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Preferential attachment describes a variety of graph-based models in which a network grows incrementally
via the sequential addition of new nodes and edges, and where existing nodes acquire new neighbors at a rate
proportional to their degree. Some networks, however, are better described as groups of nodes rather than a
set of pairwise connections. These groups are called affiliations, and the corresponding networks affiliation
networks. When viewed as graphs, affiliation networks do not necessarily exhibit the power law distribution
of node degrees that is typically associated with preferential attachment. We propose a preferential attachment
mechanism for affiliation networks that highlights the power law characteristic of these networks when presented
as hypergraphs and simplicial complexes. The two representations capture affiliations in similar ways, but the
latter offers an intrinsic feature of the model called subsumption, where an affiliation cannot be a subset of
another. Our model of preferential attachment has interesting features, both algorithmic and analytic, including
implicit preferential attachment (node sampling does not require knowledge of node degrees), a locality property
where the neighbors of a newly added node are also neighbors, the emergence of a power law distribution
of degrees (defined in hypergraphs and simplicial complexes rather than at a graph level), implicit deletion
of affiliations (through subsumption in the case of simplicial complexes), and to some extent a control over
the affiliation size distribution. By varying the parameters of the model, the generated affiliation networks can
resemble different types of real-world examples, so the framework also serves as a synthetic generation algorithm
for simulation and experimental studies.
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I. INTRODUCTION

The term preferential attachment was introduced in [1] and
is now considered an umbrella mechanism to grow graph-
based networks by sequentially adding new nodes and edges
in such a way that existing nodes acquire their new neighbors
at a rate proportional to their degree. Examples of such net-
works include social, biological, and information networks,
where preferential attachment leads to a power law distri-
bution in node degrees, i.e., the probability of a node with
degree k satisfies P(k) ∝ k−γ . Networks with such degree
distributions are often called scale free because P(ak) ∝ k−γ

persists for any scaling factor a.
While the notion of scale-free networks became very influ-

ential after it was popularized by Barabási and Albert, the idea
was not entirely new: The preferential attachment mechanism
(under different names) and the power law in the tail of the
degree distribution were studied earlier in several settings
[2–4], including networks, leading to what is now known
as the Yule-Simon distribution P(k) = ρ�(ρ + 1)�(k)/�(k +
ρ + 1), where P(k) ∝ k−(ρ+1) for large k.

Despite the success of preferential attachment models in
capturing power laws and other characteristics of real-world
networks [5–9], as opposed to, say, the random graph model
proposed by Erdös and Rényi [10,11] and Gilbert [12], not ev-
ery network can be explained by a straightforward preferential
attachment growth. For instance, friendship networks [13] and
coauthorship networks [14] are two such examples. However,
as shown below, viewing these networks as groups of nodes

rather then a set of pairwise connections offers better insight
into the mechanisms underlying their growth.

Figure 1(a) shows the degree distribution of a PNAS au-
thorship network [13] modeled as a graph, where two authors
are connected by an edge if they have some paper in com-
mon. Figure 1(b) shows the degree distribution of the same
network modeled as a hypergraph, where each paper defines a
hyperedge on the set of its authors (and degree is the number
of hyperedges a node belongs to). The degree distribution
in Fig. 1(a) is described in [13] as one that exhibits three
regimes (generalized Poisson, a crossover region, and a power
law). On the other hand, the distribution in Fig. 1(b) can be
completely explained by a power law.

Figure 2 shows similar distributions for the degrees in a
Facebook friendship ego network [15], modeled as a graph in
Fig. 2(a) with two people connected by an edge if they are
friends, and as a clique simplicial complex in Fig. 2(b), where
a clique simplicial complex consists of all the maximal cliques
of the graph as hyperedges, now called facets in simplicial
complexes, and degree becomes the number of facets a node
belongs to. As in the previous example, the degrees in the
simplicial complex exhibit the power law. Figure 3 replicates
Fig. 2 with logarithmic binning.

Networks where nodes are joined not by pairwise connec-
tions but as groups of multiple nodes are called affiliation
networks. Affiliation networks can be modeled in several
ways, including the use of bipartite graphs, hypergraphs, and
simplicial complexes. In both examples shown above, the
degree distribution in the affiliation network is easily cap-
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FIG. 1. The degree distribution in a coauthorship network
(copied from [13]). (a) P(k) is the proportion of the authors with
k collaborators (i.e.. graph model). (b) P(k) is the proportion of the
authors with k papers (i.e., hypergraph model).

tured by a power law, suggesting first the existence of an
underlying preferential attachment mechanism, and second
that this mechanism is operating at the affiliation network
level and not at the graph level. We present and analyze a
preferential attachment model for affiliation networks when
seen as hypergraphs and simplicial complexes, and hence
provide an understanding of how underlying mechanisms con-
tribute to the incremental growth of networks that seemingly
do not comply (when modeled as graphs) with preferential
attachment and power law distributions.

II. AFFILIATION NETWORKS AS HYPERGRAPHS AND
SIMPLICIAL COMPLEXES

An affiliation network (also known as two-mode network,
membership network, or hypernetwork) is a network that de-
scribes the dual relation between nodes and their affiliations.
In the most general terms, it is given by a set of nodes V , a
set of affiliations S, and a relation R ⊆ V × S, that describes
which nodes belong to which affiliations. For instance, a col-
laborative network of overlapping teams can be represented
by a set of persons V and a set of teams S, where a pair
(v, s) ∈ R means that person v works in team s. We assume
that every node must belong to at least one affiliation, and
every affiliation must contain at least one node. Given an
affiliation network, the corresponding skeleton graph is the
simple graph such that two nodes are connected by an edge if
they belong to some common affiliation.

Affiliation networks are used in the modeling of sev-
eral phenomena, including interlocking directorates [16–18],
where a member of one company’s board of directors
also serves within another company’s management; cita-

FIG. 2. The degree distribution in a Facebook friendship ego
network [14] modeled as (a) a graph and (b) as a clique simplicial
complex.

FIG. 3. The same degree distributions of Fig. 2 binned with a
constant bin size on the logarithmic scale.

tion networks [13], where papers serve as affiliations with
overlapping authors; and co-occurrence studies of biologi-
cal species [19,20], where each species is a node and each
geographic site is an affiliation.

We consider two growth models of affiliation networks:
hypergraphs and simplicial complexes. In both models, the
network grows by adding new affiliations that contain existing
nodes and newly created nodes.

A. Hypergraphs

Any affiliation network, when not requiring special struc-
tural properties, can be modeled as a hypergraph (V, E ),
where V is a set of nodes and E is a collection of nonempty
subsets of V (the hyperedges). Each affiliation becomes a hy-
peredge. Our network growth algorithm (described in Sec. IV)
guarantees that hyperedges are unique by making each added
affiliation contain at least one newly created node. The degree
of a node is defined as the number of hyperedges it belongs
to, so it is nondecreasing as the network grows (this does not
hold in the case of simplicial complexes described below).

B. Simplicial complex: Affiliation networks with subsumption

An abstract simplicial complex is a collection � of
nonempty sets such that if f ∈ �, then every nonempty subset
of f is in � as well. The sets of � are called the faces of the
simplicial complex. The dimension of a face f is dim( f ) =
| f | − 1. The elements of the faces are the nodes, so the set
of all nodes of a simplicial complex � is V = ∪ f ∈�. The
maximal faces (those that are not subsets of other faces) are
called facets, and we use F to denote the set of facets.

Simplicial complexes have been used in many applications,
ranging from biology [21–23], to communication networks
[24–29], to scientific collaboration [30–35], to epidemic
spreading and opinion propagation [36–38].

Any simplicial complex can be fully described by the set of
its facets. While the faces of the complex can be generated if
needed, their number grows exponentially in the dimensions
of the facets. Therefore, when modeling an affiliation network
as a simplicial complex [such as the example in Fig. 2(b)], it is
reasonable to view the facets as the affiliations of the network,
and define the degree of a node as the number of facets it
belongs to.

This approach in defining affiliations leads to a property
that distinguishes simplicial complexes from hypergraphs,
which we call subsumption, following a terminology used in
[39–43] for instance. To illustrate subsumption, observe that
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in a simplicial complex network, no affiliation (i.e., facet)
can be a subset of another affiliation. Therefore, as a network
grows, an affiliation must be removed from the network if it
ever becomes a subset of another (existing or newly added) af-
filiation. Consider a simplicial complex network that consists
of two facets: {A, B} and {B,C, D}. Adding {A, B, E} to the
network would lead to the subsumption of {A, B}. On the other
hand, adding {B,C} would not change it because {B,C} would
be subsumed by the existing affiliation {B,C, D}. To simplify
analysis, our network growth algorithm (described in Sec. IV)
avoids this latter scenario of subsumption by making each
added affiliation contain at least one newly created node. We
also use the term absorption to describe the former scenario
of subsumption. Unlike the case of a hypergraph, the degree
of an existing node can decrease upon the addition of a facet
when absorption occurs: for instance, when two or more of the
node’s facets are absorbed. However, this scenario is practi-
cally eliminated given the no overlap assumption explained in
Sec. IV; therefore, a node may either gain a degree or maintain
its current degree.

III. PRIOR WORK AND OUR CONTRIBUTION

Some efforts of studying preferential attachment in
affiliation networks exist. The work in [44,45] grows sim-
plicial complexes with interesting structural properties by
repeatedly adding facets of size three (facets are restricted
to only triangles). The work in [46] generates hypergraphs
that exhibit a symmetric property, where the same power law
distribution governs both degrees and hyperedge sizes. The
work in [39] on simplicial complexes produces facets with a
target size distribution, but relies on an explicit selection of
nodes based on degrees (which is a computational bottleneck)
and eliminates the chance of subsumption when networks
become large enough (large simplicial complexes behave as
hypergraphs).

Our model for generating affiliation networks exhibits, by
design, a set of desirable features on both the algorithmic and
the analytic levels:

(i) implicit preferential attachment, where nodes are not
explicitly chosen based on degree;

(ii) locality parameter (the neighbors of a newly added
node are also neighbors);

(iii) power law distribution of degrees;
(iv) absorption: implicit deletion of existing affiliations by

virtue of the subsumption property in simplicial complexes
(see Sec. II); this feature does not die out in large networks;

(v) controlled affiliation size by specifying a distribution
for the number of newly added nodes.

The above framework offers a convenient tool for ef-
ficiently generating synthetic networks that resemble real-
world networks, which is useful in simulation and experimen-
tal studies. For instance, by controlling several parameters
of the generation algorithm, different properties of networks
can be achieved including average distances, the clustering
coefficients [47,48], and assortativity [49].

IV. OUR MODEL AND GENERATION ALGORITHM

Below we present the algorithm for growing an affilia-
tion network described for both hypergraphs and simplicial

complexes, where affiliation stands for either hyperedge or
facet accordingly. Given parameters 0 � α < 1, � ∈ N =
{1, 2, 3, . . .}, and a fixed probability distribution Pc for c ∈
N (with a finite mean E [c]), the algorithm is defined as
follows:

Grow_Network(α, �, Pc )
start with one affiliation of some size
while some stopping condition is not met

f ←New_affiliation(α, �, Pc )
add f to the network
(simplicial complex) delete facets absorbed by f

New_Affiliation(α, �, Pc )
f ← empty affiliation
sample � existing affiliations f1, . . . , f� uniformly at
random with replacement
(variant 1) A ← f1 ∪ . . . ∪ f� (union)
(variant 2) A ← f1 ∪+ . . . ∪+ f� (multiset)
for each node x in A

f ← f ∪ {x} with probability α/�

sample c ∈ N with probability Pc

add c new nodes to f
return f

The parameter � controls “locality;” for instance, when
� = 1, all nodes are sampled from a single affiliation to make
a new one. Absorption is part of the model, and for fixed α and
�, an affiliation of size s is absorbed with probability (α/�)s.
Therefore, the probability of absorption is

∑
s(α/�)sP(s),

where P(s) is the probability of size s affiliations, and hence
absorption is not vanishing with a growing network size,
making the simplicial complex model distinct from that of
a hypergraph. Finally, the number of newly created nodes in
each step is controlled by the random parameter c, which may
also be a constant.

When designing the algorithm, we decided not to allow
c to be zero, and not to elaborate on the case of α = 1. This
design choice of c ∈ N = {1, 2, 3, . . .} guarantees that no
empty affiliations are created, i.e., P(s = 0) = 0. The smallest
affiliation size is the smallest c such that Pc > 0. In addition,
this choice avoids the possibility of adding the same hyper-
edge multiple times, as well as the possibility of subsuming
a newly created facet, which will simplify the analysis of
simplicial complexes. Similarly, the design choice of α �= 1
avoids a boundary case; for instance, when α = � = 1, the
newly created facet in each iteration will absorb the existing
facet, leading to a degenerate network in simplicial complexes
with all nodes belonging to one large facet.

In terms of implementation, both nodes and affiliations are
stored as hash tables, which are efficiently updated. Moreover,
each node maintains a list of the affiliations it belongs to, and
each affiliation maintains a list of the nodes it contains. This
means all updates to the network are local and, therefore, effi-
cient. For instance, to check whether some facets are absorbed
in simplicial complexes, we first obtain a list of facets for each
sampled node. These facets can then be checked for inclusion
in the newly created one. The time complexity of this entire
operation is proportional to the sum of the sizes of all facets
containing any sampled node. This depends on the average
node degree and the average facet size, thus on the parameters
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of the algorithm and not the size of the network. In addition,
sampling � affiliations followed by a sampling of nodes with
probability α/� implies that the algorithm does not rely on an
explicit sampling of nodes based on their degrees, which could
otherwise depend on the number of nodes. Indeed, sampling
an affiliation uniformly at random requires only a constant
time, and sampling its nodes requires a time proportional to
the affiliation size.

A. Probability of gaining a degree

Since the degree of a node is the number of affiliations it
belongs to (in both hypergraphs and simplicial complexes),
in a network with m affiliations, any given node with de-
gree k is selected to be part of a new affiliation with
probability

Punion
+ (k) =

[
1 −

(
1 − k

m

)�]
α

�
,

Pmultiset
+ (k) = 1 −

(
1 − k

m

α

�

)�

.

When � = 1, both variants give αk/m (preferential attach-
ment). However, for � > 1, they differ. In small networks
where k and m are comparable, a feature of the union variant
is that the above probability is approximately α/�, especially
for large � since (1 − k/m)� ≈ 0, giving a uniform attach-
ment model for small networks, and explaining an important
transitional feature for the average distance in the skeleton
graph when the network grows [50] (see Sec. VIII). The
multiset variant remains preferential for small networks, albeit
not linear in the degree, with an approximate probability of
1 − e−αk/m.

In large networks where k/m goes to zero as m goes to
infinity, both variants will have the same expression for the
probability of selecting a given node with degree k, providing
the preferential attachment feature:

P+(k) ≈ αk

m
. (1)

The assumption that limm→∞ k/m = 0 is not unrealistic given
the no overlap assumption stated below.

B. Two algorithm assumptions

Define Poverlap as the probability that among the � > 1
sampled affiliations, at least one pair overlaps, then the
existence of a node with degree k such that k/m � ε im-
plies Poverlap � 2

(k
2

)
/m2 � ε2 − k/m2 � ε2 − 1/m ≈ ε2. Our

algorithm makes the following two assumptions:
No overlap: Poverlap goes to zero as m goes to infinity [hence

k/m goes to zero and P+(k) ≈ αk/m is valid].
No accidental absorption: When a new facet is added

to the network, the probability of absorbing a facet that is
not among the � sampled ones goes to zero as m goes to
infinity (this will be useful for the analysis of simplicial
complexes).

Both assumptions are justified experimentally in Fig. 4; for
instance, Poverlap(m) ∝ mb in hypergraphs, where b is always
negative, even as α → 1. Similarly, we have a negative expo-
nent b′ in the average number of accidental absorptions per

FIG. 4. (a) Empirically found (best-fit) exponent b in the proba-
bility of overlap for c = 1 and � = 2, assuming the probability has
the form Poverlap(m) ∝ mb, and (b) the exponent b′ of Nacc(n) ∝ nb′

.

iteration Nacc(n) ∝ nb′
(n is the number of nodes in the net-

work). Observe that the probability of accidental absorption is
bounded from above by Nacc(n) when n is large, as the latter
should converge to the expected number of accidental absorp-
tions. The two assumptions are proven true theoretically under
reasonable conditions [14].

V. EMERGENCE OF POWER LAW

Let nt and mt denote the number of nodes and affiliations
at iteration t , respectively, and let nt,k be the number of nodes
of degree k at iteration t . To establish the power law, we
track how E [nt,k] changes from one iteration to another in
a classical master equation approach. We use P(k) and P(s)
to describe the probability distributions for node degree and
affiliation size, respectively.

A. Degree distribution in hypergraphs

For hypergraphs, mt is the number of hyperedges at iter-
ation t and satisfies mt = t . Recall that each node of degree
k gains a degree with probability P+(k) = αk/mt ; therefore,
we have the following master equation:

E [nt+1,k|nt ] = E [nt,k|nt ] + E [c]1k=1 − E [nt,k|nt ]
αk

t

+ E [nt,k−1|nt ]
α(k − 1)

t
.

If Pt (k|nt ) is the probability that a node has degree k at
iteration t given nt nodes, then in the limit as t → ∞, when a
limiting distribution exists, this is just P(k) for all “typical”
values of nt . Therefore, E [nt,k|nt ] = nt Pt (k|nt ) = nt P(k).
Similarly, E [nt+1,k|nt ] = E [E [nt+1,k|nt , nt+1]|nt ] = E [nt+1

Pt+1(k|nt , nt+1)|nt ]=(nt + E [c])Pt+1(k|nt , nt+1)=(nt + E [c])
P(k). The master equation becomes

E [c]P(k) = E [c]1k=1 − lim
t→∞ nt P(k)

αk

t

+ lim
t→∞ nt P(k − 1)

α(k − 1)

t
.

Replacing limt→∞ nt/t by E [c] (and since E [c] �= 0), we ob-
tain the recurrence

P(k) = 1k=1 − αkP(k) + α(k − 1)P(k − 1). (2)
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FIG. 5. Degree distribution for (a) α = 0.5, c = 1, � = 1,
and (b) α = 0.9, c = 1, � = 4. Each panel shows an empirical
distribution from a generated network with n = 106 nodes, the corre-
sponding exact solution, and its Stirling’s power law approximation.

Iterating the above recurrence gives

P(k) = (k − 1)!

α(1/α + 1)(k)
= �(k)�(1/α + 1)

α�(1/α + 1 + k)

= 1

α
B

(
k,

1

α
+ 1

)
, (3)

which is the Yule-Simon distribution [2–4] (see Fig. 5 for
some examples). The Yule-Simon distribution is asymptoti-
cally a power law satisfying P(k) ∝ k−(1/α+1) = k−γ for large
k, with γ given below for hypergraphs:

γhg = 1

α
+ 1. (4)

Therefore, the power of the distribution has tail exponent γ =
1
α

+ 1 > 2 when 0 � α < 1. Observe that such distribution
with infinite domain is valid when γ > 1, and admits a finite
mean when γ > 2 (α < 1) and a finite variance when γ > 3
(α < 0.5). Our algorithm (for both hypergraphs and simplicial
complexes) does not asymptotically generate networks with
γ < 2. In these networks, degrees (and thus the number of
affiliations) grow at a much faster rate than nodes. An example
of such dense networks is the Facebook friendship network
described in Figs. 2 and 3, with 1 < γ < 2.

B. Degree distribution in simplicial complexes

Using a similar master equation technique (see
Appendix A for detail), we derive P(k) for a simplicial
complex by relying on the notion of a “meganode,” which
is a node with a large degree k. To that end, define the
conditional probability P(s|k) as the probability that a facet
has size s given it contains a node of degree k, and assume
Q(s) = limk→∞ P(s|k) exists, describing the facet size
distribution of a meganode. Then for large k,

P(k) = [−P(k)k + P(k − 1)(k − 1)]α∗,

where

α∗ = α
1 − �

α
h
(

α
�

)
1 − � f

(
α
�

) , (5)

and f (z) = ∑
s zsP(s) and h(z) = ∑

s zsQ(s) are the generat-
ing functions for the facet size distribution in the network and
the facet size distribution of a meganode, respectively.

This is the same as Eq. (2) for large k (1k=1 is dropped)
with α replaced by α∗. Therefore, P(k) ∝ k−γ for large k, with
γ given below for simplicial complexes:

γsc = 1

α∗ + 1. (6)

Compared to hypergraphs, one can think of α∗ as the effective
α for simplicial complexes. Section VII provides numerical
and approximation techniques for computing α∗ using the
generating functions f (z) and h(z).

VI. HYPEREDGE AND FACET SIZE DISTRIBUTIONS

We study the size distributions P(s) and Q(s) (see above)
by exploring their generating functions f (z) = ∑

s zsP(s) and
h(z) = ∑

s zsQ(s), respectively. Refer to Appendix B for the
detailed mathematical derivations.

A. Hypergraph network

As shown in in Appendix B, the generating functions in a
hypergraph satisfy

f (z) = g(z) f �

(
1 − α

�
+ α

�
z

)
, (7)

h(z) = zg(z)

1 − α
�

+ α
�
z

h

(
1 − α

�
+ α

�
z

)
f �−1

(
1 − α

�
+ α

�
z

)
,

(8)

where g(z) = ∑
c zcPc is the generating function for the fixed

distribution given by Pc, the probability of adding c new nodes
in one iteration of the algorithm described in Sec. IV. For the
special case of � = 1 and a constant c where g(z) = zc, f (z)
can be iterated to obtain f (z) = (1 − z; α)c

∞ and P(s = c) =∑
s�c P(s)(1 − α)s = f (1 − α) = (α; α)c

∞, where (x; q)∞ is
the q-Pochhammer symbol defined as

∏∞
i=0(1 − xqi ).

Given f (z), one can compute several properties of the
size distribution; for instance, the expected hyperedge size is
given by

E [s] = f ′(1) = E [c]

1 − α
. (9)

Since the sum of degrees is equal to the sum of affiliation
sizes, ∑

i di

nt
=

∑
f | f |
mt

mt/t

nt/t
.

This implies at the limit that the expected node degree is
given by

E [k] = E [s]

E [c]
= 1

1 − α
. (10)

B. Simplicial complex network

Similarly, we obtain the following for simplicial com-
plexes:

f (z) = g(z) f �
(
1 − α

�
+ α

�
z
) − � f

(
α
�
z
)

1 − � f
(

α
�

) , (11)

014310-5



ALEXEY NIKOLAEV AND SAAD MNEIMNEH PHYSICAL REVIEW E 108, 014310 (2023)

with

E [s] = E [c] − α f ′(α/�)

1 − α − � f (α/�)
, E [k] = E [s]

E [c]
[1 − � f (α/�)]

and[
1 − �

α
h

(
α

�

)]
h(z) + �

α
h

(
α

�
z

)

= zg(z)

1 − α
�

+ α
�
z

h

(
1 − α

�
+ α

�
z

)
f �−1

(
1 − α

�
+ α

�
z

)
.

(12)

It is easy to verify that for hypergraphs, and for simpli-
cial complexes with � = 1, meganetworks exhibit a shift in
the size distribution, where h(z) = z f (z) and hence Q(s) =
P(s − 1). This also implies that α∗ = α when � = 1 [see
Eq. (5)].

VII. NUMERICAL SOLUTIONS
AND POISSON APPROXIMATIONS

In this section, we describe numerical solutions for f (z)
and h(z) given by Eqs. (7), (8), (11), and (12), as well as their
approximate solutions when � is large. Both approaches are
useful, in particular for simplicial complexes to obtain α∗,
which in turn determines the exponent of the degree distri-
bution given by γ = 1/α∗ + 1 [Eq. (6)]. Solutions for f (z)
and h(z) can also be used to find E [s] and E [k] (see previous
section).

A. Numerical solutions for constant c

To solve f (z) numerically for given � and c, we start with
a small α and f0(z) = zc as an initial solution, and repeatedly
compute f (z) from previous values of f (z), using Eq. (11) for
instance, until convergence:

fi+1(z) = zc f �
i

(
1 − α

�
+ α

�
z
) − � fi

(
α
�
z
)

1 − � fi
(

α
�

) ,

where fi(z) is evaluated at z j = j/(N − 1) for
j ∈ {0, . . . , N − 1} for some large integer N . When evaluating
f (z) for a general z j � z < z j+1, we interpolate between f (z j )
and f (z j+1). We then increase α and use the solution just
computed as initial solution. The process is repeated until
f (z) is numerically computed for all values of α. To solve
for h(z) numerically, we do the same except that we use the
corresponding f (z) computed above as initial solution in
h0(z) = f (z) for each α.

The iterative approach described above fails to converge
in simplicial complexes for large α and � = 1 (Appendix C
sheds some light on this difficulty when � = 1). Fortunately,
when � = 1, α∗ = α (see the last paragraph of the previous
section). Nevertheless, f (α/�) = ∑

s(
α
�

)sP(s) determines the
probability of absorption and f ′(1) = E [s], so it is useful to
compute f (z) even when � = 1. We present an alternative
method to compute f (z) [and h(z) = z f (z)] based on P(s).
Equation (B1) for � = 1 in Appendix B gives

P(s)[1 − f (α) + αs] =
∑
s1�c

P(s1)

(
s1

s − c

)
αs−c(1 − α)s1−s+c.

FIG. 6. (a) The difference between
∑

s αsP(s) and π plot-
ted as a function of π for c = 1 and α ∈ {0.7, 0.75, 0.8, 0.85}.
(b)

∑
s αsP(s) − π and NegP for α = 0.7.

By treating f (α) as a constant parameter π , we transform the
above into a linear system with smax − c + 1 equations for
some large integer smax, where f (z) is approximated as f (z) ≈∑smax

s=c zsP(s):

P(s)(1 − π + αs) =
smax∑
s1=c

P(s1)

(
s1

s − c

)
αs−c(1 − α)s1−s+c

for s ∈ {c, . . . , smax − 1},
smax∑
s=c

P(s) = 1.

We then search for a π that yields a solution in which π is ap-
proximately f (α) = ∑smax

s=c αsP(s). Therefore, π is chosen by
searching for π∗ = arg min |π − ∑smax

s=c αsP(s)|. The solution
is validated by making sure that NegP = ∑

s |P(s)|1P(s)<0 =
0. Figure 6 shows how π∗ is found.

Table I provides a comparison for the power γ between the
numerical computation and the experimental fit from simu-
lation. The iterative approach and the linear system can also
be generalized for nonconstant c. For more elaborate tables
showing α∗, E [s], and E [k] in simplicial complexes for vari-
ous values of α, c, and �, refer to [14].

B. Approximations for large �

Given 0 � α < 1, when � is large and 0 � z � 1,

f

(
1 − α

�
+ α

�
z

)
≈ f (1) + f ′(1)

α(z − 1)

�

= 1 + E [s]
α(z − 1)

�
.

TABLE I. The exponent γ of the degree distribution in simplicial
complex networks for α = 0.5 obtained in two ways: (Left) com-
puted from the formula 1

α∗ + 1 using f (z) and h(z) of the numerical
approach. (Right) as the linear fit of the 1 − CMF (k) (complement
of the cumulative distribution) from simulation data.

Computation Simulation

� = 1 � = 2 � = 4 vs � = 1 � = 2 � = 4

c = 1 3 2.835 2.799 c = 1 3.006 2.830 2.792
c = 2 3 2.976 2.984 c = 2 2.984 2.980 2.990
c = 4 3 3 3 c = 4 3.010 2.992 3.003
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Since lim�→∞(1 + x/�)� = ex, f �(1 − α
�

+ α
�
z) ≈ eαE [s](z−1),

and we have for hypergraphs

hhg(z) = z fhg(z) ≈ zg(z)eαE [s](z−1).

When c is constant, f (z) ≈ zceαE [s](z−1) and, therefore,

P(s) ≈ (αE [s])s−ce−αE [s]

(s − c)!
,

which is a “shifted” Poisson distribution, so we refer to
the approximations in this section as Poisson approxima-
tions. Intuitively, the size of the affiliation before the addition
of c nodes is a binomial random variable with probability
p = α/� and a number of trials n = s1 + · · · + s� (the sum
of sizes of � sampled affiliations), giving an approximate
Poisson with parameter λ = lim�→∞ pn = lim�→∞ α

�
(s1 +

· · · + s�) = αE [s].
For simplicial complexes, the situation is similar. When �

is large, the arguments for f (α/�) and f (αz/�) are close to 0.
For small z,

f (z) ≈ f (0) + f ′(0)z = z f ′(0) = zP(s = 1).

Therefore, � f (α/�) ≈ αP(s = 1) and � f ( α
�
z) ≈ αzP(s = 1).

Using Eq. (11) we get

fsc(z) ≈ g(z)eαE [s](z−1) − αzP(s = 1)

1 − αP(s = 1)
. (13)

This is interesting because it shows that as long as P(s =
1) = 0, i.e., there are no facets with singleton nodes, simpli-
cial complexes behave like hypergraphs at the limit when �

goes to infinity [and the probability of absorption f (α/�) =∑
s(a/�)sP(s) vanishes].
On the other hand, Q(s = 1) = 0 because facet sizes in a

meganode’s network must be greater than 1 (they all contain
that node). Therefore, when � is large, and using Eq. (12), we
can similarly derive

hsc(z) ≈ hhg(z) = z fhg(z).

We can now approximate α∗ and γ for large �:

α∗ = α
1 − �

α
hsc

(
α
�

)
1 − � fsc

(
α
�

) ≈ α
1 − 0

1 − αP(s = 1)
,

γ = 1

α∗ + 1 ≈ 1

α
+ 1 − P(s = 1).

It remains to approximate P(s = 1). Equation (13) for
fsc(z) above can be expanded as

fsc(z) =
∑
s�1

zsP(s) ≈
∑

c�1 zcPceαE [s](z−1) − αzP(s = 1)

1 − αP(s = 1)
.

Dividing by z on both sides and taking the limit as z goes to
zero, we get

P(s = 1) ≈ P1e−αE [s] − αP(s = 1)

1 − αP(s = 1)
.

FIG. 7. Average distance in a hypergraph network for (a) the
union and (b) the multiset variants of the node sampling process
plotted for α = 0.5, c = 1 and � = 1 . . . 35. Dashed lines show
logarithm and double-logarithm fits for the multiset variant. There
is an “anomaly” in the union variant at n ≈ 50–500 (or equivalently,
ln n ≈ 4–6) when � is large. This effect fades away with the growth
of the network when the number of nodes reaches n ≈ 105–106.

This quadratic equation for P(s = 1) has one solution greater
than 1, and another given by

P(s = 1) ≈ 1 + α −
√

(1 + α)2 − 4αe−αE [s]P1

2α
,

where E [s] can be approximated by its hypergraph coun-
terpart E [c]/(1 − α). For α = 0.5 and a constant c, this
approximation (for large �) gives γ = 2.7305 when c = 1,
and γ = 3 when c > 1, which represent the convergence of
γ in Table I if � continues to increase.

VIII. SOME EMPIRICAL PROPERTIES
OF THE NETWORKS

In this section, we discuss the average distance, the clus-
tering coefficient, and the assortativity of our generated
networks, thus highlighting some of their features in resem-
bling real-world networks.

A. Average distance

We use the standard definition of distance between two
nodes in the skeleton graph of the network. To compute all
pairwise distances, an exact solution can be found by per-
forming “breadth first search” from each node, which requires
n single-source shortest path computations. Instead, we used
the approximation algorithm described in [51], which requires
O(ε−2 ln n) such computations. The estimate of the average
distance is guaranteed to be within an ε relative error from the
real value with high probability. Practically, in a network with
n = 106 nodes, allowing an error ε = 0.1 (the actual error is
better in practice), the algorithm would require only in the
order of 1000 single-source shortest path computations.

Figure 7 shows the average distance in a hypergraph for
the union and multiset variants described in Sec. IV. The
union variant exhibits an “anomaly” with two regimes when
� is large: Small networks (n < 200) have uniform attachment
(which leads to a geometric degree distribution [5,14]), and
large networks (n > 200) have preferential attachment with a
power law in the tail of the degree distribution. A strikingly
similar feature has been observed in some networks, e.g.,
word-adjacency networks [50].
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FIG. 8. An example of a “cat” structure.

B. Clustering coefficient

Many real-world graph networks are characterized by a
nonzero global clustering coefficient gcc. For instance, in a
social context, a nonzero clustering coefficient implies that
if Alice knows Bob and Carol, then there is a chance Bob
and Carol know each other as well (informally, there is a
“triangle”). However, nonzero gcc generally does not occur
in most synthetic graph networks unless the network growth
algorithm includes an explicit triangle closure operation to
create triangles from 2-paths. Affiliation networks naturally
join nodes as groups, and so have a built-in mechanism for
forming these triangles in the skeleton graph.

To avoid this trivial behavior, we extend the definition
of gcc to specifically handle affiliation networks. We adopt
Opsahl’s definition [47]

gccOpsahl = number of closed 4-paths

number of 4-paths
, (14)

where a 4-path is defined as (u, f , v, g,w) with u �= v �= w ∈
V , f �= g ∈ F , u, v ∈ f , and v,w ∈ g. A 4-path is closed if
its end points u and w are included in a third affiliation h
that is distinct from f and g. Therefore, in a social network
setting, this extension does not simply compute the proportion
of a person’s acquaintances who know each other. Instead, it
requires that each pair in a closed 4-path be connected through
a different social group. For example, Alice and Bob are
siblings, Alice and Carol are classmates, and Bob and Carol
go to the same club.

Figure 9(a) illustrates gccOpsahl in hypergraphs and sim-
plicial complexes for c = 1, � = 1, and α � 0.5, showing
that it reaches approximately 0.05 when α = 0.4. The value
of gccOpsahl does not converge as quickly in networks with

FIG. 9. (a) Experimentally computed clustering coefficient and
two approximate models of cat structure formation for c = 1 and
� = 1. The relation i < j (i > j) indicates that fi was created before
(after) f j in the formation of a cat structure (Fig. 8). When α is
small, the two models provide a good approximation of the clustering
coefficient in hypergraphs and simplicial complexes, respectively.
(b) Experimental clustering coefficient for c = 1 and � = 2.

larger values of α, making it hard to experimentally study the
clustering coefficient in these networks.

We believe that the positive clustering coefficient is due
to a spatial closed 4-path formed by the structure in Fig. 8,
which we call a “cat structure.” A cat structure consists of
three affiliations that form a closed 4-path, where one of the
affiliations contains all three nodes of that path. Therefore,
a cat structure contains three affiliations fi, f j , and fk , and
three nodes u, v, and w, such that u, v ∈ fi, u, v,w ∈ f j ,
and v,w ∈ fk , making (u, fi, v, fk,w), (v, fk,w, f j, u), and
(w, f j, u, fi, v) all closed 4-paths (closed by f j , fi, and fk ,
respectively). Such a structure can be formed by adding the af-
filiations in one of two orders fi, f j, fk (thus i < j) or f j, fi, fk

(thus i > j). Cat structures can occur even when � = 1, which
does not conform to the intuitive notion of a triangle formed
by sampling nodes u and w from two different affiliations, and
joining them in one newly created affiliation h, which closes
some 4-path (u, f , v, g,w) ( f and g may or may not be among
the � sampled affiliations). This becomes rare as the network
grows in size: the no overlap assumption precludes f and g to
be both among the sampled affiliations (because they overlap
on v), and in general, the distance between u and w is expected
to be large (while the existence of v makes that distance at
most 2). Cat structures do no rely on such rare events and,
therefore, they become the primary way of creating closed
4-paths. However, the formation of a cat structure requires
affiliations to overlap on more than one node which is easier
to achieve when α/� is large.

In Fig. 9, two approximate models for gccOpsahl match
their experimental counterpart for hypergraphs and simplicial
complexes when c = 1, � = 1, and α is small.

C. Assortativity

Assortativity is the tendency of a network to form links
between similar nodes. The most direct and immediately
available property of the nodes is their degree. We consider
three definitions of assortativity, all motivated by the defini-
tion in a graph introduced by [49], which is based on the
Pearson correlation coefficient of the degrees of adjacent
nodes.

Let pi j be a joint probability over a subset of the ordered
pairs {(i, j) | i, j ∈ N}, where N = {1, 2, 3 . . .}. The Pearson
correlation coefficient is defined as

r = E [i j] − E [i]E [ j]√
(E [i2] − E [i]2)(E [ j2] − E [ j]2)

.

We consider the case when pi j is symmetric, i.e., pi j = p ji.
The above becomes

r = E [i j] − E [i]2

E [i2] − E [i]2
=

∑
(i, j) i j pi j − [∑

(i, j) ipi j
]2

∑
(i, j) i2 pi j − [ ∑

(i, j) ipi j
]2 . (15)

If we then define qi j = pi j + p ji = 2pi j when i �= j, and
qi j = pi j when i = j, then the above equation becomes

r =
∑

{i, j} i jqi j − [∑
{i, j}

i+ j
2 qi j

]2

∑
{i, j}

i2+ j2

2 qi j − [∑
{i, j}

i+ j
2 qi j

]2 , (16)

where the sums are over multisets (for instance, {i, i} is among
them). This has the same form as the assortativity defined
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in [49]. Therefore, to define an assortativity coefficient, we
describe how we map some random process to the set of or-
dered pairs of degrees (i, j), as long as the mapping produces
a symmetric joint probability pi j . For instance, to compute the
assortativity in a graph G = (V, E ), we can sample uniformly
(with probability 1

2|E | ) from the set

Sgraph =
⋃

u �= v

(u, v) ∈ E

{(u, v)},

and map (u, v) to the ordered pair of degrees (i, j) =
(d (u), d (v)). This corresponds to an experiment in which we
sample an edge (u, v) uniformly at random, then make the
pair of degrees be either (d (u), d (v)) or (d (v), d (u)) with
probability 1

2 . Equation (16) [and equivalently Eq. (15)] then
becomes identical to the definition in [49].

While we describe the assortativity coefficient in terms of
a sampling and mapping process, we do not actually perform
any sampling. Instead, we explicitly compute pi j by enumer-
ating all outcomes that map to (i, j) and use Eq. (15).

Simple neighbor (SN): Assortativity is defined by Eq. (15)
when sampling (u, v) uniformly at random from the set

SSN =
⋃

u �= v

∃ f ∈ F : (u, v) ∈ F

{(u, v)},

where (u, v) is then mapped to (i, j) = (d (u), d (v)). This
corresponds to an experiment in which each connected
(ordered) pair of nodes has the same probability of being
chosen; therefore, we essentially get the assortativity of the
skeleton graph. For a simple graph, SN is equivalent to [49],
but the two will differ on multigraphs.

Multineighbor (MN): Assortativity is defined by Eq. (15)
when sampling (u, v, f ) uniformly from the set

SMN =
⋃
f ∈F

⋃
u �= v

(u, v) ∈ f

{(u, v, f )},

so each (u, v, f ) is sampled with probability

1∑
f ∈F | f |(| f | − 1)

and we map (u, v, f ) to a pair of degrees (i, j) = (d (u), d (v)).
This corresponds to an experiment in which we first sample
(u, v, f ) uniformly at random, where (u, v) ∈ f , f ∈ F , and
u �= v, and then obtain (d (u), d (v)). Therefore, an (ordered)
pair of nodes is chosen with probability proportional to the
number of affiliations they both belong to. When α is small
and � is large, affiliations are unlikely to overlap on more than
one node; therefore, MN becomes effectively the same as SN
(see Fig. 10).

Weighted multineighbor (WgtMN): Assortativity is defined
by Eq. (15) when sampling from the set

SWgtMN =
⋃
f ∈F

⋃
u �= v

(u, v) ∈ f

{(u, v, f )},

FIG. 10. Multineighbor (MN), weighted multineighbor
(WgtMN), and simple neighbor (SN) assortativity coefficients in
simplicial complexes plotted as the average of multiple runs for
(a) c = 1, � = 2 and (b) c = 1, � = 8. The thin lines show the
standard error of the mean.

where (u, v, f ) has probability

1

|F�2| · 1

| f |(| f | − 1)
,

and F�2 is the set of all affiliations of size at least two. As
before, we map (u, v, f ) to (i, j) = (d (u), d (v)). This corre-
sponds to an experiment in which we sample an affiliation
f (| f | � 2) uniformly at random, then choose an ordered pair
of nodes (u, v) ∈ f with probability 1

| f |(| f |−1) .
The main difference between MN and WgtMN is that the

former assigns equal weight to each (u, v, f ), while the latter
assigns equal weight to each affiliation f . As a result, when
using WgtMN, small affiliations, such as edges and triangles,
contribute equally to the assortativity coefficient as the large
affiliations.

Figure 10 shows the assortativity coefficient when c =
1, with a transition from positive to negative depending on
which definition of assortativity we adopt. In general, a larger
c reduces the difference between MN and WgtMN because it
makes all affiliations relatively large. Both MN and WgtMN
increase with c until they stabilize since a larger c means more
nodes that are similar in degree are added in each iteration.
For instance, when c � 4 and α ≈ 0.3, MN and WgtMN
coefficients are around 0.12 (see Fig. 12). A larger �, on the
other hand, leads to lower MN and WgtMN coefficients since
the sampled nodes that make up new affiliations will come
from � (many) existing ones and, therefore, are more likely to
be different in degree.

FIG. 11. Assortativity coefficients of real networks from Table II
plotted as (a) SN vs MN and (b) WgtMN vs MN. Hypergraphs
(red squares) and the corresponding simplicial complexes (blue solid
triangles) are connected by gray lines.
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FIG. 12. Assortativity coefficients of generated networks for
α ∈ {0.1, 0.3, 0.5, 0.7}, c ∈ {1, 2, 8}, � ∈ {1, 8}, and number of
nodes n = 2 × 105, plotted similarly to Fig. 11 as (a) SN vs MN
and (b) WgtMN vs MN. Each simplicial complex is obtained from
the corresponding hypergraph by subsuming hyperedges that are
subsets of others (instead of generating a completely new network).
Some data points are labeled with the triplet (α, c, �). Note that
hypergraph networks have SN ≈ MN ≈ WgtMM ≈ −0.4 when α =
0.1 and c = 1 and are outside the plotted area, while the correspond-
ing simplicial complexes have assortativity close to 0. On the other
hand, maximum assortativity is achieved when α ≈ 0.3 and c � 1.

D. Assortativity and clustering coefficient in real networks

Table II shows the assortativity and the clustering coeffi-
cient for several networks from the KONECT collection [52]
obtained in the following way: Bipartite graphs are converted

to their affiliation network equivalent, where edge (u, v) in
the bipartite graph means that node u belongs affiliation v.
Directed and undirected graphs are converted to their neigh-
borhood affiliation network, where all neighbors of node
u in the graph (not including u itself) make one affiliation.
Each of the obtained affiliation networks is then interpreted
as a hypergraph and as a simplicial complex. For simplicity,
we did not check for duplicate hyperedges in the resulting
hypergraphs.

In addition to Table II, Figs. 11 and 12 provide a com-
parison among the assortativity of the KONECT networks in
Table II and that of our generated networks for several values
of α, c, and �. Finally, Table III summarizes the general effect
of α, c, and � on different properties.

IX. GUIDELINES FOR GENERATING NETWORKS WITH
GIVEN PROPERTIES

Although our model was not designed for network replica-
tion, its parameters α, �, and Pc are flexible enough to generate
networks with some desired properties. In general, α controls
the exponent γ of the power law in P(k) ∝ k−γ , Pc determines
the affiliation size distribution P(s), and � can fine tune P(k)
and P(s) [since it affects P(s) in hypergraphs and both P(k)
and P(s) in simplicial complexes].

TABLE II. Assortativity MN, WgtMN, and SN, and clustering coefficient gccOpsahl computed for several real networks from the KONECT
collection [52]. Missing gccOpsahl values are due to avoiding the time complexity in larger networks.

Network Connection nature Transformation SN MN WgtMN gccOpsahl

Corporate leadership [53,54] Company Bip G → HG −0.0437 −0.0483 −0.2142 0.6720
Bip G → SC −0.0392 0.0046 0.1416 0.5473

Amazon products ratings [55,56] Product rating Bip G → HG −0.0027 0.0048 0.0823 0.0011
Bip G → SC −0.0024 0.0041 0.0018 0.0010

MovieLens movie ratings [57,58] Movie rating Bip G → HG −0.0108 0.0940 0.0963
Bip G → SC −0.0114 0.0995 0.0933

FilmTrust movie ratings [59,60] Movie rating Bip G → HG −0.0475 0.0613 0.1775
Bip G → SC −0.0745 0.0870 0.0901

Crime [61] Committed crime Bip G → HG 0.0000 0.0336 −0.1103 0.0318
Bip G → SC −0.0386 −0.0024 −0.1658 0.0270

arXiv cond-mat [62,63] Coauth/Paper Bip G → HG 0.0988 0.1831 0.1406 0.2769
Bip G → SC 0.0695 0.1468 0.1080 0.1661

DBpedia writers [64,65] Coauth/Work Bip G → HG 0.3002 0.3585 0.3325 0.1310
Bip G → SC 0.3078 0.3482 0.2994 0.0728

DBpedia producers [65,66] Coauth/Work Bip G → HG 0.1129 0.2300 0.3064 0.3037
Bip G → SC 0.1397 0.2702 0.2529 0.2888

US airports [67,68] Flight Dir G → Nbhd HG −0.1724 0.1189 0.4244
Dir G → Nbhd SC −0.1898 0.1249 0.2981

Enron emails [69,70] Email sent Dir G → Nbhd HG −0.0329 0.1014 0.2085
Dir G → Nbhd SC −0.0365 0.1303 0.1446

arXiv high energy physics [71,72] Citation Dir G → Nbhd HG −0.0413 0.0739 0.1620
Dir G → Nbhd SC −0.0396 0.0754 0.1287

Zachary karate club [73,74] Personal ties Un G → Nbhd HG −0.0076 0.1693 0.1327 0.4534
Un G → Nbhd SC −0.0274 0.0988 0.0680 0.4054

Internet topology [75,76] Connection Un G → Nbhd HG −0.0243 0.1385 0.3024
Un G → Nbhd SC −0.0313 0.1865 0.1505

C. elegans metabolism [77,78] Protein interaction Un G → Nbhd HG −0.0399 0.0693 −0.1085 0.5879
Un G → Nbhd SC −0.0439 0.0762 −0.0075 0.5584

Yeast metabolism [79,80] Protein interaction Un G → Nbhd HG 0.1256 0.1618 0.1079 0.0839
Un G → Nbhd SC 0.1261 0.1662 0.1223 0.0659
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FIG. 13. Replication of the PNAS coauthorship network from
Fig. 1. The green circles show the distributions of a generated
hypergraph network with α = 0.4, c ∼ Geom(0.26) (with support
N = {1, 2, 3, . . .}), � = 3, and a number of nodes n = 180 000. (The
replicated distributions are superimposed on the original ones.)

A. Tail of the power law distribution P(k)

Given a degree distribution P∗(k), the power exponent of
the tail γ ∗ can be estimated, for instance, as described in
[81–83]. Alternatively, γ ∗ itself could be available in the first
place. To get the same power law tail exponent in a gener-
ated hypergraph network, one could then set α = 1

γ ∗−1 [see
Eq. (4)]. For simplicial complexes, this formula is only a good
approximation [see Eq. (6)], but still provides a starting point
to search for a better α, especially if � is large and Pc favors
large c, so that absorption is not very likely and the simplicial
complex behaves like a hypergraph.

Whether the network is hypergraph or a simplicial com-
plex, matching the exponent of the tail does not guarantee that
P(k) replicates P∗(k) entirely; nevertheless, the focus here is
on the tail. Once this is done, � can be chosen to fine tune
the result, although its effect might be small. Figure 13 shows
that we can produce the degree distribution in the hypergraph
network of Fig. 1(b) with α = 0.4 and � = 3.

B. Affiliation size distribution P(s)

Given an affiliation size distribution P∗(s), one can attempt
to mimic it by a careful choice of Pc. For instance, if P∗(s)
has a mean μ, one can use c = max(1, [s∗ − αμ]) where
s∗ ∼ P∗(s) and [. . . ] denotes the closest integer function. This
means that Pc = ∑

s| max(1,[s−αμ])=c P∗(s). Appendix D consid-
ers a theoretical treatment of this choice with some examples,
but to explain it intuitively, given s∗, c is chosen such that
c ∈ N = {1, 2, 3, . . .} and when combined with the mean of
sampled nodes in the newly created affiliation (approximately
αμ as described in Appendix D), we get an expected total of
s = c + αμ ≈ (s∗ − αμ) + αμ = s∗ new nodes. Again, this
approach can be tried for few small values of � to fine tune the
result.

When P∗(s) is not available, one could possibly deter-
mine Pc by relying on other properties of the network;
for instance, the degree distribution in the skeleton graph
[e.g., Fig. 1(a)], which indirectly captures some information
about affiliation sizes (larger affiliation sizes lead to larger
degrees in the skeleton graph). An initial manual search
for Pc to obtain Fig. 1(a) revealed that P1

P2
≈ P2

P3
≈ · · · . We

then searched among geometric distributions and found that
c ∼ Geom(0.26) will reasonably match the degree distribu-
tion in the skeleton graph. Figure 13 shows that we can

TABLE III. The general trend for the effects of α, c, and � on dif-
ferent properties of the generated network. This is approximate and
is not intended to provide an exact behavior; for instance, properties
may stop changing while some parameters continue to increase, and
gccOpsahl was only computed for α � 0.5.

α c �

Average distance ↘ ↘
Clustering coefficient gccOpsahl ↗ ↘
Assortativity coefficients MN and WgtMN ↗ ↘

produce the network given in Fig. 1 with α = 0.4, c ∼
Geom(0.26), and � = 3.

C. Other network properties

As described in Sec. VIII, α, c, and � can produce different
results in terms of average distances, the clustering coefficient,
and assortativity. Choices of these parameters can be made
to obtain the desired properties (although not necessarily si-
multaneously), guided by Figs. 7, 9, and 10. Larger values
of α and � lead to better connectivity and, therefore, shorter
distances. The clustering coefficient is higher for a larger
α (but only tested for α � 0.5) and a small �. Larger values of
c (and smaller values of � in case of MN and WgtMN) lead to
higher assortativity as mentioned in Sec. VIII and illustrated
in Fig. 12.

X. CONCLUSION

Real-world networks that do not appear to be scale free
when given as graphs can still exhibit scale-free properties
if seen as affiliation networks based on hypergraphs or sim-
plicial complexes. This suggests that the inherent pairwise
relations among the nodes in a graph may be insufficient
in capturing the growth of these networks, which prompts
the search for new models of network growth targeted at
affiliation networks. To that end, we propose an extension to
the preferential attachment mechanism to generate affiliation
networks with a power law in the tail of the distribution of
node degrees. Our model uses implicit preferential attachment
and introduces the concept of locality, where the neighbors
of newly added nodes are also neighbors. In addition, and by
considering simplicial complexes as an underlying structure
for the affiliation network, our model allows the subsump-
tion of existing affiliations when a newly created affiliation
becomes their superset. We present a theoretical analysis of
the node degree and affiliation size distributions P(k) and P(s)
respectively. While the replication of networks is not the main
goal of our generation algorithm, we provide experimental
evidence that the algorithm produces a distribution tail of the
form P(k) ∝ k−γ , where γ > 2 can be chosen, and that it
has enough flexibility to make P(s) close enough to a given
distribution. We also include an experimental study of average
distance, clustering coefficient, and assortativity. Overall, we
show that the model is rich enough to provide new ways of
controlling network growth in practice, while still providing
interesting theory. Therefore, our model can be used as a
basis for explaining the formation of real-world networks, as
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well as for creating new synthetic networks with some desired
properties.

The source code and documentation for the algorithm de-
scribed in Sec. IV can be found at the GitHub repository [84].

APPENDIX A: POWER LAW IN SIMPLICIAL COMPLEXES

The case of simplicial complexes requires two adjustments
for the master equation. First, the number of facets mt is no
longer deterministically equal to t since absorption may occur.
We therefore condition on mt . Second, each node of degree k
now gains a degree with probability

P+(k)

[
1 −

∑
s

(
α

�

)s−1

P(s|k)

]
,

where P+(k) ≈ αk/mt [from Eq. (1) in Sec. IV]. The addi-
tional factor is the probability that the sampled facet of size
s is not absorbed, so aside from the given node itself, it is
the probability that not all of the remaining s − 1 nodes get
sampled. The probability P(s|k) is that of a facet of size s
given it contains a node of degree k since one cannot assume
independence between the size of a facet and the degrees of
its nodes; for instance, when c is constant, a facet of size c can
only have nodes of degree one.

The no overlap assumption means that a node cannot lose
a degree since at most one sampled facet is absorbed. In ad-
dition, with the no accidental absorption assumption, we need
only consider absorption of the sampled facets. The master
equation for large k becomes (no E [c]1k=1 term)

E [nt+1,k|nt , mt ] = E [nt,k|nt , mt ]

− E [nt,k|nt , mt ]
αk

mt

[
1 − �

α
h

(
α

�

)]

+ E [nt,k−1|nt , mt ]
α(k − 1)

mt

[
1− �

α
h

(
α

�

)]
,

where h(z) = ∑
s Q(s)zs is the generating function for Q(s) =

limk→∞ P(s|k), which represents the facet size distribution of
a “meganode” (a node with large degree k).

Using similar ideas to the case of hypergraphs, we have at
the limit E [nt,k|nt , mt ] = nt P(k) and E [nt+1,k|nt , mt ] = (nt +
E [c])P(k). We then rewrite the above as

E [c]P(k) = − lim
t→∞ nt P(k)

αk

mt

[
1 − �

α
h

(
α

�

)]

+ lim
t→∞ nt P(k − 1)

α(k − 1)

mt

[
1 − �

α
h

(
α

�

)]
.

Since in every iteration we add one facet, and each of the
� sampled facets can be absorbed,

E [mt ] = (t − τ )

[
1 − �

∑
s

(
α

�

)s

P(s)

]
+ O(τ )

= (t − τ )

[
1 − � f

(
α

�

)]
+ O(τ ),

where τ is large enough for P(s) to converge, and
f (z) = ∑

s zsP(s) is the generating function for P(s). We

can therefore replace limt→∞ nt/mt by E [c]/[1 − � f (α/�)] to
obtain

P(k) = [−P(k)k + P(k − 1)(k − 1)]α
1 − �

α
h
(

α
�

)
1 − � f

(
α
�

)
= [−P(k)k + P(k − 1)(k − 1)]α∗,

which satisfies P(k) ∝ k−(1/α∗+1) for large k.

APPENDIX B: HYPEREDGE AND FACET
SIZE DISTRIBUTIONS

With mt representing the number of affiliations at iteration
t , let mt,s denote, among those, the number of affiliations of
size s. We study the size distribution P(s) in hypergraphs and
simplicial complexes by deriving the generating function for
P(s) from the expression of E [mt,s]. As before, we use the idea
that Pt (s|mt ) in the limit for large t is just P(s). Then E [mt,s] =
E [E [mt,s|mt ] = E [mt Pt (s|mt )] = E [mt P(s)] = E [mt ]P(s).

1. Hypergraph network

Consider a constant c, and assume that the hyperedge size
distribution converged to a stationary P(s) after τ iterations.
For t � τ ,

E [mt,s] = O(τ ) + (t − τ )
∑

s1,...,s�

P(s1) . . . P(s�)

×
(

α

�

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)
,

where s1, . . . , s� represent the sizes of the sampled hyper-
edges, and the probability of creating a hyperedge of size s
is given by the binomial probability of selecting s − c nodes
from a total of

∑
si nodes (given the no overlap condition).

Using E [mt,s] = E [mt ]P(s), mt = t , and finally dividing
by t as t → ∞, we obtain

P(s) =
∑

s1,...,s�

P(s1) . . . P(s�)

×
(

α

�

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)
.

Multiplying both sides of the equation by zs and summing
over s, we find the generating function f (z) = ∑

s zsP(s):

f (z) = zc
∑

s1,...,s�

P(s1) . . . P(s�)

×
∑

s

(
α

�
z

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)
.

By the binomial theorem,

f (z) = zc
∑

s1,...,s�

P(s1) . . . P(s�)

(
1 − α

�
+ α

�
z

)∑
si

.

The sum on the right hand side can be expressed as the product∏�
i=1

∑
si

(1 − α/� + αz/�)si P(si ); thus,

f (z) = zc f �

(
1 − α

�
+ α

�
z

)
.
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To generalize for a nonconstant c, and since c is sam-
pled from a fixed distribution Pc in each iteration, P(s) will
change to

P(s) =
∑

c

Pc

∑
s1,...,s�

P(s1) . . . P(s�)

×
(

α

�

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)
,

which, using the same strategy, will yield

f (z) =
∑

c

Pczc f �

(
1 − α

�
+ α

�
z

)
= g(z) f �

(
1 − α

�
+ α

�
z

)
,

where g(z) is the generating function
∑

c zcPc.

2. Simplicial complex network

For simplicial complexes, we have to account in E [mt,s] for
the expected number of facets of size s that are absorbed in
each iteration, which is given by �P(s)(α/�)s since only sam-
pled facets can be absorbed given the no accidental absorption
condition

E [mt,s] = O(τ ) + (t − τ )
∑

s1,...,s�

P(s1) . . . P(s�)

×
(

α

�

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)

− (t − τ )�P(s)

(
α

�

)s

.

Using the exact same strategy above, and the fact that
E [mt ] = (t − τ )[1 − � f (α/�)] + O(τ ), we obtain for a con-
stant c

P(s)

[
1 − � f

(
α

�

)
+ �

(
α

�

)s]

=
∑

s1,...,s�

P(s1) . . . P(s�)

(
α

�

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)
,

(B1)

which then yields

f (z) = g(z) f �
(
1 − α

�
+ α

�
z
) − � f

(
α
�
z
)

1 − � f
(

α
�

) .

3. Meganetwork (hypergraphs and simplicial complexes)

A meganode v is a node with a large degree, and the
meganode network of v is the set of affiliations containing
v (the notion of ego network). As explained in Sec. V, we as-
sume that the affiliation size distribution in a meganetwork is
Q(s) = limk→∞ P(s|k). We will find the generating function
h(z) = ∑

s zsQ(s).
For a given meganode v, we now let t count only iterations

in which at least one of v’s affiliations is among the � sampled
ones. In addition, and by the no overlap condition, exactly
one affiliation is sampled from v’s meganetwork in each of
these “effective” iterations. Let Mt and Mt,s be the expected
number of affiliations, and those of size s, respectively, in the
meganode network at iteration t .

In computing E [Mt,s], the changes from the previous sec-
tion are as follows [ignoring O(τ ) terms]:

(i) The expression

∑
s1,...,s�

P(s1) . . . P(s�)

(
α

�

)s−c(
1 − α

�

)∑
si−s+c(∑

si

s − c

)

is replaced by∑
s1

Q(s1)
∑

s2,...,s�

P(s2) . . . P(s�)

× α

�

(
α

�

)s−c−1(
1 − α

�

)∑
si−s+c(∑

si − 1

s − c − 1

)
.

(ii) For hypergraphs,

E [Mt ] = α

�
t .

(iii) For simplicial complexes,

E [Mt ] = t

[
α

�
−

∑
s

(
α

�

)s

Q(s)

]
= α

�
t

[
1 − �

α
h

(
α

�

)]
.

(iv) For simplicial complexes, the expected number of
facets of size s absorbed in the meganetwork in each iteration
is (the probability that the one sampled facet has size s and is
absorbed)

Q(s)

(
α

�

)s

= α

�
Q(s)

(
α

�

)s−1

.

Repeating the same work yields for the hypergraph
meganetworks

h(z) = zg(z)

1 − α
�

+ α
�
z

h

(
1 − α

�
+ α

�
z

)
f �−1

(
1 − α

�
+ α

�
z

)
,

and for the simplicial complex meganetworks[
1 − �

α
h

(
α

�

)]
h(z) + �

α
h

(
α

�
z

)

= zg(z)

1 − α
�

+ α
�
z

h

(
1 − α

�
+ α

�
z

)
f �−1(1 − α

�
+ α

�
z

)
.

APPENDIX C: THE ITERATIVE DIFFICULTY FOR f (z) IN
SIMPLICIAL COMPLEXES WHEN � = 1

Recall the generating function for the facet size distribution
in simplicial complexes given by Eq. (11) when c is constant
[g(z) = zc]:

f (z) = zc f �
(
1 − α

�
+ α

�
z
) − � f

(
α
�
z
)

1 − � f
(

α
�

) .

If we start with f (z) = zq for q � c � 1, then iterating once
gives

f̂ (z) = zc
(
1 − α

�
+ α

�
z
)q� − �

(
α
�
z
)q

1 − �
(

α
�

)q .

We need f̂ (z) � 0. One can prove that when � > 1, there
exists q > c such that for every 0 � α < 1, f̂ (z) � 0 for 0 �
z � 1 (the proof is not included here). However, when � = 1,
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FIG. 14. Mimicking of uniform distributions (a) P∗(s) = U[1,20],
(b) P∗(s) = U[11,30] in a simplicial complex with � = 2 and number
of nodes n = 106.

no such q exists (a large α becomes problematic as shown
below). This reflects one aspect of the inherent difficulty of
the iterative approach when � = 1.

Since the denominator is always positive when 0 � α < 1,
� � 1, and q � 1, the requirement for f̂ (z) � 0 is equivalent
to the numerator being non-negative. This is expressed below
in logarithm space for � = 1:

q[ln(1 − α + αz) − ln(αz)] � ln
1

zc
.

For every fixed q and z, there is a large enough α < 1 that
makes the left hand side of the inequality arbitrarily close to
0. Since ln 1

zc is not affected by α, no fixed value for q will
satisfy the inequality for every α.

APPENDIX D: TARGETED AFFILIATION
SIZE DISTRIBUTION

Given a target affiliation size distribution P∗(s) with mean
μ, we describe how to make a best effort to approximately
mimic it through the choice of c (but not necessarily achieve
it theoretically): We first sample s∗ from P∗(s), and then set
c = max(1, [s∗ − αμ]), where [. . . ] denotes the closest inte-
ger function.

Assume that P∗(s∗ � αμ) is small; for instance, if s∗
is subexponential, then P∗(s∗ � αμ) = P∗(s∗ − μ � −(1 −
α)μ) � e−�((1−α)μ) when (1 − α)μ � 1 and is, therefore,
small. Then,

E [c] ≈
∑

s∗>αμ

(s∗ − αμ)P∗(s∗) +
∑

s∗�αμ

1 · P∗(s∗)

=
∑

s∗
(s∗ − αμ)P∗(s∗) +

∑
s∗�αμ

(αμ − s∗ + 1)P∗(s∗)

≈ (1 − α)μ,

FIG. 15. Mimicking of distributions generated by α = 0.75, c =
2, and � = 8 in a simplicial complex with � = 2 and number of
nodes n = 106: (a) the generated distribution, (b) the same generated
distribution shifted by 10.

which follows from that the last sum is upper bounded by
αμP∗(s∗ � αμ) � αμe−�((1−α)μ). Therefore, Eq. (9) for a
hypergraph gives E [s] = E [c]/(1 − α) ≈ μ.

But what about P(s)? For simplicity, we consider the case
of large �.

Since � is large, the size of an affiliation prior to the addi-
tion of c nodes is a Poisson random variable with parameter
αE [s] ≈ αμ (Sec. VII). Therefore, the size of a newly created
affiliation is given by the random variable

s = c + Pois(αμ) ≈ s∗ − αμ + Pois(αμ).

If s∗ has high concentration around μ and | − αμ +
Pois(αμ)| � μ, then s is close to s∗. Indeed, for any small
ε, a subexponential s∗ is highly concentrated and has a small
probability P∗(|s∗ − μ| � εμ) � 2e−�(εμ) when εμ � 1.

If X ∼ Pois(αμ), then a standard Chernoff bound gives for
0 � ε � α:

P(|X − αμ| � εμ) = P(|X − αμ| � δαμ) � 1 − 2e�(δ2αμ),

where δ = ε/α � 1. This makes | − αμ + Pois(αμ)| � μ

with high probability when ε is small and δ2αμ = ε2

μ/α � 1.
The above analysis suggests that one could reasonably

mimic P∗(s) using c = max(1, [s∗ − αμ]) where s∗ ∼ P∗(s)
has high concentration around μ = E [s∗] if μ is large or if
α is small. Experimentally, Fig. 14 shows the mimicking of
uniform distributions, and Fig. 15 shows the mimicking of
distributions generated by the algorithm itself for different
parameters.
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[38] S. Maletić and M. Rajković, Consensus formation on a sim-
plicial complex of opinions, Phys. A (Amsterdam) 397, 111
(2014).

[39] E. N. Ciftcioglu, R. Ramanathan, and P. Basu, Generative mod-
els for global collaboration relationships, Sci. Rep. 7, 11160
(2017).

[40] B. Guo, H. He, Z. Yu, D. Zhang, and X. Zhou, Groupme: Sup-
porting group formation with mobile sensing and social graph
mining, in International Conference on Mobile and Ubiqui-
tous Systems: Computing, Networking, and Services (Springer,
Berlin, 2012), pp. 200–211.

[41] D. MacLean, S. Hangal, S. K. Teh, M. S. Lam, and J. Heer,
Groups without tears: mining social topologies from email, in
Proceedings of the 16th International Conference on Intelligent
User Interfaces (ACM, New York, 2011), pp. 83–92.

[42] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, Achieving
scalability and expressiveness in an internet-scale event notifi-
cation service, in Proceedings of the nineteenth annual ACM
symposium on Principles of Distributed Computing (ACM,
New York, 2000), pp. 219–227.

[43] P. Triantafillou and A. Economides, Subscription summariza-
tion: A new paradigm for efficient publish/subscribe systems,
in Proceedings of 24th International Conference on Distributed
Computing Systems, 2004 (IEEE, Piscataway, NJ, 2004),
pp. 562–571.

[44] Z. Wu, G. Menichetti, C. Rahmede, and G. Bianconi, Emergent
complex network geometry, Sci. Rep. 5, 10073 (2015).

[45] O. T. Courtney and G. Bianconi, Dense power-law networks
and simplicial complexes, Phys. Rev. E 97, 052303 (2018).

[46] L. Hébert-Dufresne, A. Allard, V. Marceau, P.-A. Noël, and L. J.
Dubé, Structural preferential attachment: Stochastic process for

014310-15

https://doi.org/10.1103/PhysRevLett.85.4633
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.5486/PMD.1959.6.3-4.12
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1140/epjds/s13688-018-0134-z
https://snap.stanford.edu/data/ego-Facebook.html
https://doi.org/10.1016/0378-8733(82)90018-1
https://doi.org/10.1146/annurev.soc.22.1.271
https://doi.org/10.1086/231170
https://doi.org/10.18637/jss.v069.c02
https://doi.org/10.1511/2000.29.332
https://doi.org/10.1016/j.jtbi.2017.11.003
http://arxiv.org/abs/arXiv:1804.04428
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.1007/s11276-012-0522-4
https://doi.org/10.1177/0278364906072252
https://www.ams.org/notices/200701/fea-ghrist.pdf
https://doi.org/10.1080/15710880500478346
https://doi.org/10.1155/2013/815035
http://arxiv.org/abs/arXiv:1403.5346
https://doi.org/10.1088/1742-5468/ab5367
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1016/j.physa.2013.12.001
https://doi.org/10.1038/s41598-017-10951-5
https://doi.org/10.1038/srep10073
https://doi.org/10.1103/PhysRevE.97.052303


ALEXEY NIKOLAEV AND SAAD MNEIMNEH PHYSICAL REVIEW E 108, 014310 (2023)

the growth of scale-free, modular, and self-similar systems,
Phys. Rev. E 85, 026108 (2012).

[47] T. Opsahl, Triadic closure in two-mode networks: Redefining
the global and local clustering coefficients, Social Networks 35,
159 (2013).

[48] E. Estrada and J. A. Rodríguez-Velázquez, Subgraph cen-
trality and clustering in complex hyper-networks, Phys. A
(Amsterdam) 364, 581 (2006).

[49] M. E. J. Newman, Assortative Mixing in Networks, Phys. Rev.
Lett. 89, 208701 (2002).
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