the force exerted on bead i, which origi-
nates from its interaction with the remaining beads. Generally,
this force can be expressed as

fi =
∑
i �= j

(
FC

i j + FD
i j + FR

i j

)
, (A2)

where the sum runs over all other particles within a speci-
fied cutoff radius Rc. The term enclosed within the brackets
constitutes the force that results from the interaction of bead
i with its neighboring bead j, regardless of whether they are
bonded or not. This force component comprises three parts:
conservative (C), dissipative (D), and random (R).

The conservative, dissipative, and random forces all exhibit
a shared structure.

Fi j = Ci jω(ri j )ei j, (A3)

where Ci j (= Cji) represents a symmetric force amplitude and
ri j denotes the distance between particles i and j, while ei j

is the unit vector (ri − r j )/ri j . The radial dependence of the
force is determined by the function ω(r), which is continuous
and positive for r < Rc, turning zero for r � Rc. This function
serves to distribute the force amplitude C across an interaction
shell with radius Rc. The force proves to be repulsive when
Ci j > 0 and attractive when Ci j < 0. From Eq. (A3), it follows
that the forces conform to Newton’s third law, i.e., Fi j = −F ji.
Therefore, these forces do not contribute to the total force
exerted on the system. Given that the total force is zero, the
total momentum remains constant throughout the motion, a
necessary condition for simulating hydrodynamics.

The conservative force, FC, is calculated as

FC
i j = ai jω

C(ri j )ei j, (A4)

where ai j = a ji > 0, suggesting that the force is invariably
repulsive. For the conservative force, DPD implements a
straightforward linear weight function, expressed as ωC(r) =
1 − r/RC for r < Rc.

The dissipative force, FD, is directly proportional to the rate
at which two beads are moving towards each other, given by

FD
i j = −γi jω

D(ri j )(vi j · ei j )ei j, (A5)

where γi j = γ ji > 0 and vi j = vi − v j . The central com-
ponent, (vi j · ei j ), is positive when two beads are moving
towards each other, giving rise to a repulsive dissipative force.

Conversely, if the two beads are moving apart, the central
component turns negative, resulting in an attractive dissipa-
tive force. As such, the dissipative force always operates to
reduce the relative central velocity. DPD utilizes a quadratic
function to represent the dissipative force, which is given by
ωD(r) = (1 − r/Rc)2 when r < Rc.

The random force, FR, interacts between pairs of beads

FR
i j = σi jω

R(ri j )ξi j
1√
�t

ei j, (A6)

where σi j = σ ji > 0, and �t represents the time step utilized
in solving the equations of motion [Eq. (A1)]. In the context
of DPD, a linear weight function is used for the random force,
which is formulated as ωR = 1 − r/Rc for r < Rc. The term
ξi j = ξ ji is a random number characterized by a zero mean
and unit variance,

〈ξi j〉 = 0,
〈
ξ 2

i j

〉 = 1. (A7)

For simplicity’s sake, DPD utilizes a uniform distribution,
where a random number is independently drawn for each
interacting pair at every time step. Given that ξi j can be either
positive or negative, the random force can be either repulsive
or attractive.

The fluctuation-dissipation theorem [51] provides the rela-
tionship between the parameters of the random force (σi j and
ωR), the dissipative force (γi j and ωD), and the temperature T ,

ωR(r) =
√

ωD(r), σi j = √
γi j2kBT , (A8)

where kB is Boltzmann’s constant.
The positions and velocities of the beads are computed us-

ing a modified velocity-Verlet algorithm, which was initially
proposed by Groot and Warren [33],

ri(t + �t ) = ri(t ) + �tvi(t ) + 1
2 (�t )2fi(t ),

ṽi(t + �t ) = vi(t ) + λ�tfi(t ),

fi(t + �t ) = fi(r(t + �t ), ṽi(t + �t )),

vi(t + �t ) = vi(t ) + 1
2�t (fi(t ) + fi(t + �t )). (A9)

In the case where the force is not influenced by velocity,
one would obtain the original velocity-Verlet algorithm for
λ = 1/2. However, because the force does depend on velocity,
we need to make a prediction for the new velocity, denoted as
ṽ, and subsequently correct it in the final step. This advanced
algorithm still updates the force once per iteration, specifically
after the second step, ensuring minimal increase in computa-
tional cost.
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