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Universal energy-accuracy tradeoffs in nonequilibrium cellular sensing
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We combine stochastic thermodynamics, large deviation theory, and information theory to derive fundamental
limits on the accuracy with which single cell receptors can estimate external concentrations. As expected, if the
estimation is performed by an ideal observer of the entire trajectory of receptor states, then no energy consuming
nonequilibrium receptor that can be divided into bound and unbound states can outperform an equilibrium two-
state receptor. However, when the estimation is performed by a simple observer that measures the fraction of
time the receptor is bound, we derive a fundamental limit on the accuracy of general nonequilibrium receptors
as a function of energy consumption. We further derive and exploit explicit formulas to numerically estimate
a Pareto-optimal tradeoff between accuracy and energy. We find this tradeoff can be achieved by nonuniform
ring receptors with a number of states that necessarily increases with energy. Our results yield a thermodynamic
uncertainty relation for the time a physical system spends in a pool of states and generalize the classic Berg-
Purcell limit [H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977)] on cellular sensing along multiple
dimensions.
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I. INTRODUCTION

Single cells possess extremely sensitive mechanisms for
detecting chemical concentrations through the binding of
molecules to cell-surface receptors (Fig. 1(a), Refs. [1–5])
and can use this information to respond to external concentra-
tion signals. The phenomenon of a cell initiating directional
motion in response to a chemical signal is called chemo-
taxis and is widely observed in prokaryotic cells searching
the environment, as well as in eukaryotic cell motion that
occurs, for example, in immune responses and cancer cell
metastasis [6,7]. At a more abstract level, the relationship
between information and thermodynamics has been stud-
ied in many physical contexts [8–13], which has naturally
lead to questions about the fundamental limits that energy
consumption places on biological information processing
[14–16]. The remarkable capacity of cells to sense their en-
vironment may require energy consumption, for example,
through the use of G-protein coupled receptors that cycle
through multiple states [17–20]. This suggests that there
could exist theoretical limits on the accuracy of cellular
chemosensation, as a function of both the energy consumed
by arbitrarily complex nonequilibrium receptors and the com-
putational sophistication of downstream observers of these
dynamics.

A seminal line of work by Berg and Purcell in 1977
[21–23] addressed this question for equilibrium receptors de-
scribed by two states, bound and unbound, with the binding
transition rate proportional to the external concentration c
[Fig. 1(b)]. Berg and Purcell studied the accuracy of a con-
centration estimate ĉ computed by a simple observer (SO)
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that only has access to the fraction of time the receptor is
bound over a time T , finding a fundamental lower bound on
the fractional error of this estimate:

ε2
ĉ ≡ 〈(δĉ)2〉

c2
� 2

N
. (1)

Here 〈(δĉ)2〉 is the variance of the estimate ĉ, and N is the
mean number of binding events in time T .

For over 30 years, Eq. (1) was thought to constitute
a fundamental physical limit on the accuracy of cellular
chemosensation. However, recent work focusing on highly
specific receptor models [15,24–26] revealed this limit could
be circumvented in two qualitatively distinct ways. First, in
the simple case of a two-state receptor, an ideal observer (IO)
that has access to the entire receptor trajectory of binding
and unbinding events could outperform the SO by perform-
ing a maximum-likelihood estimate, obtaining an error of
ε2

ĉ = 1
N

[25]. The IO in this case outperforms the SO by a
factor of 2, which is achieved by measuring the the mean
duration of unbound intervals and ignoring the duration of
bound intervals. Ignoring the bound intervals improves per-
formance because the transition rate out of the bound state
is independent of c, and so the bound interval time simply
contributes spurious noise. Second, even when the estimate is
performed by a SO, the Berg-Purcell limit can be overcome by
energy-consuming nonequilibrium receptors with more than
two states [Fig. 1(d)], potentially reflecting different receptor
conformations or phosphorylation states [24–26]. Notably,
Lang et al. [26] numerically observed a tradeoff between error
and energy for a very specific class of receptor models with
states arranged in a ring.

While these more recent works demonstrate circumven-
tions of the Berg-Purcell limit in highly specific models,
they leave open foundational theoretical questions about the
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FIG. 1. Cells employ many membrane-bound receptors in order
to form an estimate of an external concentration relevant to its be-
havior. Single receptors may be modeled as continuous-time Markov
processes. (a) Cartoon of a single receptor. (b) Single receptor mod-
eled as a two-state continuous-time Markov process (Berg-Purcell
model) with binding rate Q01 and unbinding rate Q10. (c) and
(d) Generalizing to many-state processes. (c) An ideal observer uses
the process trajectory to form an estimate ĉ of the concentration
signal c, which modulates the receptor’s transition rates Qi j (c).
(d) A simple observer measures the fraction of time the receptor
spends in a subset of states (“signaling states”) to estimate the
signal.

general interplay between estimation accuracy and energy
consumption across the large space of possible complex
nonequilibrium receptors.

In particular, what are the fundamental limits of sensing ac-
curacy for the IO and what computation must the IO perform
on the receptor trajectory of complex receptors to achieve this
limit? Also for a SO can we derive general analytic bounds
or exact formulas for accuracy in terms of energy expenditure
for general classes of nonequilibrium receptors? Can we ex-
ploit these formulas to find Pareto-optimal receptors through
numerical optimization?

We address these questions by combining and extending
stochastic thermodynamics [27–32] and large deviation theory
(LDT) of Markov chains [33–39]. We derive a thermody-
namic uncertainty relation connecting fluctuations in the time
a stochastic process occupies a subset of states and the energy
dissipated by that process. This relation is of independent
interest in nonequilibrium statistical mechanics [38–41] and
could have applications not only in cellular chemosensation,
as discussed here, but also in understanding relations be-
tween energy dissipation and accuracy or robustness in other

biological processes, like cellular motors and biological
clocks [42–44].

II. OVERALL FRAMEWORK

A general nonequilibrium receptor can be modeled as
a continuous-time Markov process [10,26], with n differ-
ent conformational or signaling states indexed by i = 0, . . . ,

n − 1. As in Ref. [26], we focus on modeling the receptor
and we neglect the complex downstream cellular machinery
that converts the receptor output into a behavior [2]. The
transition rate from state i to state j is Qi j . We assume some
subset of these rates correspond to binding transitions with
rates proportional to the concentration c (see Sec. VII of
the Supplemental Material [45] for a discussion of a more
complex dependency on concentration). Over an observation
time T , the receptor then moves randomly through a sequence
of states {x0, x1, . . . , xm} with transitions out of each state
xk ∈ {0, . . . , n − 1} occurring at random times 0 � tk � T ,
yielding a stochastic trajectory x(t ) with x(t ) = xk for tk−1 �
t < tk . An IO that has access to the entire trajectory [Fig. 1(c)]
can compute a maximum likelihood estimate ĉ of the concen-
tration c via

ĉ = argmaxc log P[x(t )|c], (2)

where P[x(t )|c] denotes the probability distribution over
receptor-state trajectories at a given concentration c. To dis-
cuss the SO, we further assume that binding transitions occur
from a group of states defined as unbound, nonsignaling
states, N , to states we call the bound, signaling states, S
[Fig. 1(d)]. While an IO can access information contained in
the entire trajectory x(t ), we assume the SO can only measure
the fraction of time spent in the signaling states. While we
study both the IO and the SO, in this work we focus primarily
on the SO, as this model of observation can be plausibly
implemented, for example, by counting the number of second
messengers generated during the interval of time the receptor
is bound. In contrast, it is unclear mechanistically how an IO
could be realized. We note overall that our assumptions are
consistent with previous work [25,26], though they exclude
receptors with intermediate states that are bound but not sig-
naling [46].

III. RECEPTOR COMPLEXITY AND THE IDEAL
OBSERVER

We first ask if it is possible to improve the estimation
accuracy of an IO through the addition of more states and
transitions beyond the two-state process [25]. The properties
of continuous-time Markov processes (see Appendix B of
Ref. [45]) imply the log probability of trajectory x(t ) reduces
to [34–37]

log P[x(t )|c] = −T
∑
i �= j

[
pT

i Qi j − φT
i j log Qi j

]
, (3)

where pT
i is the empirical density, or the fraction of total time

T that the trajectory x(t ) spends in state i, and φT
i j is the

empirical flux, or the number of transitions from state i to state
j along the trajectory x(t ), divided by T .
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Maximizing Eq. (3) with respect to c yields the IO estimate
ĉ in Eq. (2). When only transition rates from N to S are
proportional to c as in Fig. 1(d),

ĉ = RT

Rp|c=1
, (4)

where RT ≡ ∑
i∈N , j∈S φT

i j is the receptor’s empirical binding
rate along trajectory x(t ), and Rp ≡ ∑

i∈N , j∈S pT
i Qi j is the

expected binding rate conditioned on the empirical density
pT

i . For two states, ĉ is inversely proportional to the total dura-
tion of unbound intervals, agreeing with Ref. [25]. However,
this result generalizes Ref. [25] to reveal what function of a
more complex trajectory x(t ) an IO must compute to estimate
the concentration for arbitrarily connected receptors, as in
Fig. 1(d).

The Cramér-Rao bound [47] gives a lower bound on the
fractional error ε2

ĉ of the IO through the Fisher information
Jc of the receptor trajectory x(t ) with respect to the external
concentration c. A simple calculation detailed in Sec. II A of
Ref. [45] yields

Jc = J0
c + T

∑
i �= j

πiQi j [∂c log Qi j]
2. (5)

Here πi is the steady-state probability of state i, and J0
c =∑

i πi(∂c log πi )2 is the Fisher information of an observation
of the initial state sampled from the steady-state distribution.
The term linear in T reflects additional information obtained
from observing an entire trajectory, instead of a single state
occupancy. Note only transition rates modulated by c con-
tribute information. The result in Eq. (5) holds for arbitrary
receptors as in Fig. 1(c), but for receptors of the form in
Fig. 1(d) with transition rates linear in c, the result simplifies
to

Jc = J0
c + T

c2
Rπ , (6)

where Rπ = ∑
i∈N , j∈S πiQi j is the expected steady-state

binding rate. Then the Cramér-Rao (CR) bound yields the
following for large T ,

ε2
c ≡ 〈(δĉ)2〉

c2
� 1

Jc c2
= 1

T Rπ
= 1

N
, (7)

where N is the expected number of binding events. In Sec. V A
of Ref. [45] we directly calculate the variance of the IO
concentration estimate in Eq. (4) and demonstrate that its
error saturates the CR bound, Eq. (7). This result generalizes
[25] from simple equilibrium two state receptors to arbitrarily
connected nonequilibrium receptors of the form in Fig. 1(d),
confirming that any such energy-consuming nonequilibrium
receptor with binding rates proportional to the concentration
cannot outperform an IO of a simple equilibrium two-state
receptor.

IV. FLUCTUATIONS AND GAIN DETERMINE SIMPLE
OBSERVER PERFORMANCE

The IO estimate in Eq. (2) requires computing a complex
function of the receptor trajectory x(t ), which may not be
plausibly implementable in biological systems. Therefore, we

next explore a simple observer (SO), which estimates the
concentration using only some readout of the fraction of total
measurement time T that the receptor is bound (signaling),
which we denote qT = ∑

i∈S pT
i . Due to randomness in x(t ),

qT fluctuates about its mean qπ = ∑
i∈S πi, which depends

on the concentration c. Given the observable qT , one can then
estimate ĉ by solving for the concentration value that would
make this observation of qT equal to its expected value qπ , or
in essence, solving for ĉ in the equation qπ (ĉ) = qT . Standard
error propagation then yields

ε2
ĉ = 〈(δĉ)2〉

c2
=

[
c

d qπ

dc

]−2

〈(δqT )2〉. (8)

Thus, a larger variance 〈(δqT )2〉 in the time spent bound in-
creases the error ε2

ĉ , while a larger gain term | d qπ

dc | decreases
it. We next compute and bound this variance and gain, leading
to a bound on the overall estimation error ε2

ĉ .

V. A THERMODYNAMIC UNCERTAINTY RELATION
FOR OCCUPANCY TIME

We first derive a lower bound on the variance 〈(δqT )2〉
using stochastic thermodynamics and LDT [33] of Markov
processes. A random trajectory x(t ) of duration T in a gen-
eral Markov process will yield an empirical density pT

i , or
a fraction of time spent in state i, and an empirical current
jT
i j = φT

i j − φT
ji, which corresponds to the net number of tran-

sitions from i to j divided by T . As T → ∞, these random
variables will converge to their mean values, correspond-
ing to the steady-state probabilities πi = limT →∞ pT

i and the
steady-state currents jπi j ≡ πiQi j − π jQ ji = limT →∞ jT

i j . At
large but finite T , observations of pT and jT fluctuate about
their means, and their joint distribution is known to satisfy
a large deviation principle, taking the form P(pT = p, jT =
j) ∝ e−T I (p, j) [34–37,45]. Here I (p, j) is a rate function that
achieves its minimum at p = π and j = jπ , and the form
of this function describes how fluctuations in pT and jT are
suppressed as T becomes large. This rate function is known
to be

I (p, j) =
∑
i< j

ji j

(
arcsinh

ji j

ai j
− arcsinh

j p
i j

ai j

)

−
(√

a2
i j + j2

i j −
√

a2
i j + j p 2

i j

)
, (9)

where ai j ≡ 2
√

pi p jQi jQ ji and j p
i j ≡ piQi j − p jQji [34–37].

Similarly, at large but finite T , the distribution of the frac-
tion of time time spent bound, namely, qT = ∑

i∈S pi, takes
the form P(qT = q) ∝ e−T I (q). The rate function I (q) achieves
its minimum at the mean value qπ ≡ ∑

i∈S πi and could be
used to study the fluctuations of qT around qπ . The variance
of qT is given by 1/[T I ′′(qπ )] [33], so any upper bound on
I ′′(qπ ) will yield a lower bound on the variance of qT .

Since the fraction of time spent in a subset of states qT

is a function of the empirical density over all states pT
i , we

can obtain I (q) from the more general rate function I (p, j)
through an application of the contraction principle [33]. The
contraction principle states that I (q) = inf p, j I (p, j), subject
to the constraints

∑
j ji j ∀ i,

∑
i pi = 1, and

∑
i∈S pi = q.
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The contraction principle embodies the intuition that the
probability of an atypical fluctuation of the occupancy time qT

achieving the value q is dominated by the probability of the
most likely fluctuation in the empirical density and currents
that are consistent with the atypical occupancy time q. Instead
of calculating I (q) = inf p, j I (p, j) subject to the constraints
directly, we can upper bound the minimum by evaluating
I (p, j) for an ansatz of j = j∗(q) and p = p∗(q) satisfying
the same constraints.

We developed the following ansatz for p∗(q) and j∗(q),

p∗
i (q) =

{ q
qπ πi i ∈ S,
1−q

1−qπ πi i ∈ N ,

j∗i j (q) =
[

q(1 − q) + qπ (1 − qπ )

2qπ (1 − qπ )

]
jπi j . (10)

Using this ansatz, we can bound I (q) according to

I (q) � I (p∗, j∗). (11)

These particular p∗ and j∗ are simple choices that satisfy
the constraints mentioned above, as well as j∗i j (q

π ) = jπi j and
p∗

i (qπ ) = πi, ensuring that the inequality in Eq. (10) is satu-
rated at the minimum, q = qπ . The coefficient in brackets in
Eq. (10) was chosen to maximize the tightness of the bound
on I (q).

Following the approach of Ref. [39], inserting our choice
of p∗ and j∗ into I (p, j) leads to an explicit upper bound on
I ′′(qπ ) in terms of the total energy consumption rate of the
receptor (in units of kBT ), defined as [27]

�π =
∑
i< j

jπi j log
φπ

i j

φπ
ji

. (12)

We then find a lower bound on the variance of q (see
Sec. III of Ref. [45]):

〈(δq)2〉
[qπ (1 − qπ )]2 � 8

T �π + 4N
. (13)

Equation (13) can be thought of as a general thermodynamic
uncertainty relation which implies that the more energy T �π

a system consumes, the more reliable the occupation time for
a pool of states can become. This can be compared to the
thermodynamic uncertainty relation for currents, which con-
nects increased energy consumption to a reduction in current
fluctuations in general stochastic processes [39,40]. Our result
in Eq. (13) adds pooled state occupancy times to the class
of observables for which thermodynamic uncertainty relations
can be generally proven and may, therefore, be of independent
interest in nonequilibrium thermodynamics.

VI. AN ENERGY-ACCURACY TRADEOFF
FOR THE SIMPLE OBSERVER

The gain term c d qπ

dc in Eq. (8) can be calculated for arbi-
trary nonequilibrium processes using the known relationship
between first passage times and the sensitivity of Markov
chain stationary distributions [45,48]. Our general formulas

in Sec. IV of Ref. [45] simplify to

c
d qπ

dc
= qπ (1 − qπ ) (14)

for nonequilibrium receptors of the form in Fig. 1(d) with only
one nonsignaling state and binding transitions linear in c. The
assumptions of one nonsignaling state and binding transitions
that are linear in concentration are required at this stage of the
derivation only. If the binding transition rates are related to
concentration through a power law, the conclusions are similar
(see Sec. VII of Ref. [45]). Inserting this result for gain and
the relation for variance in Eq. (13) into Eq. (8), we find a
general lower bound on error in terms of energy T �π and
mean binding events N :

ε2
ĉ � 8

T �π + 4N
. (15)

This recovers the Berg-Purcell limit, Eq. (1), for equilibrium
systems, when the energy consumption rate �π is zero.

Overall, Eq. (15) is a generalization of the Berg-Purcell
limit, Eq. (1), to much more general energy consuming
nonequilibrium receptors of the form in Fig. 1(d), with one
nonsignaling (unbound) state, but an arbitrary network of sig-
naling (bound) states. This LDT bound is clearly not tight as
�π → ∞, but for finite �π it provides a simple energy-based
bound on error that is independent of both detailed number
and the connectivity of receptor states. At �π � 4N/T the CR
bound in Eq. (7) becomes more stringent than the LDT bound
in Eq. (15), and any bound on the IO must also apply to the
SO. Thus, the combined bound (the maximum of the CR and
LDT bounds) yields a forbidden region of error versus energy
[Fig. 2(a), top gray area).

VII. EXACT ESTIMATION ERROR FOR THE SIMPLE
OBSERVER

Equation (15) provides a lower bound on the fractional
error because our choice of p∗ and j∗ in Eq. (10) does not
achieve the infimum of the contraction. When the contraction
of the rate function I (p, j) is expanded as a Taylor series in
(q − qπ ), one can compute the optimal p and j to leading
order, which allows us to find the second derivative term in the
Taylor expansion of I (q) and hence the uncertainty ε2

ĉ exactly
(see Sec. V C of Ref. [45]). Under the same assumption of one
nonsignaling state, we find

ε2
ĉ = 2

N

Tunbind

Thold
, with

Thold =
∑
i∈S

TiN P(x(t ) = i|x entered S at t ),

Tunbind =
∑
i∈S

TiNP(x(t ) = i|x in S at t ). (16)

Here TiN is the mean first passage time from state i to the
single nonsignaling state. Thus, Thold is the mean duration of
a single journey through the bound signaling states, starting
from the time at which the bound signaling states are entered,
and ending at the time at which the unbound nonsignaling
state is first reached. Also Tunbind is the mean time until the
next unbinding event given the receptor is in a bound signaling
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(a) (b)

FIG. 2. Energy-accuracy tradeoffs: analytic bounds and numerical optimizations. (a) The LDT bound, Eq. (15) (solid black line), and the
CR bound, Eq. (7) (dashed black line), together yield a forbidden region of achievable estimation error as a function of energy consumption
(gray area). Circular points show the minimal error achieved by fully connected (small open and closed dots) and nonuniform ring (large
numbered dots) receptors after numerically minimizing Eq. (16) (see Sec. V of Ref. [45]) with respect to all transition rates under an energy
consumption constraint. The coincidence of small and large dots indicates that the much more general class of fully connected receptors does
not outperform the simpler class of ring receptors with arbitrary nonuniform transition rates. Data point color and superposed numbers reflect
the size of the smallest receptor whose error is within 1% of the fractional error of the best performing receptor obtained at each energy, with no
constraint on overall size (up to a maximal size of n = 10). Alternating open and solid small points represent the same effect for fully connected
networks, and the numbers of nodes required agree with those indicated by the larger numbered ring network points in each open and solid
region. The progression of colors and numbers as a function of energy indicates the smallest number of states required to achieve minimal error
at that energy and shows that achieving even lower error at higher energy consumption cannot be done without adding more states. Thin solid,
dashed, and dotted lines show the performance of n-state ring receptors with uniform transition rates in each direction. The lower performance
envelope of the uniform ring receptors (obtained by minimizing over n at fixed energy consumption) is still separated from the better performing
nonuniform rings and fully connected networks. This performance gap indicates that uniform rings cannot achieve the Pareto-optimal tradeoff
between energy and accuracy. (b) Diagrams (i)–(iii) show three optimal receptors found at different levels of energy consumption indicated by
the three vertical lines in panel (a). Low, intermediate, and high energy consumption levels correspond to blue three-state (i), purple six-state
(ii), and red ten-state (iii) graphs, respectively. Solid nodes in the Markov chain diagrams (i)–(iii) represent signaling states, while one empty
node at the top of each graph represents the nonsignaling state. Node radii are proportional to steady-state probabilities πi and edge widths
are proportional to steady-state fluxes between states, φπ

i j . These nonuniform rings illustrate how Pareto-optimal receptors reduce error by
simultaneously increasing the number of states and the level of energy consumption, eventually approaching a uniform ring with many states
at the highest levels of energy consumption.

state, regardless of how long the receptor has been bound
before. In Sec. V C of Ref. [45] we have numerically verified
this formula by comparing it with Monte Carlo simulations.

For a two-state system, Tunbind = Thold because the un-
binding process is memoryless; i.e., the time to unbind
is independent of how long the receptor has already been
bound. In this case, Eq. (16) saturates the Berg-Purcell
limit in Eq. (1). However, Eq. (16) applies more gen-
erally to energy-consuming nonequilibrium receptors of
the form in Fig. 1(d), with one nonsignaling state, but
an arbitrary network of signaling states. While Eq. (16),
and its generalization to multiple nonsignaling states (see
Sec. V C of Ref. [45]), gives an exact formula for error
that allows us to search for Pareto-optimal receptors, our
LDT bound in Eq. (15) makes manifest a connection be-
tween estimation error and the energy consumption of the
process.

VIII. PARETO-OPTIMAL ERROR REDUCTION VIA
ENERGY CONSUMPTION REQUIRES MORE

STATES AND IS ACHIEVABLE BY RINGS

Figure 2 compares the bounds on estimation error in
Eqs. (7) and (15) to numerical optimization of the exact
formula (16) at fixed energy consumption for receptors of
increasing size. The union of the CR and LDT lower bounds
is respected by all models found by numerical optimization.
First, for a given energy consumption and number of states
n, we minimized the estimation error over all possible fully
connected receptors, for every partition of n into signaling and
nonsignaling states. We observed that, for all receptor sizes
and energy consumption regimes studied, the error achieved
by receptors with a single nonsignaling state is not outper-
formed by any other partitioning (see Fig. 6 in Sec. VI B of
Ref. [45]). Therefore, we focused subsequent analyses on the
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case of a single nonsignaling state. To explore the role of the
total number of states n in the Pareto-optimal tradeoff between
energy and accuracy, in Fig. 2 we numerically minimized the
error over all possible fully connected receptors, including the
number of states (up to ten), for a given energy consumption.
We found that as energy consumption increases, near minimal
estimation error is achievable only by increasing the number
of states (see Fig. 4 of Ref. [45]).

In Sec. VI C of Ref. [45] we show that the numerically
determined Pareto-optimal curves for a fixed number of states,
n, are well approximated by the expression

ε2
ĉ = 2

N
[
1 + (

n−2
n

)
tanh

({
0.05n+0.06

n−1.6

}
T �π

N

)] . (17)

The coefficient in braces was determined by a least-squares fit
to the numerical optima (see Sec. VI C of Ref. [45]).

The small graphs in Fig. 2(b) [diagrams (i)–(iii)] depict
optimal minimal size receptors obtained at different levels of
energy consumption. At low energy consumption the LDT
bound is tight, and the optimal receptor is equivalent by
lumpability [49] to a two-state receptor, with the signaling
states behaving like one coarse-grained state (see Sec. VI A
of Ref. [45]). In this low energy consumption limit there is
no significant advantage gained by adding more than three
states. The LDT bound, Eq. (15), becomes increasingly loose
as energy consumption increases and the minimal achievable
error of optimal receptors at fixed n saturates at a level that
depends on the number of states. We can see from Fig. 2 that,
as the energy consumption increases, there is an increasing
advantage to adding more states beyond a two or three-state
system. At intermediate energy consumption the optimal re-
ceptor behaves roughly like a three-state system, with “inner”
states of S being highly short-lived. At high energy consump-
tion, the optimal receptor approaches a many-state uniform
ring with more and more asymmetric transition rates at higher
energies (see supplemental movies in Ref. [45]). As the num-
ber of states n → ∞, the minimal achievable error at high
energy consumption saturates the CR bound, Eq. (7). Thus,
the combined LDT and CR bound is tight at both high and
low energy consumption.

We repeated the optimization with receptors restricted to
ring topologies with arbitrary transition rates and found that
the best possible rings perform indistinguishably from fully
connected networks at every energy level (Fig. 2(a)). This
suggests that the Pareto-optimal tradeoff between energy and
accuracy is achieved (but not uniquely) by nonuniform ring
networks of increasing size and energy consumption. In the
high energy consumption limit, however, only many-state,
highly unidirectional ring processes are found to approach the
theoretical limits [Fig. 2(b), diagram (iii)].

IX. UNIFORM RING RECEPTORS ARE NOT
PARETO-OPTIMAL

For ring receptors with uniform transition rates in each
direction, we can analytically compute Tunbind, Thold, and there-
fore ε2

ĉ in Eq. (16), as a function of n, �π , and N (see Sec. V D

in Ref. [45]), obtaining

ε2
ĉ = n coth

[
σ
2n

](
n coth

[
σ
2

] − coth
[

σ
2n

])
N (n − 1)2

, (18)

where σ is defined via �π

Rπ = σ tanh[ σ
2n ]. This error versus en-

ergy for n = 3, . . . , 10 is plotted in Fig. 2. The lower envelope
of these curves, corresponding to minimizing Eq. (18) with
respect to n at fixed energy per binding event �π

Rπ , yields an
upper bound on the numerically derived Pareto-optimal trade-
off. As seen in Fig. 2, at intermediate energy consumption, this
upper bound is slightly higher than the minimal error achieved
by nonuniform rings, indicating nonuniform transition rates
are required for ring receptors to be optimal at intermediate
energy. However, as �π → ∞, ε2

ĉ → 1
N

1
1−1/n , indicating that

a SO of uniform rings can approach the CR bound at large
energy and n. The optimality of single path rings is reminis-
cent of the optimality of single path chains for hitting times,
observed numerically in Ref. [50] for a different notion of en-
ergy. However, large uniform rings can be highly suboptimal
under a SO at low energy; as �π → 0, ε2

ĉ → 2
N

n(n+1)
6(n−1) . This

saturates the Berg-Purcell limit in Eq. (1) for n = 2 and 3, but
is much worse for n > 3 (Fig. 2). Therefore, larger uniform
ring receptors must consume more energy to more closely ap-
proach the theoretical limit on estimation error, but adding ad-
ditional states is only advantageous above a certain level of en-
ergy consumption. In summary, both receptor size and energy
consumption must concomitantly increase in order to trace out
the Pareto-optimal tradeoff between energy and accuracy, and
this tradeoff can be achieved with nonuniform rings.

X. DISCUSSION

In summary, we have derived several general results in the
form of Eqs. (5), (7), (15), and (16) delineating fundamental
performance limits of sensing using arbitrarily connected,
energy-consuming nonequilibrium Markov chain receptors
as a joint function of observation time, energy consumption
rate, number of states, and the computational sophistication
of the observer. Moreover we find a general thermodynamic
uncertainty relation, Eq. (13), which reveals one must pay
a universal energetic cost for reliable occupation time in
any physical process. This relation may be compared to the
thermodynamic uncertainty relation for currents, which was
proved using similar methods but for a different physical
observable [39]. We hope these general analytic relations
between time, energy, and accuracy will find further applica-
tions in stochastic thermodynamics and myriad biological and
physical processes [11,12,16,43,51–54]. Particularly, these
types of theoretical bounds that do not depend on the details
of the particular system could be useful in experimental inter-
rogations of small out-of-equilibrium systems, where many
degrees of freedom could be inaccessible to the observer [55].
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