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Compression of a confined semiflexible polymer under direct and oscillating fields
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The folding transition of biopolymers from the coil to compact structures has attracted wide research interest
in the past and is well studied in polymer physics. Recent seminal works on DNA in confined devices have shown
that these long biopolymers tend to collapse under an external field, which is contrary to the previously reported
stretching of the chain. In this work, we capture the compression of a confined semiflexible polymer under
direct and oscillating fields using a coarse-grained computer simulation model in the presence of long-range
hydrodynamics. In the case of a semiflexible polymer chain, the inhomogeneous hydrodynamic drag from the
center to the periphery of the coil couples with the chain bending to cause a swirling movement of the chain
segments, leading to structural intertwining and compaction. Contrarily, a flexible chain of the same length lacks
such structural deformation and forms a well-established tadpole structure. While bending rigidity profoundly
influences the chain’s folding favorability, we also found that subject to the direct field, chains in stronger
confinements exhibit substantial compaction, contrary to the one in moderate confinements or bulk where such
compaction is absent. However, an alternating field within an optimum frequency can effectuate this compression
even in moderate or no confinement. This field-induced collapse is a quintessential hydrodynamic phenomenon,
resulting in intertwined knotted structures even for shorter chains, unlike other spontaneous knotting experiments
where it happens exclusively for longer chains.
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I. INTRODUCTION

Nanofluidic devices have been widely used for the
characterization of macromolecules such as separation and
sequencing of DNA [1–7], protein synthesis, transport of
biopolymers, etc. [3–12]. The fluid flow in such narrow
capillaries profoundly influences the structural [1,2,13–17]
and dynamical behavior of soft-deformable macromolecules
[1–7,18–23]. Few recent experiments have reported compres-
sion of a confined long DNA strand into isotropic globules
under a uniform electric field [24–26], despite previously
reported stretching of DNA seen under field [13,14,27–33].
Similar shrinkage of a confined polyelectrolyte chain has also
been captured in simulations under an AC field [34], with
the exception that the shrinkage was manifested as back-
foldings rather than an isotropic compression. These works
substantiate the inevitability of hydrodynamic interactions
in inducing such compression. Similar, hydrodynamic flow-
induced structural shrinkage is seen across diverse soft-matter
systems such as the U-shape bending of elastic rods under
field [35,36], shear-induced compaction [37,38], compaction
of short chains under sedimenting fields [39,40], etc.

One direct repercussion of the chain compaction is the
enhanced favorability of self-knotting observed within these
structures. The formation of these spontaneous knots along a
long polymer chain such as DNA [41–44] and other proteins
[45,46] is a recurrent phenomenon in biological processes.
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The use of chain compaction either by spatial confinement,
compaction against slit barriers [47], or molecular crowd-
ing [48] has been deemed extremely useful in effectuating
these knottings. The use of direct or oscillatory fields in di-
electrophoresis is another important method for obtaining a
spectrum of such self-entangled structures.

This article elucidates how a confined semiflexible chain
exhibits large-scale compression under direct and oscillating
uniform fields. The course of investigation is mostly steered
along deciphering the sensitiveness of this intriguing phe-
nomenon to varying physical complexities such as bending
rigidity [49–51], degree of confinement [52–54], and chain
length, along with a plausible driving mechanism which re-
mains elusive so far. While the hydrodynamic flow field
remains a precursor to such a phenomenon, the above factors
also act as essential ancillaries in dictating the folding favora-
bility.

The article is organized as follows: the simulation model
and parameters are presented in Sec. II. All the results per-
taining to chain conformation and dynamics under DC and AC
fields are presented in Sec. III, which consists of four different
sections. The summary of the results is discussed in Sec. IV.

II. MODEL

We model a semiflexible polymer along with solvent
molecules confined in a cylindrical tube, periodic along its
axis. The polymer is modeled as a bead-spring chain, which
consists of Nm monomers. The bond connectivity between
adjacent monomers is ensured using a harmonic potential
Us = ∑Nm−1

i=1
ks
2 (ri,i+1 − l0)2. Here, l0 is the equilibrium bond
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length, ks is the spring constant, and ri,i+1 = |ri+1 − ri| de-
notes the magnitude of the ith bond vector. The semiflexibility
is introduced via a bending potential, Ub = ∑Nm−2

i=1
kb
2 (|ri,i+1 −

ri+1,i+2|)2, where ri+1,i+2 is the (i + 1)th bond vector and kb is
the bending rigidity that dictates the stiffness. For the present
model of semiflexibility, the bending rigidity kb turns out to
be approximately equal to the chain’s equilibrium persistence
length lp in bulk. Here, lp is the characteristic length scale
at which the tangent-tangent correlations along a semiflexible
chain in bulk decay off. Hence, throughout the work, this
imposed bending rigidity will be variably referred to as kb or
persistence length lp.

Furthermore, excluded volume interactions among the
chain monomers are incorporated via the standard repulsive
shifted Lennard-Jones (LJ) potential,

ULJ =
N∑

i> j

4εLJ

[(
σ

ri, j

)12

−
(

σ

ri, j

)6

+ 1

4

]
, (1)

for ri, j � 21/6σ and ULJ = 0, if ri, j > 21/6σ . Here, σ is the
bead diameter and εLJ is the LJ interaction energy.

The solvent molecules are modeled using multiparticle
collision dynamics (MPC) [55,56], which is a particle-based
mesoscopic simulation technique that incorporates both hy-
drodynamic interactions and thermal fluctuations. In this
technique, solvent dynamics is updated via a streaming step,
followed by a successive collision step [55,56] (at τs), where
the exchange of momentum within fluid molecules happens,
ensuring momentum conservation. The elaborate description
of the method can be found in Refs. [15,55–59].

The interaction of monomers with the cylindrical channel
is considered via a similar LJ potential described earlier in
Eq. (1), where a monomer feels the repulsive force within
a distance Rc � 21/6σ/2 from the channel wall. An external
field G is imposed on all polymer monomers along the channel
axis (here, in the x direction), while solvent molecules feel
indirect drag via monomers. In the case of an oscillating field,
a square-wave periodic force is applied to each monomer
given as F x

G = sign[sin(2πνt )]G. The force is directed along
the channel axis, where ν (time period, τν = 1/ν) stands for
the frequency.

The physical parameters are expressed in units of bond

length l0, energy kBT , and time τ =
√

msl2
0 /kBT , where ms

is the mass of a solvent particle. The MPC parameters are col-
lision time τs = 0.1τ , cell length a = l0, and solvent density
ρs = 10ms/l3

0 . The spring constant is ks = 10000(kBT/l2
0 ),

LJ energy is εLJ/kBT = 1, and the mass of the monomers
is chosen as M = 10ms. The bending rigidity of the chain
is varied in the range of kb = 0–25. This corresponds to the
equilibrium persistence length of a semiflexible chain in bulk,
kb ≈ lp (both in dimensionless units, for the model chosen
in our case). Newton’s equations of motion of the polymer
are numerically solved using the velocity-Verlet algorithm
at fixed integration time step hm = 5 × 10−3τ . If not men-
tioned otherwise, all results are for the chain length Nm =
200. We use a certain mapping to obtain the experimental
scales, equivalent to our coarse-grained model. This proto-
col has been previously found to be efficient in explaining
many DNA-based phenomena [60,61]. A double-strand DNA
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FIG. 1. Radius of gyration, Rg, of a semiflexible polymer un-
der a DC field (G) for various persistence lengths lp in pore
radius Rp = 10.

of width w ≈ 2 nm, lp ≈ 50 nm, and contour L = 16 µm
is equivalent to a chain of bead diameter σ = 0.8, lp = 20,
and N = 6400. Considering each base pair to be of mass
615 Da, a monomeric unit of length 2 nm (12 bps) has a
mass of 7380 Da, which is equal to M = 10, a monomer’s
mass in simulations units. Hence, our simulation time unit

t =
√

msl2
0 /KBT = 1 translates as t = 4.3 × 10−6 sec in real

units. So, the chosen window of frequencies 0.0001–0.02 can
be mapped to 23–4600 Hz for a chain length equivalent to
Nm = 200.

III. RESULTS

We present the structural response of a confined semiflexi-
ble chain under a uniform field. For that, we follow a systemic
approach of addressing the influence of direct fields, followed
by an investigation into oscillatory fields.

A. Chain collapse under direct field

In bulk, it is preestablished that a short flexible chain ex-
hibits weak compression under a direct field [33,37]. Figure 1
elucidates the structural response of a confined semiflexible
polymer (Nm = 200) under subjection to a constant DC field.
This is parametrized in terms of the average radius of gyra-

tion, given as Rg =
√

〈 1
Nm

∑Nm
i=1(ri − Rcm)2〉, where Rcm is the

center of mass of the chain. The retrieved curve exhibits a non-
monotonic dependence over G, where, within a moderate field
strength, the chain exhibits a significant structural compres-
sion, followed by stretching at higher field strengths [37]. This
is qualitatively similar to the stretching response reported for
the flexible chain in bulk, with the exception that their chain
compaction was seen only for smaller chain lengths and weak
field [39,40]. However, for a confined semiflexible chain, not
only the reduction become prominent for Nm = 200, but the
favorability of the induced compression shifts toward higher
fields with increasing persistence length. Also, the relative
compaction gets more pronounced for higher bending rigidi-
ties; for example, for lp = 25 it is roughly Rg/R0

g = 0.25,
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while for lp = 7, Rg/R0
g = 0.5, with R0

g being the radius of
gyration of the chain in equilibrium. This is particularly fas-
cinating considering the long and semiflexible nature of a
typical DNA molecule [62] which reportedly exhibits collapse
under applied fields [24–26].

Effect of bending rigidity. In the equilibrium, it is preestab-
lished that a confined chain exhibits a monotonic stretching
with increasing persistence length, where the chain with lower
bending rigidity spanning the de Gennes regime and moder-
ately confined de Gennes regime [63–65] (D/lp � 1) takes a
coil-like structure. However, with enhancing chain rigidity, it
transitions into Odijk’s regime [16,66] (D/lp < 1), exhibiting
stretching into a linearly arranged array of the chain seg-
ments. The equilibrium curve is shown in Fig. 2(a). However,
the chain exhibits a counterintuitive structural response with
bending rigidity under a direct field, shown in Fig. 2(b). The
Rg is normalized with the stretching of a flexible chain, R f lx

g . A
flexible chain (lp = 0) takes up a tadpolelike structure [39,40]
made of a compact head followed by an extended tail, as
shown in Fig. 2(c). However, with increasing bending rigidity
(lp), the chain takes up a folded structure with a short fluc-
tuating tail. This manifests as the compression seen in the
intermediate lp regime, elucidated for lp = 13 in Fig. 2(c).
Further, beyond a certain lp, the chain stretches again [see
lp = 30 in Fig. 2(c)].

A similar phenomenon has been previously reported in the
case of elastic filaments that undergo a counterintuitive bent
deformation under a sedimenting field [35,36]. These works
attribute the coupling of long-range hydrodynamic force
fields with the chain contour. In the presence of the external
force, the chain experiences enhanced drift in the center due
to the addition of velocity fields from both ends, compared to
the lagging terminal ends. As a result of this inhomogeneity
in the hydrodynamic drag experienced by the chain across
its contour, the chain attains a bent U shape with a uniform
drift. This insight might suffice to qualitatively explain why
a long semiflexible chain tends to fold and crumble instead
of stretching under an external field. While in the case of a
flexible chain, it is preestablished that the chain stretches into
a tadpole state [39,40] such that the small bundling in the head
region experiences similar friction as that of the lagging tail
end [see Fig. 2(c), lp = 0]. This eventually results in a uniform
drift. However, a chain with a finite amount of bending, such
as an elastic filament, might undergo some bent deformations
under inhomogeneous flow. Following this, we estimate the
flow profile of the chain under the field using a quiver plot,
shown in Fig. 3. The arrow indicates the mean velocity Vi of
the chain segment with respect to the chain’s center of mass,
where the position of the arrow represents the respective chain
segment’s distance from the chain’s center of mass. Hence, Vi

is given as Vi = d (ri−rcm )
dt , where ri and rcm are the positions of

the ith segment and the chain’s center of mass, respectively.
The flow profile of chains with bending rigidities lp = 13

and lp = 20 where structural folding happens are shown in
Fig. 3. A circulatory flow with vortices on both sides of the
axis of the chain is obtained. For lp = 13, x is the direction of
the chain’s drift or the field direction; then segments close to
the chain’s center y → 0 drift in the field direction, contrary
to the one at the periphery y ∼ ±4 that lags and is pulled
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FIG. 2. (a) Scaled radius of gyration, Rg, of a semiflexible poly-
mer chain with varying persistence length lp in confinement radius
Rp = 10 for two different chain lengths. Inset: The variation in end-
to-end distance Re. (b) The Rg of a confined chain in pore (Rp = 10)
as a function of lp for a fixed G. The chain undergoes a collapse in
DC beyond a critical lp. (c) Snapshots of the chain under DC for
various lp at G = 1 and Nm = 200. All the plots and conformations
of the chain correspond to the DC field.

back. This is because, under subjection to an external field,
the monomers in the periphery experience an enhanced hy-
drodynamic drag compared to those inside the coil [39,40].
As a result of this spatial heterogeneity in the drag force, the
segments in the center of the coil drift faster compared to the
peripheral ones, and the same when looked at from the chain’s
center-of-mass frame will give a recirculatory profile where
the lagged particles from the surface flow back into the mid-
dle. In a semiflexible chain with finite bending, any force can
propagate smoothly along the chain segments such that the
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FIG. 3. Velocity profile of monomers with respect to the center of
mass of the chain under subjection to a direct field for (a) lp = 13 and
(b) lp = 20, where the polymer undergoes structural compaction. The
chain undergoes a recirculatory motion, where, towards the center,
the chain segments drift faster, while the outermost part gets lagged
and constantly pushed back towards the center in a swirling motion,
eventually leading to chain intertwining and compaction. The pore is
fixed at Rp = 10 and the DC field strength G = 1.0.

force gradient from the center to the periphery couples with
the chain rigidity to generate torque and induce chain folding.
However, due to the ineffectiveness of a force-induced torque,
a structurally folded state is not observed in the case of a com-
pletely flexible chain [39,40]. While at intermediate lp, the
hydrodynamic flow instigates substantial structural folding,
at larger lp’s, the increase in bending stiffness disfavors large
curvatures, resulting in elongated backfolded domains instead
of compact structures [see lp = 30 in Fig. 2(c)]. In summary,
the nonmonotonic response of the chain under the DC field
can be seen as a competition between the hydrodynamic drag-
induced folding [39,40] and the bending energy cost.

A similar nonmonotonicity is also observed in the case of
spontaneous knot formations of the polymers [51,67]. This

(a)

(b)

FIG. 4. (a) The normalized radius of gyration of a chain at lp =
7, as a function of G for a range of confinements under a DC field.
Note that the x axis is scaled with R1.5

p . (b) The equilibrium radius of
gyration of a confined semiflexible chain as a function of pore radius
at lp = 7 for chain length Nm = 200.

similarity can be drawn considering the self-entangled and
knotted structures found in our case, which will be corrob-
orated later in the manuscript. A heuristic scaling obtained
for the critical bending rigidity beyond which the chain starts
compressing indicates lc

p ∼ Gβ kind of dependence, where
exponent is β ≈ 1.4.

Effect of confinement. Considering how confinement af-
fects the conformational dynamics of a chain [16,64,65], it
is indispensable to look at the influence of the geometric con-
straint. Figure 4(a) elucidates the field-induced compression
of a semiflexible polymer (lp = 7) for a range of varying pore
radii. The obtained results suggest that a polymer under strong
confinement (D/2lp < 1.4) undergoes a substantial compres-
sion at lower field strengths, followed by stretching. However,
a chain under moderate or weak confinement (D/2lp > 1.4)
exhibits no compression and undergoes a monotonic stretch-
ing. This is evident in Rp � 10, where a compressive dip
in Rg is seen for lower G values, while for Rp > 10, only
monotonic stretching is seen, devoid of any shrinkage. In other
words, a minimum bending rigidity is required to reinforce
the folding as elucidated in the previous section; however,
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this bending threshold can go to lower values of lp for a
higher degree of confinement. For pore Rp = 8, the feasible
range for effectuating chain folding includes lp = 7; however,
for other pores, the bending threshold is possibly higher and
hence no folding is seen at lp = 7. At stronger confinements,
when the pore diameter is comparable or less than 2.8lp, the
wall constriction substantially enhances the effective bending
cost more than the one stemming from the intrinsic bending.
With this confinement-enhanced bending rigidity, the chain
segments might tend to strongly couple to the field-induced
inhomogeneous drag, giving rise to recirculatory structures.
Even studies on knots in confined polymers report a behav-
iorally similar trend where narrower confinement shifts the
minima of the free energy cost of knotting to lower bending
rigidities [68].

Also, a heuristic scaling obtained in Fig. 4(a) for the
field beyond Gc in which stretching is effectuated gives a
Gc ∼ R−1.5

p dependence. The deviation in the scaling of Rp

seen for the case of Rp = 30 is the repercussion of Rp hitting
a different regime, where the effect of confinement diminishes
such that, for all pores with Rp > 20, it tends to the bulk
behavior. This is elucidated in Fig. 4(b), which shows the
structural variation of a chain under varying confinement in
equilibrium. It shows a typical nonmonotonous pattern, as
reported earlier [69], where the chain swells back to its bulk
value beyond Rp > 20.

B. Chain under oscillating field

The structural response of the chain under an oscillating
field is shown in Fig. 5(a) for lp = 7 and Rp = 10. Here
chain remains essentially unperturbed at higher frequencies,
retaining the equilibrium structure (R0

g). In the intermediate
frequencies, the chain swells along the field direction, referred
to as the stretch state, until it reaches a critical frequency νc,
below νc chain undergoes a significant collapse. The com-
pressed state essentially consists of a folded structure with
a short fluctuating tail. This collapse is further followed by
stretching at lower frequencies approaching the DC-like be-
havior. Unlike the stretch state mentioned earlier, the chain
structure is more like a tadpole with a leading bob-head and
trailing long tail that switch the direction at every field switch.
This eventually merges with the DC limit, where, for long
chains, a tadpole structure is observed with a long trailing
end [37,39,40]. In summary, for a range of ν � νc, ν < νc,
and ν � νc, the chain undergoes a three-state transition in-
volving tadpole-collapse-stretch states, respectively (see the
Supplemental Material, Movie 1 [70]).

A scaling of Rg with ν/G is procured, where all the curves
superimpose on each other, suggesting a linear dependence
of νc with G. The striking observation here is that for lp = 7,
the chain stretches under the DC field for G > 1 (see Fig. 1).
However, the oscillating field drives the system to a com-
pressed state for the same field strengths. Similar AC-induced
compressions are seen for other bending rigidities, lp = 16
and lp = 25 (see the Supplemental Material, Movie 2 [70]),
shown in Figs. 5(b) and 5(c) for a wide range of G beyond
the linear response regime, which is devoid of chain foldings
in DC. Another impressive feature of the AC-driven com-
pression is that the same extent of the collapse is attainable

(a)

(b) (c)

FIG. 5. The variation of Rg in response to varying field frequen-
cies (AC field) for different G and fixed Rp = 10. Different panels
correspond to persistence length: (a) lp = 7, (b) lp = 16, and (c) lp =
25. The Rg for the respective DC values are denoted by a horizontal
arrow.

across all these field strengths, while the maximum collapse
possible varies, Rg/R0

g = 0.55, 0.25, 0.2, for persistence
lengths lp = 10, 16, and 25, respectively. Further, the transi-
tion points for the collapse obtained in Figs. 5(a)–5(c) indicate
that the retrieved critical frequency νc/G is nearly indepen-
dent of the persistence length of the chain.

Effect of confinement under AC field. The effect of confine-
ment on the structural response of a chain for different pore
radii is displayed in Fig. 6(a), at lp = 7 and G = 2.0. For a
narrow pore Rp � 10, with decreasing frequency, a three-tier
stretch-collapse-tadpole kind of transition is observed, while
with increasing pore radii, the stretching before collapse (for
ν � νc) diminishes, as is evident in the case of Rp = 15, 20,
and 30, which is devoid of such stretching.

Additionally, a nonmonotonic shift in the critical frequency
νc with pore radius is seen, where, beyond Rp = 20, the νc de-
creases. This may be stemming from similar nonmonotonicity
seen in equilibrium Rg, as shown in Fig. 4(b). Further, the
structural response of the chain obtained for Rp = 20 and
Rp = 30 for varying fields is shown in Figs. 6(b) and 6(c).
This exhibits a strong coil to compressed-state transition at
the critical frequency before tending to the DC limit. See
the Supplemental Material, Movie 2, for the conformations
of compressed states for different pore radii [70]. Here, we
retrieve a scaling for the critical frequency with field strength
as νc ∼ G for Rp = 20, similar to the case of Rp = 10, while
for Rp = 30, we get νc ∼ G0.6±0.02. This difference is specu-
lated to be a result of the chain hitting the bulk regime beyond
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(a)

(b) (c)

FIG. 6. (a) Scaled radius of gyration, Rg/R0
g, of a semiflexi-

ble chain in response to varying field frequencies (AC field) at
G = 2, for different pore radius Rp. Horizontal lines denote val-
ues of Rg/R0

g for the DC field. Here, (b) and (c) correspond to
the variation in Rg of the polymer chain under confinement in re-
sponse to changing frequencies for a given AC field strengths G, for
pore radii Rp = 20 and 30, respectively.

Rp = 20; see Fig. 4(b). Previously, we have seen that in
DC for narrow pores, strong compression at lower fields is
seen in contrast to wider pores (like Rp = 20 and 30), where
no such folding happens [see Fig. 4(a)]. Interestingly, under an
oscillating field, not only narrow pores [Rp = 10 in Fig. 5(a)],
but even larger pores [Rp = 20 and 30 in Figs. 6(b) and 6(c)]
exhibit remarkable compression of the chain for a range of
field strengths, where the chain remains stretched under the
DC field. Hence, an AC-driven collapse mechanism is acces-
sible over a wider range of confining radii (including bulk)
and field strengths beyond the linear response regime.

To gain insights into the various stretching responses
seen for different pores in Fig. 6(a), we distinctly look
into the chain’s expanse in the longitudinal and trans-
verse directions to the applied field. Figure 7 shows
the radius of gyration, R2

g = 〈 1
2N2

∑
i, j (ri − r j )2〉 (in black

circles), its component along the x direction of the confine-
ment axis, Gxx = 〈 1

2N2

∑
i, j (xi − x j )2〉 (in red squares), and

its component in the perpendicular y − z plane, Gyy + Gzz =
〈 1

2N2 [
∑

i, j (yi − y j )2 + ∑
i, j (zi − z j )2]〉 (in blue diamonds),

for varying pore radii Rp = 10, 15, 30, and bulk depicted in a
clockwise manner from the top left, respectively. Interestingly,
for Rp = 10, the Gxx curve maps the overall R2

g, suggesting
that the stretching observed here is by virtue of the chain
extension along the channel axis. The transverse component
that is barely contributing gives a highly anisotropic stretched

FIG. 7. Longitudinal and transverse components of the radius of
gyrations, Gxx (square) and Gyy + Gzz (diamonds), along with the
radius of gyration (bullet) for a few pore radii, including bulk under
the AC field. The values correspond to Nm = 200 and lp = 7 for all
pores, while the bulk is shown for Nm = 50, lp = 7. The stretching
at a lower pore radius (Rp = 10) is effectuated by pore-enhanced
elongation along the field axis. The stretching in bulk is attributed
to the stretching and alignment of the chain along the transverse
directions.

state. However, with increasing pore radii, such as for
Rp = 15, the x component departs away from the overall Rg,
and the contribution from the transverse component enhances,
decreasing the anisotropy along the field direction. Interest-
ingly, with further increase in the pore radius such as for
Rp = 30, the structure again shows an increasing anisotropy
by preferentially aligning in the y − z plane. Further, tending
to the bulk case, the chain again exhibits prominent transverse
alignment for higher frequencies, where (Gyy + Gzz )/Gxx >

2. Hence, it can be inferred that at higher frequencies where
the field switch happens relatively faster, a chain in bulk or
in weak confinement (D � lp) tends to preferably reorient in
the transverse direction in response to the field, instead of
stretching along the axis. However, beyond a certain critical
confinement, when D becomes comparable to the scales of lp

and the presence of a wall becomes prominent, this transverse
alignment of the chain is constricted by the wall, resulting in
an effective stretching along the channel axis.

Effect of bending rigidity under AC field. Now, we consider
the explicit effect of bending rigidity on the chain’s collapse
mechanism under the AC field. This is shown in Fig. 8 for
different bending rigidities at G = 2 and pore radius Rp = 10
(diameter D = 20). More flexible chains undergo a stretch-
collapse-tadpole state transition while going from higher to
lower frequency in the respective window of ν � νc, ν <

νc, and ν � νc. The stretching observed at higher frequen-
cies prior to the compression is suppressed with increasing
bending stiffness. For example, beyond lp > 13, stretching is
completely absent and the chain undergoes a direct collapse
transition. Similar to the previous case of Rp = 10 displayed
in Fig. 7, here also at moderately strong confinements where
D is comparable to the scales of lp (yet D � 2lc

p), the geomet-
ric constriction restricts any transverse alignment and leads
to chain stretching along the channel axis under an applied
field. However, with further increase in persistence length,
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FIG. 8. The normalized radius of gyration, Rg/R0
g, of the chain

at Rp = 10 in response to varying frequency at G = 2, for different
persistence length lp under an AC field. The horizontal arrows denote
the DC values of Rg/R0

g (ν = 0).

especially when D < 2lc
p, the effect of confinement grows

immensely stronger such that even in equilibrium (G = 0),
the chain stretches into a linearly arranged array of chain
segments [16,66] along the channel axis [as in Fig. 2(a)]. In
this case, further subjection to an external field might bring
only a nominal difference to an already stretched stiff confined
chain. This is why, in the case of chains with larger persistence
lengths compared to the pore diameter (i.e., lp > 13 where
2lc

p > D), the Rg seems almost unaltered from its equilibrium
value R0

g at higher frequencies.
In summary, for a confining radius, there exists a criti-

cal persistence length D/2lc
p ≈ 1.0 beyond which the chain

eludes the prestretching tendency before collapsing at high
frequencies (ν > νc). Also, for higher persistence lengths, the
folding favorability enhances dramatically and the chain ex-
hibits collapse for a wide range of frequencies, even extending
up to the DC limit. Additionally, we see similar behavior for
various chain lengths (Nm = 100, 150, 200, and 300) where
the chain compression for longer chains occurs at lower fre-
quencies. This dependence on chain length is shown in Fig. 9.
A scaling of νc ∼ N−0.75

m for the critical frequency with chain
length is retrieved by superimposing all the curves onto each
other.

C. Transient dynamics under DC

In this section, we investigate the initial state dynamics in-
volved in shaping exquisite structures such as the tadpole state
and compressed state seen under DC and AC fields. In the
previous section, we saw that a chain, specifically under high
fields, stabilizes into a tadpole shape with a long extended tail
in the DC limit. Interestingly, the dynamic pathway of the
formation of this tadpole under DC involves an intermittent
stage in which the chain collapses, then is followed by an
extension [39,40]. We corroborate this by conducting 50 in-
dependent trial runs of the chain under a DC field, where we
observe how its structure evolves with time before stabilizing
into a tadpole shape. We observed two distinct trajectories
of the chain. In most trials, the chain undergoes intermittent

FIG. 9. Scaled radius of gyration, Rg, of the polymer chain in
pore Rp = 10 in response to varying field frequencies at G = 2, for
different chain lengths (Nm) under a DC field. Horizontal lines denote
the Rg values for the same DC field.

compaction after a weak initial stretching (see Fig. 10, blue
curve), further followed by stretching to the tadpole state,
while in the rest of the trials, the chain exhibits continual
stretching. The trajectories following only stretching initially
start with a small headlike structure that grows over time to
form an extended tadpole. These distinct pathways are eluci-
dated in Figs. 10(a) and 10(b). The blue curve represents the
variation in a maximum extension of the chain X with time,
averaged over all those ensembles where the chain undergoes
intermittent compression before stretching to a tadpole. Sim-
ilarly, the red curve pertains to the conformation change with
time for all those ensembles where no initial compaction is
seen and the chain executes straight stretching.

Consider the case where the chain undergoes an initial
compression at a short time, followed by stretching under
the DC field. Now, if the field direction is suddenly switched
in the opposite direction when the chain acquires the com-
pressed state, the chain may not be able to relax completely
and may forbid the stretching to a tadpole that occurs at a
later stage under the constant field. Further, if the chain is
not given enough time to stretch in all the successive field

FIG. 10. The average maximum extension of the chain as a func-
tion time under a DC field for pore radius Rp = 20 (left panel) and
Rp = 30 (right panel) at G = 2.0. The solid line shows the average
over all the confirmations. The red line shows the average over
trajectories that undergo straight stretching, while the blue is for
those which undergo initial compaction followed by stretching.
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FIG. 11. (a) Recirculation timescale τν = R0/vcm for different
pores as a function of varying field strength G in DC. (b) The DC
relaxation timescale is obtained from the correlation of the maximum
extension.

switches under AC, the chain might get stuck in this par-
tially stabilized compressed state. Importantly, the timescale
of the compressed state obtained under DC in the transient
phase falls within the window of tc = 1000–10 000, which
coincides with the frequency window of chain collapse seen in
AC, i.e., ν = 1/tc = 0.001 − 0.0001 [see Figs. 6(b) and 6(c)].
Hence, it is safe to assert that for an optimum frequency of
field switch, an oscillating field retains the initial compression
forbidding extension of the tadpolar structure obtained under
DC [see Fig. 4(a)].

Further, we saw in the previous sections that the chain
compaction under DC is a result of a recirculating flow field.
Under such a scenario, a diffusive timescale of the chain can
be given as τD = R3

μ0akBT , where the chain traverses a distance
of its own size in equilibrium. Similarly, there exists a drift
timescale of the chain (τv = R/vG), which essentially signifies
the time any part of the chain takes to traverse a distance of
R under the field, enforcing proper recirculatory dynamics.
The latter is a precursor to obtaining chain compaction under
DC. Hence, in the case of an oscillating field at G, if the
time period of the applied field follows 1/ν > τv (G) [i.e.,
ν < 1/τv (G)], the chain is allowed proper recirculating dy-
namics leading to a compact state in AC. This recirculation
timescale as a function of GDC is presented in Fig. 11(a).
Since, in our case, τv spans a window of τv = 100–1000,
roughly translating as 1/τv = 0.01–0.001, then 1/τv pro-
vides a frequency window below which chain compaction
can be obtained. However, at much lower frequencies (i.e.,
larger allowed times) under the field, the tail extension
again becomes prominent, leading to the DC limit. As a
result, the compaction is seen only in a narrow window.
The above analysis roughly sets the upper-frequency cut-
off for the collapse to reinforce. The lower-frequency cutoff
for the oscillating field below which the chain reaches to
the DC limit can be obtained from the relaxation of the
maximum extension under the DC field. The relaxation of
the maximum extension is defined as CX (t ) = 〈δX (t )δX (0)〉

〈δX (0)δX (0)〉 ,
where δX = X (t ) − 〈X (t )〉 is the fluctuation in maximum
extension, and X (t ) and 〈X (t )〉 are the instantaneous and aver-
age maximum extension, respectively. The correlation shows
exponential decay in a short-time limit, followed by oscilla-
tory behavior for the large-time limit. The behavior of the
correlation can be parametrized by the following expression:
CX (t ) = a0 exp(−t/τ ) cos( 2πt

T ). The retrieved zero crossing
time τDC

X at which CX (τDC
X ) = 0 is shown in Fig. 11(b) for

varying G with different pore radii. The obtained relaxation
time τDC

X falls in the range of 10 000–40 000, which translates
to 1/τDC

X = 0.000 1–0.000 025. This signifies that beyond
τDC

X , the chain attains proper conformational relaxation of its
fluctuating head and tail ends. This results in stretched tadpole
states seen in the frequency window ν � νc corresponding to
the DC limit.

In summary, this section provides an account of the opti-
mum AC frequency range for the chain compression in terms
of the recirculation time and initial compaction seen under
DC. Further, the cutoff frequencies marking the DC limits for
the chain conformations are reasoned in terms of the chain’s
longest relaxation time, i.e., the relaxation timescale of its
maximum extension.

D. Field-induced knotting

Our goal is to corroborate the presence of knots driven
by the AC field and how frequency modulation influences
knotting tendency and complexity. For this purpose, we use a
software package KYMOKNOT [71], which uses the arc closure
algorithm for the analysis of knotted structures in linear chains
[72,73]. Notably, the average fragment lh that is part of a
knot exhibits a nonmonotonic behavior with frequency for
various pore radii, as depicted in Fig. 12(a). The lh shows
the extent of knotted length feasible within a polymer under
the field. In the equilibrium or at a higher-frequency limit
(such as for Rp = 20, ν � 5 × 10−3), we found lh = 0, which
indicates that the structure is devoid of any such knots, while
for the intermediate frequencies, the value of lh sharply grows,
even reaching beyond 0.5, suggesting an enhanced knotting
favorability, where a large portion of the chain is topologically
entangled. The attainability of the chain self-entanglement to
such a vast extent ensues from the oscillatory nature of the
inducing field, leading to crumbled structures with low struc-
tural expansion. Further, as we go to the DC limit (ν � 10−4,
lh is shown with arrows), the fraction constituting the knot
falls off dramatically, but exhibits a nonzero lh [see Fig. 12(a)].
In DC, the formation of a well-taut and stretched tadpole
constitutes a tightly knotted head [see Fig. 12(b)(ii)], resulting
in smaller values of lh, contrary to the loosely formed knotted
fragments observed at intermediate frequencies in AC [see
Fig. 12(b)(i)]. This can be understood by considering a piece
of rope with a simple knot tied such that, if we pull the
chain from its terminus, the knotted part will become tight
and localized. The top row (i) and (ii) of Fig. 12(b) shows
the native chain structures formed under the field (the knotted
portion is in orange). In contrast, the bottom row (iii) and (iv)
shows the corresponding tight and localized knot formed after
stretching the field-favored native structures at its extremities.

IV. DISCUSSION

Using a generic bead-spring model, we have presented
the phenomenon of chain collapse orchestrated by direct and
oscillatory fields. Under the DC field, a polymer chain experi-
ences an inhomogeneous hydrodynamic drag from its interior
to the surface, resulting in an overall recirculatory flow field.
While flexible chains tend to form extended tadpole struc-
tures, a polymer chain with finite bending rigidity beyond a
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(a)

(b)

FIG. 12. (a) The fraction of chain length lh that constitutes a
knot as a function ν at field strength G = 2.0 under an AC field,
for different pore radii obtained using KYMOKNOT software [71]. The
error bar depicts the standard deviation at each frequency. (b) The
top row depicts a few snapshots of the chain conformations obtained
under the field, with the knotted portion highlighted. The bottom row
corresponds to the tight and localized knots obtained after stretching
respective conformations at its ends.

certain threshold exhibits strong coupling to the force field.
This coupling effectuates swirling repetitive segmental mo-
tions from the center to the surface of the coil, resulting in
intrachain intertwinings and overall chain compression. Also,
stronger confinements instigate this compressive effect even
for smaller bending rigidities, plausibly due to the enhanced
segmental crowding and increased apparent stiffness induced
by the tube.

Apart from the confinement and chain rigidity, the nature of
the jostling force also brings fascinatingly complex dynamics

into the picture [74–76]. Following this, we elucidate that a
semiflexible chain under an oscillating field exhibits remark-
able compression in certain frequency windows. The AC field
orchestrated compression is attainable across a wide range of
confinements (including bulk), bending rigidities, and field
strengths, where the chain typically stretches under DC. The
field switching under AC captures the initial recirculating
flow-induced compaction, forbidding proper tail extension
such that the chain essentially gets arrested in a collapsed state
with fluctuating ends.

In general, a polyelectrolyte bearing uniform charge on
its surface tends to stretch under an electric field because of
strong anisotropic polarization along the chain due to counte-
rion cloud shift [13,14,27–33]. However, in a recent work, a
counterintuitive shrinkage was reported in a charged flexible
polyelectrolyte chain under an AC field, manifested as chain
folding [34]. Here, the chain’s folding primarily stems from
the hydrodynamic interactions, while factors such as charges
play a secondary role in the collapse mechanism. Also, the
polarization of ions along with other system-relevant length
scales and timescales such as the chain’s relaxation time ex-
hibits strong coupling with the time period of the applied
field. However, it is preestablished that a dsDNA acts as a
prototypical wormlike semiflexible chain, where the chain’s
bending rigidity dominates over large length scales [77]. Our
findings further substantiate this, where it captures the col-
lapse dynamics even with a generic semiflexible chain similar
to the strong isotropic compression exhibited by DNA under
field in experiments [24,26].

Further, this study of conformational changes in macro-
molecules under strong alternating fields has wider im-
plications in biology. Within the cellular structure, self-
organization and dynamical instabilities cause mechanical
oscillations [78]. These periodic jostling forces might pro-
foundly influence the conformations of the biopolymer
mediated via the cellular fluid. Also, its applicability extends
to dielectrophoresis (DEP) experiments [26,79,80] which in-
volves high oscillatory fields employed for more controlled
manipulation and efficient separation schemes for DNA and
other polymers.
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