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Effects of noise on the critical points of Turing instability in complex ecosystems
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Noise is ubiquitous in natural and artificial systems. In a noisy environment, the interactions among nodes
may fluctuate randomly, leading to more complicated interactions. In this paper we focus on the effects of noise
and network topology on the Turing pattern of ecological networks with activator-inhibitor structure, which may
be interpreted as prey-predator interactions. Based on the stability theory of stochastic differential equations,
a sufficient condition for the uniform state is derived. The analytical results indicate that noise is beneficial
for the uniform state. When the ratio between the diffusion coefficients of the predator and prey increases,
the ecosystems can exhibit a transition from a uniform stable state to a Turing pattern, while when the ratio
decreases, the ecosystems transit from a Turing pattern to a uniform stable state. There are two crucial critical
points in Turing patterns, forward and backward. We find that both forward and backward critical points increase
as the noise intensity increases. This means that noise favors a stable homogeneous state compared to a state
with a heterogeneous pattern, which is consistent with the analytical results. In addition, noise can weaken the
hysteresis phenomenon and even eliminate it in some cases. Furthermore, we report that network topology plays
an important role in modulating the uniform state of ecosystems, such as the size of prey-predator systems, the
network connectivity, and the strength of interaction.
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I. INTRODUCTION

Reaction-diffusion systems have been widely studied in
many fields, such as chemistry, biology, and ecology [1–8].
It was shown that reaction-diffusion systems can exhibit
complex self-organized patterns, like stationary dissipative
structures [9–11], spiral waves [12,13], or Turing patterns
[14,15]. Turing showed that the differences in the diffusion
coefficients of activator and inhibitor species could destabi-
lize the uniform stable state and lead to spatially organized
patterns [16]. Turing patterns are ubiquitous in real systems;
examples include chemical reactions with inhibition [17–19],
the process of biological morphogenesis [3,4,20], and ecosys-
tems [21–24]. Specifically, the experimental observation of a
sustained nonequilibrium chemical pattern in a single-phase
open reactor had been reported [18]. Experiments on zebrafish
stripes showed that they arise from a Turing mechanism, and
the fish has two kinds of cells that serve the same purposes as
an activator and an inhibitor [25]. In prey-predator systems,
the prey acts as an activator to increase its population, while
the predator acts as an inhibitor to control the population [21].

The dynamic properties of complex-network systems have
been the focus of many researchers over the past few decades.
In addition, the network topology has an important influence
on the dynamics of network systems. For example, the class
of scale-free networks can be used to model communications
networks and the spreading of computer viruses [26]. May
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pointed out that the diversity and complexity have a negative
correlation with the stability [27]. Since then, many studies
have been devoted to the discussion of the relation between
the stability and complexity of ecosystems [28–30].

Othmer and Scriven studied the Turing patterns in regular
networks and developed a new method for analyzing their
instability [31,32]. Subsequently, the effects of network struc-
tures on Turing patterns were explored in chemical reactors
[33,34]. However, the above studies were limited to small-
size regular networks. Nakao and Mikhailov extended the
analysis of Turing patterns in regular lattices to the case of
large symmetric random networks and proposed a theoretical
framework for analyzing the Turing instability in complex
networks [35]. Afterward, the studies of Turing patterns on
networks attracted much attention and were considered for
more complicated networks. For instance, Asllani et al. stud-
ied the pattern formation on directed networks and found that
network topology could make a homogeneous state unstable
[36]. The perturbation approach was developed to study Tur-
ing patterns in multiplex networks [37]. Turing patterns were
studied in multiplex networks, where activator and inhibitor
species were put separately in different layers with different
network topologies and instability may occur even if two
species have the same diffusion coefficients [38]. The theory
of Turing instability was applied to reaction-diffusion systems
defined on Cartesian networks [39]. Turing patterns on time-
varying networks were studied, and the analytical prediction
for such instability was obtained [40]. A general theory ex-
plaining the influence of network topology on the properties of
Turing systems was provided [41]. Siebert et al. showed that
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network modularity played an important role in the formation
of self-organizing patterns of functional activities [42].

In nature and artificial systems, the dynamic behaviors
of complex systems are inevitably influenced by random
perturbations [43,44]. It was shown that noise may play
an active and constructive role in some collective behav-
iors. For instance, noisy self-propelled particles with local
interactions could be used to explain the phenomenon of self-
organized oscillatory motion [45]. Stochastic systems could
offer an alternative approach to developing collective robots
with robust deterministic behavior [46]. Stochastic Turing
patterns have been investigated theoretically [47–51]. Previ-
ous studies showed that the parameter regions for stochastic
self-organized patterns were larger than in the deterministic
case [47,48]. To explore whether stochastic Turing patterns
are doable in practice, a synthetic bacterial population was
genetically engineered, where the signaling molecules formed
a stochastic activator-inhibitor system, and it was found that
stochasticity may promote the occurrence of biological pat-
terns [49]. Goldenfeld and co-workers found that the intrinsic
noise led to quasipatterns, which could eliminate unphysical
fine-tuning or scale separation of Turing models applied to
real systems [50]. The persistent intrinsic noise could lead to
sustained large-amplitude patterns [51]. However, the influ-
ence of noise on the critical points of Turing instability in
complex ecological networks is still unknown. Therefore, in
this paper we study the effects of noise and network topology
on Turing patterns.

We employ ecological networks with prey-predator inter-
actions subject to multiplicative noise and aim to reveal the
effects of noise and network topology on the critical points of
Turing instability. Based on the stability theory of stochastic
differential equations, we derive a sufficient condition for
ecosystems to maintain the uniform stable state. The analyt-
ical results indicate that noise favors a homogeneous stable
state compared to a heterogeneous pattern. Through numerical
simulations, we find that the increase in noise intensity can
increase both the forward critical point σ f and the backward
critical point σb, which means that it helps the ecosystems
maintain the uniform stable state while promoting the tran-
sition from a Turing pattern to the uniform stable state. The
numerical results are consistent with the theoretical analy-
ses. Further, the influence of noise on Turing patterns are
also considered in real food-web networks and the results
show that noise plays a similar role in modulating Turing
patterns. Without the perturbation of noise, the hysteresis phe-
nomenon can be observed and the bifurcation is subcritical.
The increase in noise intensity can weaken the hysteresis
phenomenon, and even eliminate hysteresis in some cases,
and then the bifurcation transforms into supercritical. Further,
the network topology has an important influence on Turing
patterns. Specifically, a decrease in the size of prey-predator
systems, the network connectivity, and the interaction in-
tensity promote homogeneous stable states and facilitate the
transition of ecosystems from a Turing pattern to uniform
stable states.

The paper is organized as follows. In Sec. II we introduce
the network-organized prey-predator systems with multiplica-
tive noise. Section III analyzes the sufficient condition for
the uniform stable states of complex ecosystems. In Sec. IV

the influence of noise and network topology on the critical
points of Turing instability is considered. A summary is given
in Sec. V.

II. NETWORK-ORGANIZED PREY-PREDATOR
SYSTEMS WITH NOISE

We consider network-organized activator-inhibitor sys-
tems with noise perturbation, which can be modeled by the
equations

u̇i = f (ui, vi ) + ε

N∑
j=1

ai j (u j − ui ) + η(u j − u∗)ξi(t ),

v̇i = g(ui, vi ) + σε

N∑
j=1

ai j (v j − vi ) + η(v j − v∗)ζi(t ), (1)

where i = 1, . . . , N . As an example of an activator-inhibitor
system, the Mimura-Murray prey-predator model is employed
as the individual activator-inhibitor dynamics, which is repre-
sented by nonlinear functions f (u, v) = ( a+bu−u2

c − v)u and
g(u, v) = u − (1 + dv)v, in which u = (u1, . . . , uN )T and
v = (v1, . . . , vN )T are the densities of prey and predators, re-
spectively. In addition, (u∗, v∗) is the uniform stationary state
of the system (1), which implies f (u∗, v∗) = g(u∗, v∗) = 0.
The uniform stationary state is assumed to be stable in the
absence of diffusion and noise perturbation, which requires
fu + gv < 0 and fugv − fvgu > 0, where fu = ∂ f /∂u|(u∗,v∗ ),
fv = ∂ f /∂v|(u∗,v∗ ), gu = ∂g/∂u|(u∗,v∗ ), and gv = ∂g/∂v|(u∗,v∗ ).
The diffusion coefficients of the prey and predator are denoted
by ε and σε, respectively. Generally, the diffusion ratio σ is
chosen as the bifurcation parameter, which affects the Turing
pattern of the ecosystems. The topology of the network is
defined by the matrix A = (ai j )N×N . If the nodes i and j
are connected, the element ai j = 1; otherwise ai j = 0 and
we assume that aii = 0. The degree of node i is defined as
ki = ∑N

j=1 ai j . Then the Laplacian matrix is Li j = ai j − kiδi j ,
in which δi j is the Kronecker function. According to the defi-
nition of the Laplacian matrix, the diffusion flux of the prey u
from node j to node i can be written as

∑N
j=1 Li ju j , and sim-

ilarly we have
∑N

j=1 Li jv j for the predator v. Here ξi(t ) and
ζi(t ) represent standard independent Gaussian white noises,
the noise intensity is denoted by η, 〈ξi(t )〉 = 0, 〈ζi(t )〉 = 0,
〈ξi(t ), ξ j (t ′)〉 = δi jδ(t − t ′), and 〈ζi(t ), ζ j (t ′)〉 = δi jδ(t − t ′),
where δ is the Dirac function. Further, if η = 0, Eq. (1) de-
generates to the deterministic model proposed in [35].

III. THEORETICAL ANALYSES

To explore the effect of noise on the critical points of
Turing instability in complex prey-predator systems, we the-
oretically analyze the model (1) through the stability theory
of stochastic differential equations. First, the linear stabil-
ity analysis is performed. Introducing small perturbations
δui and δvi into the uniform state, i.e., (ui, vi ) = (u∗, v∗) +
(δui, δvi ), and substituting the state into Eq. (1), the linearized
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differential equations for δui and δvi can be obtained

δu̇i(t ) = fuδui + fvδvi + ε

N∑
j=1

ai j (δu j − δui ) + ηδuiξi(t ),

δv̇i(t ) = guδui + gvδvi + σε

N∑
j=1

ai j (δv j − δvi ) + ηδviζi(t ),

(2)

where fu = (a + 2bu∗ − 3 u∗2 − cv∗)/c, fv = −u∗, gu = v∗,
and gv = u∗ − 1 − 2dv∗. For simplicity, we suppose that
the Gaussian white noises are one dimensional, i.e., ξi(t ) =
ζi(t ) = ξ (t ). From the mathematical point of view, the
one-dimensional Gaussian white noise can be defined as
ξ (t ) = Ẇ (t ), where W (t ) is a one-dimensional standard
Brownian motion defined on a complete probability space.
Then the disagreement systems (2) can be rewritten in vector
form as

dδu = ( fuδu + fvδv)dt + εLδudt + ηδudW (t ),

dδv = (guδu + gvδv)dt + σεLδvdt + ηδvdW (t ), (3)

where δu = (δu1, . . . , δuN )T and δv = (δv1, . . . , δvN )T are
disagreement vectors and the Laplacian matrix L = A − K ,
where K = diag(k1, . . . , kN ). If we let z = (δu, δv)T , then
Eq. (3) becomes

dz = (Jz + L̃z)dt + GzdW (t ), (4)

where

J
	=

(
fuIN fvIN

guIN gvIN

)
, L̃

	=
(

εL 0
0 σεL

)
, G = ηI2N .

The model (1) maintains the uniform stable state if

P(limt→∞{|δui| = 0, |δvi| = 0}) = 1. (5)

In fact, limt→∞{|δui| = 0, |δvi| = 0} is equal to
limt→∞|zi(t )| = 0, as z(t ) ≡ 0 is a trivial solution of the
disagreement system (4). Therefore, if the trivial solution of
Eq. (4) is almost asymptotically stable, that is, |z(t )| → 0
almost holds as t → ∞, then the model (1) can maintain a
uniform stable state. In the following, we derive the condition
for the model (1) to maintain a uniform stable state. The
model (1) can reach a uniform stable state if

γ
	= λmax(JT + J ) + 2λ2(L̃) − η2 < 0,

where λmax(JT + J ) denotes the maximum eigenvalue of
matrix JT + J and λ2(L̃) represents the maximum nonzero
eigenvalue of matrix L̃. We prove that if the above inequality is
satisfied, the model (1) can remain in the uniform stable state.
Applying Itô’s formula [52] to the function V (z) = ln(zT z)
along with the system (4), we have

V [z(t )] = V [z(0)] +
∫ t

0
LV [z(s)]ds

+
∫ t

0
VzGz(s)dW (s), t � 0, (6)

where

LV (z) = VzJz + VzL̃z + 1
2 tr(zT GT VzzGz),

and

Vz = 2zT

zT z
, Vzz = 2I

zT z
− 4zzT

(zT z)2
.

Then

LV (z) = 2zT Jz

zT z
+ 2zT L̃z

zT z
+ zT GT Gz

zT z
− 2(zT Gz)2

(zT z)2 . (7)

Based on the algebra graph theory, we estimate LV (z) in
Eq. (7). Specifically, since J is an asymmetric matrix, we
construct a symmetric matrix (JT + J )/2 so we can obtain

λmin

(
JT + J

2

)
� zT Jz

zT z
� λmax

(
JT + J

2

)
, (8)

where λmin(·) and λmax(·) denote the smallest and largest
eigenvalues of the matrix, respectively.

As L is a valid symmetric Laplacian matrix, L̃ is also
a symmetric matrix according to its definition. Suppose λ j ,
j = 1, . . . , N , are the eigenvalues of L̃. For j = 1, the equa-
tion corresponds to a stable manifold (λ1 = 0), so we separate
it from the others. Thus, we have

λmin(L̃) � zT L̃z

zT z
� λ2(L̃). (9)

Furthermore, we get

zT Gz

zT z
= η,

zT GT Gz

zT z
= zT G2z

zT z
= η2. (10)

Substituting Eqs. (8)–(10) into Eq. (7), we obtain the esti-
mation of LV (z) as

LV [z(t )] � λmax(JT + J ) + 2λ2(L̃) − η2, ∀ t � 0. (11)

If we let

γ
	= λmax(JT + J ) + 2λ2(L̃) − η2,

then ∫ t

0
LV [z(s)]ds � γ t, ∀ t � 0.

From Eq. (6) we can obtain

V [z(t )]

t
� V [z(0)]

t
+ γ + M(t )

t
, ∀ t � 0,

where

M(t ) =
∫ t

0
VzGz(s)dW (s) = 2

∫ t

0

zT Gz

zT z
dW (s) (12)

and M(t ) is a continuous martingale, with M(0) = 0. Calcu-
lating the quadratic variation of M(t ), we have

〈M(t ),M(t )〉 = 4
∫ t

0

(
zT Gz

zT z

)2

ds = 4η2t, ∀ t � 0.

Thus,

lim
t→+∞

〈M(t ),M(t )〉
t

< ∞.
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We apply the strong law of large numbers to obtain

lim
t→+∞

M(t )

t
= 0, (a.s.),

where a.s. denotes almost surely. Thus, we get

lim
t→+∞ sup

V [z(t )]

t
� γ , (a.s.).

Consequently,

lim
t→+∞ sup

ln ‖z(t )‖
t

� γ

2
, (a.s.).

The solution z(t ) of Eq. (4) is almost exponentially conver-
gent to 0 if γ < 0, i.e., z(t ) is asymptotically stable. Thus, the
model (1) can remain in a stable uniform stationary state when
γ < 0. Further, with the increase of noise intensity η, the
parameter γ decreases, which means that noise is beneficial
for the model (1) to remain in the uniform stable state. There-
fore, the theoretical results indicate that noise can promote the
ecosystems being in the uniform stable state.

IV. TURING PATTERNS

In this section we conduct numerical simulations on the
model (1) to explore the influence of noise and network
topology on the Turing patterns in complex prey-predator
networks. The stochastic Runge-Kutta algorithm [53] is em-
ployed to solve the stochastic differential equations. The order
parameter A(σ ) = {∑N

i=1 [(ui − u∗)2 + (vi − v∗)2]}1/2 is de-
fined to distinguish the patterns in complex ecosystems. It
characterizes the difference between the ecosystems’ state and
the uniform state for a fixed value of σ . Without loss of gener-
ality, the parameters chosen in the node dynamics are a = 35,
b = 16, c = 9, and d = 2

5 in the present study, which can keep
the ecosystems in a stable uniform state without diffusion
and noise perturbation. The fixed point can be calculated as
(u∗, v∗) = (5, 10).

A. Turing patterns in Erdős-Rényi networks

We begin by studying Turing patterns in Erdős-Rényi net-
works [54]. Figure 1(a) shows the relationship between the
diffusion ratio σ and order parameter A(σ ) in an Erdős-Rényi
network. Therein, in the case of the forward direction, the
initial conditions are chosen from the uniform state with small
perturbations, while in the backward direction we first evolve
a trajectory at a large value of σ and then its final state is used
as the initial condition. Increasing the value of σ , we find that
A(σ ) exhibits a discontinuous jump from 0 to a nonzero value
at the forward critical point σ f . Turing instability occurs at σ f

and a stationary Turing pattern has formed. The ecosystems
remain in the uniform stable state when σ < σ f , while the
ecosystems are in a Turing pattern when σ � σ f . With the
decrease of σ , it can be seen that A(σ ) gradually decreases
to zero at σb, exhibiting a different path from the forward di-
rection. The ecosystems show a Turing pattern when σ > σb,
while the ecosystems return to the uniform stable state when
σ � σb. In addition, when the value of σ takes values within
the range of (σb, σ f ), we see that the ecosystems have different
patterns for the same parameter value, which is sensitive to

FIG. 1. (a) Relationship between the diffusion ratio σ and the
order parameter A(σ ) in an Erdős-Rényi network in both the forward
(blue upper triangles) and the backward (orange circles) directions, in
which the forward critical point σ f = 17.45 and the backward critical
point σb = 14.65. The parameters are set as network size N = 200,
connection probability p = 0.03, and noise intensity η = 0.2. The
stationary activator pattern is shown for (b) σ = 17.40 (below the
forward critical point) and (c) σ = 17.50 (equal to the forward criti-
cal point). The stationary activator pattern is shown for (d) σ = 14.60
(below the backward critical point) and (e) σ = 14.70 (above the
backward critical point). The nodes are sorted by decreasing order of
their degrees.

the initial conditions. Here the hysteresis phenomenon can be
observed.

Figures 1(b) and 1(c) show the stable pattern of prey den-
sity before and after the forward critical point, in which the
nodes are arranged in descending order of their degrees. In
Fig. 1(b) it can be seen that ecosystems are in a uniform stable
state, while in Fig. 1(c) ecosystems are in a nonuniform Turing
pattern, as some nodes are kicked out of the uniform stable
state. Similarly, Figs. 1(d) and 1(e) show the stationary pattern
of prey density when σ is below or above the backward critical
threshold, and the ecosystems are in a homogeneous stable
state and an inhomogeneous Turing pattern, respectively.

The influence of the noise and connection probability of
the Erdős-Rényi network on the critical points of Turing in-
stability is shown in Fig. 2. Figures 2(a) and 2(b) show the
transition process in the forward direction, and we can see
that the forward critical point varies with noise intensity and
connection probability. Specifically, Fig. 2(a) illustrates the
forward critical points are σ f ≈ 16.50, 17.10, and 19.40 for
η = 0.0, 0.5, and 1.0, respectively. The results indicate that
the increased noise intensity causes the forward transition to
occur at slightly larger values of σ . Similarly, the forward
critical points are σ f ≈ 15.90, 16.50, and 19.00 in Fig. 2(b).
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FIG. 2. The order parameter A(σ ) is plotted versus the in-
creased diffusion ratio σ for different connection probabilities p: (a)
p = 0.04 and (b) p = 0.05. The variation of A(σ ) with decreasing
diffusion ratio is plotted for different values of p: (c) p = 0.04 and
(d) p = 0.05. Three different noise intensities are considered on
each graph: η = 0.0 (blue squares), η = 0.5 (orange circles), and
η = 1.0 (yellow stars). The other parameters are set as N = 200
and ε = 0.06.

This means that noise is beneficial for the ecosystems to re-
main in the homogeneous stable state. Further, the smaller the
connection probability, the larger the forward critical point.
The reduction of the connection probability helps ecosystems
stay in the uniform stable state.

Figures 2(c) and 2(d) present the relationship between
A(σ ) and the reduced diffusion ratio σ when the ecosystems
start from a Turing pattern, i.e., the order parameter A(σ ) > 0.
In Fig. 2(c) the backward critical points are σb ≈ 12.60, 16.90,
and 19.40 for η = 0.0, 0.5, and 1.0, respectively; Fig. 2(d)
shows σb ≈ 12.70, 16.20, and 18.80. We can see that the
increased noise intensity can facilitate the transition of ecosys-
tems from the Turing pattern to the uniform stable state, as
it promotes the backward transition that occurs earlier. In
addition, the smaller connection probability can increase the
backward critical point. Reducing the connection probability
can help the ecosystems return to the uniform stable state.

The above results describe the specific transition process of
different patterns, in which the forward and backward critical
points are important. To proceed, we study the influence of
noise on the forward and backward critical points for different
connection probabilities; the corresponding results are present
in Figs. 3(a) and 3(b). We see that both the forward and
backward critical points increase with the increase of noise
intensity. In addition, the smaller the connection probability,
the larger the forward and backward critical points. The results
indicate that the increase in noise intensity and the decrease
in connection probability can help ecosystems maintain the
uniform and stable state and facilitate the transition from a
Turing pattern to the uniform stable state.

To further understand the patterns of the ecosystems, we
take p = 0.03 as an example to show different patterns in

FIG. 3. Average (a) forward and (b) backward critical points σ f

and σb, respectively, versus noise intensity across 50 realizations. The
connection probability p = 0.03 (blue dotted curves), p = 0.04 (or-
ange dashed curves), and p = 0.05 (green solid curves). (c) Patterns
in the parameter plane (σ, η) with p = 0.03. The other parameters
are N = 200 and ε = 0.06.

the (σ, η) parameter space in Fig. 3(c). Therein, the orange
dotted curve is the forward critical curve and the area above
this curve is the Turing pattern area (TPA); when σ is chosen
above these critical thresholds, the system is in a Turing pat-
tern. The blue dotted curve represents the backward critical
curve and the area below this curve is the uniform stable area
(SA); when σ is smaller than these thresholds, the system
returns to the uniform stable state. The area enclosed by two
curves denotes the hysteresis area (HA), which is known
as the coexistence of the uniform stable state and Turing
pattern. Without the perturbation of noise, strong hysteresis
phenomena can be observed and the Turing bifurcation is
subcritical. As the noise intensity increases, the hysteresis
effect weakens and may be eliminated in some cases. Specifi-
cally, noise can eliminate the hysteresis phenomena and the
Turing bifurcation becomes supercritical [55]. With the in-
crease of noise intensity, the SA increases, which means that
noise is beneficial for promoting the uniform stable state of
ecosystems.

The stability of the ecosystems may be affected in many
ways, such as the extinction of existing prey and predators,
the interaction cancellation among nodes, and environmental
changes. Indeed, these realistic perturbations of ecosystems
can be mimicked by the changes of N2 parameters ai j in
the adjacency matrix. For example, the extinction of existing
prey and predators can be simulated by removing nodes, the
interaction cancellation between nodes can be modeled by
deleting existing links, and the environmental changes can be
modeled by reducing global link weights between nodes.
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FIG. 4. (a) and (b) Average forward and backward critical points
σ f and σb, respectively, versus fn across 50 realizations. (c) and
(d) Critical points σ f and σb characterize the system’s response to
link perturbation fl . (e) and (f) Critical points σ f and σb versus fw .
The noise intensity is (a), (c), and (e) η = 0.0 and (b), (d), and (f)
η = 0.5. The other parameters are N = 200, p = 0.03, and ε = 0.06.

We study the impact of these three kinds of realistic pertur-
bations on the stability of ecosystems; the results are shown
in Fig. 4. First, we randomly remove a fraction fn of nodes
to explore the influence of the extinction of some prey and
predators on Turing patterns. Figures 4(a) and 4(b) show the
forward critical point σ f and backward critical point σb as
a function of node perturbation fn. We find that with the
increase of fn, both σ f and σb increase. The increase in fn

corresponds to the decrease in the size of prey-predator sys-
tems. This indicates that as the size of prey-predator systems
decreases, ecosystems are favorable for homogeneous stable
states compared to heterogeneous Turing patterns.

Second, we consider the case of randomly deleting a frac-
tion of links fl , i.e., some of the interactions between nodes
disappear. Figures 4(c) and 4(d) show the changes of σ f and
σb with link perturbations fl . We see that as fl increases, that
is, the network connectivity weakens, both critical points σ f

and σb increase, which is consistent with the results shown in
Figs. 3(a) and 3(b).

Finally, we consider the case where the network structure
is fixed but all network weights decrease because of environ-
mental changes. Reducing all network weights to fω, we show
the variation of σ f and σb as a function of fw in Figs. 4(e)
and 4(f). With the decrease of fw, both σ f and σb increase.
The decrease in network weights means the decrease in the
intensity of interactions between nodes, which can promote
the ecosystems remaining in the uniform stable state.

It can be concluded that smaller size of prey-predator
systems, lower connectivity, and lower interaction strength
can facilitate the states being homogeneous rather than

FIG. 5. (a) Effect of noise on the forward critical points σ f for
three mean degrees. (b) Backward critical points σb as a function of
noise intensity η for 50 realizations. The three different mean degrees
are 〈k〉 = 6 (blue dotted curves), 〈k〉 = 8 (orange dashed curves),
and 〈k〉 = 10 (green solid curves). (c) Patterns in the parameter plane
(σ, η). The description of different areas is the same as in Fig. 3(c).
The other parameters are N = 200, ε = 0.06, and ρ = 0.2.

heterogeneous. The results are consistent with May’s work, in
which it was shown that the diversity (the size of prey-predator
systems) and complexity (measured by the connectivity and
the interaction strength) were not conductive to the stability
of ecosystems [27].

B. Turing patterns in small-world networks

We investigate the Turing patterns in small-world net-
works. The small-world network was first proposed by Watts
and Strogatz [56]. We consider the nearest-neighbor network
first and then reconnect it randomly with probability ρ (0 <

ρ < 1), where the small-world network is cable of interpo-
lating between a completely regular network (ρ = 0) and a
completely random network (ρ = 1). The influence of noise
on the forward and backward critical points for different mean
degrees of small-world networks is shown in Figs. 5(a) and
5(b). It can be seen that both the forward and backward critical
points increase with the increase of noise intensity. In other
words, in the forward direction, noise can promote a homo-
geneous stable state of ecosystems with small-world network
topology, while in the backward direction, noise can help the
ecosystems recover from heterogeneous Turing patterns to the
uniform stable state. In addition, the smaller the mean degree,
the larger the forward and backward critical points, which
means that the connectivity of the small-world network can
facilitate the ecosystems maintaining the homogeneous stable
state and promote the recovery process from a Turing pattern
to a homogeneous stable state. Different patterns in the (σ, η)
parameter space are shown in Fig. 5(c). It is found that as the
noise intensity increases, the hysteresis loop decreases and the
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FIG. 6. (a) and (b) Average forward and backward critical points
σ f and σb, respectively, versus fn across 50 realizations. (c) and
(d) Critical points σ f and σb characterize the system’s response to
link perturbation fl . (e) and (f) Critical points σ f and σb versus fw .
The noise intensity is (a), (c), and (e) η = 0.0 and (b), (d), and (f)
η = 0.5. The other parameters are N = 200, 〈k〉 = 10, and ε = 0.06.

SA increases, which indicates that the influence of noise on
Turing patterns is similar to that in the Erdős-Rényi network.

In Fig. 6 the effects of three realistic perturbations on
the critical points of Turing patterns in small-world networks
are considered. Figures 6(a) and 6(b) show the forward (σ f )
and backward (σb) critical points versus node perturbations
fn. We can see that with the increase of fn, both σ f and σb

increase. Figures 6(c) and 6(d) plot the critical points σ f and
σb as a function of link perturbations fl . With the increase
of fl , both σ f and σb increase. Figures 6(e) and 6(f) show
the relationship between σ f and σb and global perturbations
fw. With the decrease of fw, σ f and σb increase. The smaller
size of prey-predator systems, the lower network connectivity,
and the smaller intensity of interaction are favorable for a
homogeneous stable state.

C. Turing patterns in real food-web networks

Through the research on Erdős-Rényi and small-world
networks, it is concluded that noise can help the ecosys-
tems maintain the homogeneous stable state and promote
the ecosystems recovering from a Turing pattern to the uni-
form stable state. In the following, we explore the effects of
noise and network topology on the stability of real food-web
networks [57]. We employ the structure of real food-web
networks. If nodes i and j have interactions, then ai j = 1; oth-
erwise ai j = 0, which shows mutualism interactions. Taking
four real food-web networks (Michigan, StMarks, Everglades,
and Florida) as examples, the influence of noise on the crit-
ical points of Turing patterns is shown in Fig. 7. Therein,

FIG. 7. Dynamics in parameter space (η, σ ) for four food-web
networks: (a) Michigan, with 39 nodes 39 and 221 links; (b) StMarks,
with 54 nodes and 356 links; (c) Everglades, with 69 nodes 69 and
916 links; and (d) Florida, with 128 nodes and 2106 links. The
description of different areas is the same as in Fig. 3(c).

Michigan represents the lake control network, StMarks rep-
resents the river flow network, Everglades represents the
graminoid marshes, and Florida represents the bay trophic
exchange network. These food-web networks include fishes,
mammals, birds, arthropods, plants, etc. It can be seen that
with the increase of noise intensity, the TPA and HA de-
crease, while the SA increases. We can conclude that noise
can help the ecosystems maintain a homogeneous stable state
in food-web networks and help the ecosystems return to a
homogeneous stable state.

Taking the Michigan food-web network as an example,
we study the effects of three perturbations on the stability
of ecosystems. Figures 8(a) and 8(b) plot the critical points
σ f and σb versus node perturbation fn. We see that with the
increase of fn, σ f and σb increase and noise can help σb

increases faster, resulting in a decreased HA. Figures 8(c) and
8(d) show the change of critical points σ f and σb with link
perturbation fl . In Fig. 8(c), with the increase of fl , σ f in-
creases slightly at first and rapidly, while σb changes steadily.
In Fig. 8(d) both σ f and σb increase steadily at small fl and
then become faster. Figures 8(e) and 8(f) show the critical
points σ f and σb as a function of fw. With the decrease of
fw, σ f and σb increase. The influence of noise and network
topology on Turing patterns is similar to that in Erdős-Rényi
and small-world networks.

V. CONCLUSION

We have investigated the influence of noise and network
topology on the critical points of Turing instability in com-
plex prey-predator networks. Based on the stability theory of
stochastic differential equations, a sufficient condition for the
uniform stable state of ecosystems was derived. The analyt-
ical results indicated that noise is beneficial for the uniform
states. The diffusion ratio σ was chosen as the bifurcation
parameter. With the increase of σ , the ecosystems exhibited
the transition from a homogeneous stable state to a Turing
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FIG. 8. (a) and (b) Average forward and backward critical points
σ f and σb, respectively, versus fn across 50 realizations. (c) and
(d) Critical points σ f and σb characterize the system’s response to
link perturbation fl . (e) and (f) Critical points σ f and σb versus fw .
The noise intensity is (a), (c), and (e) η = 0.0 and (b), (d), and (f)
η = 0.5. The network topology is chosen to be that of Michigan.

pattern, while as σ decreased, the ecosystems transited from a
Turing pattern to a uniform stable state. It is worth noting that
the forward critical point σ f and the backward critical point σb

increased with the noise intensity. This implies that noise can
promote the ecosystems maintaining the uniform stable state
and facilitate the return from a Turing pattern to a stable state,
which is consistent with the analytical results. The influence

of noise on Turing patterns was also studied in real food-web
networks; the results were similar to those in Erdős-Rényi
and small-world networks. According to Refs. [58,59], the
real food-web network is a non-normal network, in which
its adjacency matrix is referred to as non-normal. However,
the theoretical analyses of Turing patterns on a non-normal
network are different from analyses of the symmetry network
[58,59], which needs to be studied in the future.

Without the perturbation of noise, hysteresis phenomena
could be observed and the Turing bifurcation was subcritical.
As the noise intensity increased, the hysteresis effect weak-
ened and could be eliminated in some cases, that is, noise
could eliminate the hysteresis phenomena and the Turing bi-
furcation became supercritical. Closing the hysteresis area is
meaningful as one could clarify and explain the formation of
the patterns.

We found that network topology has important effects on
the critical points of Turing patterns, including the size of prey
and predator systems, the connectivity, and the interaction
strength. We have shown that the smaller size of prey-predator
systems, lower connectivity, and smaller interaction strength
can facilitate the states being homogeneous and stable rather
than being in heterogeneous Turing patterns. The results are
consistent with May’s work, in which he showed that the
diversity (the size of prey-predator systems) and complexity
(measured by the connectivity and the interaction strength)
was not conductive to the stability of ecosystems.
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