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The analytic inference, e.g., predictive distribution being in closed form, may be an appealing benefit for
machine learning practitioners when they treat wide neural networks as Gaussian process in a Bayesian setting.
The realistic widths, however, are finite and cause weak deviation from the Gaussianity under which partial
marginalization of random variables in a model is straightforward. On the basis of multivariate Edgeworth
expansion, we propose a non-Gaussian distribution in differential form to model a finite set of outputs from a
random neural network, and derive the corresponding marginal and conditional properties. Thus, we are able to
derive the non-Gaussian posterior distribution in Bayesian regression task. In addition, in the bottlenecked deep
neural networks, a weight space representation of a deep Gaussian process, the non-Gaussianity is investigated
through the marginal kernel and the accompanying small parameters.
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I. INTRODUCTION

Neal in his seminal work [1] pointed out that a shallow
but infinitely wide random neural network is a Gaussian pro-
cess (GP) [2] in statistical sense. Subsequent work [3,4] in
interpreting neural network with specific nonlinear activation
units as kernel machines was also inspired by such idea. More
recent reports [5,6] further claimed the equivalence between
GP and deep neural networks when each hidden layer in latter
is of infinite width. Consequently, machine learning practi-
tioners can perform Bayesian inference by treating a deep
and wide neural network as a GP, and exploit the analytic
marginal and conditional properties of multivariate Gaussian
distribution. Otherwise, one needs to employ gradient-based
learning and bootstrap sampling for obtaining predictive dis-
tribution [7]. In addition, the equivalence with GP also allows
the theoretical methods, such as regression learning curve and
PAC-Bayesian analysis [2] to shed light on generalization in
neural network learning [8].

In reality, all neural networks have finite width. Therefore,
the deviation from Gaussianity requires further quantitative
account as practitioners may wonder the corrections to the
predictive mean and variance in, for example, a regression
task. Yaida [9] and colleagues [10] proposed a perturbative
approach for computing the multivariate cumulants by di-
rect application of Wick’s contraction theorem. Moreover,
the fourth cumulants are shown to be nonzero, scaled by
the sum of reciprocal widths, 1/N1 + 1/N2 + · · · + 1/NL−1,
and signaling non-Gaussian aspect of the random processes
representing finite-width deep neural networks with L hidden
layers [9]. A quartic energy functional for a fixed set of net-
work outputs is formulated field theoretically with which the
corrections to the posterior mean and variance due to the weak
non-Gaussianity are obtained [9].
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Although Yaida’s approach is appealing from a field the-
ory perspective (see also Refs. [11–13]), the loss of elegant
marginal property due to the presence of fourth power term
in exponent is critical for analytic inference with finite-width
networks. An alternative thinking is to modify the multivariate
Gaussian distribution so that the new distribution can match
the higher cumulants associated with the networks. In this
paper, we wiall use the multivariate Edgeworth series expan-
sion [14] to construct the non-Gaussian distribution for the
network’s outputs. In particular, we find that the differential
representation of Edgeworth expansion greatly facilitates the
derivation of marginal and conditional properties of the non-
Gaussian distribution. Three main results are reported in this
paper. First, the marginal property is intact, and the correc-
tions to conditional mean and variance are derived. Second,
with observed data, the non-Gaussian posterior distribution
associated with an unobserved output is derived. Third, we
derive the marginal covariance [15] of a bottlenecked deep
neural network [16], which represents the deep Gaussian pro-
cess [17] in weight space. It is worthwhile to note that some
of the hidden layers in the bottlenecked network are narrow
and strong non-Gaussianity may be induced.

The paper has the following organization. In Sec. II, we
begin by reviewing the computational structure of a shallow
cosine network, its equivalence to GP with a Gaussian kernel,
and the emergence of non-Gaussianity due to finite width.
The shallow network with random parameters in a Bayesian
setting is a non-Gaussian prior over function. In Sec. III, the
non-Gaussian prior is represented as a differential represen-
tation of Edgeworth expansion around Gaussian multivariate
distribution, and its marginal and conditional properties are
established. The closed-form corrections to the conditional
mean and second moment are obtained. Application of the
non-Gaussian prior in the Bayesian regression task is dis-
cussed in Sec. IV. Finally, Sec. V is devoted to investigating
the combined effect of nonlinear activation, depth, and finite
width on the non-Gaussian prior for a deep bottlenecked co-
sine network, which is followed by a discussion in Sec. VI.
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II. WIDE FEED FORWARD NEURAL NETWORK

Let us start with the discussion of a random shallow feed
forward network with cosine activation. In the infinite width
limit, the network is statistically equivalent to a GP with a
Gaussian kernel [18]. The goal is to see the emergence of
nonzero fourth cumulant when the width is finite. Consider
a single output network with N activation units, the real
function value zα ∈ R with the greek subscript is an indexed
random variable in association with its input xα ∈ Rd . Explic-
itly, the output-input of the network has the following relation,

zα =
√

2

N

N∑
i=1

wi cos

(
�i · xα√

d
+ φi

)
, (1)

where the weight variable w’s are sampled from the Gaussian
distribution N (0, 1), the scaling variables �’s are sampled
from N (0, Id ), and the phase variables φ’s are sampled from
uniform distribution U ([0, 2π ]). The normalization factors√

2/N and 1/
√

d above follow the parametrization used in
Ref. [19]. Because w is the zero mean, the first relevant
statistical moment is the covariance, k(xα, xβ ), namely, the
expectation of the product of two function values at two in-
puts,

k(xα, xβ ) :=E[zαzβ]

= 1

N

∑
i

E

{
cos

[
�i · (xα − xβ )√

d

]

+ cos

[
�i · (xα + xβ )√

d
+ 2φi

]}

=e− 1
2d |xα−xβ |2 . (2)

In the above, the independence between the random variables
w’s is used to arrive at the second equality. The third equality
is due to the fact that Fourier transformation of Gaussian is
Gaussian and the vanishing average of cosine with a uniformly
random phase. The fourth moment can be computed in similar
manners, but one will note that the product of two cosine
terms containing the random phase can generate a nonzero
contribution. Here, we focus on the fourth cumulant tensor as
the signature of non-Gaussianity,

Vαβγ δ :=E[zαzβzγ zδ] − KαβKγ δ − Kαγ Kβδ − KαδKβγ

= 1

N2

∑
i j

E

{
cos

[
�i · (xα + xβ )√

d
+ 2φi

]

× cos

[
� j · (xγ + xδ )√

d
+ 2φ j

]}
+ sym. perm.

= 1

2N
(e− 1

2d |xα+xβ−xγ −xδ |2 + e− 1
2d |xα+xγ −xβ−xδ |2

+ e− 1
2d |xα+xδ−xβ−xγ |2 ). (3)

Hence, the fourth cumulant tensor receives a contribution
proportional to the reciprocal width 1/N , and it is symmetric
with respect to permutation of indices.

III. MULTIVARIATE EDGEWORTH EXPANSION
AND NON-GAUSSIAN PRIOR

The fourth cumulant tensor in Eq. (3) signifies that the
distribution over the network outputs is non-Gaussian. In other
words, the random parameter w’s, �’s, and φ’s from a prior
distribution induce the non-Gaussian prior function distribu-
tion due to the finite width. The first interesting consequence
of the nonzero fourth cumulant is that the prior distribution
over a single output, say zα , receives a correction term deviat-
ing from Gaussian [20],

q(zα ) = N
(
zα|0, σ 2

0

)[
1 + Vαααα

24

(
3 − 6

z2
α

σ 2
0

+ z4
α

σ 4
0

)]
. (4)

The variance σ 2
0 := k(zα, zα ) and the new distribution q

has matched moments, i.e., Eq[1] = 1, Eq[z2
α] = σ 2

0 , and
Eq[z4

α] = 3σ 4
0 + Vαααα . Although the work [20] derived the

above non-Gaussian distribution from a renormalization-
group perspective [21], such expansion with Hermite poly-
nomials around Gaussian distribution has been known as
Edgeworth expansion in statistics literature [20,22,23]. When
the width N → ∞, the fourth cumulant V vanishes, and for
notational convenience, we denote the limiting distribution by
q∞, which is Gaussian.

A. Joint distribution

As we are mainly interested in the prior distribution over a
finite set of function values {z1, z2, . . .}, the objective here is
to construct the non-Gaussian joint distribution as a prior in
Bayesian learning. The work [14] suggested the construction
of multivariate Edgeworth expansion by replacing the uni-
variate Gaussian N (z|0, σ 2

0 ) with multivariate one N (z|0, K )
and the Hermite polynomials with contracted tensor terms
containing the inverse covariance matrix [K−1] and vector
of function values z (also see Ref. [24] for an application in
cosmology). Please see Appendix A for the expression.

An apparent difficulty with such representation is the
demonstration of consistency after marginalization, i.e.,∫

dz1q(z1, z2, z3, . . .) = q(z2, z3, . . .), which is of critical im-
portance for deriving conditional distribution and subsequent
Bayesian learning. Inspired by the fact that the Hermite poly-
nomials are obtained by taking derivative of Gaussian, we can
rewrite the multivariate Edgeworth expansion in the following
differential form:

q(z) =
(

1 + Vi jml

24
∂zi∂z j ∂zm∂zl

)
N (z|0, K ), (5)

where the notation of summation by repeated indices is em-
ployed. An advantage of such representation is that the adjoint
property of derivative, ∂†

z = −∂z, can be exploited in the inte-
gration of functions, which vanish at infinity. Hence, it is easy
to see the distribution q is normalized, and the second and
fourth moments match, for instance,

Eq[z1z2] = K12,

Eq[z1z2z3z4] = K12K34 + K13K24 + K14K23 + V1234. (6)

The above non-Gaussian prior can be viewed as a per-
turbative extension of multivariate Gaussian. In the setting
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of Bayesian regression, the marginal and conditional proper-
ties of the Gaussian are appealing when conjugate likelihood
functions are employed. In the following, we will examine
the effects of the perturbation in differential form on these
properties.

B. Marginal consistency and conditional statistics

We first show that the marginal consistency is intact with
the Edgeworth expansion in differential form. Namely, with-
out loss of generality, it suffices to show that marginalization
of z1 of the joint distribution q(z1, z2, z3, . . .),

∫
dz1q(z1, z̃) = N (z̃|0, K̃ ) + vĩ j̃m̃l̃∂zĩ

∂z j̃
∂zm̃∂zl̃

×
∫

dz1N (z1, z̃|0, K )

= (
1 + vĩ j̃m̃l̃∂zĩ

∂z j̃
∂zm̃∂zl̃

)
N (z̃|0, K̃ )

= q(z̃), (7)

indeed reproduces the joint distribution for z2, z3, . . . in the
original form Eq. (5) as the smaller covariance matrix K̃ is
the submatrix of K excluding the first row and column. For
simplicity, we use v to denote V/24. In deriving above, we
have employed the fact that

∫
dz1(∂z1 )sN (z1, z̃) = 0 for any

integer power s � 1, meaning that the indices i, j, m, l will
exclude any contribution associated with z1. Thus, the tilded
indices ĩ ∈ {2–4, . . .}, and they can be factored out of the
integral.

Here, we wish to stress that the above marginal prop-
erty of non-Gaussian prior may seems straightforward with
the differential representation of Edgeworth expansion, but it
does not seem promising to reach the same conclusion if the
marginalization is carried out with the explicit representation
in Appendix A. Nevertheless, one can easily write the condi-
tional distribution q(z1|z̃) = q(z1, z̃)/q(z̃). More interestingly,
the conditional mean is useful for prediction with noiseless
observation of data, and shed light on the effect of non-
Gaussianity due to the finite width. The details of deriving
the following conditional mean:

E[z1|z̃] =
∫

dz1z1
q(z1, z̃)

q(z̃)

= μ(z̃) + 1

q(z̃)
Aĩ j̃m̃∂zĩ

∂z j̃
∂zm̃N (z̃|0, K̃ ) , (8)

with the finite-width correction term proportional to the third-
order tensor,

Aĩ j̃m̃ = Vĩ j̃m̃l̃

6
[K̃−1k]l̃ − V1ĩ j̃m̃

6
, (9)

can be found in Appendix B. In the GP limit, the conditional
mean becomes the well-known result μ(z̃) = kt K̃−1z̃, as the
fourth cumulant V vanishes in the large N limit. We also
remind the readers that the tilded symbols are associated with
the conditioned outputs z2,3,.... In a similar manner, we can

also show the conditional second moment,

E
[
z2

1|z̃
] =

∫
dz1z2

1
q(z1, z̃)

q(z̃)

= μ2(z̃)+σ 2+ 1

q(z̃)

[
2μ(z̃)Aĩ j̃m̃∂zĩ

∂z j̃
∂zm̃ + Bĩ j̃∂zĩ

∂z j̃

]
× N (z̃|0, K̃ ), (10)

with the second-order tensors denoting

Bĩ j̃ = Vĩ j̃m̃l̃

2
[K̃−1k]m̃[K̃−1k]l̃ − V1ĩ j̃m̃[K̃−1k]m̃ + V11ĩ j̃

2
. (11)

The conditional second moment coincides with that in the
GP limit, σ 2 = K11 − kt K̃−1k. The details of derivation can
also be found in Appendix B. It is worthwhile to note that
the conditional variance Eq[z2

1|z̃] − (Eq[z1|z̃])2 can include
contributions related to function values z̃ through the nonzero
A and B terms in above expressions. The lack of such depen-
dence in the GP limit is in fact a shortcoming for modeling,
which has motivated the study of a non-Gaussian prior in
the machine learning community (for example, the Student-t
process in Ref. [25]).

C. An example: bivariate distribution and prediction

Now let us pause to consider a simple example where a
shallow network defined in Eq. (1) with width N is used
to model two input-output pairs (x1, z1) and (x2, z2). In the
end, we will present the predictive mean and variance for
z1 conditioning on z2. The following notations are used for
simplification: the covariance c := exp(−|x1 − x2|2/2d ), the

2-×-2 covariance matrix � = (1 c
c 1) for the bivariate prior,

and z21 := (z2 − cz1)/(
√

1 − c2). Besides, the relations of
derivatives of Gaussian in terms of Hermite polynomial will
be useful,

∂n
z1
∂m

z2
N (z1, z2|0, �) ∝ ∂n

z1

[
N (z1|0, 1)∂m

z2
N (z21|0, 1)

]
∝ (−1)m N (z2|0, 1)√

(1 − c2)m

× ∂n
z1

[Hm(z21)N (z12|0, 1)] , (12)

where we have used N (z1, z2|0, �) ∝ N (z1|0, 1)N (z21|0, 1)
up to some irrelevant constant. The probabilist’s Her-
mite polynomials are defined as Hn(z) = (−1)n[N (z|0, 1)]−1

dn
z N (z|0, 1) [22]. Consequently, following the previous dis-

cussion, the non-Gaussian bivariate distribution is shown to
be

q(z1, z2) = N (z1, z2|0, �)

{
1 + γ 4

16N
[H4(z21) + H4(z12)]

+cγ 4

4N
[3cH2(z21) + H3(z21)H1(z12) + z12 ↔ z21]

+ (c4 + 2)γ 4

8N
[2c2 + 4cH1(z21)H1(z12)

+H2(z21)H2(z12)]

}
, (13)
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and the symbol γ = 1/
√

1 − c2 is used to simplify the
expression. Besides, the fourth cumulant for the cosine
network, V1111 = 3/2N , V1112 = 3c/2N , and V1122 = (c4 +
2)/2N , have been plugged in above. As for the conditional
distribution, e.g., q(z1|z2) = q(z1, z2)/q(z2) for the bivari-
ate case, one can simply divide the above with q(z2) =
N (z2|0, 1)[1 + H4(z2)/16N], which will yield a conditional
Gaussian N (z1|z2) multiplied by a factor representing the
finite-width effect.

We can directly apply Eq. (8) to obtain the conditional
mean in the simple example where the tilded indices there
only apply to z2. Surprisingly, the conditional mean for such
noiseless case is

E[z1|z2] = cz2, (14)

coinciding with that in the GP limit because the accidental
cancellation in the third-order tensor A222 ∝ (cV2222 − V1222).
We will show that the cancellation does not occur in the noisy
(the next section) and more general cases. Application of
Eq. (10) together with the above conditional mean results in
the following conditional variance:

Var[z1|z2] = (1 − c2)

[
1 + 4(2 − c2)

16N + H4(z2)
H2(z2)

]
, (15)

which consists of the corresponding variance in GP limit
along with a term depending on z2

2.

IV. BAYESIAN REGRESSION WITH NON-GAUSSIAN
PRIOR

Having established the marginal and conditional properties
of the non-Gaussian distribution in Eq. (5), we now con-
tinue investigating the posterior distribution over the unseen
function value z∗ associated with input x∗ when the noisy
observations D = {(x1, y1), (x2, y2), . . .} are known. Accord-
ing to Bayes’s rule, the objective distribution is the posterior
distribution defined as

q(z∗|D) = q(z∗,D)

q(D)
=

∫
dz q(z∗, z)N (y|z,�)∫

dz q(z)N (y|z,�)
, (16)

with � denoting a diagonal matrix representing the noise
in Gaussian likelihood. When the q’s in the numerator and
denominator are both Gaussian, which corresponds to the
infinitely wide network, the limiting distribution reads

q∞(z∗|D) =
∫

dz N (z∗|kt
∗K−1z, k∗∗ − kt

∗K−1k∗)

× N [z|K (K + �)−1y,�K (K + �)−1]

=N [z∗|kt
∗(K + �)−1y, k∗∗ − kt

∗(K + �)−1k∗].

In the above first equality, the first and second Gaussian distri-
butions on the right hand side represent the conditional density
q∞(z∗|z) and the posterior q∞(z|D), respectively.

As for the case of finite width, the involved Gaussian
likelihood can be dealt with by continuing application of the
properties of adjoint differential operator as well as deriva-
tive of independent Gaussians. The details of derivation of

evidence q(D) can be seen in Appendix C, and the expres-
sion in terms of derivatives with respect to the observed y’s
reads

q(D) =
∫

dzN (y|z,�)q(z)

= (
1 + vi jml∂yi∂y j ∂ym∂yl

)
N (y|0, K + �). (17)

Despite its simple form, the evidence term cannot be further
manipulated, such as in the infinite-width case. The details
of derivation of the posterior distribution for output z∗ at the
unseen input,

q(z∗|D) =
∫

dz N (y|z,�)q(z∗, z)

q(D)
= (1 + vî ĵm̂l̂∂î ĵm̂l̂ )

× N

[(
z∗
y

)∣∣∣∣0,

(
1 kt

∗
k∗ K + �

)]/
q(D), (18)

can also be found in Appendix C. Here, the notations can
be understood as follows: the hatted indices, î for instance,
additionally include the symbol ∗ associated with test function
value z∗, and the derivative refers to ∂∗ := ∂z∗ (with respect
to function value) and ∂i := ∂yi (with respect to the observed
values). From the outset, the differential operators are to act
on the latent function outputs z’s in the prior, but, due to
the independent Gaussian likelihood and the adjoint property,
it becomes equivalent for them to be pulled out and act on
the observed values. Equation (18) has the same form with
its noiseless counterpart, i.e., q(z∗|z), and we can apply the
expressions in Eqs. (8) and (10) to obtain predictive mean and
variance (the replacement of K̃ by K + � is needed).

We conclude this section with considering the same simple
regression example but with noisy observation in y2 at input
x2, and we wish to predict the unobserved function value z1.
To stress the role of noise parameter σn, we only show the
predictive mean here,

E[z1|y2] = cα2
ny2 − cσ 2

n α5
nH3(αny2)

4N + α4
nH4(αny2)

, (19)

with αn = 1/
√

1 + σ 2
n . The correction term vanishes as the

noise parameter does and is odd with respect to the sign
change in y2.

V. DEEP BOTTLENECKED NETWORK

Up to this point, we have focused on the emergence of non-
Gaussianity in prior function distribution in wide and shallow
network, as well as how the non-Gaussian prior affects the in-
ference in a regression task. Our approach can be extended to
the deep and wide neural networks as the corresponding prior
distributions approach GP [5,6]. However, such wide-width
assumption leading to weak non-Gaussianity is not valid for
the bottlenecked networks in which the hidden layers are
alternatively wide and narrow [16,26].

Let us consider a two-layer bottlenecked feed forward
network modeling the hierarchical mapping x ∈ Rd 	→ z(1) ∈
RH 	→ z(2) ∈ R. The hierarchy consists of the following
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computations:

z(1)
i,α =

√
2

N1

N1∑
j=1

w
(1)
i j cos

(
�

(1)
j · xα√

d
+ φ

(1)
j

)
,

z(2)
α =

√
2

N2

N2∑
j=1

w
(2)
j cos

(
�

(2)
j · z(1)

α√
H

+ φ
(2)
j

)
, (20)

where the parameter w’s, �’s, and φ’s share the same prior
distribution with their counterparts in the shallow network.
The widths of hidden layers, N1 and N2, are large but the
hidden output dimension H is not. In the limit N1,2 → ∞,
whereas, H remains finite, the two-layer cosine bottlenecked
network corresponds to the prior of deep Gaussian process
[17,27,28] with the Gaussian kernel, which is a flexible and
expressive function prior due to its compositional nature. As
its name suggests, the conditional prior z(2)|z(1) is a GP and so
is each component z(1)

i |x in the hidden output. However, the
marginal distribution for z(2)|x is non-Gaussian as Ref. [15]
showed that the fourth cumulant is positive, i.e., a heavy-tailed
distribution [29].

Here, we are interested in tracking how the small parame-
ters, 1/N1 and 1/N2, and the bottleneck parameter 1/H enters
the second moment. For a deep and finitely wide linear net-
work, the prior is non-Gaussian [9,30], but the second moment
does not receive a correction due to the finite width [9,10].
Thus, the effects of nonlinear activation on higher statistical
moments are interesting (also see a recent work in Ref. [31]).
For the deep cosine network in Eq. (20), we can first consider
the wide limit, N1,2 → ∞, but the bottleneck width H remains
finite. Following the result in Eq. (2), the covariance for the
deep model can be computed as the following:

k(2)
∞ (xα, xβ ) = Eq∞

{
exp

(
− |z(1)

α − z(1)
β |2

2H

)}

=
[∫

dzαdzβ e− (zα−zβ )2

2H q∞(zα, zβ )

]H

=
[

1 + 1 − exp
( − |xα−xβ |2

2d

)
H/2

]−H/2

. (21)

Note that the decomposition N (z1, z2|0, K ) = N (z1 +
z2|0, σ 2

+)N (z1 − z2|0, σ 2
−) [32] has been used in derivation

with the variances σ 2
± = 2(K11 ± K12). We want to stress that

the above kernel is exact for any H . For a very narrow case,
i.e., H = 1, the above result coincides with that in Ref. [15],
whereas, in the very wide bottleneck case H 
 1, it can be
shown that

k(2)
∞ (xα, xβ ) ≈ exp[k(xα, xβ ) − 1]

{
1 + 1

H
[k(xα, xβ ) − 1]2

}
,

(22)

where the covariance k in the shallow network is given in
(2). In addition, the exponential of shallow kernel in above
corresponds to H → ∞, which is the same as the deep kernel
in Ref. [33]. Indeed, as suggested in Ref. [10], the appearance
of reciprocal width 1/H in the correction term is in association

with the weak non-Gaussianity even though the other widths
N1,2 are infinite.

Next, we will compute the covariance for the case where all
widths are finite. In fact, the outer width N2 does not enter the
kernel, and we only need a large but finite N1. The computa-
tion is similar, and one only needs to replace the limiting joint
distribution q∞(z(1)

α , z(1)
β ) with the non-Gaussian q. The details

of derivation using the property derivative of Gaussian can be
seen in Appendix D. The kernel of the two-layer bottlenecked
cosine network with N1,2 < ∞ reads

k(2)(xα, xβ ) =
[

1 + 1 − k(xα, xβ )

H/2

]−H/2

(1 + ε)H , (23)

with the correction due to finite N1,

ε = Vαααα + Vββββ − 4Vαβββ − 4Vβααα + 6Vααββ

24

×
[

3

H2
− 6σ 2

−
H3(1 + σ 2−/H )

+ 3σ 4
−

H4(1 + σ 2−/H )2

]
, (24)

with σ 2
− = 2(1 − k) is used for easing the notation. Again, the

above result is for general H . For the wide bottleneck limit,
one can show that these small parameters enter the kernel with
the correction of O( 1

H ) followed by O( 1
N1H ). Hence, the deep

model as a function prior serves as a GP with random kernel
whose mean value converges to Eq. (22) when all widths N1,2

and H approach infinity. However, the role of H is different
from N1 from our perturbative analysis, and 1/N1 does not
appear alone in the small parameter. The influence of finite
width on the kernel of deep and nonlinear and convolutional
models is also studied in Refs. [34–36].

The fourth moment can be computed in a similar manner.
The closed form for N1,2 → ∞ can be found in Ref. [15].
For the finite width case, the fourth cumulant V (2)

αβγ δ be-
comes the H th power of the permutational symmetrization
of 1

N2
Eq{exp[−[z(1)

α + z(1)
β − z(1)

γ − z(1)
δ ]2/2H )}, the small pa-

rameters of which will consist of 1/N2, 1/(N2H ), and
1/(N2HN1). The analysis of scaling with respect to the recip-
rocal width is more complex than the deep linear network.

VI. DISCUSSIONS

In essence, the finite width in random neural networks
induces nonzero variance of kernel since the fourth cumulant
is not zero. From function space perspective, the shallow
networks with finitely large width can be regarded as a GP but
the kernel itself is a random variable too, so the learned data
representation is a distribution over kernels. Therefore, the
neural network with very narrow layers may not have enough
expressive power for learning, whereas, the network with very
wide layers is not flexible enough because it is equivalent to
GP learning with one fixed kernel. It was recently suggested
in Ref. [37] through studying the partition function [8,38] of
finite deep network that Student-t process [25] may suitably
represent finite-width network, which offers an alternative de-
scription than this paper. The reports in Refs. [28,34] observed
the degradation of performance for Bayesian deep neural
network when expanding the widths, whereas, the study in
Ref. [39] suggested otherwise.
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Taking the wide limit with the perturbative approach is
appealing because of the analytic and elegant expressions for
inference, which may shed light on future investigation of
alternative algorithm for classification [40], study of average
test error in regression [41,42] and classification [43] tasks
using finite-width networks. In this paper, the conditional
statistics and perturbed posterior distribution over the unseen
output using the non-Gaussian prior are obtained with help
of the differential representation of multivariate Edgeworth
expansion. In parallel with the equivalence between GP prior
and the random wide neural network, the investigation of neu-
ral tangent kernel [19,44,45] is important for understanding
the learning dynamics during the optimization and the relation
with Bayesian neural network learning [46,47].

In a broader context, the techniques for obtaining the
non-Gaussian conditional and marginal distributions might
be reminiscent of those in computing the transition ampli-
tude between simple harmonic states driven by an external
field. Although the non-Gaussianity discussed here originates
from the random parameters of the neural network, the non-
Gaussian modeling of correlation among cosmic microwave
background data might suggest some novel physics beyond
the standard model [48].
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APPENDIX A: EXPRESSION FOR NON-GAUSSIAN PRIOR
DISTRIBUTION

After explicitly taking the derivatives in Eq. (5), it is
straightforward to show the expressions for the multivariate
non-Gaussian distribution reads

q(z) = 1√
(2π )N |K|e− 1

2 zt K−1z
[

1 + Vαβγ δ

24
(χ (0)

αβγ δ

− χ
(1)
αβγ δμνzμzν + χ

(2)
αβγ δμνκηzμzνzκzη )

]
, (A1)

in which the first perturbation term, a scalar term, is the
contraction between the fourth cumulant tensor Vαβγ δ ∝ 1/N1

and the following tensor:

χ
(0)
αβγ δ = (K−1)αβ (K−1)γ δ + (K−1)αγ (K−1)βδ

+ (K−1)αδ (K−1)βγ . (A2)

The next contribution results from contraction between the
fourth cumulant, the following rank-6 tensor:

χ
(1)
αβγ δμν

= (K−1)αμ(K−1)νβ (K−1)γ δ + (K−1)αβ (K−1)γμ(K−1)νδ

+ (K−1)αμ(K−1)νγ (K−1)βδ + (K−1)αγ (K−1)βμ(K−1)νδ

+ (K−1)αμ(K−1)νδ (K−1)βγ +(K−1)αδ (K−1)βμ(K−1)νγ ,

(A3)

and the rank-2 tensor zμzν . The last contribution contains the
rank-8 tensor,

χ
(2)
αβγ δμνκη = (K−1)αμ(K−1)βν (K−1)γ κ (K−1)δη , (A4)

the rank-4 tensor zμzνzκzη, and the fourth cumulant. It be-
comes extensively tedious, if possible, proving the marginal
and conditional properties with this representation.

APPENDIX B: PROOFS OF CONDITIONAL MEAN EQ. (8)
AND SECOND MOMENT EQ. (10)

By plugging the corresponding expression for non-
Gaussian joint q(z1, z̃), using the conditional property of
distribution, and temporarily neglecting the coefficients and
indices related to the fourth cumulant V , we can compute the
conditional first moment in the following:

E[z1|z̃] ∝
∫

dz1z1q(z1, z̃)

=
∫

dz1z1
(
1 + V ∂̃4 + V ∂̃3∂z1 + V ∂̃2∂2

z1
+ V ∂̃∂3

z1

+ V ∂4
z1

)
[N (z1|z̃)N (z̃)]

= (1 + V ∂̃4)[μ(z̃)N (z̃)] − V ∂̃3N (z̃) . (B1)

In the first equality, the derivative terms of equal to or higher
order than ∂2

z1
do not contribute as they produce zero when

acting on z1. In the second equality, one can further reduce
the first term into μ(1 + V ∂̃4)N + 4(∂̃μ)∂̃3N since the μ

term is linear in z̃. Note that the former term is actually
μq(z̃). In addition, the minus sign preceding the ∂̃3 arises
from the adjoint property of moving ∂z1 to act on z1. By
restoring the coefficients with some combinatorics and that
∂iμ(z) = [K−1k]i, it proves Eq. (8).

The conditional second moment can be computed in a
similar manner,

E
[
z2

1

∣∣z̃] ∝
∫

dz1z2
1q(z1, z̃)

=
∫

dz1z2
1

(
1 + V ∂̃4 + V ∂̃3∂z1 + V ∂̃2∂2

z1
+ V ∂̃∂3

z1

+ V ∂4
z1

)
[N (z1|z̃)N (z̃)]

= (1+V ∂̃4){[μ2(z̃) + σ 2]N (z̃)} − 2V ∂̃3[μ(z̃)N (z̃)]

+ 2V ∂̃2[N (z̃)]. (B2)

The first term in the second equality will contribute a term
∝q(z̃), the the details are similar with the above.

APPENDIX C: PROOFS OF EVIDENCE IN EQ. (17)
AND POSTERIOR IN EQ. (18)

We start with the definition in Eq. (17) and focus on
the correction term. The computation involves the marginal-
ization over all z’s as well as a complication arising from
the derivatives with respect to some four z’s. Using the
adjoint property of derivative, i.e.,

∫
f (x)[∂g(x)/∂x]dx =∫

[−∂ f (x)/∂x]g(x)dx, provided that the product f g vanishes
at infinity, we can shuffle the operator ∂z acting on the Gaus-
sian prior on the right most to act on the Gaussian likelihood
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on the left. Then, use the property, (∂t + ∂s) exp[−(s − t )2] =
0, we can replace ∂z with −∂y and pull these derivatives out of
the integral. The followings summarize these actions,

∫
dzN (y|z,�)

[
vi jml∂zi∂z j ∂zm∂zlN (z|0, K )

]
= vi jml

∫
dz

[
∂zi∂z j ∂zm∂zlN (y|z,�)

]
N (z|0, K )

= vi jml∂yi∂y j ∂ym∂yl

∫
dzN (y|z,�)N (z|0, K )

= vi jml∂yi∂y j ∂ym∂ylN (y|0, K + �). (C1)

As for the proof for Eq. (18), we can proceed with com-
putation of the numerator there, and note that the derivative
∂z∗ in q(z∗, z) can be moved out of the integral directly.
To accommodate this extra variable, we use the hat on
top of the indices to stress that ∗ is included. The follow-
ing contains the meaning of our notation as well as some
details:

vî ĵm̂l̂

∫
dz N (y|z,�)

[
∂zî

∂z ĵ
∂zm̂∂zl̂

N (z∗, z|0, K̂ )
]

= [
vi jml∂yi∂y j ∂ym∂yl + vi jm∗∂yi∂y j ∂ym∂z∗

+ vi j∗∗∂yi∂y j ∂
2
z∗ + vi∗∗∗∂yi∂

3
z∗ + v∗∗∗∗∂4

z∗

]
×

∫
dzN (y|z,�)N (z∗, z|0, K̂ )

= vî ĵm̂l̂∂î ĵm̂l̂N
[(

z∗
y

)∣∣∣∣0,

(
1 kt

∗
k∗ K + �

)]
, (C2)

where the readers can refer to the text around Eq. (2.21) in
Ref. [2] for similar integration leading to the second equality.

APPENDIX D: PROOF OF EQ. (21)

To prove the correction term to the second moment, the
previous tricks dealing with Gaussians are still useful. Below,
we first shuffle the four derivatives acting on the bivariate
Gaussian on the left most to act on the Gaussian factor. One
can further use ∂z1,2 exp[−(z1 − z2)2/2] = ±∂z− exp(−z2

−/2)
such that one can rewrite ∂i jlm = (−1)n1∂4

z− with n1 denot-
ing the number of involved z1’s. The rest of computation is
straightforward,∫

dz1dz2 e− (z1−z2 )2

2H (vi jml∂i∂ j∂m∂l )N (z1, z2|0, K2)

=
∫

dz1dz2[(vi jml∂i∂ j∂m∂l )e
− (z1−z2 )2

2H ]N (z1, z2|0, K2)

= V1111 + V2222 − 4V1222 − 4V21111 + 6V1122

24

×
∫

dz+dz−
2

[(∂z− )4e− z2−
2H ]N (z+|0, σ 2

+)N (z−|0, σ 2
−)

= V ′
∫

dz

(
3

H2
− 6z2

H3
+ z4

H4

)
e− z2

2H N (z|0, σ 2
−)

= V ′√
1 + σ 2−

H

[
3

H2
− 6σ 2

−
H3(1 + σ 2−/H )

+ 3σ 4
−

H4(1 + σ 2−/H )2

]
. (D1)

We have used the notation for the variances σ 2
± = 2[1 ±

k(x1, x2)].
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