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Geometry-induced patterns through mechanochemical coupling
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Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility,
which often involve dynamic cell-shape changes. These changes in cell shape may in turn affect the dynamics
of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical
dynamics. While several computational studies have examined the rich resulting dynamics, the underlying
mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual
model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry,
we derive the equations governing mass-conserving reaction–diffusion systems on time-evolving manifolds.
Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce
pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of
the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing
patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving
reaction–diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-
forming instabilities, which is linked to the phase-space structure of the reaction–diffusion system. The feedback
loop between membrane shape deformations and reaction–diffusion dynamics then leads to a surprisingly rich
phenomenology of patterns, including oscillations, traveling waves, and standing waves, even if these patterns
do not occur in systems with a fixed membrane shape. Our paper reveals that the local conformation of the
membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving
reaction-diffusion systems.
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I. INTRODUCTION

Many vital processes in living cells, such as division,
motility, endocytosis, and growth, involve dynamic cell-shape
changes. To facilitate these shape changes, cytoskeletal struc-
tures and membrane-binding proteins produce forces through
an arsenal of mechanisms. In the cell cytoskeleton, actin
filaments generate pushing forces via polymerization [1,2]
guided by proteins that also promote actin nucleation and
branching [3], whereas myosin motor proteins generate active
stresses by sliding actin filaments relative to each other [4,5].
Remarkably, myosin-VI motor proteins can reshape mem-
branes on their own by means of highly curvature-sensitive
motor-protein–lipid interactions [6]. This molecular feature
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is reminiscent of proteins with Bin/Amphiphysin/Rvs (BAR)
domains, which can directly induce shape deformations by
binding to phospholipid membranes [7–11]. To coordinate
these different processes, cells rely on regulatory signaling
pathways and spatiotemporal protein organization (pattern
formation). These protein patterns generally arise from an in-
terplay between localized biochemical reactions and transport
processes [12], such as diffusive redistribution [13–16], as
well as possibly advective transport [17,18]. For example, the
eukaryotic Rho family of GTPases organizes into patterns that
control actomyosin polymerization and contractility, and thus
cell shape [19]. Yet even in the total absence of cytoskeletal
components, the Escherichia coli MinDE protein system can
induce lipid vesicle deformations, as recently demonstrated
in a minimal reconstituted setup [20–23]. These data suggest
that intracellular and reconstituted reaction-diffusion systems
are, quite generally, able to control cell and vesicle shapes.
Conversely, cell and vesicle shape can guide protein patterns
via geometric and biochemical cues [12,24–29]. The mutual
influence of protein-pattern forming systems on and by their
enclosing geometry generically gives rise to mechanochemi-
cal feedback loops [30–33].

Such mechanochemical coupling implies an intricate
interplay between dynamic shape deformations of the mem-
brane, cytoskeletal dynamics, and chemical reaction kinetics.
Theoretical investigations that address this rich topic range
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from computational models [34,35] to models that place
greater emphasis on the underlying molecular processes as
reviewed in, for example, Refs. [11,36,37]. Recent studies
have addressed the impact of curved proteins [38], phase
separation of membrane-binding proteins [39], actin polymer-
ization [40–42], and contractility of the actomyosin cortex
[41,43] on membrane shape dynamics, as well as the inter-
play between morphogen and tissue dynamics [44]. Detailed
descriptions of protein pattern formation can then be used to
study important phenomena such as cell migration [45–47].
Reduced models that strip away many of these details can help
us understand the essential underlying mechanisms [48–51].
To identify interesting behavior such as membrane waves
or complex three-dimensional shapes, these studies typically
rely on numerical simulations or analysis of the linearized
dynamics. For example, linear stability analysis has been used
to study the effect of mechanical and geometrical degrees of
freedom on the onset of pattern formation in simple reaction-
diffusion systems [35,38,43]. Despite much progress, there is
an ongoing need for theoretical frameworks to help investigate
the influence of geometry on the resulting protein patterns in
the fully nonlinear regime.

To further elucidate the theoretical understanding of sys-
tems with mechanochemical coupling, we here study a
minimal model in the nonlinear regime by employing analyt-
ical methods. Specifically, we consider a conceptual model
of cell polarity given by a mass-conserving two-component
reaction–diffusion system [52,53] on a one-dimensional
manifold, whose shape can evolve dynamically over time.
Compared to a biologically realistic cell polarity model, the
simplifications are twofold:

(i) Instead of a complex protein reaction network for
cell polarity [54,55], we consider a reduced model with one
protein species that can diffuse either in the cytosol or on the
membrane.

(ii) The cell membrane is considered a deformable one-
dimensional manifold.

The membrane shape deformations cause inhomogeneous
membrane compressions or dilations, leading to (local) ac-
cumulation or dilution of particle densities. Since protein
densities are important control parameters in mass-conserving
reaction–diffusion (MCRD) systems [29,53,56,57], defor-
mations of the one-dimensional manifold can qualitatively
change the dynamics of protein pattern formation. In
turn, if the local density of proteins also drives the dy-
namics of the one-dimensional manifold, this leads to
a feedback loop between shape changes of the mani-
fold and reaction–diffusion dynamics. The goal of our
analysis is to uncover important physical mechanisms un-
derlying this intricate coupling between pattern formation
and changes in membrane geometry by using a generic
model.

We study this generic model by extending the local equi-
libria theory, a recently developed framework for analyzing
MCRD systems [53,56], to explicitly account for shape de-
formations of the manifold and the resulting changes in local
geometry. In particular, we focus on two exemplary cases
where

(i) the shape is deformed adiabatically by some external
agent and

(ii) the local concentration of proteins controls the dy-
namic shape changes of the membrane, for example, by
driving local outward growth through actin polymerization
[40].

In the latter case, we consider the one-dimensional mem-
brane as a fluidlike boundary under line tension. Specifically,
our model could be interpreted as describing the dynamics of
a small cell cortex section whose outward growth is (locally)
driven by proteins. Therefore, to close our set of equations, we
assume that proteins generate local forces that drive outward
motion of the membrane along the direction of its normal
vector.

We begin Sec. II by reviewing the local equilibria theory
in the context of a planar one-dimensional system with fixed
geometry. In Secs. III A and III B, we then apply concepts
of differential geometry to describe the dynamics of a one-
dimensional manifold, which sets the stage for coupling the
manifold’s geometry to the chemical degrees of freedom. By
invoking the gauge invariance of the number of proteins en-
closed in a given control volume with respect to deformations
of the membrane geometry, we derive in Sec. III C how the
number density of proteins responds to the shape dynamics
of the one-dimensional manifold. We then show in Sec. III D
how these general concepts apply to the specific case of a two-
component MCRD system. In Sec. III E, we extend the local
equilibria theory to systems that feature shape deformations
of the manifold and describe the ensuing changes in their
geometry. To test our theoretical results, in Secs. IV A–IV C
we study the response of a two-component MCRD system
to shape deformations that are driven by an external agent.
Finally, in Secs. IV D and IV E, we couple the conformational
dynamics of the membrane to the local density of proteins, and
study how such a system self-organizes in space and time.

II. LOCAL EQUILIBRIA THEORY

One of the main goals of this paper is to find generic
principles of pattern formation through reactions and diffusion
on manifolds whose conformations change dynamically. To
that end, we build on a recently developed framework for
MCRD systems, termed local equilibria theory [53,56,57].
With this framework, one can characterize the dynamics of
MCRD systems by analyzing the phase portrait. However,
since the local equilibria theory was originally developed in
the context of a fixed spatial domain, it is not clear a priori
how to apply it to a system where the patterns emerge on a
manifold whose conformation and hence internal geometry
changes over time. Interestingly, through our analysis we find
that the main concepts of the local equilibria theory carry over
to MCRD systems on dynamic manifolds without major mod-
ifications. Before we proceed with this main subject of our
paper, we first recapitulate the key points of local equilibria
theory.

The basic idea is to think of a spatially extended system as
being decomposed into a set of compartments that are coupled
by diffusion. For an isolated compartment, one can determine
the homogeneous steady state (local reactive equilibrium)
and its stability, which both depend on the total particle den-
sities within that compartment. Since diffusion redistributes
these total densities, the local reactive equilibria will shift
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FIG. 1. Stationary pattern of a two-component mass-conserving reactiondiffusion (MCRD) system in phase-space. (a) Stationary spatial
profile shown for the membrane species m, consisting of two plateaus connected by an interface (mesa pattern). The interface position is defined
by the inflection point of the pattern (black filled dot). (b) Phase-space representation of the pattern shown in (a). The stationary solution lies on
a linear subspace (flux-balance subspace, blue line) and the slope of this line is given by the ratio of the diffusion coefficients [cf. Eq. (4)]. The
plateau values are determined by reactive flows (diffusive fluxes are zero in these regions). In phase-space, the reactive equilibria corresponding
to the plateau values (orange filled dots) are given by intersections of local phase spaces (thin gray lines) with the reactive nullcline (black
line), and 〈n〉 is the average total density. Note that due to mass conservation, reactive flows (red arrows) are always parallel to the local phase
spaces.

and change over time. The local reactive equilibria inside
each compartment then serve as a scaffold for the spatially
extended system, which allows one to study pattern formation
by performing a phase portrait analysis.

To illustrate these ideas with a specific example, consider
a two-component MCRD system consisting of one protein
species which can cycle between a membrane-bound state m
and a cytosolic state c. On a static one-dimensional domain,
e.g., an arbitrary curve in space, the dynamics is given by the
following two-component MCRD model:

∂t m(s, t ) = Dm∂2
s m + f (m, c), (1a)

∂t c(s, t ) = Dc∂
2
s c − f (m, c). (1b)

Here, s denotes the arc length while the reaction term f (m, c)
describes the local attachment and detachment kinetics of
the protein species. In Appendix A, we provide the reaction
kinetics used in this study. However, we emphasize that the
main conclusions in this paper do not depend on the specific
choice of f (m, c), as will become clear in the following sec-
tions [53,57].

The dynamics of Eq. (1) conserves the total average density
of proteins,

〈n〉 := 1

L

∫ L

0
ds n(s, t ), (2)

where n(s, t ) = m(s, t ) + c(s, t ) describes the local total pro-
tein density and L is the length of the line. Since the reaction
kinetics conserves the total density, the reactive flow in phase
space must point in the direction of local reactive phase spaces
given by n(s, t ) = m(s, t ) + c(s, t ) (Fig. 1). The intersections
between the local reactive phase spaces and the reactive null-
cline, obtained from the condition f (m, c) = 0, determine the
local reactive equilibria (m∗(n), c∗(n)). Hence, the values of
the local reactive equilibria and how they change depend on
the shape of the reactive nullcline and the total density n. This
further implies that for a given system [specified by f (m, c)],

the total density n plays the role of a control parameter for the
local dynamics.

The dynamics of n(s, t ) is driven by diffusion, which can
be shown by adding Eqs. (1a) and (1b):

∂t n(s, t ) = Dc ∂2
s

[
c(s, t ) + Dm

Dc
m(s, t )

]
:= −∂s j(s, t ), (3)

where the diffusive density flux j(s, t ) is given by a linear
combination of cytosolic and membrane density gradients
j(s, t ) = −Dc∂sc(s, t ) − Dm∂sm(s, t ). From the dynamics of
the total density, see Eq. (3), one directly infers that any
stationary pattern, mstat(s) and cstat(s), must be constrained to
a linear subspace in phase space that is (for no-flux or periodic
boundary conditions) determined by

cstat(s) + Dm

Dc
mstat(s) = η0, (4)

where η0 is a constant of integration. The linear subspace,
given by Eq. (4), is termed the flux-balance subspace (FBS)
and states that in steady state the diffusive fluxes in m and c
must be balanced such that the net flux is zero [see Eq. (3)].

As shown in Ref. [53], the condition for the establishment
of spatial density patterns is linked to the slope of the reac-
tive nullcline by a simple geometric criterion in phase space.
Specifically, a homogeneous steady state becomes unstable to
spatial perturbations (laterally unstable) when the slope of the
reactive nullcline snc(n) is steeper than the slope of the FBS:

snc(n) = ∂m c∗(m)|n < −Dm

Dc
. (5)

The underlying mechanism of this instability lies in a coupling
between mass-redistribution and reactive flows: regions with
a high density of membrane-bound proteins act as a sink for
cytosolic particles due to (nonlinear) attachment to the mem-
brane, leading to depletion of cytosolic particles. Conversely,
regions with a low density of membrane-bound proteins act
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FIG. 2. (a) Model assumptions. Shown is a schematic representation of a cell. We assume that cytosolic protein concentration gradients
(purple color gradient) perpendicular to the cell membrane (thick gray line) are shallow, so bulk-surface coupling can be disregarded. These
shallow cytosolic gradients are only observable within a thin boundary layer (white line), above which the cytosolic protein concentration
profile perpendicular to the membrane can be assumed homogeneous. However, the cytosolic protein concentration profile parallel to the cell
membrane (lateral gradients) is generally nonuniform due to biochemical reactions with membrane-bound proteins (cf. Sec. II). (b) Conceptual
description of a time-evolving manifold. The line (solid thick gray) can be parametrized either with respect to a stationary ambient coordinate
system (Eulerian coordinates σE, blue colors) or by using material coordinates σL (Lagrangian coordinates that label points traveling along
trajectories normal to the line, black hollow dots). As illustrated, the coordinates σE change over time in the material frame, resulting in a flow
σE → σE + dσE of these coordinates that is directed along the tangential part of the velocity vector ∂t r(σE, t ). We investigate a conceptual
two-component MCRD system on such a dynamic manifold (schematically illustrated by the symbols in purple and green, which represent a
cytosolic species c and a membrane species m, both diffusing along the line). (c) Convention for the sign of the curvature. If the manifold (thick
gray line) curves away from its unit normal vector (black arrow), then the curvature is negative (top panel). If the geometry (thick gray line)
curves towards its unit normal vector (black arrow), then the curvature is positive (bottom panel). The dashed line represents a flat geometry
with vanishing curvature.

as a source of cytosolic particles due to detachment from the
membrane and hence increase the cytosolic density. Redistri-
bution of mass through diffusion further amplifies this effect
and leads to a feedback loop between mass-redistribution and
reaction kinetics. This instability is hence termed the mass-
redistribution instability and is generic to MCRD systems.

In Ref. [53], it was furthermore shown that the condition
for a lateral instability, see Eq. (5), can be generalized to
partitions of the geometry. In short, one can dissect a spa-
tial pattern into spatially distinct regions and associate each
region with a regional phase space. Viewing these regions in
isolation from the rest, one can repeat the same analysis for
each region separately and thus reconstruct the global pattern
by determining the regional instability from Eq. (5). For a
comprehensive discussion of the local equilibria theory and
the two-component MCRD model, we refer to Ref. [53].

III. REACTION–DIFFUSION DYNAMICS ON A
DEFORMING MANIFOLD

Now that we have recapitulated the local equilibria theory
for pattern-forming systems on a given spatial domain, we will
extend it towards systems on dynamic manifolds. To that end,
we proceed with the following steps. We start by providing a
generic description of a manifold in terms of curvilinear coor-
dinates, where we restrict the discussion to a one-dimensional

system (line). For a general review of the differential geometry
of surfaces, we refer to Ref. [58]. This manifold represents the
cell membrane. We assume that the protein concentration gra-
dients perpendicular to the cell membrane are shallow, so we
can project them onto the manifold [Fig. 2(a)]. To determine
the time evolution of protein patterns, we require that their
dynamics is independent of the reference frame and that the
dynamics of the manifold conserves the number of particles.
By doing so, we derive a set of governing partial differen-
tial equations that describes MCRD systems on a deforming
manifold in the laboratory frame. An important aspect of the
dynamics is that virtually every deformation of the manifold
will inevitably change the local density of particles on the
manifold.

A. Describing a deforming geometry

We begin with the general description of a one-dimensional
time-dependent manifold (line). We parametrize the line by
a time-dependent position vector r(σ, t ) ∈ R2, where σ is
an arbitrary curve parameter that labels positions along the
line [see Fig. 2(b)]. Given a specific parametrization of the
position vector, one can then define further geometric features
of the line. The tangent vector of the curve is given by

τ(σ, t ) = ∂σ r(σ, t ). (6)
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For calculations, it is convenient to consider the normalized
tangent vector, which is given by

τ̂(σ, t ) = τ(σ, t )√
g(σ, t )

, where g(σ, t ) = ‖τ(σ, t )‖2, (7)

refers to the metric or first fundamental form. The metric
allows one to define arc distances along the curve:

s(σ, t ) =
∫ σ

0
dσ ′ √g(σ ′, t ). (8)

The conformation of the curve is described by the curvature κ

and is formally defined by

∂sτ̂ = κ n̂, (9)

where n̂ is the unit normal vector on the curve. Note that
the direction of the unit normal vector n̂ and the sign of the
curvature are not uniquely defined but a matter of convention.
Here, we choose the convention that the curvature is negative
for a sphere (circle in two dimensions). This means that the
line curves away from its unit normal vector in the case of
negative curvature, and towards its unit normal vector in the
case of positive curvature [see Fig. 2(c)].

The dynamics of the curve is determined by its velocity
vector ∂t r and can, in the most general case, be decomposed
into parts normal and tangential to the curve:

∂t r(σ, t ) = vnn̂ + vτ τ̂, (10)

where vn and vτ refer to the normal velocity and tangential
velocity, respectively. Note that the shape of the curve is only
affected by the normal velocity vn and is invariant under de-
formations in the tangential direction. In addition, the normal
component of the velocity vector can generally be an arbi-
trarily complicated function of the position vector, curvature,
and other field variables. Hence, the exact form of the normal
velocity must be determined by the specific physical system
being studied. Conversely, as we will show in the next section,
the tangential velocity strongly depends on the specific choice
of the curve parametrization and the frame of reference.

B. Frame of reference

Up to this point, we have not specified the exact frame of
reference for the parametrization of the geometry. In the fol-
lowing, by analogy with continuum mechanics, we distinguish
between two different frames of reference, the Lagrangian
frame and the Eulerian frame. In the Lagrangian frame, we
exploit the fact that tangential motion, i.e., sliding of the
curve along its own contour, does not change the shape of
a line. Therefore, we specify the curve parameter σL to label
material points with vanishing tangential velocity along the
line. These material points then move with the line along
the normal direction n̂ [Fig. 2(b)]. To further emphasize the
special properties of the Lagrangian or co-moving frame, we
define the material derivative Dt . If any quantity, such as the
position vector or some density field on the one-dimensional
manifold, is parametrized by material coordinates σL, then
the material derivative is identical to the (local) partial time
derivative [59,60]:

Dt := ∂t |r(σL,t ). (11)

This further implies that the material coordinates σL are
time invariant in the Lagrangian frame of reference, as they
should be.

In the Eulerian frame, one defines a curve parameter σE
that labels points on the curve which do not move with the
material coordinates, i.e., do not flow solely along the normal
but also along the tangential direction of the moving line. The
parametrization in this case is given with respect to an ambient
coordinate system (laboratory frame) [Fig. 2(b)] and therefore
specifies a fixed coordinate for the position of the line over
time (for fixed σE). Note, however, that while the material
coordinates σL do not change in the Lagrangian frame, they do
become time dependent in the Eulerian frame σL = σL(σE, t )
[see Fig. 2(b)]. This is analogous to fluid mechanics, where
the coordinates of a fluid parcel in the material frame are fixed
over time, while the fluid parcel moves at a certain velocity as
seen by an observer in the laboratory frame.

Now, a consistent physical description must be indepen-
dent of the exact definition of the laboratory frame (i.e., the
curve parametrization in the Eulerian frame). Therefore, the
total time derivative of an arbitrary physical quantity in the
laboratory frame must match the time derivative in the La-
grangian frame (i.e., using the operator Dt ). To understand
this, we apply the material derivative Dt to the position vector
field r(σE(σL, t ), t ) parametrized by Eulerian coordinates σE,

Dt r(σL, t ) = d

dt
r(σE(σL, t ), t )

= ∂t r(σE, t ) + ∂σE
r(σE, t ) ∂tσE(σL, t )

= ∂t r(σE, t ) + τ̂
√

g∂tσE(σL, t ) , (12)

where ∂tσE(σL, t ) denotes an ambient coordinate flow as seen
by an observer in the material frame at σL [see Fig. 2(b)]. Note
that, because we have chosen the material coordinates σL such
that they label points with vanishing tangential velocity along
the line, one finds that Dt r(σL, t ) = vnn̂; i.e., the material
derivative only contains a part normal to the line. The ambient
coordinate flow can be determined by a simple geometric
construction [see Fig. 2(b)]:

vndt n̂ − ∂t r(σE, t ) dt = dσEτ. (13)

By inserting Eq. (10) into Eq. (13), one obtains
dσE/dt = −vτ /

√
g. With this result, one can rewrite Eq. (12)

to obtain the equivalent form

Dt r(σL, t ) = vnn̂ = ∂t r(σE, t ) − vτ τ̂. (14)

To conclude, by combining Eqs. (12) and (6), we find that the
material derivative operator in the Eulerian frame is given by

Dt ≡ ∂t − vτ ∂s, (15)

where we have also used ∂σ = √
g(σ, t ) ∂s [cf. Eq. (8)]. This

operator serves as a link between the laboratory and material
frames and can be applied to any time-dependent quantity
defined on the one-dimensional manifold.

C. Conformational dynamics of the line affects density fields

If the conformation of the line changes with time, then
what is the time evolution of a density field that is defined on
the one-dimensional manifold? We proceed by considering an
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arbitrary scalar field � representing, for instance, the density
fields of cytosolic and membrane-bound proteins. We first de-
fine the cumulative number of particles up to some coordinate
σ along the line,

N�(σ, t ) :=
∫ s(σ,t )

0
ds′ �(s′, t )

=
∫ σ

0
dσ ′ √g(σ ′, t ) �(σ ′, t ), (16)

where for brevity of notation we have written
�(σ, t ) = �(s(σ, t ), t ) using the same symbol for the
function. For mass-conserving systems, the total number
of particles remains constant over time, irrespective of any
deformation of the line’s shape that alters its total or local
length. In contrast, the local density of particles can change as
a result of shape deformations, since density fields are defined
with respect to the local arc length, which is, in general,
also a time-dependent quantity; see Eq. (8). To derive the
time evolution of density fields, it is therefore useful to first
look at the time evolution of the particle number. Consider
the number of particles distributed on an infinitesimal line
segment between coordinates σ and σ + dσ ,

dN�(σ, t ) = dσ
√

g(σ, t ) �(σ, t ), (17)

and further assume that we have chosen a parametrization in
the Lagrangian frame, i.e., we set σ ≡ σL. The time evolution
of the number of particles then follows by applying the mate-
rial derivative to Eq. (17):

Dt [dN�(σL, t )] = dσL
√

g

[Dt g

2g
� + Dt�(σL, t )

]
. (18)

Since the left-hand side of Eq. (18) can only change due to
local reactions, f�(σL, t ), and particle fluxes j(σL, t ) across
the boundaries of the line segment dσL, it must be given by
the transport equation:

Dt [dN�(σL, t )] = j(σL, t ) − j(σL + dσL, t )

+ dσL

√
g(σL, t ) f�(σL, t ). (19)

The temporal evolution of the metric can be determined from
the definition (7),

Dt g(σL, t ) = Dt [∂σL
r]2 = 2[∂σL

Dt r] · [∂σL
r]

= 2g[∂svnn̂ + vn∂sn̂] · τ̂

= −2 gκ vn, (20)

where we have used the relation ∂σL
= √

g∂s, see Eq. (8), and
the fact that ∂sn̂ = −κ τ̂. Combining Eqs. (18)–(20), we obtain
the governing equation for the density field in the Lagrangian
frame:

Dt�(σL, t ) = −∂s j(σL, t ) + f�(σL, t ) + κ vn �(σL, t ). (21)

The particle flux in Eq. (21) can, in general, include diffusive
as well as advective fluxes along the one-dimensional mani-
fold, j(σL, t ) = −D� ∂s� + vτ �, where D� and vτ denote the
diffusion coefficient and tangential advection velocity, respec-
tively. Advective flows along the membrane may be caused,
for instance, by spatial heterogeneities in actomyosin con-
tractility [43] (cortical flows) or relaxation of in-plane elastic

FIG. 3. The different physical contributions to a change in parti-
cle concentration on a deforming line. (a) Mechanisms that conserve
the local number of particles on a given line segment while chang-
ing the segment’s length. Motion along the normal vector increases
(decreases) the length of segments with negative (positive) curvature
[cf. Fig. 2(c)], thus reducing (increasing) the local concentration
of particles. Since we here focus on exterior motion of the line
(along a direction normal to the line), we do not consider changes
in particle concentrations that would arise due to parallel (interior)
motion (faded panel). However, one could also account for dilution
and accumulation of particle densities due to parallel motion by in-
corporating a term � vτ into the density flux in Eq. (21). (b) Reactions
and diffusion are mechanisms that change the number of particles on
a segment while conserving the segment’s length.

stresses of the membrane. In this paper, we consider systems
where the particles are transported only by diffusion and
therefore disregard advective particle fluxes, in line with our
choice of reference frame with a vanishing tangential velocity.
The last term in Eq. (21) is a purely geometric contribution
and accounts for local density variations due to local length
extension and contraction. The various contributions to the
local change of the particle density are summarized in Fig. 3.

While the Lagrangian frame is convenient for our analytic
calculations, the choice of a specific parametrization in the
Eulerian frame allows us to reduce the number of degrees of
freedom in our numerical simulations. To that end, we choose
a Monge parametrization of the line contour,

r(x, t ) =
[

x
h(x, t )

]
, (22)

where the height field h(x, t ) encodes the line conformations
and x ∈ [0, L0] is the curve parameter (here a Eulerian coor-
dinate σE ≡ x). Thus, by using a Monge parametrization, we
eliminate the time evolution of one component of the position
vector r(x, t ) and retain only one degree of freedom. How-
ever, since the line is now represented by the graph h(x, t ),
we explicitly exclude overhangs by using this parametriza-
tion. We further assume that the two opposing endpoints of
the membrane are clamped, i.e., forced to a slope of zero,
while allowing the line to slip vertically along the boundaries
(Fig. 4). Since the line extends from x = 0 to L0, we effec-
tively introduce a length constraint, stating that the total length
of the membrane may not fall below the minimum distance L0

(Fig. 4).
One could generalize this choice to account for overhangs

at the expense of increased model complexity. Generally, al-
lowing the curve to freely move in space requires introducing
additional degrees of freedom (for example, described in the
Lagrangian frame). This would also lift the current lower
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FIG. 4. Illustration of the Monge parametrization. The mem-
brane (black solid line) is parametrized by its height relative to a flat
line. The endpoints of the membrane can slip along two solid walls
(gray), which are a distance L0 apart.

bound on the curve length due to the Monge parametrization
(see Fig. 4). To constrain the curve length in such a case, one
would need to add physically motivated mechanisms, such
as stretching rigidity. However, taking mechanical degrees of
freedom into account would greatly complicate the dynamics,
since stress propagation along lines exhibits a rather intricate
dynamics, as was shown for polymers [61–65]. Here, we
disregard these additional complexities and focus on the in-
terplay between biochemical pattern formation and the shape
deformation of the line.

Finally, using the definition of the material derivative in
Eulerian coordinates, Eq. (15), the dynamics of density fields,
Eq. (21), can be translated to the laboratory frame:

∂t�(σE, t ) = − ∂s j(σE, t ) + f�(σE, t )

+ κ vn �(σE, t ) + vτ ∂s�(σE, t ). (23)

This reaction-diffusion equation on a deforming line taken
together with the time evolution of the line’s shape, Eq. (10),
fully specify the dynamics of a density field on a manifold that
changes its conformation. Next, our goal is to understand how
shape deformations of a line affect protein pattern formation.

D. Two-component MCRD system on dynamically
evolving manifolds

As we have now established the framework to study
reaction–diffusion systems on lines exhibiting conformational
dynamics, we proceed with the generic description of a two-
component MCRD system on such a line in the laboratory
frame. This could represent, for example, a system where
two types of membrane-bound proteins interconvert through
reactions. The governing equations that describe the dynamics
of the density fields and the line conformation in Monge
parametrization are then derived from Eqs. (10), (22), and
(23),

∂t m(x, t ) = Dm∂2
s m + f + κ vn m + vτ ∂sm, (24a)

∂t c(x, t ) = Dc∂
2
s c − f + κ vn c + vτ ∂sc, (24b)

∂t h(x, t ) =
√

g(x, t ) vn, (24c)

where g(x, t ) = 1 + [∂xh(x, t )]2 is the local metric and
vτ = vn∂xh(x, t ) denotes the tangential velocity. Note that the
tangential velocity follows from a geometric construction;
see Eq. (13) and Fig. 2(b). The second spatial derivative

∂2
s along the curve corresponds to the (one-dimensional)

Laplace-Beltrami operator and is explicitly given by

∂2
s ≡ 1√

g
∂x

[
1√
g
∂x

]
= 1

g
∂2

x − 1

2

∂xg

g2
∂x. (25)

Unlike in the case of a fixed planar geometry, Eqs. (1a) and
(1b), the two-component MCRD system on a deforming line,
Eqs. (24a) and (24b), is not given in a form where mass
conservation is immediately apparent. This is due to the fact
that the density fields are defined with respect to the local arc
length, which is a dynamic quantity itself, as accounted for
by the geometric terms κ vn m and κ vn c in Eqs. (24a) and
(24b). Therefore, if one allows the conformation of the line to
change over time, the total average density is not necessarily
conserved by the dynamics. Instead, the quantity that must
be conserved for a system with a mass-conserving reaction
dynamics is the total particle number:

N =
∫ L(t )

0
ds (m + c) =

∫ L0

0
dx

√
g(x, t ) n(x, t ). (26)

This renders our analysis slightly more involved, since the
local equilibria theory cannot be applied to the mathematical
model, Eqs. (24a) and (24b), in its present form.

To get around this problem, we consider rescaled densities
on the membrane m̃(x, t ) := √

g(x, t ) m(x, t ) and in the cy-
tosol c̃(x, t ) := √

g(x, t ) c(x, t ). This mapping corresponds to
a projection of the line densities along the curve, m(x, t ) and
c(x, t ), onto the parametrization axis (in the case of a Monge
representation the x-axis), so

N =
∫ L0

0
dx

√
g(x, t ) (m(x, t ) + c(x, t ))

=
∫ L0

0
dx (m̃(x, t ) + c̃(x, t )) =

∫ L0

0
dx ñ(x, t ). (27)

Thus, ñ dx represents the total number of particles contained
within an infinitesimal compartment dx. Using our mapping,
one immediately sees that the mapped total average density
〈ñ〉 = N/L0 is conserved by the dynamics, thus allowing us
to apply the local equilibria theory. The time evolution of the
rescaled variables can be determined starting from

∂t m̃(x, t ) = √
g∂t m(x, t ) + 1

2

∂t g(x, t )√
g(x, t )

m(x, t ) (28)

and an analogous equation for the cytosolic species c̃. In the
following, only the derivation for the membrane species m̃ is
presented, since the calculations for the cytosolic species c̃
are completely analogous. The time evolution of the metric
∂t g(x, t ) in the Eulerian frame can be determined similarly as
shown in the previous section for Dt g(σL, t ),

∂t g(x, t ) = ∂t [(∂xr) · (∂xr)] = 2 (∂x∂t r) · (∂xr)

= 2 g[∂svnn̂ + vn∂sn̂ + ∂svτ τ̂ + vτ ∂sτ̂] · τ̂

= −2 gκ vn + 2 g∂svτ , (29)

where we used the general expression for the velocity vector
Eq. (10), the definition Eq. (9), and the fact that ∂sn̂ = −κ τ̂.
Inserting Eqs. (24a) and (29) into Eq. (28), we obtain the
continuity equation

∂t m̃(x, t ) = −∂x jm̃(x, t ) + f̃ (x, t ), (30)
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where the flux jm̃ is given by

jm̃(x, t ) = −
[

Dm√
g
∂x

(
m̃(x, t )√

g

)
+ vτ

m̃(x, t )√
g

]
, (31)

and the rescaled reaction term f̃ (x, t ) is defined as

f̃ (x, t ) =
√

g(x, t ) f (m, c)

=
√

g(x, t ) f

(
m̃(x, t )√

g(x, t )
,

c̃(x, t )√
g(x, t )

)
. (32)

Hence, the mass-conserving dynamics of the rescaled density
fields are given by a reaction–diffusion system in conservative
form:

∂t m̃(x, t ) = −∂x jm̃(x, t ) + f̃ (x, t ), (33a)

∂t c̃(x, t ) = −∂x jc̃(x, t ) − f̃ (x, t ), (33b)

∂t h(x, t ) =
√

g(x, t ) vn. (33c)

Note that the equations governing the dynamics of the
rescaled fields are equivalent to a reaction–diffusion system
defined on a fixed planar geometry of length L0. The influence
of shape deformations of the line on the reaction–diffusion
dynamics is fully absorbed into the metric factor

√
g(x, t ),

the conservative fluxes jm̃/c̃, and the rescaled reaction term
f̃ (x, t ). Strikingly, the reaction term becomes space and time
dependent, in contrast to the case of a fixed planar geometry
[53] where the reaction kinetics has the same form at each
point in space and time. We will show in the following sec-
tions that this spatiotemporal inhomogeneity of the reaction
term can lead to regional instabilities and thus deformation-
induced protein pattern formation.

E. Lateral instability on a deforming manifold

In Sec. II, we explained that the homogeneous steady state
of the two-component MCRD system (on a fixed planar line)
becomes unstable to spatial perturbations when the slope of
the reactive nullcline is steeper than the slope of the FBS; see
Eq. (5). Here we ask whether it is possible to obtain an insta-
bility criterion when deformations of the line are considered.

To investigate this question, we start with the description of
the two-component MCRD model in the Lagrangian frame,
which is more convenient for analytical calculations. As be-
fore, we project the density fields onto the parametrization
axis (note that, in this case, the curve parameter is σL). The
equations take the same form as for the laboratory frame,
see Eq. (33), except that there is no tangential drift in the
Lagrangian frame [cf. Eq. (31)]:

Dt m̃(σL, t ) = ∂σL

[
Dm√

g
∂σL

(
m̃√

g

)]
+ f̃ (σL, t ), (34a)

Dt c̃(σL, t ) = ∂σL

[
Dc√

g
∂σL

(
c̃√
g

)]
− f̃ (σL, t ). (34b)

The dynamics of the (rescaled) local total density ñ(σL, t ) is
obtained by summing Eqs. (34a) and (34b):

Dt ñ = ∂σL

[
Dm√

g
∂σL

(
m̃√

g

)
+ Dc√

g
∂σL

(
c̃√
g

)]
, (35)

and resembles a nonlinear diffusion equation with cross-
diffusion terms, which here result from concentration gradi-
ents and shape deformations of the line.

Now, since local reactive equilibria in MCRD systems
serve as scaffolds for patterns [53,56,57], one can approxi-
mate the membrane and cytosolic densities by their respective
(stable) local reactive equilibria:

[m̃(σL, t ), c̃(σL, t )] → [m̃∗(ñ(σL, t )), c̃∗(ñ(σL, t ))]. (36)

In doing so, one finds that only the metric g and the (rescaled)
local total density ñ remain as the relevant dynamic variables
in Eq. (35). Evaluation of the spatial derivative inside the
brackets in Eq. (35) results in

Dt ñ ≈ ∂σL

[
Dm∂ñm̃∗ + Dc∂ñc̃∗

g
∂σL

ñ − 1

2

Dmm̃∗ + Dcc̃∗

g2
∂σL

g

]
.

(37)

The first term inside the brackets in Eq. (37) describes diffu-
sive mass redistribution of ñ, and the second term contains
higher-order nonlinear contributions to mass redistribution
originating from geometry deformations. To proceed, we con-
sider several limiting cases. If g is independent of ñ, then
Eq. (37) is an equation with a linear feedback (first term,
linear order in ñ) together with a forcing term (second term,
zeroth order in ñ). The stability of such equations is, in gen-
eral, independent of the zeroth-order forcing term, and only
depends on the linear-order feedback term. In contrast, if the
normal velocity of the curve is an arbitrary function of the
local total density ñ, then according to Eq. (20) the dynamics
of the metric is governed by Dt g(σL, t ) = −2 gκ vn(ñ). If we
expand around an initially flat configuration of the line, g = 1
and κ = 0, then gradients of the metric will always vanish to
linear order in time, so the second term in Eq. (37) still drops
out. In the most general case, the metric g could be an arbitrary
function of the local total density ñ. In that case, we need to
assume that deformations are weakly varying near onset of
pattern formation such that ∂σL

g � 1, which, again, implies
that instabilities are dominated by the first term in Eq. (37).
Without this approximation, no statement about instabilities
can be made from Eq. (37) and one would need to perform a
(weakly) nonlinear analysis instead (assuming that the insta-
bility is supercritical) [66], which is a challenging task for our
problem. Using this approximation, we find that the stability
of the system against spatial perturbations is determined by
the effective diffusion coefficient in the first term of Eq. (37).
Since the metric g is always positive by definition, the ef-
fective diffusion coefficient of ñ becomes negative (leading
to antidiffusion) if Dm∂ñm̃∗ + Dc∂ñc̃∗ < 0. Hence, a homoge-
neous steady state becomes unstable to spatial perturbations if

∂ñc̃∗

∂ñm̃∗ = ∂m̃c̃∗(ñ) < −Dm

Dc
, (38)

which, analogously to fixed planar geometries [53], shows that
lateral instabilities occur if the slope of the reactive nullcline,
∂m̃c̃∗(ñ), is steeper than the ratio of diffusion coefficients on
the membrane and in the cytosol, −Dm/Dc.

Our key finding here is that the generalized slope criterion,
Eq. (38), depends explicitly on the local total densities ñ as
well as the shape of the reactive nullcline f̃ (σL, t ) = 0, which
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FIG. 5. Shape deformations of the manifold induce spatial inhomogeneities of the reactive nullcline. (a) Height profile (black line) in
Monge parametrization and the corresponding spatial profile of the metric (green line) for a given point in time. (b) Phase space geometry for
the rescaled variables c̃ and m̃ at the same time point as in (a). The differently colored lines show the reactive nullcline f (x, t ) = 0 at different
positions in space [as depicted by the blue and red points in (a)]. The black line corresponds to the reactive nullcline for a planar geometry, i.e.,
for regions of the height profile where

√
g ≈ 1. Note that changes in the metric scale the local nullcline by

√
g with respect to the origin. The

thin gray line shows the local phase space for the (conserved) rescaled total average density 〈ñ〉. The intersections of this line with the reactive
nullclines determines the local equilibria (black dots). Note that the local phase space intersects the black nullcline in a section where the
slope is negative, hence fulfilling the instability criterion (38), while the intersections with the blue and red nullclines lie in sections where the
slope is positive (laterally stable).

is, in general, space and time dependent. This finding differs
sharply from the case of a fixed planar geometry, where the
same form of a slope criterion holds but with the shape of
the nullcline fixed in both space and time, therefore leaving
the local total density as the only control variable [53]. The
space and time dependence of the reactive nullcline results in
inhomogeneities, which suggests that the lateral stability of
the system may vary between spatial regions and may also
evolve over time, depending explicitly on the time evolution
of the line conformation. This is illustrated in Fig. 5, where we
show how spatial variations in the square root of the metric

√
g

(at a given point in time) induce spatial inhomogeneities of the
nullcline shape, which results in lateral instabilities in those
segments of the line where the criterion given by Eq. (38) is
fulfilled.

IV. PATTERN FORMATION ON DEFORMING MANIFOLDS

A. External control of manifold conformations

In the preceding sections, we established the theoretical
framework to study reaction–diffusion systems on time-
evolving one-dimensional manifolds. So far, the analysis has
been general, and we have not further specified exactly how
the shape of the line deforms over time or whether and how
protein dynamics can feed back onto these deformations.

To illustrate the key points of pattern formation on lines
that can change their conformation, below we analyze sim-
ple examples where we assume that the conformation of the
line is controlled externally, i.e., we explicitly specify the
temporal evolution of the line shape and investigate how the
reaction–diffusion dynamics responds to these perturbations.
In detail, we consider the following scenario: we assume
that the line shape is initially flat and initialize the reaction–
diffusion system such that the homogeneous steady state is
stable against spatial perturbations (no pattern formation). In
other words, the total density is chosen such that the slope
criterion, Eq. (38), is not fulfilled. At time t = T0, the shape
of the line is then adiabatically deformed from a straight

conformation to a cosine shape [Fig. 6(c)],

h(x, t ) = A(t ) cos
(πx

L

)
, (39)

where the amplitude A(t ) is chosen to increase linearly from
0 to A0 during the time interval [T0, T1] (ramp function):

A(t ) = A0 ×
⎧⎨⎩

0, t < T0
t−T0

T1−T0
, T0 � t � T1

1, t > T1

. (40)

The length of the time interval and the final amplitude A0

are chosen such that the rate of line-shape deformation is
slow compared to the typical growth rate of unstable modes
(i.e., small compared to ∼ Dcq2, where q denotes the mode
number; see Ref. [53] for details). For clarity, we omit phys-
ical units in the following and specify typical length and
timescales in an intracellular context in Appendix D. Note
that in our numerical analysis, we explicitly use a Monge
parametrization to describe the line conformations, and per-
turb the line shape by directly increasing the height h(x, t )
instead of imposing motion along the normal vector of the
line. This leads to a slight change in the equations, as the
tangential velocity vτ in Eq. (31) can be omitted.1 To in-
vestigate the dynamics, we performed finite element method
(FEM) simulations using the commercially available software
COMSOL MULTIPHYSICS V5.6. The simulations show that the
homogeneous steady state becomes laterally unstable for suf-
ficiently large line-shape deformations, and the concentration
profile then gradually evolves into a mesa pattern along the

1If we instead consider deformations along the normal direction,
then a tangential velocity only enters the equations if one chooses
a parametrization in the Eulerian frame [as illustrated in Fig. 2(b)].
Here, to keep the analysis concise, we assume that the manifold is
deformed along the vertical direction. In this case, the direction of
the deformations coincides with the coordinate system, and therefore
the tangential velocity vτ can be disregarded.
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FIG. 6. Regional instability induced by line shape deformations. (a) Snapshot of the rescaled local total density ñ (blue solid line) and the
region of lateral instability (orange area, the inset illustrates the definition of this area in phase space). The snapshot further shows the onset
of the regional instability as ñ enters the orange area (dashed blue line). (b) Same as (a) but for a set of time points (kymograph, where the
gray shading visualizes the offset of the graph in the vertical direction). A pattern forms when ñ enters the region of instability; the red arrow
indicates the onset of the instability and corresponds to the graph shown in (a). For clarity, the region of instability is only shown for selected
time points. (c) Time evolution of the line shape (black solid line) and metric (green solid line) as defined in Eq. (39). (d) Actual local total
density n; the red arrow indicates the onset of instability [same axes range as in (b)].

spatial domain considered (Figs. 6(b)–6(d) and movie 1 in the
Supplemental Material [67]).

What is the mechanism underlying this lateral instabil-
ity induced by the deformations that we impose on the line
shape? To answer this question, we make use of the instability
criterion for the rescaled densities, Eq. (38). Specifically, at
each point in space and time, we determine the range of the
(rescaled) total densities for which criterion (38) is fulfilled.
To that end, we solve the equation ∂m̃c̃∗(ñ) = −Dm/Dc for the
rescaled total density ñ and thereby determine an upper thresh-
old ñ+

lat(x, t ) and a lower threshold ñ−
lat(x, t ), for which the

instability criterion is fulfilled, i.e., for total densities that obey
the inequality ñ−

lat < ñ < ñ+
lat. Geometrically, these thresholds

determine the points of the nullcline where the slope is equal
to −Dm/Dc; see inset of Fig. 6(a).

In contrast to the case of a fixed planar geometry, the
existence and concentration range of a lateral instability here
generally depend on space and time, since deformations cause
spatial heterogeneities of the nullcline shape; see Eq. (32).
This implies that shape deformations of the line may induce
pattern-forming instabilities in regions of the line where the
slope criterion (38) is fulfilled [regional instabilities, shown in
Fig. 6(a)].

Figure 6(b) shows the spatiotemporal dynamics of the
rescaled local total density ñ (blue solid line) and the region
of lateral instability (orange shaded region). For t < T0, where
the conformation of the line is flat, no pattern forms since
ñ lies outside of the laterally unstable region. Note that the

region of lateral instability is spatially uniform for t < T0

since one has a flat geometry with a metric g(x, t ) = 1. As
the shape of the line is adiabatically deformed, the spatial
profile of ñ and the region of lateral instability also deform,
eventually causing spatial sections of ñ to enter the laterally
unstable region. This event then induces a regional instability
of the reaction–diffusion system and therefore leads to es-
tablishment of a pattern along the one-dimensional manifold
considered [see Figs. 6(a), 6(b), and 6(d)].

To conclude this section, we briefly summarize our key
findings. Essentially, the impact of line shape deformations
is reflected in the spatially inhomogeneous nullcline shapes,
which physically correspond to inhomogeneous reactive flows
due to local length expansion and contraction and the cor-
responding changes in local particle concentrations. This
heterogeneity in the nullcline shape (dictated by the confor-
mation of the line) leads to a nonuniform region of instability,
which may induce (regional) pattern-forming instabilities in
the reaction–diffusion dynamics as explained above. We will
in the following refer to this as a geometry-induced instability,
since changes in the shape of the manifold lead to spatial
variations of the metric, which in turn affect the stability of
the reaction–diffusion dynamics.

B. Shape deformations act as a template for patterns

Above, we have shown that an externally controlled de-
formation of the line shape can induce lateral instabilities
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FIG. 7. The shape of the line acts as a template for patterns. (a) A pattern-forming instability is triggered once the rescaled local total
density ñ (blue solid line) enters the region of instability (orange area). For clarity, the region of instability is only shown for selected time
points. The red arrow indicates the onset of pattern formation. (b) Same kymograph as shown in (a) but projected onto the space-time plane
with the color-coding indicating the rescaled local total density ñ. The orange hatched area indicates the values of ñ which lie in the region
of a lateral instability. Note that a pattern forms once the orange hatched area appears (after a short lag time). (c) Actual local total density n
[same axes range as in (a)]. Note that the rescaled density ñ [shown in (a) and (b)] is nonuniform before the onset of a lateral instability (due to
deformations), while the actual density initially remains nearly homogeneous and develops a spatial pattern once the system reaches the onset
of instability. (d) This panel shows the line conformation (black solid line) and metric (green solid line), corresponding to Eq. (41). Comparing
with (c) reveals that the high concentration regions of the pattern (plateaus) form precisely at the extrema of the height profile.

and thus lead to pattern formation. While we have chosen a
specific way to gradually deform the geometry, the principle
that we have found is general: the high-concentration plateaus
of the emerging pattern form at characteristic locations along
the line determined by geometric features, here extrema of
the height profile; see Figs. 6(c) and 6(d). This observation is
similar to Ref. [68], where the response of a reaction-diffusion
system to a template of spatially nonuniform reaction rates
was studied. Thus, the shape of the line acts as a kind of
template for the patterns, with the low-concentration plateaus
emerging in regions where the height profile has maximal
slope. In these regions, the metric of the line is at its largest,
thus maximizing the local depletion of particles due to dilation
in the local line geometry. This is a generic feature of the
system, as we will explain in the following.

To elucidate this templating effect further, we repeat the
analysis from the previous section, but this time consider a
higher-harmonic shape deformation [Fig. 7(d)],

h(x, t ) = A(t ) cos

(
3πx

L

)
, (41)

where the amplitude A(t ) is defined by Eq. (40) and the ini-
tial conditions are again chosen such that the homogeneous
steady state is laterally stable. In agreement with our previous
results, a pattern-forming instability is triggered as soon as the

rescaled total density ñ enters the region of lateral instability
(see Figs. 7(a)–7(c) and movie 2 [67]). As we have chosen
a higher-harmonic shape deformation for the line, multiple
plateaus now form. As expected, the high-density plateaus are
located at the extrema of the line height, while the low-density
plateaus are located in regions where the height profile of the
line is steepest; compare Figs. 7(c) and 7(d).

This effect is due to the nonuniform deformation of the
line shape. In particular, while the total length of the line
increases over time, the local length of individual line seg-
ments barely changes at the extrema of the height profile.
Thus, the growth of the line’s contour length occurs primarily
in regions with a steep slope of the height profile, where
the metric is largest. In these regions, where ∂t

√
g(x, t ) > 0,

the concentration of particles will be diluted. Thus, even
when starting from an initially homogeneous concentration
profile, such geometric effects alone lead to a redistribution
of particles and induce density inhomogeneities n(x, t ) along
the line [Fig. 7(c)]. If this effect is coupled to the onset of
a lateral instability, then troughs in the density profile will
further decrease, while hills (located at the extrema of the
height profile where

√
g(x, t ) ≈ 1) will increase [Figs. 7(a),

7(b), and 7(d)]. In other words, the mass-redistribution in-
stability [53] will further amplify geometry-induced density
inhomogeneities.
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FIG. 8. Shape deformations shift the interface and suppress patterns. (a) The total average density is chosen such that initially a mesa
pattern forms. Due to deformations of the line shape, the interface (connecting the lower and upper plateau) is shifted such that the plateau
width decreases (see discussion in main text). For sufficiently large deformations, only a small region of the rescaled local total density ñ (blue
solid line) lies in the region of instability (orange area), which then leads to suppression of the pattern [see also (c)]. (b) Same kymograph as
shown in (a), but projected onto the space-time plane with the color-coding indicating the rescaled local total density ñ. The orange hatched
area indicates the values of ñ which lie in the region of a lateral instability. Note that the interface is first shifted and then suppressed as the
plateau width becomes too small. (c) Actual local total density n [same axes range as in (a)]. (d) Time evolution of the line shape (black solid
line) and metric (green solid line), as defined in Eq. (42).

C. Interface shift and pattern suppression

So far, we have investigated cases where the homogeneous
steady state was laterally stable for a planar geometry, and we
induced an instability only by deforming the line shape. We
now ask how shape deformations affect already established
patterns. To address this question, we choose the initial total
density such that the homogeneous steady state is laterally
unstable, thereby resulting in the formation of a mesa pattern
[Figs. 8(a) and 8(c) and movie 3 [67]).

We initialize the reaction–diffusion system and its steady-
state pattern on an initially planar geometry (straight line).
Then, following the same procedure as before, we deform the
line shape adiabatically [Fig. 8(d)],

h(x, t ) = A(t ) cos
(πx

L

)
, (42)

where the amplitude A(t ) is defined by Eq. (40). We find
that the deformation in the line’s shape [Fig. 8(d)] gradu-
ally changes the pattern profile from a mesa to a narrow
peak pattern, until eventually the peak disappears altogether
[Fig. 8(c)]. There are two major underlying reasons for these
observations: First, for the two-component MCRD system
that we study here, it has been shown that the interface po-
sition (which connects the lower and upper plateau of a mesa
pattern) depends only on the average total density 〈n〉, as long
as the system size is larger than the typical length scale of

the pattern interface [53]. Thus, in a fixed spatial domain,
altering the average total density will shift the interface as a
consequence of mass conservation, where addition or removal
of mass leads to a respective increase or decrease of the
plateau width. Since deformations of the line shape effectively
lead to a depletion of the total average density due to an
increase in the total length of the spatial domain, this explains
the shift of the pattern interface. Second, for large enough
shape deformations, only a small part of the system lies in
a region of lateral instability; see Figs. 8(a) and 8(b). Once the
size of this region becomes comparable or even smaller than
the typical length scale of the interface, pattern formation is
suppressed.

D. Self-organized mechanochemical coupling

In the previous sections, we have gained basic insights
into how shape deformations affect the pattern formation of
MCRD systems. We now consider a more intricate scenario
where the dynamics of the conformation of the line is ex-
plicitly coupled to the density fields on the one-dimensional
manifold. In other words, we incorporate a feedback loop
between the line shape and the reaction–diffusion dynamics
of the density fields. In general, there are many ways to
implement such a coupling. For example, the local concen-
tration of proteins can drive shape deformations as well as
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protein transport on and onto the manifold through local bend-
ing of the membrane [32,39,69], active stresses in the form
of myosin contractility [41,43,70] or actin polymerization
[40,41].

Furthermore, there are many ways to account for the me-
chanical properties of an elastic (or viscoelastic) manifold.
For example, consider a cell membrane; the line we have
considered so far can be seen as a one-dimensional projection
of such a membrane. The conformation of a membrane is
characterized by an elastic energy that generally contains both
a bending energy term and a surface tension term. Which of
these contributions dominates depends on the system in ques-
tion [71–73]. For example, phospholipid membranes have a
very large stretching modulus, so their surface area can be
assumed constant, i.e., inextensible [71]. While this suggests
mechanical properties that are dominated by bending, an
effective surface tension can be induced by spontaneous cur-
vature [73] or by thermal agitation of membrane fluctuations
[71]. In the latter case, the effective tension is determined by
the temperature and the bending rigidity, and ensures inexten-
sibility of the surface. Moreover, in the context of cells, the
actomyosin cortex contributes an active tension [5]. Surface
tension leads to a Laplace pressure that scales as ∝ q2 with
wave mode q, and will therefore always dominate over bend-
ing stresses (∝ q4) on sufficiently large length scales.2 Here,
we study a conceptually simple example where we assume
that the line can be regarded as a fluid-like substrate, i.e.,
on sufficiently large length scales we disregard finer grained
mechanical properties of the line such as bending rigidity. To
further simplify our system, we additionally assume that the
tension γ , cf. Eq. (43), is spatially uniform3 and that tangential
advection in the co-moving frame can be neglected.4 The
feedback loop between the particle density and the mem-
brane conformation is implemented by assuming that shape
deformations are locally driven by the local total density of
proteins. Specifically, we consider the following form for the
normal velocity vn:

vn = μ [m(σE, t ) + c(σE, t )] + γ κ (σE, t ). (43)

The parameter μ denotes the coupling strength between the
local protein density and the normal velocity of the line.
Physically, one may interpret this term as a protein-controlled
recruitment and polymerization rate of actin filaments that
drive outwards motion of the membrane through an effec-
tive pressure [40,41,80] (see Fig. 9 for an illustration). The
second term accounts for the Laplace pressure caused by sur-
face tension effects due to the local curvature κ (σE, t ). These
stresses must be locally balanced by viscous stresses in the
fluid. For simplicity, we here assume simple drag friction and
absorb the friction coefficient into the parameters μ and γ .

2This is analogous to the cross-over from a wormlike chain to a
Rouse model at sufficiently large length scales [74].

3Protein-controlled tension inhomogeneities (i.e., gradients) lead to
Marangoni flows and protein redistribution, which can drive pattern-
forming instabilities even in the absence of geometry deformations
[75]. For simplicity, we here exclude such effects.

4Advection can drastically change the dynamics of protein patterns
even in static geometries [76–79].

FIG. 9. Illustration of actin-driven membrane deformations.
Membrane-bound and cytosolic proteins enhance the local poly-
merization of actin filaments, which in turn push the membrane
outwards. These effects can most simply be modeled by an isotropic
cytosolic pressure that drives membrane motion along its normal
vector [see Eq. (43)].

Phenomenologically, the first term thus describes local growth
of the membrane that is proportional to the local total density
of proteins, while the second term counteracts this effect by
minimizing the membrane area (which is a length in our
case since we consider a one-dimensional projection of the
membrane surface).

In the Monge representation of the line, and mapping
to rescaled variables m̃ and c̃ (Sec. III D), one can rewrite
Eq. (43) as

vn = μ
1√
g

[m̃(x, t ) + c̃(x, t )] + γ
1

g3/2
∂2

x h(x, t ). (44)

The time evolution of the line conformation is then obtained
from Eqs. (33c) and (44):

∂t h(x, t ) =
√

g(x, t ) vn

= μ [m̃(x, t ) + c̃(x, t )] + γ
1

g
∂2

x h(x, t ). (45)

Equation (45) for the height profile of the one-dimensional
manifold, together with Eqs. (33a) and (33b) for the density
profiles of the proteins, provide a closed set of equations gov-
erning the self-organized dynamics of a two-component
MCRD system on a deforming manifold with mechanochem-
ical coupling.

In general, the dynamics of the mechanochemically cou-
pled system is expected to depend on the relative timescales
of line-shape deformation and protein pattern formation. The
former is determined by the coupling strength μ and the total
average density 〈ñ〉 and yields the characteristic timescale
for the growth of the line’s length, tG = L0/(μ 〈ñ〉). The lat-
ter is dominated by cytosolic redistribution of particles and
thus provides a typical timescale of diffusion tD = L2

0/Dc.
Hence, one may define a dimensionless number that relates
the timescales of diffusion and growth, which we call in anal-
ogy to fluid dynamics the Péclet number

Pe := μ〈ñ〉L0/Dc. (46)

For small values of the Péclet number, Pe � 1, diffusion is
much faster than the dynamics of line-shape deformations. In
particular, in the limiting case of Pe → 0, the dynamics of
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FIG. 10. Coupling the reaction–diffusion dynamics to the shape
of the line leads to self-organized spatiotemporal patterns. The left
panel shows a kymograph of the spatiotemporal dynamics of the
rescaled total density ñ and illustrates the emergence of oscillations.
The orange shaded area corresponds to values of ñ which fulfill
the instability criterion Eq. (38). Note that, as the pattern amplitude
disappears on one side of the domain (due to deformations of the line
shape, see right panel), a regional instability is induced at the oppo-
site boundary. This interplay between reaction–diffusion dynamics
and line shape deformations drives the spatiotemporal dynamics.
The middle panel shows the actual local total density n. The right
panel illustrates the patterns in the relative height profile, defined
as h(x, t ) − 〈h〉, where the average height 〈h〉 is proportional to
the average total density and time 〈h〉 ∼ 〈ñ〉 t . We used reflecting
boundary conditions (no flux) for both the reaction-diffusion system
and the height profile.

shape deformations becomes infinitely slow on the timescales
of diffusive mass redistribution. This is equivalent to abol-
ishing mechanochemical coupling altogether, μ → 0, where
the protein patterns approach a stationary state. We provide
a systematic analysis of the impact of this parameter on the
pattern-forming dynamics in Sec. IV E.

In the following, we will first explore the system’s dy-
namics through FEM simulations and find a broad variety of
dynamic patterns.

1. Oscillations

First, we performed simulations of small confined systems
with reflecting boundaries. The initial total average density
was chosen such that the reaction–diffusion system is later-
ally unstable and therefore generates a mesa pattern. For the
initial conformation of the line, we selected a flat state with
h(x, 0) = 0.

Interestingly, although the two-component MCRD system
shows only stationary patterns for a static line shape, we here
find self-organized oscillations. These spatiotemporal patterns
must therefore clearly be due to the mechanochemical feed-
back between the protein pattern and the line shape (Fig. 10,
movie 4 [67]). However, the question remains as to how the

FIG. 11. Illustration of the mechanism that drives the motion of
the protein pattern’s interface. The one-dimensional manifold moves
along its normal vector, with a velocity that is proportional to the
local protein density. Therefore, gradients in protein density lead to
gradients in the height profile, thus stretching the line at the location
of the protein pattern’s interface. Since local stretching of the line
corresponds to local dilution of the protein density, the interface of
the protein pattern moves.

mechanism driving these oscillations relates to the geometry
effects discussed earlier (Secs. IV A–IV C).

From the first term in the equation for the normal velocity
vn, Eq. (43), we deduce that an initial pattern formed on a
flat line destabilizes this line conformation by inducing faster
growth of the height profile at the pattern’s peaks than at its
valleys. The resulting change in the line shape geometrically
corresponds to local length dilations and contractions. Here,
where we started from a flat line conformation, the slope of
the height profile, and thus the local contour length of the line
grow fastest at the pattern’s interfaces between neighboring
extrema in the concentration profile. To illustrate how these
changes in the line’s geometry affect the dynamics of the
protein pattern, let us for now suppose that we initiate the
system with a protein pattern consisting of two plateaus (mesa
pattern) and a flat conformation of the line (see Fig. 11).
Then, the growth of the local line length at the interface
(connecting the lower and upper plateau) will locally dilute
the density of proteins. As a consequence, the lower plateau
will expand at the expense of the upper plateau, pushing the
interface towards the upper plateau (see Fig. 11). This is
analogous to the pattern interface shift which we discussed
in Sec. IV C for externally controlled deformations. Since
line-shape deformations also alter the region of instability of
the reaction–diffusion system, large enough deformations will
suppress the initial pattern and trigger a regional instability at
the opposite side of the geometry (see Fig. 10). As the upper
plateau grows at the opposing side, it gradually restores the
height profile to a flat conformation. After the plateau pattern
is fully reestablished at the opposing side and the conforma-
tion has returned to a flat conformation, the cycle repeats. This
intricate interplay between the dynamics of the line shape and
the reaction–diffusion system (mechanochemical feedback) is
the key mechanism that leads to spatiotemporal oscillations.
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FIG. 12. Emergence of traveling wave patterns for Péclet num-
bers Pe < 0.6. The left panel shows a kymograph of the spatiotem-
poral dynamics of the actual local total density n, and the right
panel depicts the relative height difference h(x, t ) − 〈h〉. Wave fronts
emerge and vanish at specific points along the spatial domain con-
sidered. The positions of these events depend on the initial condition,
which in our FEM simulations is a small random perturbation around
the homogeneous steady state. For long times, the system self-
organizes into periodic traveling wave fronts. Here, we implemented
periodic boundary conditions for the reaction-diffusion system and
the height profile.

2. Traveling waves

For spatial domains much larger than the wavelength λc

of the fastest growing mode in the dispersion relation (Ap-
pendix F), the two-component MCRD system initially leads
to the formation of patterns consisting of multiple plateaus or
peaks.5 The wavelength of this initial pattern is well approx-
imated by λc. However, this initial pattern is not stable and
slowly coarsens to a single peak or interface [81–86].

Let us now again consider how the dynamics is changed
when there is a mechanochemical coupling between the den-
sity profile emerging from the reaction–diffusion system and
the conformation of the line. As in Sec. IV D 1, we choose
a flat height profile h(x, 0) = 0 for the initial line confor-
mation, and a homogeneous concentration of proteins with a
slight random perturbation around this state; however, we now
impose periodic boundary conditions for both, the reaction–
diffusion dynamics and the line’s shape.

In our FEM simulations, we observe that propagating den-
sity waves and accompanying waves in the height profile
arise at specific points in space (sources) (Fig. 12, movie
5 [67]). Each of these sources gives rise to two waves that
travel in opposite directions and, given the periodic boundary
conditions, mutually annihilate at specific points on the spatial
domain considered (sinks). The positions of these sources

5For the specific system that we consider here, these are always
mesa patterns (see Appendix A).

and sinks depend on the initial conditions, that is, the slight
perturbations of the initially homogeneous density profiles.
Furthermore, we observe that these sources and sinks slowly
migrate in space, and eventually meet and annihilate for large
times. The steady-state pattern then consists of periodic travel-
ing wave fronts, as shown in Fig. 12. Importantly, we note that
the system selects a typical wavelength for large times. Hence,
our results suggest that the coarsening process is interrupted
if the dynamics is explicitly coupled to the geometry.

3. Standing waves

Depending on the relative magnitude of the characteristic
timescales of the mass redistribution and changes in the line
shape—the Péclet number Eq. (46)—we observe a transi-
tion from traveling wave patterns to standing wave patterns
(Fig. 13 and movie 6 [67]).

For the parameter combination used in this paper (Ap-
pendix D), the transition from traveling waves to standing
waves occurs at a critical value of Pec � 0.6. This suggests
that standing wave patterns emerge if the timescales of line-
shape dynamics and diffusive redistribution of proteins are
comparable, whereas the emergence of traveling wave pat-
terns requires that diffusive redistribution of proteins is the
dominant (fastest) timescale. Moreover, as for the traveling
waves in Sec. IV D 2, we find that the system selects a typ-
ical wavelength for large times [see Figs. 13(a) and 13(b)].
Notably, for large domains, we observe that the pattern wave-
length at small times is larger than the final wavelength in
steady state [see Fig. 13(b)]. This again indicates that coars-
ening in the system seems to be interrupted.

E. Tuning the relative timescales of the conformational
dynamics and diffusive transport

In the previous sections, we found that coupling a MCRD
system on a one-dimensional manifold with deformations of
this manifold can lead to rich spatiotemporal dynamics. In
FEM simulations of the coupled system, we have observed
oscillations or traveling waves, even though the MCRD sys-
tem on a static manifold would typically approach a stationary
steady state through coarsening. As discussed above, such a
mechanochemical coupling introduces an additional timescale
that competes with the typical time that the MCRD system
requires to generate a protein pattern, see Eq. (46).

But how in detail does the dynamics of shape deformations
affect the formation of protein patterns through reactions and
diffusion? Here, we answer this question by performing nu-
merical parameter sweeps. For convenience, we first introduce
dimensionless quantities by rescaling spatial coordinates and
time,

{x, h} → L0 × {x′, h′}, and t → D−1
c L2

0 × t ′, (47a)

and thus also velocities, v → Dc L−1
0 × v′. Furthermore, we

also rescale particle densities,

{ñ, c̃, Kd} → L−1
0 × {ñ′, c̃′, K ′

d}, (47b)

and all control parameters:

{Dm, μ, γ } → Dc × {D, μ′, γ ′}, (47c)

{kon, kfb, koff} → Dc L−2
0 × {k′

on, k′
fb, k′

off}. (47d)
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FIG. 13. Emergence of standing wave patterns for Pe > 0.6. (a) Spatiotemporal dynamics of the actual local total density n and the relative
height difference h(x, t ) − 〈h〉 for system size L0 = 10. As for traveling waves, the dynamics settles on a specific wavelength over long times.
(b) Same FEM simulation and parameters as shown in (a) but for a larger system size L0 = 50. The final wavelength at long times is identical
to that shown in (a). We used periodic boundary conditions for these simulations. Moreover, we also performed simulations with reflective
boundary conditions and observed the same patterns.

Here, we have grouped parameters with identical units of mea-
surement and indicate their non-dimensionalized counterparts
by the prime symbols on the right-hand side. The nondimen-
sionalized equations are shown in Appendix C, where we have
dropped the primes to simplify notation. Due to the nondimen-
sionalization, all variables are scaled to the system size. Here
D = Dm/Dc denotes the ratio of diffusion constants, and the
Péclet number relating the timescale of (cytosolic) diffusion to
the timescale of shape dynamics is now given by Pe = μ′〈n′〉.

From our numerical parameter study, we find that the sys-
tem can remain in a stationary state as long as the Péclet
number is sufficiently small, below a finite critical value of
Pe � 0.2. However, if we increase the Péclet number beyond
this value, then we find a discontinuous onset of oscillations
(Fig. 14). When further increasing the Péclet number, the
oscillation frequency increases. When the line moves at a high
velocity (corresponding to large oscillation frequencies), the
coupling to the manifold quickly redistributes proteins and
thus flattens out protein density gradients via an effective
artificial diffusion. For example, regions with a high con-
centration of proteins grow faster, hence reducing the local
concentration of proteins by virtue of mass conservation.
Thus, above a large Péclet number of Pe � 50, we find a sup-
pression of both protein pattern formation and, consequently,
oscillations (Fig. 14). Interestingly, we find a doubling of
the measured oscillation frequencies at intermediate Péclet
numbers Pe ∼ 0.6, which for large system sizes corresponds
to the onset of standing wave patterns, as discussed in the
previous section.

To conclude, through our numerical parameter study we
have learned how the shape dynamics affects protein pattern
formation on the one-dimensional manifold. The qualita-
tive dynamics of protein pattern formation remains largely
unaffected by the deformations as long as the Péclet num-

ber, which relates the timescale of protein diffusion to the
timescale of the line’s deformations, is sufficiently small.
However, there are two qualitative changes with increasing
Péclet number: First, one observes a discontinuous onset of
oscillatory patterns and, second, at high Péclet numbers all
patterns are gradually extinguished.

FIG. 14. Features of the oscillatory dynamics of the one-
dimensional manifold in our simulations, as a function of the Péclet
number. In our FEM simulations, we monitor the height difference,
h(L, t ) − h(0, t ), of the one-dimensional manifold as a function of
time. We then determine the frequency of the oscillations (top) and
the maximal amplitude of the oscillations (bottom). In the limit of
small Péclet number, the height profile remains static, thus leading to
stationary patterns that persist until a critical value of Pe ∼ 0.2. For
sufficiently large Péclet number, we observe an onset of oscillations
whose frequency increases (approximately) linearly. When the Péclet
number exceeds a second critical value of Pe � 50, all dynamics
vanishes.
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V. DISCUSSION

We investigated the dynamics of a two-component MCRD
system on a dynamically deforming one-dimensional mani-
fold embedded in two-dimensional space. To shed light on
how deformations of the line influence pattern formation, we
first studied a scenario where these shape deformations are ex-
ternally controlled and occur on a timescale much larger than
that of the intrinsic dynamics of the reaction–diffusion sys-
tem (adiabatic deformations). Next, we considered a feedback
loop between shape deformations and the reaction–diffusion
dynamics. To keep the analysis simple and concise, we
assumed a fluidlike substrate with a growth rate propor-
tional to the local total protein density. We found that shape
deformations induce spatially nonuniform pattern-forming in-
stabilities, which we refer to as regional instability. Moreover,
our analysis shows that the shape dynamics may also (re-
gionally) suppress protein patterns and spatially shift already
established protein pattern interfaces. Despite its simplicity,
the model already shows a surprisingly wide range of dy-
namic patterns, such as oscillations and traveling waves. They
emerge as a direct consequence of the interplay between shape
deformations and reaction–diffusion dynamics.

Based on the local equilibria theory [53], we derived a
criterion that links the onset of instabilities to the slope of
the reactive nullcline in phase-space. Specifically, we find that
the nullcline shape becomes spatially non-uniform because
the metric of the geometry enters the dynamics. This differs
sharply from the case of a flat static geometry [53], where
the nullcline shape is uniform in space and time. Our anal-
ysis shows that the interplay between the dynamics of the
local total density, an important control variable for pattern
formation in MCRD systems [53,56,57], and the metric is
key to understanding the phenomenology of the system. From
a physical point of view, the underlying mechanism of the
observed dynamics lies in the local dilution and enrichment of
particle densities by local length extension and contraction, re-
spectively, which occur concomitantly with dynamic changes
in the shape of the line.

We further showed that the existence of dynamic patterns
crucially depends on the characteristic timescales of (cytoso-
lic) diffusive mass redistribution and shape deformations,
which we quantified by defining a (dimensionless) Péclet
number that describes the ratio between these two timescales.
Depending on the Péclet number, we identified two distinct
asymptotic limits:

(i) For small values of the Péclet number, one finds
quasistationary patterns as the line deforms on a timescale
much larger than the typical timescale of mass redistribution
(diffusion-dominated regime).

(ii) For large values of the Péclet number, pattern for-
mation is suppressed due to an instantaneous and large
deformation rate of the line, which prevents the establish-
ment of gradients in the particle densities (growth-dominated
regime).

Between these two limiting regimes, the mechanochemical
coupling yields a rich dynamics including oscillations and
traveling wave patterns.

We found that the impact of deformations of the manifold
is specified by a simple criterion, Eq. (38), which predicts

the onset of regional instabilities. Strikingly, the only ge-
ometric information that enters this criterion is the metric
of the manifold. This implies that the instability criterion is
generic for MCRD systems, regardless of the exact cause
and the associated mechanical forces that lead to shape de-
formations. Here, we assumed a fluidlike manifold where
shape deformations are driven by the local concentration of
proteins. Additional mechanical properties, such as bending
stiffness, in-plane elasticity, and volume or area constraints
can be incorporated into our model by including further terms
in the normal velocity. While these additional features do not
affect the instability criterion Eq. (38), they will introduce
further nonlinearities, which in general will lead to complex
pattern-forming dynamics and wavelength selection in the
highly nonlinear regime.

Turing systems on growing domains. Our model shows
conceptual differences when compared to classical Turing
models on homogeneously growing domains, such as uni-
formly growing planar lines [87,88]. In such systems, which
grow uniformly in length, each length segment of the domain
grows at the same rate, so that the dynamics of the metric
can be eliminated by being absorbed into the temporal change
of the total length. For MCRD systems, this entails that the
local total density is the only relevant degree of freedom
in the system [89]. The system considered here involves a
dynamic interplay between the local total density and the met-
ric, which leads to (self-organized) nonuniform growth rates
and thereby rich pattern-forming dynamics. Classical Turing
models have also been studied for nonuniformly growing lines
[90,91], reviewed in Ref. [92]. For example, one segment
of the line is assumed to grow at a different rate from that
of the remaining portion, which can effectively be described
as a piecewise uniformly growing line. It was found that
this leads to asymmetric pattern formation and peak splitting
of patterns, which can be interpreted as regional patterns in
analogy to our paper. However, the underlying mechanism
leading to such regional Turing patterns is, again, substan-
tially different from our model. In essence, Turing patterns in
such systems (including peak splitting) occur once the local
line segment length exceeds a critical value, thus inducing
(regional) Turing instabilities or frequency doubling of the
pattern.

Notably, these classical Turing models have been mainly
studied in the quasistationary limit [87,88,92], where one
assumes that the pattern-forming dynamics unfolds on a
much smaller timescale than domain growth. While such
an assumption is reasonable at larger scales, such as in the
context of morphogenesis, the timescales of growth and pat-
tern formation are generally not far apart in an intracellular
context. This is evidenced by recent in vitro experiments,
which show that proteins are capable of dynamically deform-
ing giant unilamellar vesicles [20] or reshaping supported
lipid bilayers [6]. Therefore, here we have examined the
full range of relative timescales (diffusive mass redistribution
and shape deformations) by varying the Péclet number, and
indeed found qualitative differences in the dynamics as a
function of these time scales, such as a transition from travel-
ing waves to standing waves. This underscores the relevance
of the different timescales as an additional means by which
mechanochemical patterns in cells may be controlled. For
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concentration-dependent growth, as we have considered here,
cells may achieve such control by regulating the total density
of proteins.

Bulk-boundary coupling. Protein patterns in biological sys-
tems often emerge at surfaces, such as the cell membrane,
where proteins cooperatively bind to and detach from the
membrane. Consequently, proteins have to be transported
from the bulk solution (cytosol) to the cell membrane, which
is achieved by diffusive and advective fluxes in cells [12]. This
leads to cytosolic protein density gradients perpendicular to
the membrane, and these gradients have been shown to be
crucial for pattern formation in MCRD systems [16,29,56,93].
Another interesting extension of our work would be there-
fore to explicitly account for bulk-boundary coupling in
the reaction–diffusion dynamics. Potentially, this might yield
additional interesting geometric effects, since shape deforma-
tions would (locally) alter the bulk-boundary ratio, which is
an important control parameter for protein pattern formation
[24,26,27,29,56,93].

Biologically realistic reaction networks. We expect that our
analysis can be transferred to more complex MCRD systems.
One biologically relevant example is the shape dynamics of
eukaryotes. Here, shape deformations are driven by the ac-
tomyosin cortex, which is regulated by RhoGTPase signaling
networks. It has been shown that the interaction of Rho and the
actomyosin network leads to excitability and traveling wave
patterns of the cell cortex [47,94–96].

Another prominent example is the Min protein system in
E. coli, which can generate a broad variety of self-organized
patterns such as traveling waves, standing waves, chaos, and
stationary patterns, as reviewed in Ref. [97]. While the ge-
ometry of the bacterium is typically rigid, recent in vitro
experiments have demonstrated that Min proteins are capable
of deforming giant unilamellar vesicles [20,22,23]. Such a
coupling between the reaction–diffusion dynamics and shape
deformations can, as shown in the present paper, generally
lead to spatial heterogeneities. In turn, spatial heterogeneities,
as demonstrated by the in vitro Min system in a static three-
dimensional wedge-shaped geometry, can induce patterns on
multiple length and timescales [29]. Importantly, these joint
theoretical and experimental studies have shown that the
large-scale dynamics can be characterized by diffusive redis-
tribution of protein mass, which is the essential degree of
freedom on large spatial and temporal scales. This control
parameter, namely the local number of proteins, is highly
sensitive to dynamic geometry deformations which can nat-
urally arise from a mechanochemical coupling. While the
phenomenology of the protein patterns was significantly sim-
plified in the present paper, as the two-component MCRD
system has only one stable attractor (mesa or peak pattern)
[53,84,86], future studies could readily apply our approach
to the Min dynamics. Coupling Min patterns to shape de-
formations may lead to interesting dynamics that possibly
span multiple spatial and temporal scales, and the concept
of regional instabilities would enable one to characterize and
explain such multiscale patterns on dynamic manifolds.

To further explore the rich field of bulk-boundary coupling
in dynamic geometries with a systematic minimal frame-
work, one could consider placing an additional lipid bilayer
membrane at some height above a supported lipid bilayer

membrane [22]. Now, if this additional lipid bilayer is not
supported by a solid surface but is freestanding, it can be
deformed by the Min proteins, thereby dynamically affecting
the cytosolic volume between the two membranes and thus
the local volume-boundary ratio. We hypothesize that in such
a system one could observe an intricate dynamic interplay
between multiscale protein patterns and the dynamics of the
freestanding membrane.
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APPENDIX A: REACTION TERM

We adopted a reaction term that has been proposed as a
conceptual model for cell polarization [52,53]. The reaction
kinetics are based on autocatalytic recruitment of membrane
proteins and linear detachment:

f (m, c) =
[

kon + kfb
m2

K2
d + m2

]
c − koff m. (A1)

For the specific parameters that we chose here (see Ap-
pendix D), we obtain an N-shaped nullcline, as qualitatively
shown in Fig. 1(b). Hence, for our choice of parameters,
the reaction–diffusion model always produces mesa patterns
[lower and upper plateau in the density profile which are
connected by an interface, see Fig. 1(a)], because the FBS
intersects the reactive nullcline at three points [53,84,86] [see
Figs. 1(a) and 1(b)].

The space- and time-dependent reaction term f̃ (x, t ) for
the rescaled densities m̃ and c̃ then follows from Eq. (32) and
takes the form

f̃ (x, t ) =
[

kon + kfb
m̃2

K2
d g + m̃2

]
c̃ − koff m̃. (A2)

APPENDIX B: TIME EVOLUTION OF THE CURVATURE

Instead of tracking the temporal change of the position
vector, one may also study how the curvature at each point
along the manifold evolves with time. Since the curvature
characterizes the (local) conformation of the one-dimensional
manifold, one could also reconstruct the position vector from
the solution of the curvature alone (up to translation and
rotation) [6]. Here, we present the derivation of the evolution
equation for the curvature in the material frame Dtκ (σL, t ).
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To this end, we first determine the commutator of time and
arc length derivatives along the manifold,

Dt∂s = Dt

[
1√

g(σL, t )
∂σL

]
= ∂sDt + vnκ ∂s, (B1)

where, after applying the chain rule, we used Eq. (20) to
obtain the result above. To proceed, we now use Eq. (B1) to
determine the temporal evolution of the unit tangent vector,

Dt τ̂ = Dt∂sr = ∂sDt r + vnκ ∂sr

= ∂s[vnn̂] + vnκ τ̂

= ∂svnn̂, (B2)

where we used the definition Dt r(σL, t ) = vnn̂ and the fact
that ∂sn̂ = −κ τ̂. Finally, by using Eqs. (B1) and (B2), we

compute the following expression:

∂sDt τ̂ = ∂2
s vnn̂ + ∂svn∂sn̂

= Dt∂sτ̂ − vnκ ∂sτ̂

= (Dtκ − vnκ
2)n̂ + κ Dt n̂, (B3)

here, we used Eq. (9) to obtain the third line. Comparing the
first and last lines in the equation above, one finds that

Dtκ (σL, t ) = ∂2
s vn + κ2 vn. (B4)

APPENDIX C: NONDIMENSIONALIZED EQUATIONS

After nondimensionalization, we arrive at the following set
of partial differential equations:

∂t ñ(x, t ) = ∂x

[
∂xh

g
vy ñ + D√

g
∂x

(
ñ√
g

)
+ 1 − D√

g
∂x

(
c̃√
g

)]
, (C1a)

∂t c̃(x, t ) = ∂x

[
∂xh

g
vy c̃ + 1√

g
∂x

(
c̃√
g

)]
−

[
kon + kfb

(ñ − c̃)2

K2
d g + (ñ − c̃)2

]
c̃ + koff (ñ − c̃), (C1b)

∂t h(x, t ) = vy, where vy = μ̃ ñ + γ̃
1

g
∂2

x h. (C1c)

Note that we solve here for the variables ñ and c̃, instead
of m̃ and c̃ [which are related via local mass conservation
ñ = m̃ + c̃, cf. Eq. (27)]. We solved these equations numer-
ically with FEniCS [98–100], which allowed us to perform
the parameter sweeps with greater efficiency. Furthermore,
using two different softwares for solving the partial differen-
tial equations allowed us to further validate the accuracy and
reliablity of our numerical results.

APPENDIX D: PARAMETERS

For convenience, we have omitted physical units through-
out the manuscript. Here, we provide the values of the model
parameters and give an estimate of the typical length and
timescales of protein patterns in biological systems. The typi-
cal system size in an intracellular context is L0 ≈ 10 µm. The
typical value for membrane diffusion is Dm ∼ 0.01 µm2 s−1,
while in the cytosol Dc ∼ 0.1–10 µm2 s−1. The characteristic
timescale of pattern formation is determined by the kinetic
parameters as well as mass redistribution in the cytosol and
on the membrane (via diffusion and possibly advection), and
is typically on the order of minutes in an intracellular context
[12]. In this paper, length scales are given in units of 1 µm,
and time scales in units of koff = 1.0 s−1 (see Table I).

APPENDIX E: LINEAR STABILITY ANALYSIS FOR
A ONE-COMPONENT SYSTEM IN THE ABSENCE OF

CHEMICAL REACTIONS

To gain further insight into how geometry deformations
affect the relaxation of a single membrane-bound particle

species to a homogeneous state via diffusion, we consider the
following simplified model:

Dt�(σL, t ) = 1√
g

∂

∂σL

[
D√

g

∂�

∂σL

]
+ κ vn �, (E1a)

Dtκ (σL, t ) = κ2 vn + 1√
g

∂

∂σL

[
1√
g

∂vn

∂σL

]
, and (E1b)

Dt g(σL, t ) = −2 gκ vn, where vn = μ�. (E1c)

We perform a linear stability analysis around a homogeneous
steady state, � = �∗ + δ�, with a flat configuration of the
interface, κ = δκ and g = g∗ + δg. Then, up to linear order,

TABLE I. Model parameters. If not otherwise specified, the pa-
rameter set below was used in this paper.

Parameter Symbol Value

Cytosolic diffusion Dc 0.1 µm2 s−1

Membrane diffusion Dm 0.01 µm2 s−1

Average total density 〈n〉 2.4 µm−1

Attachment rate kon 0.07 s−1

Detachment rate koff 1.0 s−1

Recruitment rate kfb 1.0 s−1

Carrying capacity Kd 1.0 µm−1

Coupling strength μ 0.05 µm2 s−1

Line tension γ 0.001 µm2 s−1
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Eqs. (E1) further simplify to

Dt [δ�(σL, t )] = D

g∗ ∂2
σL

[δ�] + μ�∗2 [δκ], (E2a)

Dt [δκ (σL, t )] = μ

g∗ ∂2
σL

[δ�]. (E2b)

Note that we have here omitted the dynamics of the metric g,
since it decouples from the set of equations (E2) to linear order
and is therefore not relevant. Taking the Fourier transform of
the perturbations,

δ�(σL, t ) = 1

2π

∫
dq δ�̂(q, t ) exp(i q σL), (E3a)

δκ (σL, t ) = 1

2π

∫
dq δκ̂ (q, t ) exp(i q σL), (E3b)

we thus arrive at

Dt

[
δ�̂(q, t )
δκ̂ (q, t )

]
=

[−Dq2/g∗ μ�∗2

−μq2/g∗ 0

]
·
[
δ�̂(q, t )
δκ̂ (q, t )

]
:= J ·

[
δ�̂(q, t )
δκ̂ (q, t )

]
, (E4)

where we have lastly defined the Jacobian J of the linearized
system. Note that the trace of the Jacobian is always negative,
trJ = −Dq2/g∗ < 0 while its determinant is always positive,
det J = μ2q2�∗2/g∗ > 0. Thus, the system is always stable.
We find that all slow modes below a critical wave number,

q2

g∗ <
q2

c

g∗ :=
(

2
μ�∗

D

)2

, (E5)

are stable spirals, while all fast modes are stable nodes.

APPENDIX F: LINEAR STABILITY ANALYSIS FOR THE
TWO-COMPONENT SYSTEM WITH
MECHANOCHEMICAL COUPLING

We can now extend the analysis in Appendix E to the two-
component system, where the Jacobian in this case is given
by

J =
⎡⎣−Dmq2/g∗ + ∂m f ∂c f μ m∗(m∗ + c∗)

−∂m f −Dcq2/g∗ − ∂c f μ c∗(m∗ + c∗)
−μq2/g∗ −μq2/g∗ 0

⎤⎦,

(F1)

with ∂m/c f := ∂m/c f |[m∗,c∗]. From (F1), we determined the
dispersion relation ε(q) which relates the growth rate of per-
turbations to the mode number q (Fig. 15). While the growth
rate of the two-component model on a static planar geometry
contains only a real part in the unstable regime [53], we find
here that both the real and imaginary parts of the growth rate
can become positive. Hence, this suggests that the system ex-
hibits traveling wave patterns, since a nonzero imaginary part
indicates local oscillations, as confirmed by our simulations.
From (F1), we further numerically determined the fastest
growing mode qc (which corresponds to the eigenvalue with
the largest real part, see Fig. 15), from which we obtained an
estimate for the initial pattern wavelength in our simulations
λc ≈ 4 µm (using the parameters provided in Table I).

FIG. 15. Typical dispersion relation for the two-component
model on a dynamic one-dimensional manifold. The blue solid line
shows the real part of the growth rate ε(q), and the orange dashed line
shows the imaginary part. The fact that the imaginary part is nonzero
indicates local oscillations that lead to traveling wave patterns.

APPENDIX G: EXTENSION TO MEMBRANE SURFACES

Our approach is not restricted to one-dimensional man-
ifolds and can be extended to higher dimensions. In the
following, we briefly present the derivation of our model
for two-dimensional membrane surfaces embedded in three-
dimensional space. In analogy to the derivation in Sec. III A,
we parametrize the surface by a time-dependent position vec-
tor r(σ, t ) ∈ R3, where the curve parameter is defined as σ =
(σ1, σ2) ∈ R2. The general temporal evolution of the position
vector then takes the same form as Eq. (10),

∂t r(σ, t ) = vn n̂ + vi
τ τ̂ i, (G1)

where we used Einstein summation, and index i denotes one
of the two tangential directions along the surface. The main
difference to the one-dimensional case stems from the fact that
the first fundamental form, i.e., metric, is now given by a rank-
2 tensor

gik = ∂ir · ∂kr, (G2)

and, as before, the indices i, k correspond to the different
tangential directions. Another useful object is the second fun-
damental form, i.e., shape tensor [58]

Sik = ∂i∂kr · n̂, (G3)

from which one can determine the mean curvature H and
Gaussian curvature K at each point on the surface:

H = trS := gikSik, (G4a)

K = det Sk
i := det(Sil g

lk ). (G4b)

Following the same procedure as in Sec. III C, we may deter-
mine the temporal evolution of the determinant of the metric
in the Lagrangian frame, Dt det g, which is, in analogy to the
one-dimensional case, a measure for the temporal change of
the local area element due to shape deformations:

Dt det g = −2 det gH vn. (G5)

Note that this is essentially the same result as for the one-
dimensional case presented in the main text Eq. (20). Using
Eq. (G5) and following the same steps presented in the main
text (see Sec. III C), one obtains the generalized dynamics for
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a density field �(σL, t ) on a dynamic manifold:

Dt�(σL, t ) = − ∇i ji(σL, t ) + f�(σL, t ) + H vn �(σL, t ).
(G6)

Here, ∇i denotes the covariant derivative (surface operator)
along the tangential direction i on the manifold [58–60], and ji

the particle flux along direction i. Equation (G6) is basically of
the same form as the one-dimensional result Eq. (21), where
the curvature of the line κ has been replaced with the mean
curvature H , thus accounting for two principal curvatures
at a given point on the manifold (cf. Sec. III C). Repeating
the same analysis presented in the main text, we may also
translate Eq. (G6) to the laboratory frame [cf. Eq. (23)]:

∂t�(σE, t ) = − ∇i ji(σE, t ) + f�(σE, t )

+ H vn �(σE, t ) + vi
τ∇i�(σE, t ). (G7)

Furthermore, as presented in Sec. III D, we may write the dy-
namics in conservative form by defining the rescaled density
field �̃(σE, t ) := √

det g�(σE, t ) and using Eq. (G7):

∂t �̃(σE, t ) = −∂i ji
�̃(σE, t ) + f̃�̃(σE, t ). (G8)

For purely diffusive transport, as we consider in this paper, the
conservative flux ji

�̃ is, in general, of the form

ji
�̃(σE, t ) = −

[
D�

√
det ggik∂k

(
�̃(σE, t )√

det g

)
+ vi

τ

�̃(σE, t )√
det g

]
,

(G9)

where D� denotes the diffusion coefficient. To verify the gen-
erality of our main results (Sec. IV), we used the general form
Eq. (G8) and numerically simulated the dynamics of the two-
component MCRD system on a deforming membrane surface.
Consistent with our one-dimensional results, we find traveling
wave patterns for Pe < 0.6 (movie 7 [67]) and a transition to
standing wave patterns for Pe > 0.6 (movie 8 [67]).
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