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Metal-pad-enhanced resistive pulse sensor reveals complex-valued Braess paradox
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A resistive pulse sensor measures the electrical impedance of an electrolyte-filled channel as particles
flow through it. Ordinarily, the presence of a nonconductive particle increases the impedance of the channel.
Here we report a surprising experimental result in which a microfluidic resistive pulse sensor experiences
the opposite effect: The presence of a nonconductive particle decreases the channel impedance. We explain
the counterintuitive phenomenon by relating to the Braess paradox from traffic network theory, and we
call it the complex-valued Braess paradox (CVBP). We develop theoretical models to study the CVBP and
corroborate the experimental data using finite element simulations and lumped-element circuit modeling. We
then discuss implications and potential applications of the CVBP in resistive pulse sensing and beyond.
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I. INTRODUCTION

Resistive pulse sensing (RPS) [1–4] has long been a fa-
vored technology for microfluidic cytometry due to its simple
sensing mechanism based on measuring electrical impedance.
When a nonconductive particle, e.g., a cell, flows through a
narrow channel, or “pore,” the impedance magnitude mea-
sured across the channel temporarily increases, creating the
eponymous resistive pulse. Node-pore sensing (NPS) [5] in-
troduced the concept of deliberately widening certain regions
within the channel such that when the cell flows through a
wide region, or “node,” the measured impedance decreases
back toward the baseline (i.e., the measured impedance
with no cell present). In order to replicate the impedance
modulation behavior of NPS without using channel width
modulation, we developed a technology called “metal pad
sensing” (MPS). Instead of introducing wider regions within
the channel, we pattern floating-potential metal pads within
a channel of constant width. When the cell flows over the
metal pad, we expect electric current to bypass the cell using
the metal pad as a low-impedance parallel path, resulting in
an impedance decrease back toward the baseline, similar to
the case of a node in NPS. However, we observed a puzzling
result: Under certain conditions, the impedance decreases to
below the baseline! In other words, the presence of a cell
decreased the channel impedance magnitude, contrary to a
typical RPS device. This is surprising because physical intu-
ition suggests that a nonconductive particle can only increase
the channel impedance by blocking current paths. In this
paper, we explain this paradoxical phenomenon, which we
call the “complex-valued Braess paradox” (CVBP). We first
develop its theory using electrical circuit models, and then
corroborate the empirical data using both lumped-component
circuit models and finite element analysis. We conduct a

detailed study of the variables affecting the paradox using
validation devices. Finally, we discuss the implications and
potential applications of the CVBP.

A. Resistive pulse sensing

We observe the CVBP in a microfluidic platform, which
we call the metal pad sensing device. MPS is based on
RPS, a ubiquitous and powerful technology for counting
and sizing particles suspended in electrolyte solution. RPS
consists of two reservoirs connected by an aperture or nar-
row channel. Particles in solution flow through the channel
while the electrical impedance between the reservoirs is con-
tinuously measured. When a nonconductive particle enters
the channel, it causes the resistance to increase temporarily,
creating a “resistive pulse.” The magnitude of the pulse is
proportional to the volume ratio of the particle and channel
(�R/R ∝ Vparticle/Vchannel). Analysis of the impedance vs time
through signal processing results in the number of particles
in a measured volume and a distribution of sizes. When par-
ticles of interest are cells, this technique is called resistive
pulse cytometry [6]. RPS has been used to determine cell
size [7,8], identify cell surface markers [5,9], characterize cell
biophysical properties [10–13], and measure cell membrane
capacitance and cytoplasm conductivity [14–16]. These prop-
erties can provide important insight into fundamental biology
and potentially inform clinical diagnoses.

B. Metal pad sensing

Figures 1(a) and 1(b) show the MPS device, which consists
of two reservoirs joined by a narrow channel. The channel
is embedded in a polydimethylsiloxane (PDMS) slab via soft
lithography and bonded to a glass substrate with prefabricated
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FIG. 1. Metal pad sensing device and surprising results of cell
transit experiment. (a) Three-dimensional render of MPS device
(channel enlarged to show detail). (b) Top view schematic with
the flow direction as indicated. (c) Side view schematic shows the
channel divided into gaps and pad segments and the impedance
measurement circuit. (d) Experimental data show the impedance
measured at four different frequencies as a cell transits though a de-
vice. The channel dimensions were 200 µm × 10 µm × 18 µm (L ×
W × H ), with an 80-µm-long metal pad and 1000 µm × 1000 µm
electrodes. At all frequencies, the cell causes an impedance increase
while traversing through a gap. At higher frequencies, an unexpected
result occurs: The cell causes an impedance decrease while travers-
ing over the pad. This is the complex-valued Braess paradox.

metal electrodes (50 Å Ti/500 Å Pt). One pair of electrodes,
outside of the channel but transverse to the reservoirs, allows
us to apply a voltage across the channel. A floating-potential
“metal pad,” positioned at the center of the channel, does not
source or sink net current and therefore is not considered an
electrode. This metal pad, however, does provide a current
path in parallel with the bulk electrolyte solution that fills the
channel. We refer to the segment of the channel containing
the metal pad as the “pad segment” and the two segments of
the channel outside of the pad segment as “gaps” [Fig. 1(c)].
Inlet and outlet holes are punches through the reservoirs at
both ends of the device, thereby providing inlet and out-
let access and completing the device. MCF-7 cells (ATTC),
18.9 µm mean diameter and suspended in phosphate-buffered
saline (PBS) at a concentration of 4.44 × 105 cells/mL,
flowed through the channel at a constant pressure of 5 mbar
at the inlet using an OB1 flow controller (Elveflow, Paris,
France).

A 3.82-V peak-to-peak multisine stimulus potential con-
sisting of four frequencies (1, 10, 50, and 400 kHz with
phases of −90 ◦, 0 ◦, 90 ◦, and 180 ◦, respectively) was applied
across the electrodes [Fig. 1(c)]. The resulting current was
measured using a transimpedance amplifier and sampled with
a PCI-6251 data acquisition system (DAQ) (National Instru-

ments, Austin, TX) at a rate of 1 MHz, digitally quadrature
demodulated at each frequency, and digitally filtered to re-
move noise and interference. The impedance Z at each
frequency was calculated as Z = −RTIA(Ṽstim/Ṽfilt ), where
RTIA is value of the transimpedance gain resistor, Ṽstim is
the stimulus voltage phasor, and Ṽfilt is the voltage phasor
measured at the DAQ, after filtering.

Figure 1(d) shows impedance magnitude vs time for an
MCF-7 cell transiting the channel, with each portion of the
impedance signal highlighted according to whether the cell
is traversing a gap [red (darker)] or pad segment [yellow
(lighter)]. Due to imperfections during the device fabrica-
tion process, the first gap’s portion of the signal is larger in
amplitude and shorter in duration than that of the second.
At all frequencies, the cell’s presence in the gaps causes
the impedance to increase, consistent with the principles of
RPS. When the cell traverses the pad segment, the impedance
decreases toward baseline, with greater decrease at higher
frequencies. At 50 kHz, we observe the paradoxical phe-
nomenon: The impedance actually dips below the baseline
by −0.71%. In other words, the presence of a cell, which
is considered a nonconducting particle at frequencies below
1 MHz [17], decreases the channel impedance, but only
when a metal pad is also present. We call this phenomenon
the complex-valued Braess paradox, which we explain in
greater detail in the following sections. The concept of RPS
impedance modulation using floating-potential metal pads
was first proposed by De Ninno et al. [18]; however, no
CVBP was observed, likely because the metal pads were
too short (30 µm), the frequency was too high (�0.5 MHz),
and the particles were too small (�8 µm diameter within a
40 µm × 21 µm cross-section channel). The CVBP’s depen-
dence on metal pad length, frequency, and particle size will
be explained in Sec. II A and validated in Sec. III.

C. Reproducibility

We have provided raw data, analysis code, and plotting
scripts (all in MATLAB) for generating figures at [19]. The
same repository also contains our MPS device COMSOL model
and AutoCAD drawings of the photolithography masks used
to fabricate our devices. Software is additionally provided in
a GitHub repository [20].

D. Braess paradox

We explain the counterintuitive phenomenon observed in
our MPS experiments through the Braess paradox from trans-
portation network theory. The classical Braess paradox [21]
states that the addition of a path to a congested traffic network
can counterintuitively increase congestion instead of allowing
a more efficient flow distribution. An example network is
shown in Fig. 2(a). Users travel from the left node to the
right node, and each path has a different cost. Specifically,
traversing path i has a cost Ci (travel time in minutes) that is
a function of its flow fi (number of users per unit time). Paths
a and d (taxi) have cost functions Ca = 10 fa and Cd = 10 fd .
Paths b and c (walking) have cost functions Cb = fb + 40 and
Cc = fc + 40. Path e (high-speed train) has negligible cost
Ce = 0.
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FIG. 2. From traffic network to MPS circuit model: Connections
between different Braess networks. (a) Classical Braess paradox:
Adding path e counterintuitively increases the total cost (travel
time). (b) Electrical Braess paradox: Analogous DC circuit exhibits
identical behavior. (c) Complex-valued Braess paradox: Adding
path e counterintuitively increases impedance magnitude near the
RC cutoff frequency. Normalized impedance magnitude is plot-
ted against normalized frequency, both axes logarithmically scaled.
Lines are analytical; circles are experimental data (Ra = 10.01 k�,
Rd = 9.999 k�, Cb = 9.98 nF, Cc = 9.92 nF, R = (Ra + Rd )/2, and
C = (Cb + Cc )/2). The subscript of each component corresponds to
the letter of each path as depicted in (a). (d) R + C/(R) circuit:
Simplistic approximation of the MPS device also exhibits the CVBP.
Normalized impedance magnitude is plotted against normalized fre-
quency, both axes logarithmically scaled. Lines are analytical; circles
are experimental data (same circuit components as (c) except with-
out capacitor Cc). (e) Differential CVBP (DCVBP): This version of
the CVBP applies to differential changes in Re. The derivative of
impedance magnitude with respect to Re, plotted against normal-
ized frequency (logarithmically scaled), reveals different paradoxical
regions for different ratios of Re/R as well as different maximum
paradoxical effects. (f) For the same circuit as in (e), with Re =
R, normalized change in channel impedance magnitude is plotted
against normalized change in pad segment resistance. Each curve
depicts a different normalized frequency. Any point in the bottom
right quadrant indicates CVBP, while any point at which the tangent
line has negative slope indicates DCVBP.

Suppose that, in one unit of time, four users travel through
the network. If path e is absent (represented as an open
switch), solving the equilibrium flow is straightforward: Two
users take path ab, two users take path cd , and both paths cost
Cab = Ccd = 10(2) + (2) + 40 = 62 minutes. If we close the
switch to add path e, the equilibrium shifts. Each user has a
selfish incentive to switch to path aed to improve their own
cost at the expense of all others. Ultimately, every user takes
path aed , which costs Caed = 10(4) + 0 + 10(4) = 80 min-
utes, and has no incentive to switch back. The system reaches
a stable but suboptimal equilibrium. This is the essence of the
Braess paradox.

Braess and Braess-like paradoxes have been described
and studied in a wide range of fields: Communication net-
works [22,23], distributed computer systems [24], power
grids [25,26], mesoscopic physics [27,28], quantum physics
[29,30], fluid dynamics [31], biological systems [32,33], and
electrical and mechanical systems [34]. Most relevant are
electrical analogs of the Braess paradox. For example, in the
DC circuit shown in Fig. 2(b), current and voltage replace
“flow rate” and “cost,” respectively, and electrical charges
are the network users. The equations governing the circuit
(Ohm’s law and Kirchhoff’s voltage and current laws) take the
same form as in the traffic example. With I = 4 A, Ra = 10 �,
Rb = 1 �, and Vb = 40 V, the equations become identical and
the same paradox occurs: Closing switch e counterintuitively
increases the voltage V from 62 to 80 V.

An analysis of the Braess paradox in several DC circuits
is presented in [35] along with experimental confirmation
using only passive components (Zener and Shockley diodes)
to implement near-constant voltage drops.

In the following sections, we will analyze several circuit
models that more closely resemble our single-pad MPS de-
vice. We use these models as stepping stones on our journey
to connect the classical Braess paradox to the CVBP that we
originally observed in our experiments.

E. Complex-valued Braess paradox

We present a new Braess-like paradox that occurs in two-
port AC circuit networks. The “flow rate” is the current
magnitude and the “cost” is the voltage magnitude, since
both current and voltage are complex phasors. If the cir-
cuit contains only passive, linear elements, then the voltage
across the circuit’s two ports is directly proportional to the
current through them, and the ratio of voltage to current is the
circuit’s equivalent complex impedance. The CVBP is thus:
The addition of a path to a circuit containing only passive,
linear components (and no resonance) can counterintuitively
increase the magnitude of the circuit’s total impedance. While
the paradox could alternatively be defined using the real part
(resistance) or imaginary part (reactance) of the impedance,
we will focus, instead, on the magnitude for simplicity and
consistency.

Figure 2(c) shows a symmetric RC bridge circuit example.
With switch e open, the circuit is a parallel combination of
two identical series RC circuits. With switch e closed, the
circuit becomes a series combination of two identical parallel
RC circuits. Solving for both impedances at the RC cutoff
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frequency ω = 1/RC, we obtain

Zopen

(
ω = 1

RC

)
= 1

2

(
R + 1

jωC

)
= R

√
2

2
∠ − 45 ◦,

Zclosed

(
ω = 1

RC

)
= 2

(
1

1/R + jωC

)
= R

√
2∠ − 45 ◦.

At the cutoff frequency, adding path e increases the
impedance magnitude by a factor of 2 while the phase angle
stays the same. The cutoff frequency satisfies the CVBP, but
not all frequencies do. The open-switch and closed-switch
impedance spectra are plotted in Fig. 2(c) as normalized
impedance magnitude |Z|/R vs normalized frequency ωRC,
both unitless quantities on a logarithmic scale. We call the
region around ωRC = 1 in which the paradox occurs the
“paradoxical region” and find its boundary points by solving
the quadratic |Zopen(ω)| = |Zclosed(ω)| in ω. The CVBP oc-
curs when 2 − √

3 ≈ 0.268 < ωRC < 3.732 ≈ 2 + √
3, and

achieves a maximum paradoxical increase of a factor of 2 at
ωRC = 1. The analytical impedances are corroborated with
experimental data (plotted as circles).

Figure 2(d) shows another example, which we call the
“R + C/(R)” circuit. It is identical to the previous circuit but
missing one capacitor. We again calculate Zopen and Zclosed,
whose expressions are omitted for brevity. In short, the CVBP
occurs when ωRC > 1/

√
2 ≈ 0.707, and achieves a maxi-

mum paradoxical increase of a factor of
√

4/3 ≈ 1.155 at
ωRC = √

2 ≈ 1.414. The removal of the second capacitor
decreases the strength of the CVBP and shifts the paradoxi-
cal region. Again, the analytical impedances are corroborated
with experimental data.

The R + C/(R) circuit constitutes the simplest lumped-
component circuit model of the single-pad MPS device. The
closed-switch circuit is a resistor in series with a parallel RC
circuit, denoted as “R + C/R.” When the switch is opened,
the circuit changes to “R + C.” Similarly, in the single-pad
MPS device, a cell entering the pad segment causes a change
between two states, which we call “no cell” and “cell over
pad.” In the “no cell” state, the pad segment, shown superim-
posed on the circuit in Fig. 2(d), can be approximated as a
parallel R/C circuit. The path through the electrolyte solution
is purely resistive (at low frequencies) while the path through
the metal pad bypassing the electrolyte solution is mostly
capacitive due to the electrical double layer (EDL) [36]. The
voltage electrodes also have an EDL capacitance; however,
their impedance contribution is negligible at our frequencies
of interest, and we can exclude them from the model. Finally,
the electrolyte solution in the gaps presents a series resistance.
Thus, the “no cell” state corresponds to the R + C/R circuit,
and the “cell over pad” state corresponds to the R + C circuit.
This assumes that the cell completely blocks the resistive path,
acting like an open switch. This is the inverse of the CVBP
as previously described: Removing one path from the circuit
paradoxically decreases the impedance magnitude.

F. Differential complex-valued Braess paradox

While the R + C/(R) circuit model is useful for connecting
the Braess paradox to the real single-pad MPS device, a cell
in the pad segment acts nothing like an open switch. In fact, it

only increases the local resistance by a small amount which
can be predicted from cell diameter and channel geometry
using formulas from classical RPS theory [2,3,37,38]. In prac-
tice, the resistance increase is typically only a few percent
of the total channel impedance magnitude. Therefore, we re-
quire a different circuit model to study how small resistance
changes affect total impedance magnitude.

Figure 2(e) shows an R + R(+�R)/C circuit that has a
variable resistor Re. Unlike in the previous circuit [Fig. 2(d)],
the resistance in parallel does not switch from R to infinity. In-
stead, Re increases by �Re. Consequently, the total impedance
magnitude |Z| changes by �|Z|. When the change in Re is
infinitesimally small, the impedance magnitude changes ac-
cording to the derivative ∂|Z|/∂Re. Because the CVBP occurs
in the R + C/(R) circuit and |Z| is a continuous differ-
entiable function of Re, then there must exist values of Re

between R and ∞ at which ∂|Z|/∂Re is negative—increasing
Re decreases |Z|. We call this phenomenon the differential
complex-valued Braess paradox (DCVBP). Figure 2(e) plots
the derivative ∂|Z|/∂Re against frequency (normalized by the
time constant ReC and logarithmically scaled) for different
values of Re (normalized by R). As Re becomes small relative
to R, the DCVBP becomes stronger and the paradoxical re-
gion grows. As Re becomes large, the paradox asymptotically
disappears. When Re = R, the DCVBP occurs at frequencies
ωReC >

√
2 ≈ 1.414 and achieves a maximum paradoxical

effect of approximately −68.53 m�/� at ωReC ≈ 2.358.
This analysis also allows us to address small, finite changes

in Re, such as those caused by a cell transit event in our single-
pad MPS device. Any finite change in |Z| caused by a finite
change in Re can be calculated by the integration

�|Z| =
∫ Re+�Re

Re

∂|Z|
∂r

dr.

Alternatively, we can calculate �|Z| directly from the circuit
with

�|Z| =
∣∣∣∣ 1

1/(Re + �Re) + jωC

∣∣∣∣ −
∣∣∣∣ 1

1/Re + jωC

∣∣∣∣.
When any positive �Re results in a negative �|Z|, we will also
refer to that as a CVBP. Thus, the definition of the CVBP can
be expanded as follows: Increasing the impedance of a path in
a circuit containing only passive, linear components (and no
resonance) can counterintuitively decrease the magnitude of
the circuit’s total impedance.

Figure 2(f) displays both the CVBP and DCVBP on the
same plot. For the circuit in Fig. 2(e), we plot �|Z| vs �Re for
the case where Re = R. The values on both axes are expressed
as a percentage of the baseline impedance magnitude |Z|.
Each curve shows a different frequency, normalized by the
time constant ReC. Any point in the bottom right quadrant
of the plot indicates CVBP, while any point at which the
tangent line has negative slope indicates DCVBP. This type of
diagram will prove insightful for studying our MPS devices.

II. METHODS

While we established a theoretical framework to explain
the CVBP in our original MPS experiments, we seek a deeper
understanding of the phenomenon and the factors that affect it.
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FIG. 3. Comparison of three MPS device models. (a) Table of diagrams depicts three models (columns) of a single-pad MPS device under
three different conditions (rows). The lumped-component circuit (LCC) model can be viewed as a higher-fidelity version of the R + R/C
model, meant to more closely match the 3D finite element analysis (FEA) model. It achieves this by breaking the distributed EDL impedance
into many small compartments, resulting in an RC network. In addition to the channel, the FEA model diagram includes the electrodes V+
and V− as well as current streamlines between them. The additional impedance of the electrolyte solution and electrode EDLs outside of the
channel can also be included in both circuit-based models using additional resistors and RC networks, but it is negligible at our frequencies of
interest. For the purposes of this figure, this additional impedance is not considered in any of the models. (b) Impedance spectra under three
different conditions for all three models, depicted as Bode and Nyquist plots, highlight the differences between the R + R/C model and the
LCC model. (c) The “pad vs gap response diagram” for the LCC and FEA models confirms that they predict almost identical behavior up to a
gap response of 10% above baseline. This plot can be contrasted with Fig. 2(f), which closely resembles the pad vs gap response diagram of
the R + R/C model.

Therefore, we require (1) a higher-fidelity MPS device model
to make predictions based on our theory and (2) experimental
validation.

A. Higher-fidelity MPS models

The circuit model of the form R + R/C is straightforward
to analyze and demonstrates the CVBP, but it is too simplistic
to accurately predict the behavior of real MPS devices. For a
more accurate, higher-fidelity model, we performed finite el-
ement analysis (FEA) of a simulated single-pad MPS device.
Specifically, we defined the device as a rectangular prism of
width W = 10 µm and height H = 20 µm, filled with PBS. A
metal pad of length LP = 80 µm at the center of the channel
divided the channel into two gaps of length LG = 40 µm.

A side view for three different cell positions within the chan-
nel is shown (not to scale) in the third column of Fig. 3(a).
We then defined a constant-magnitude AC current of Ĩ = 1 µA
through the channel, and calculated the voltage Ṽ between the
leftmost plane of the first gap and the rightmost plane of the
second gap. We computed impedance as the ratio of voltage
to current, Z = Ṽ /Ĩ . We modeled the EDL between the metal
pad and PBS as a distributed impedance with zero conductiv-
ity σ = 0 S/m and specific capacitance (i.e., capacitance per
unit area) Cs = 0.2 F/m2. We defined the PBS with resistivity
ρ = 0.625 �m and relative permittivity εr = 70 and modeled
the cell as a sphere with zero conductivity σ = 0 S/m and
εr = 60. In the case that the cell’s spherical diameter ex-
ceeds the channel width, we assume that it deforms into an
oblate spheroid of equal volume. We consider any impedance
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contributions originating from outside of the channel, includ-
ing the EDL between the PBS and the electrodes V+ and V−,
to be negligible.

A fully 3D FEA model is computationally expensive, so
we also sought to develop a lumped-component circuit (LCC)
model that can closely match the FEA model. The first of
two models we developed is called the LCC slice model
[second column of Fig. 3(a)], which can be understood as a
straightforward extension of the R + R/C model [first column
of Fig. 3(a)]. To better approximate the distributed nature of
the metal pad’s EDL impedance, we make N + 1 “slices”
(represented by dashed lines) to divide the pad segment into
N identical “blocks” along its length, such that each block is
a rectangular prism of length lP = LP/N , width W , and height
H , and each slice is a W × H rectangle. Each slice is assumed
to be an isopotential surface, represented by a circuit node
called a “slice node.” Each metal pad is also an isopotential
surface, represented by a circuit node called a “pad node.” For
each pad segment, every slice node is connected to the under-
lying pad node via a capacitance cP = CslpW . The edge cases
of the leftmost and rightmost slices have half the capacitance.
Next, adjacent slice nodes are connected via a resistance
rP = ρlP/(W H ). The resistance across each gap is similarly
modeled as RG = ρLG/(W H ). When a cell is present in the
channel, it introduces a purely resistive increase �R. Because
equations from classical RPS theory [37] do not consider
particle sizes exceeding the channel size, we compute �R
with FEA simulation. Finally, this �R is distributed between
the block resistances rP and/or gap resistances RG according
to the proportion of the cell’s volume occupying each block
and/or gap. For example, in the third row of Fig. 3(a), the
cell is shown occupying two blocks: Block n and block n + 1,
with proportion pn of its volume in block n and proportion
pn+1 = 1 − pn of its volume in block n + 1. The resistance of
block n increases by pn�R and the resistance of block n + 1
increases by (1 − pn)�R.

The second and more accurate LCC model we developed
is called the LCC voxel model. The main difference between
the slice model and the voxel model is that the latter allows for
curved isopotential surfaces, which occur wherever electric
field lines curve to enter a metal pad [as shown in the third
column of Fig. 3(a)]. The full details of the voxel model
are presented in the Appendix, but the basic concept is that
each gap or pad segment is divided along its length and
its height to form a two-dimensional (2D) array of voxels.
The voxel edges oriented perpendicular to the page (line seg-
ments of length W ) are assumed to be isopotentials, and are
represented by circuit nodes called “voxel nodes.” Adjacent
voxel nodes are connected via resistors, and voxels located
above a metal pad have their voxel nodes connected to the
corresponding pad node via capacitors. The presence of a cell
is modeled by increasing the resistance of each resistor in
proportion to the partial volume of the cell contained within
the volume of that resistor’s corresponding voxels, such that
the total channel resistance increases by �R, which is com-
puted from FEA simulation. Finding the correct resistance
values to achieve the desired �R is nontrivial and requires
multiple iterations of solving for hundreds or thousands of
node voltages and branch currents. Although the LCC voxel
model is more computationally expensive than the LCC slice

model, it closely matches the FEA model with much less
computation.

Figure 3(a) shows the LCC slice model and FEA model un-
der three distinct conditions: “no cell,” “cell in gap,” and “cell
over pad.” The R + R/C model is also shown for reference.
Figure 3(b) compares different models’ predicted impedance
spectra as Bode and Nyquist plots reflecting the three con-
ditions, with a d = 13.39 µm diameter cell causing a �R of
9.86% over the baseline for all four models. For this com-
parison, the R + R/C model used C = CsLPW/10, the LCC
slice model used N = 250, and the LCC voxel model used
voxels of size 1.818 µm × 10 µm × 1.818 µm (L × W × H).
The CVBP is predicted in all four models, but not at the
same frequency. The R + R/C model predicts 52.7 kHz as the
start of the paradoxical region, the LCC slice model predicts
29.8 kHz, and the LCC voxel model and FEA model both
predict 34.5 kHz.

Figure 3(c) directly compares the LCC voxel model and
FEA model using a “pad vs gap response diagram,” which is
similar to the diagram in Fig. 2(f), but with one minor devia-
tion. The horizontal axis now plots the normalized change in
impedance magnitude when the cell occupies a gap, which
is almost equal to �R. The vertical axis is the same as in
Figure 2(f), but more explicitly spelled out to be the normal-
ized change in impedance magnitude when the cell is directly
over the metal pad. We define (|Zgap| − |Znone|)/|Znone| as the
“gap response” and (|Zpad| − |Znone|)/|Znone| as the “pad re-
sponse.” For each frequency, plotting pad response against gap
response produces a pad vs gap response curve. A collection
of such curves forms the pad vs response diagram [Fig. 3(c)],
which shows that the LCC voxel model and FEA model agree
very well, especially for smaller cell diameters. Compared to
the R + R/C model, whose pad vs gap response diagram
would look nearly identical to Fig. 2(f), the LCC voxel model
and FEA model predict stronger paradoxical effects, with a
maximum DCVBP slope of approximately −83 m�/� at
61.7 kHz.

One major difference between the LCC voxel model and
the FEA model is that the former, computed using LTSPICE,
is capable of replacing each capacitor with a constant phase
element (CPE). A CPE can be regarded as a nonideal capaci-
tor, with an impedance defined by ZCPE = 1/(( jω)αQ), where
Q is the CPE parameter, analogous to capacitance, and α is
the CPE exponent, which can be understood as an ideality
constant. When α = 1, the CPE becomes an ideal capacitor
and Q is its capacitance. When α = 0, the CPE becomes a
resistor and Q is its conductance. In practice, a polarizable
electrode/electrolyte interface, such as Pt/PBS, can be accu-
rately modeled by a CPE with α < 1 [39]. The FEA model
implemented using COMSOL does not have this capability.
Since the LCC voxel model performs similarly to the FEA
model, is much faster to compute, and has the added flexibility
of using CPEs, it is our model of choice for simulating MPS
devices.

From our LCC models of MPS devices, we can gain intu-
ition about the factors affecting the extent to which the CVBP
(and DCVBP) occur when a cell traverses over a metal pad.
The two primary factors are (1) cell size relative to channel
size and (2) stimulus frequency relative to a critical frequency
of the pad segment. We expect that, for a given MPS channel,
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the larger the cell is, the larger the �R is, and the stronger the
CVBP can be. We also expect the existence of a paradoxical
region for the DCVBP starting at some critical frequency.
At frequencies below the critical frequency, introducing a
cell will increase the impedance magnitude. At or above the
critical frequency, the DCVBP occurs; introducing a cell will
decrease the impedance magnitude. As frequency increases,
the DCVBP should asymptotically disappear.

The actual value of the critical frequency should vary in-
versely with an RC time constant of the pad segment based
on its geometry and electrical properties. For example, if
the resistivity of the electrolyte solution increases, the RC
time constant increases, and the critical frequency should
decrease, assuming the specific capacitance (or specific CPE
parameter and CPE exponent) of the metal pad EDL is un-
affected. Alternatively, if the specific capacitance increases,
the critical frequency should also decrease. If the length of
the metal pad increases, both R and C of the pad segment
increase, and the critical frequency should therefore decrease.
This means that very long metal pads may show the CVBP
even at low frequencies while very short metal pads may
require much higher frequencies to observe any impedance
modulation.

B. Metal pad array devices

To investigate the effects of metal pad length, stimulus
frequency, and cell size on impedance modulation in real MPS
devices, we designed the metal pad array device, which has
multiple metal pads of varying length patterned within a long
channel. As a straightforward concatenation of single-pad
MPS channels, the metal pad array device has a total channel
impedance that is simply the series combination (i.e., sum)
of the impedance contributions of each individual single-pad
MPS channel. When a cell enters a pad segment, it only
increases the local impedance, so the impedance contribu-
tions of all other pads and gaps can be considered constant.
Therefore, if the cell causes the total measured impedance to
decrease, then the CVBP occurs for that particular triplet of
metal pad length, stimulus frequency, and cell size.

We fabricated two different sizes of a “metal pad array”
device: A narrower device with a channel 20.0 µm × 21.5 µm
(W × H), and a wider device with a channel 24.2 µm ×
28.5 µm (W × H). Device fabrication was as described in
Sec. I B. Both devices have a total channel length of Ltotal =
1590 µm, comprising seven pad segments of lengths 10, 20,
40, 80, 160, 320, and 640 µm separated by gaps LG = 40 µm
long. A pair of 1000 µm × 1000 µm electrodes is located out-
side of the channel. Metal traces connect the electrodes to
contact pins that interface with the impedance measurement
system. A microscope image of the wider pad array device is
shown in Fig. 4(a).

MCF-7 cells (ATTC), 18.9 µm mean diameter suspended
in PBS at a concentration of 4.44 × 105 cells/mL, flowed
through the device at a constant pressure of 1 mbar at the inlet
using a microfluidic flow controller. To remove temporary ob-
structions caused by cellular debris, large cells, or clusters of
cells, the pressure was occasionally increased. While the cells
were flowing through the device, the impedance at several
specific frequencies was continuously measured.

µµ

FIG. 4. Study of impedance modulation using metal pad array
devices. (a) Microscope image of a metal pad array device shows
seven pads of varying lengths patterned within a long channel
(Ltotal = 1590 µm, W = 24.2 µm, and H = 28.5 µm), separated by
gaps of length LG = 40 µm. (b) As a cell traverses the channel from
left to right, it passes through each gap and pad segment, modu-
lating the measured impedance by a different amount. Normalized
impedance magnitude is plotted against time for six frequencies,
each portion of the signal highlighted according to whether the cell
occupies a gap [red (darker)] or pad segment [yellow (lighter)]. Left,
smaller cell example; right, larger cell. Special points are marked (as
squares and diamonds) to help illustrate the construction of the pad
vs gap response diagram. (c) Left, construction of 320-µm-long pad
vs. gap response diagram using specially marked points from (b);
right, same, but for 640-µm-long pad.
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C. Multisine impedance measurement

A two-point impedance measurement was performed us-
ing the circuit shown in Fig. 1(c) with a transimpedance
gain resistor of RTIA = 1.00 M�. The stimulus voltage Vstim

was a multisine waveform consisting of seven cosines with
frequencies 2.5, 6.5, 14.5, 34.5, 85.5, 204.5, and 498.5 kHz
and phases 0 ◦, 128.767 ◦, 152.721 ◦, 139.408 ◦, 316.434 ◦,
290.386 ◦, and 160.713 ◦, respectively. The frequencies were
selected to be approximately logarithmically spaced and to
avoid potential interference from intermodulation products
and nearby electrical equipment. The phases were numeri-
cally optimized via gradient descent with repeated random
initialization to minimize the peak-to-peak amplitude of the
multisine waveform. Each constituent cosine had a peak-to-
peak voltage of 400 mV, adding up to a multisine peak-to-peak
voltage of 2.11 V. The resulting current flowing through
the channel was converted to a voltage using the tran-
simpedance amplifier and sampled at a rate of 1 MHz by the
DAQ, which also generated the stimulus voltage waveform
at the same sampling rate. The sampled voltage waveform
Vmeas was digitally quadrature demodulated multiple times to
extract the voltage phasor Ṽmeas at each frequency. The mea-
sured voltage phasors were then digitally filtered to remove
noise and interference, resulting in Ṽfilt. The impedance Z
at each frequency was calculated as Z = −RTIA(Ṽstim/Ṽfilt ).
Finally, the impedance measurements were compensated us-
ing open and reference load compensation [40] to reduce
artifacts caused by stray capacitances in the measurement
circuit.

III. RESULTS

Impedance signals from two example cell transit events
are shown in Fig. 4(b) as normalized impedance magnitude
with respect to the baseline vs time. Only six frequencies
are shown because the highest frequency was outside of the
bandwidth of the circuit and suffered from excessive noise
and impedance artifacts. From left to right, we can see the
cell traversing the channel, passing through each gap and
pad segment, highlighted in red (dark gray) and yellow (light
gray), respectively. The shape of the signal is as expected.
At the lowest frequency, there is very little impedance mod-
ulation except for the longest metal pads. As the frequency
increases, the degree of modulation begins to increase for
all pad lengths. At 14.5 kHz, we observe the first sign of
CVBP with the cell over the 640-µm-long metal segment.
Focusing only on the 640-µm-long pad response, we observe
that as the frequency continues to increase, the CVBP initially
becomes more apparent, then asymptotically disappears. The
same trend is observed for the shorter-length metal pads, but
with each experiencing the CVBP within a different frequency
range.

A. Data processing

To analyze the modulation behavior of each cell tran-
sit event, we employed a variety of signal processing and
optimization techniques. First, the compensated impedance
signal was low-pass filtered to 250 Hz bandwidth. A tem-
plate of a typical cell transit event was constructed and

used in a correlation-based detector to detect transit events
automatically in the data. The template was stretched or
compressed to many different temporal durations and the de-
tection process was repeated to account for transit events with
different transit times. Automatically detected events were
ranked by normalized correlation coefficient [41], manually
vetted to remove false positives and coincident events, and
saved for further processing. Although we now had the start
time and end time of each event, we could not automatically
measure the gap response and pad response values due to
shape mismatch between the signal and the template caused
by nonuniform velocity during transit. A cell may experience
slight acceleration or deceleration as it traverses the channel,
causing temporal distortion in its transit signal. Meanwhile,
a larger or stiffer cell may take a non-negligible amount
of time to deform before it can squeeze into the channel,
causing the first gap’s portion of the signal to be temporally
elongated. Both of these factors were taken into account by
utilizing a deformable transit signal model, which included an
acceleration term as well as a deformation time term as param-
eters. We used nonlinear least squares optimization to find the
temporal parameters that minimized the mean absolute error
(MAE) between the deformable template and each transit
signal, thus refining our estimates for the start times and end
times of each gap portion and metal pad portion of the transit
signal.

We extracted all gap and pad response values from each
transit signal by computing the average impedance magnitude
within a window located at the center of each gap or metal
pad portion of each signal, leading to eight gap measurements
and seven metal pad measurements per transit. We estimated
the “no cell” baseline impedance by averaging the values
immediately before and immediately after the transit event.
Finally, for each metal pad portion of the signal, we averaged
the two “cell in gap” magnitudes immediately to the left and
right, subtracted the baseline magnitude, then divided by the
baseline magnitude to arrive at the gap response as previously
defined. The pad response was similarly computed by tak-
ing the “cell over pad” magnitude, subtracting the baseline
magnitude, then dividing by the baseline magnitude. This pad
and gap response measurement process was repeated for every
frequency channel, resulting in 42 gap response values and 42
pad response values for each cell transit event (6 frequencies
× 7 metal pad lengths).

B. Pad versus gap response diagram

We analyze the impedance modulation at each frequency
for each metal pad length using pad vs gap response dia-
grams as described in Sec. II A. Figure 4(c), left, illustrates
the construction of the response diagram for the 320-µm-
long pad. Gap response and pad response values (gi and pi)
are extracted from the impedance signal at a frequency of
34.5 kHz [Fig. 4(b), left column, fourth row]. The response
value corresponding to the 320-µm-long pad is denoted as p6

[purple (dark gray) diamond]. The average of its two neigh-
boring gap response values is (g6 + g7)/2 [purple (dark gray)
squares]. Thus, on the response diagram, a point is placed at
(g6 + g7)/2, p6) to represent 34.5 kHz [purple (dark gray)].
The same process is repeated to place a point representing

014408-8



METAL-PAD-ENHANCED RESISTIVE PULSE SENSOR … PHYSICAL REVIEW E 108, 014408 (2023)

µ µ

µ µ

µ µ

µ µ

µ µ

µ µ

FIG. 5. Pad vs gap response diagrams simultaneously reveal the effects of pad length, frequency, and cell size. (a) Pad vs gap response
diagrams for narrower (W = 20.0 µm, H = 21.5 µm) metal pad array. Each subplot corresponds to a different length pad. N = 116 cell transit
events are plotted as points on each axis, with each color depicting a different frequency. Circles are the LCC model’s predicted pad vs gap
responses for a few different cell diameters. Solid lines are quadratic fits to the LCC model predictions. Fitted CPE parameters qedl and α are
shown for each pad length. Root-mean-square error (RMSE) and MAE of the model fit are reported below. (b) Same as (a), but for the wider
(W = 24.2 µm, H = 28.5 µm) pad array, N = 125 cell transit events.

85.5 kHz [green (light gray)]. We now consider a different,
larger cell [Fig. 4(b), right column], with gap and pad response
values denoted using uppercase Gi and Pi. The same process
produces two more points, one purple (dark gray) and one
green (light gray). After this entire procedure is repeated for
many cells of different sizes, the points trace out pad vs gap
response curves at each frequency, which begin to resemble
the analytical and simulated curves in Fig. 3(c). The pad vs
gap response diagrams for all other metal pad lengths, includ-
ing the 640-µm-long pad [Fig. 4(c), right], are constructed in
the same manner.

Figure 5(a) shows response diagrams for the narrower
metal pad array device and Fig. 5(b) shows response di-
agrams for the wider metal pad array device. For both
devices, plots of the 10-µm-long metal pads are not shown

because they are not significantly different from those of the
20-µm-long metal pads, and both lengths show no discernible
modulation. For longer metal pads, we find, as expected, that
as the metal pad lengthens, the critical frequency decreases
such that the same frequency may experience a greater de-
gree of modulation. The modulated impedance magnitude
dips below the baseline value but asymptotically approaches
the baseline as the frequency and/or metal pad length
increases.

To estimate the maximum DCVBP slope that appears
in this data set, we can fit a line through the origin
to each set of points. The steepest negative slope we
observe is −223.8 m�/�, 95% confidence interval (CI)
(−0.2278,−0.2199), for the 160-µm-long metal pad at
204.5 kHz.
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C. LCC model fitting

We show that the data not only follow the qualitative trend
predicted by the LCC models, but also quantitatively match
the LCC slice model by performing a model fit for both the
narrower device and the wider device. We use the LCC slice
model for faster model convergence while retaining adequate
accuracy. For each metal pad array device, we create an LCC
model using the channel geometry and resistivity, then solve
for the specific CPE parameter and CPE exponent for each
pad that best fit the data. Specifically, we fix the LCC model’s
channel width and height to be the same as the measured
values and set all other channel geometry (e.g., the lengths
of the model’s gaps and metal pads) to the designed values.
The model’s PBS resistivity is set to ρ = 0.625 �m. We then
solve for the best fitting CPE parameters, namely, qedl (i.e.,
CPE parameter per unit area) and α, for each metal pad using
nonlinear least squares optimization. We sought to minimize
the MAE between the pad response values of the data and
quadratic fits of the LCC model predictions. In Fig. 5, LCC
model predictions for several cell diameters are shown as
circles, while the quadratic fits through those circles are dis-
played as solid lines. We opted to minimize the MAE between
the data and the quadratic curves, which are constrained to
pass through the origin, because computing the LCC model’s
predicted pad response value for every gap response value
represented in the data was too computationally expensive.
We chose to minimize the MAE rather than the root-mean-
square error (RMSE) to reduce the influence of any outliers
in the data, but we found that minimizing the RMSE yielded
nearly identical results. Below the plots in Fig. 5, we report
the RMSE and MAE of the fitted LCC models in both abso-
lute and relative terms. For example, in Fig. 5(b), the RMSE
between the predicted pad response values of the LCC model
and the measured pad response data, evaluated at each mea-
sured gap response value, is 3.75% of the root-mean-square
value of the measured pad response data. Similarly, the MAE
of the LCC model’s predicted pad response values relative to
the mean absolute value of the measured pad response data is
3.80%. For the narrower pad array device, Fig. 5(a) shows a
similarly good model fit, with a relative RMSE of 4.23% and
a relative MAE of 3.74%.

We found that in order to get an acceptable fit, it was
necessary to allow the model to use CPEs rather than ideal
capacitors, and to use different CPE parameters for each
metal pad EDL. The underlying reason that each metal pad
EDL would have different properties is unknown. Numer-
ous values for the CPE parameters of an EDL between PBS
and shiny platinum are reported in the literature (e.g., [42]
found a specific CPE parameter of qedl = 0.1393 Ssα/m2 with
CPE exponent α = 0.8012), but electrode/electrolyte inter-
faces are complex systems that can be unstable and difficult to
model. Anything from metal film thickness and microstruc-
ture to chemical reactions at the interface could potentially
alter the CPE parameters of an EDL. Furthermore, unlike the
EDLs in the parallel platelike devices in [42], the EDLs in
our devices operate within nonuniform electric fields, which
may potentially cause their behavior to deviate from the CPE
model due to nonlinear effects. Regardless, we do not seek to
predict or explain the precise CPE parameter values of metal
pad EDLs, only to explain the impedance modulation effects

caused by metal pads while using CPEs as part of the LCC
model.

IV. DISCUSSION

In this study, we have described a surprising phenomenon
that can occur during the operation of a microfluidic tech-
nology called metal pad sensing (MPS). We have developed
a theory for the CVBP (and DCVBP) in MPS using both
FEA and LCC modeling. By leveraging these models, CVBP
and DCVBP effects can be predicted not only in MPS, but
potentially in a multitude of natural and engineered systems.
The paradox can either be avoided or exploited to design
scientific experiments or improve device designs.

The purpose of MPS is to modulate an RPS impedance
signal using metal pads. By modulating the signal, we gain
information about the cell’s position along the microchannel
without requiring additional electrodes or high-speed cam-
eras. This is applicable to any technology that uses a cell’s
transit time as a biomarker or distinguishing feature, as in
[5,9–11,13]. Compared to other RPS signal modulation tech-
niques, MPS-based modulation has a number of advantages.
Metal pads can be added to an RPS device with minimal
changes in the fabrication process, whereas the method of
[43] requires a complex electrode design. Another benefit
of RPS signal modulation is coincidence resolution [43,44],
where signal processing can resolve overlapping RPS sig-
nals caused by multiple particles simultaneously occupying
the sensing region. Many microfluidic devices squeeze cells
using fixed-width channels to interrogate mechanical proper-
ties [10,11,13,45]. These channels cannot be modulated by
varying the channel width as in [5], but metal pads can be
readily applied to enable coincidence resolution, leading to
higher throughput and less data loss.

Regardless of the reason for RPS signal modulation,
stronger modulation may be desired to increase the signal-to-
noise ratio (SNR). In the context of coincidence resolution,
stronger modulation also increases the signal-to-interference
ratio (SIR) when using correlation-based detection or matched
filtering [46]. For MPS, in particular, the negative troughs
caused by the CVBP make an otherwise unipolar signal bipo-
lar, greatly improving the SIR. Both SNR and SIR are crucial
factors that influence the performance of automatic signal
detection and estimation algorithms in various RPS tech-
nologies geared towards rapid disease diagnosis. Therefore,
understanding and maximizing the CVBP effect could play a
role in improving applications of future RPS devices such as
disease detection or monitoring.

The CVBP may also play a role in other applications.
It is likely to arise in analogous systems in other branches
of science which have an electrical circuit analogy with an
analogous complex impedance, e.g., mechanical, acoustic,
thermal, hydraulic, viscoelastic, or microelectromechanical
systems (MEMS). For example, in the mechanical-electrical
“impedance analogy” [47], force is analogous to voltage,
velocity is analogous to current, and, when describing an
oscillating mechanical component at steady state, the ratio
of force to velocity is the complex mechanical impedance.
Damping and compliance are analogous to resistance and
capacitance, respectively. Mass is analogous to inductance,
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FIG. 6. (a) LCC voxel model of a single-pad MPS device channel at baseline (no cell), 80 µm × 20 µm × 20 µm (L × W × H ), with a
40-µm-long metal pad at the center. Gaps are highlighted in red (dark gray); the pad segment is highlighted in yellow (light gray). The channel
is divided into 16 “channel voxels,” each of size 10 µm × 20 µm × 10 µm (L × W × H ). Impedance is computed between the left and right
terminals. (b) Each horizontal resistor is associated with a “horizontal resistor voxel.” These voxels do not all have the same volume. When
a cell intersects a horizontal resistor voxel (here, the cell intersects four voxels, which are outlined in gray), the corresponding horizontal
resistor increases its relative resistance in proportion to the partial volume of the cell contained within that voxel, relative to the volume of the
voxel itself. Each resistor’s relative resistance increase is also proportional to an unknown scalar β, which is determined through optimization.
(c) Each vertical resistor is associated with a “vertical resistor voxel.” These voxels do not all have the same volume. When a cell intersects a
vertical resistor voxel (here, the cell intersects four voxels, which are outlined in gray), the corresponding vertical resistor increases according to
the same rule that governs horizontal resistors. (d) Contour plots, computed by the LCC voxel model using voxels of size 1 µm × 20 µm × 1 µm
(L × W × H ), show a 2D side view of isopotential surfaces, both with and without a cell present. (e) Contour plots, computed by the FEA
model, show a 2D side view of isopotential surfaces, both with and without a cell present. Additionally, electric field lines are shown. (f) Bode
and Nyquist plots confirm that the LCC voxel model and FEA model predict very similar impedance spectra both with and without a cell
present.

which we did not consider in this work. Perhaps there exists
a system modeled by a two-port mechanical circuit with only
damping and compliance components (or only damping and
mass), in which increasing the mechanical impedance of one
or more paths causes the total mechanical impedance to de-
crease. Researchers analyzing or designing systems in these
or other domains could benefit greatly by gaining a better
understanding of the CVBP and DCVBP.
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APPENDIX: LCC VOXEL MODEL

The LCC voxel model treats the MPS device channel
as a 2D rectangular mesh of resistors, with capacitors (or
CPEs) connecting to the metal pads below. The fineness of
the mesh is determined by the voxel size. As an illustra-
tive example, Fig. 6(a) shows an 80 µm × 20 µm × 20 µm

(L × W × H) MPS channel with a 40-µm-long metal pad
at the center, divided into equal-volume “channel voxels”
of size 10 µm × 20 µm × 10 µm (L × W × H), which re-
sults in a total of 16 channel voxels arranged in an 8 ×
2 grid. Each channel voxel edge that is oriented into the
page is assumed to be an isopotential, represented by a
circuit node called a “voxel node.” In this example, there
are 27 voxel nodes, arranged in a 9 × 3 grid. Each metal
pad is also assumed to be an isopotential, represented by
a circuit node called a “pad node.” Adjacent voxel nodes
are connected via resistors both horizontally and vertically.
We will now separately consider the horizontal and vertical
resistors.

The horizontal resistors correspond to another grid of vox-
els, offset from the original grid. In this example, there are
24 horizontal resistor voxels, arranged in an 8 × 3 grid, but
they do not all have equal volume. The horizontal resistor
voxels in the top and bottom rows have half the height (and
thus, half the volume) of those in the interior (i.e., the middle
row). The resistance of each horizontal resistor is defined
by the geometry of its corresponding voxel as ρl/(W h),
where ρ is the PBS resistivity, l is the voxel length (along
the horizontal axis), W is the channel width, and h is the
voxel height (along the vertical axis). In this example, the
horizontal resistors in the middle row each have a resistance
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of r = ρ × 10 µm/(20 µm × 10 µm) = 31.25 k� using ρ =
0.625 �m. In comparison, the horizontal resistors in the top
and bottom rows have half the height, resulting in twice the
resistance, 2r = 62.5 k�.

The treatment of vertical resistors is analogous. The verti-
cal resistors correspond to yet another grid of voxels, offset
from the original grid. In this example, there are 18 “vertical
resistor voxels,” arranged in a 9 × 2 grid. The vertical resistor
voxels in the leftmost and rightmost columns have half the
length (along the horizontal axis) of those in the interior. The
resistance of each vertical resistor is defined by the geome-
try of its corresponding voxel as ρh/(W l ), where h is the
voxel height along the vertical axis. In this example, since
we are using voxels whose length and height are equal, the
vertical resistors (except for those in the leftmost and right-
most columns) have the same resistance r as the horizontal
resistors. The vertical resistors in the leftmost and rightmost
columns have resistance 2r.

We now add the capacitors (or CPEs) that represent the
metal pad EDLs. For each voxel node on the bottom row,
we call the channel voxel immediately to the left the “left
voxel” and the channel voxel immediately to the right the
“right voxel.” If both left and right voxels of a given voxel
node are in contact with a metal pad, then the voxel node
is connected to the pad node via a capacitor with capac-
itance CsW (lleft + lright )/2, where Cs is the EDL’s specific
capacitance (i.e., capacitance per unit area), W is the chan-
nel width, and lleft and lright are the lengths of the left and
right voxels, respectively. If the left voxel does not contact
a metal pad or does not exist (i.e., the voxel node is on the
left edge of the metal pad or left edge of the channel), then
lleft is set to zero. The same is true for the right voxel and
lright. In the example shown in Fig. 6(a), all but the leftmost
and rightmost capacitors have capacitance c = Cs × 20 µm ×
(10 µm + 10 µm)/2 = 40 pF assuming Cs = 0.2 F/ m2. The
leftmost and rightmost capacitors connect to the left and
right edges of the metal pad, and have half the capacitance
c/2 = 20 pF.

Using the rules as described, the LCC voxel model is capa-
ble of simulating an empty MPS channel, but we also wish to
model the introduction of a cell. Just like the R + R/C model
and the LCC slice model (Sec. II A), the LCC voxel model
relies on the FEA model to simulate the total �R caused by
the presence of a cell within the channel. Unlike with the LCC
slice model, however, we cannot simply add a fraction of �R
to each resistor according to the fraction of the cell’s volume
contained within each resistor’s “block.” Instead, we assume
that the relative resistance increase of each resistor (whether
horizontal or vertical) is proportional to the cell’s volume
contained within the corresponding resistor voxel, relative to
the resistor voxel’s volume.

For example, Fig. 6(b) shows a cell intersecting four hori-
zontal resistor voxels (outlined in gray), which are numbered
3, 19, 20, and 37. We previously determined that the re-
sistor corresponding to voxel 19 has a baseline value of
R19 = r = 31.25 k�. Now, we find voxel 19 to have volume
v19 = v = lW h = 10 µm × 20 µm × 10 µm = 2 fL. Next, we
define �v19 as the partial volume of the cell contained within
voxel 19 and estimate it in practice by subdividing the voxel
into subvoxels and running an algorithm based on marching
cubes [48]. Finally, we define the relative resistance increase
�R19/R19 = β�v19/v19, where β is a scalar factor soon to
be determined. For voxel 20, the relative resistance increase
�R20/R20 is defined in the same manner. Since voxels 3 and
37 are only half the size of voxels 19 and 20, they each have
half the volume, v/2 = 1 fL, but the procedure for determin-
ing the relative resistance increase is the same. Figure 6(c)
shows the same procedure, but for the vertical resistors. In
this example, the cell intersects four vertical resistor voxels
(numbered 11, 12, 28, and 29), each having volume v. The
relative resistance increase of each resistor is again �v/v

times an unknown scalar β.
We define a function R(β ) that computes the total resis-

tance of the circuit as a function of β. For β = 0, it returns
the baseline resistance, which we denote as R0. If we choose
β = 1, we are assuming that each resistor Ri experiences
a relative resistance increase �Ri/Ri = �vi/vi. In practice,
we compute R(β = 1) and find that it always falls short
of R0 + �R, the channel resistance predicted by the FEA
model. We use Muller’s root-finding method [49] to find the
appropriate value β∗ such that R(β∗) − (R0 + �R) = 0. In
this example, a cell of diameter d = 12.5 µm causes a total
resistance increase of �R = 6.951 k� over the baseline resis-
tance of R0 = 125 k�. After four iterations, Muller’s method
returns a value of β∗ = 2.3766.

The primary reason the LCC voxel model is more accurate
than the LCC slice model is that it allows for curved isopo-
tential surfaces, whereas the linear circuit layout of the LCC
slice model implicitly assumes purely vertical isopotential
surfaces. The contour plots in Fig. 6(d) show a 2D side view
of the isopotential surfaces of the previously described MPS
channel computed by an LCC voxel model using voxels of
size 1 µm × 20 µm × 1 µm (L × W × H). The top plot shows
how the metal pad gives rise to curved isopotential surfaces.
The bottom plot shows how the introduction of a cell further
distorts the isopotential surfaces. These contour plots can be
compared with those in Fig. 6(e), which show isopotential
surfaces computed by the FEA model along with electric field
lines, which are everywhere perpendicular to the isopoten-
tial surfaces. Bode and Nyquist plots of predicted impedance
spectra shown in Fig. 6(f) confirm that the LCC voxel model
and FEA model match very closely.
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