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Statistical mechanics of continual learning: Variational principle and mean-field potential
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An obstacle to artificial general intelligence is set by continual learning of multiple tasks of a different
nature. Recently, various heuristic tricks, both from machine learning and from neuroscience angles, were
proposed, but they lack a unified theory foundation. Here, we focus on continual learning in single-layered
and multilayered neural networks of binary weights. A variational Bayesian learning setting is thus proposed
in which the neural networks are trained in a field-space, rather than a gradient-ill-defined discrete-weight
space, and furthermore, weight uncertainty is naturally incorporated, and it modulates synaptic resources among
tasks. From a physics perspective, we translate variational continual learning into a Franz-Parisi thermodynamic
potential framework, where previous task knowledge serves as a prior probability and a reference as well. We thus
interpret the continual learning of the binary perceptron in a teacher-student setting as a Franz-Parisi potential
computation. The learning performance can then be analytically studied with mean-field order parameters,
whose predictions coincide with numerical experiments using stochastic gradient descent methods. Based on
the variational principle and Gaussian field approximation of internal preactivations in hidden layers, we also
derive the learning algorithm considering weight uncertainty, which solves the continual learning with binary
weights using multilayered neural networks, and performs better than the currently available metaplasticity
algorithm in which binary synapses bear hidden continuous states and the synaptic plasticity is modulated
by a heuristic regularization function. Our proposed principled frameworks also connect to elastic weight
consolidation, weight-uncertainty modulated learning, and neuroscience-inspired metaplasticity, providing a
theoretically grounded method for real-world multitask learning with deep networks.
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I. INTRODUCTION

The environment faced by an intelligent agent is commonly
highly structured, and moreover, multiple tasks encoding this
structure occur in sequence. Therefore, it is important for the
agent to learn the continually evolving structures embedded
in sequential tasks, i.e., transfer the knowledge gained from
previous experiences to the learning of a current novel or
unfamiliar task. However, during this continual learning, it
is well-known that the knowledge of the previous task may
be erased after learning a new task (so-called catastrophic
forgetting [1,2]). Uncovering neural mechanisms underlying
successful continual learning, especially in the natural world,
presents a challenge in current artificial intelligence (AI) and
even neuroscience research. Interesting works have recently
emerged in this regard on biological neuronal networks [3–5],
and the neuroscience research provides in turn insights for
improving the performance of continual learning in artificial
neural networks [6–8].

To avoid catastrophic forgetting, the machine-learning
community has also proposed many heuristic strategies. For
example, the elastic weight consolidation method introduces
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the Fisher information matrix to measure weight importance
in consecutive task learning [9], which is further improved
by tracking the individual weight contribution over the entire
dynamics of training loss [10]. An attention mask can also
be learned to alleviate catastrophic forgetting [11]. Another
important method is using the Bayesian approach [12]. This
shows that synaptic uncertainty plays a significant role in
taking the learning tradeoff between two consecutive tasks
[13–16]. We remark that these heuristic strategies have diverse
design principles, but from a statistical physics perspective
they can be put under a unified framework of variational
mean-field theory. Although recent theoretical works focused
on phase transitions in transfer learning from source task to
target task [17] and on-line learning dynamics of a teacher-
student setup [18–20], these works did not take into account
weight uncertainty, which is an essential factor in learning
neural networks [21], including more efficient and robust
binary-weight networks. In addition, a recent study pointed
out that the concept of metaplasticity from brain science plays
a key role in the continual learning of binary-weight neural
networks [8]. This concept highlights that the binary synapse
bears a hidden continuous state, and the synaptic plasticity is
modulated by a heuristic regularization function. Our theoret-
ical framework demonstrates that a variational principle can
be constructed to explain the role of synaptic uncertainty, and
moreover, the knowledge-transfer between tasks can actually
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be captured by a thermodynamic potential [22], from which
the learning performance can be predicted.

In this work, we not only carry out a thorough theoreti-
cal analysis of a toy teacher-student learning setting, where
both tasks of a certain level of similarity are learned in se-
quence, but we also apply the same principle to deep continual
learning of structured data sets, which demonstrates the ef-
fectiveness of the variational mean-field principle, especially
in the binary-weight neural networks where only metaplas-
ticity was previously proposed. Overall, our theory bridges
statistical physics, especially the concept of the Franz-Parisi
potential, originally studied in mean-field spin-glass models
[23], to theoretical underpinnings of the challenging contin-
ual learning. This connection may prove fruitful in future
research.

II. CONTINUAL LEARNING
WITH A BINARY PERCEPTRON

The binary perceptron offers an ideal candidate for un-
derstanding nonconvex learning, as a theoretical analysis is
possible by using statistical physics methods [24]. Here, we
will use a teacher-student setting to perform the theoretical
analysis of variational continual learning, in which the ground
truth network is quenched before learning. In this section of
the toy model analysis, we use ξ and W to indicate the stu-
dent’s and teacher’s weights, respectively. In the next section
of training deep networks (no ground truth in this case), we
use w to indicate the weights to learn.

A. Learning setting

The standard perceptron is a single-layered network with
N binary input nodes, xi = ±1 (i = 1, 2, . . . , N ), and a single
binary output node, y = ±1, which is connected by N binary
weights ξi = ±1 (i = 1, 2, . . . , N ). Given an input x, the out-
put is specified by y = sgn( 1√

N

∑
i xiξi ), where sgn(x) is the

sign function. A perceptron can be used to classify inputs
according to their respective labels (±1 here). A statistical
mechanics analysis revealed that the network can store up to
a critical threshold of pattern density (or sample complexity)
α � 0.83 [25], where α = M

N is the random-pattern (as inputs)
density, and M is the number of random patterns. Instead
of this classic random pattern storage setting, we consider a
learning task of random patterns with respective labels gen-
erated by teacher networks (corresponding to different tasks).
This is called the teacher-student setting [26,27], where the
student network learns to infer the teachers’ rule embedded in
the supplied data.

With an increasing number of supplied learning examples,
the size of the candidate-solution space of weights shrinks,
and thus the generalization error on fresh data examples de-
creases. The statistical mechanics analysis also predicted that
at α � 1.245, a first-order phase transition to perfect general-
ization occurs [26,27], which is the single-task learning. In
our continual learning setting, we design two teacher net-
works with binary weights W 1 ∈ {±1}N and W 2 ∈ {±1}N ,
respectively. Both teacher networks are ground truth for
corresponding tasks. By definition, both teachers share an
adjustable level of correlations in their weights, representing

the similarity across tasks. In practice, their weights follow a
joint distribution as

P(W 1,W 2) =
N∏

i=1

P0
(
W 1

i ,W 2
i

)

=
N∏

i=1

(
1 + r0

4
δ
(
W 1

i − W 2
i

) + 1 − r0

4
δ
(
W 1

i + W 2
i

))
, (1)

where r0 ∈ [−1, 1] denotes the task similarity. r0 also de-
notes the overlap of the two teacher networks, since r0 =
1
N

∑N
i=1 W 1

i W 2
i . The marginal joint probability P0(W 1

i ,W 2
i )

can be rewritten as P0(W 1
i ,W 2

i ) = p(W 1
i )p(W 2

i |W 1
i ), where

p(W 1
i ) = 1

2δ(W 1
i − 1) + 1

2δ(W 1
i + 1) and p(W 2

i |W 1
i ) = 1+r0

2

δ(W 1
i − W 2

i ) + 1−r0
2 δ(W 1

i + W 2
i ). To generate the weights of

the two teacher networks, we can first generate a set of
random binary weights from the Rademacher distribution,
and then flip the weight by a probability 1−r0

2 . The random
patterns for the two tasks are independently sampled from
the Rademacher distribution as well, and then we have the
training data set {xt,μ}Mt

μ=1, where the task index t = 1, 2.
Given the sampled patterns, the teacher networks generate
corresponding labels for each task, {yt,μ}Mt

μ=1. Hereafter, we

use Dt = {xt,μ, yt,μ}Mt
μ=1 to denote the two data sets corre-

sponding to the consecutive two tasks. The student network
is another binary perceptron, whose goal is to learn the task
rule provided by the teacher networks.

In the above setting, the student network shares the same
structure (connection topology) with the two teacher net-
works, which implies that the student cannot simultaneously
learn both tasks perfectly, depending on the task similarity.
However, this setting allows us to explore how the student
adapts its weights to avoid catastrophic forgetting during
learning of a new task, and how the network takes a tradeoff
between new and old knowledge in continual learning. Study-
ing this simple system could also provide insights about the
continual learning in more complex applications, such as deep
learning in real-world data.

B. Variational learning principle

Instead of training point weights, we consider learning the
distribution of the weights in the sense that we train the stu-
dent network to find an optimal distribution of weights [28].
Along these lines, the variational method is an ideal frame-
work for neural network learning [29,30], since we can use a
simple trial distribution to approximate the original intractable
weight distribution. The learning then becomes finding an op-
timal trial distribution parametrized by variational parameters
[24].

In the first task, we introduce a variational distribution
for synaptic weights, qθ (ξ) = ∏

i
eβθiξi

cosh(βθi )
, where θ are vari-

ational parameters and β is a hyperparameter. The optimal
distribution can be approximated by maximizing the expected
log-likelihood

θ∗ = arg max
θ

Eqθ
ln P(D1|ξ). (2)
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FIG. 1. Comparison between expected log-likelihood (ELL) and
its upper bound (UB) in a simple network with 10 synapses and M =
10 examples to learn. In this case, ELL can be exactly computed by
an exhaustive enumeration. For the numerical purpose, we use the
surrogate �(x) = limκ→∞ eκx

2 cosh(κx) . We take κ = 10.0. Equation (2)
is used for ELL, while Eq. (3) is used for UB.

Given an input x, we choose the probability P(D1|ξ) =
P(y|x, ξ) as P(y|x, ξ) = �

(
y
∑N

i=1 ξixi

)
, where �(x) is the

Heaviside function such that �(x) = 1 if x > 0 and �(x) = 0
otherwise. In practice, based on Jensen’s inequality, we ac-
tually update the variational parameters by maximizing the
upper bound lnEqθ

P(D1|ξ), which is less computationally
challenging than the original one, and the optimization prob-
lem can then be formulated as

θ∗ = arg min
θ

{− lnEqθ
P(D1|ξ)}

= arg min
θ

{
− lnEqθ

∏
μ

�

(
yμ

N∑
i=1

ξix
μ
i

)}
. (3)

Maximizing the upper bound has been proved to be effective
in unsupervised learning with many hidden neurons [30].
When the number of weights are about 10, the expected log-
likelihood can be exactly computed, and we have checked that
the bound could be tight (see Fig. 1). Based on the assumption
of large N and the central limit theorem, Eq. (3) can be recast
into the following form [29]:

θ∗ = arg min
θ

⎧⎪⎨
⎪⎩−

∑
μ

ln H

⎛
⎜⎝− yμ

∑
i xμ

i tanh βθi√∑
i(1 − tanh2 βθi )

⎞
⎟⎠

⎫⎪⎬
⎪⎭ , (4)

where H (x) = ∫ ∞
x dze− z2

2 /
√

2π = ∫ ∞
x Dz, where Dz denotes

a standard Gaussian measure. Setting the loss function as

L = −∑
μ ln H (− yμ

∑
i xμ

i tanh βθi√∑
i (1−tanh2 βθi )

), we can use the stochastic

gradient descent (SGD)-based method to find a good trial dis-
tribution of weights, which may be a local or global minimum
since the loss is a nonconvex function. The gradients can be

derived below,

∂L
∂θ t

j

= β
(
σ t

j

)2

⎛
⎝y

x j
∑

i

(
σ t

i

)2 + tanh
(
βθ t

j

)∑
i xi tanh

(
βθ t

i

)
[∑

i

(
σ t

i

)2] 3
2

×H ′

⎛
⎜⎝− y

∑
i xi tanh

(
βθ t

i

)
√∑

i

[
1 − tanh2

(
βθ t

i

)]
⎞
⎟⎠

× H−1

⎛
⎜⎝− y

∑
i xi tanh

(
βθ t

i

)
√∑

i

[
1 − tanh2

(
βθ t

i

)]
⎞
⎟⎠

⎞
⎟⎠ , (5)

where σ 2
j = 1 − tanh2(βθ j ) captures the weight uncertainty,

the data index μ is neglected, and t denotes the iterative
time step. The synaptic plasticity is thus modulated by the
weight uncertainty, which is biologically plausible [31] and
bears a similarity with other heuristic strategies [8,15]. An-
other salient feature is that, provided that the uncertainty of
a weight is small, this weight can be less plastic because of
encoding important information of previous tasks. In addition,
the weight’s synaptic plasticity is also tuned by the total uncer-
tainty of the network,

∑
i(σ

t
i )2, which plays the role of global

regularization.
During the second-task learning, the posterior distribution

of weights becomes

P(ξ|D1,D2) = P(D2|ξ,D1)P(ξ|D1)

P(D2|D1)
. (6)

We assume that when the student learns the second task, the
knowledge from the first task becomes a prior probability
constraining the subsequent learning, i.e., P(ξ|D1) � qθ1 (ξ),
where qθ1 (ξ) is the variational distribution after learning the
first task. We model the posterior of weights during learning of

the second task as qθ2 (ξ) = ∏
i

eβθ2
i ξi

cosh(βθ2
i )

. Optimal variational
parameters can be obtained by minimizing the Kullback-
Leibler (KL) divergence between variational distribution and
posterior distribution [30],

θ2∗ = arg min
θ2

Eq
θ2 ln

qθ2 (ξ)

P(ξ|D1,D2)

= arg min
θ2

Eq
θ2 ln

qθ2 (ξ)

qθ1 (ξ)
− Eq

θ2 ln P(D2|ξ)

� arg min
θ2

KL(qθ2 (ξ)||qθ1 (ξ)) − lnEq
θ2 P(D2|ξ), (7)

where we discard P(D2|D1) because this term does not de-
pend on the model parameters, and we use P(D2|ξ,D1) =
P(D2|ξ), and we also approximate the objective function L by
minimizing the lower bound of the KL divergence (in other
words, we train the network to make the bound as tight as
possible). We remark here that one can also minimize the KL
divergence between a trial probability qθ and the posterior
P(ξ|D1) for the first-task learning [see Eq. (2)], which would
require a prior probability of ξ. Even if we set this prior to a
uniform one, the system exhibits a similar learning behavior
but the learning becomes harder as more data samples are
required to reach the same low generalization error with the

014309-3



LI, HUANG, ZOU, AND HUANG PHYSICAL REVIEW E 108, 014309 (2023)

(a) (b)

(c) (d)

FIG. 2. Learning performance of the toy model. (a) Test error of the first task with different α. (b) Test error of the first task. (c) Test error
of the second task. In (b), (c), the task transition occurs at the 3000th epoch, and r0 = 0. α1 = 2, but α2 varies. Results are averaged over 20
trials. (d) The overlap qcom between the student weights and the common part of both teachers (task similarity). qcom = 1

Ncom

∑
i m̂iŴi, where m̂i

denotes the student’s magnetization of the ith synaptic weight, and we choose i such that W 1
i = W 2

i (= Ŵi). Ncom denotes the total number of
common weights in both teachers. In simulations, r0 = 0.5, α1 = 3, and α2 = 4. For the traditional (full batch) GD algorithm, the optimization
for two tasks is in the magnetization space [see Eq. (10) for the first task, and the second task has a similar form], and no KL divergence terms
are used. The other two algorithms are implemented in the field (θ) space. The task switch (the dashed line) occurs at the 3000th epoch. The
network size N = 1000. For (a)–(c), SGD is applied. For (d), the full batch GD is used. The performance of the traditional SGD (dashed lines)
is also shown in (b), (c) for comparison.

learning using Eq. (2). Therefore, we use Eq. (2) as our first-task learning framework. The first term in Eq. (7) is a regularized
term that causes the network to maintain the learned information of the first task. The second term is the expected log-likelihood
term that leads the network to explain new data. The SGD-based method can then be applied to obtain the optimal solution (local
or global minimum). The gradient can be computed as

∂L
∂θ2,t

j

= β
(
σ 2,t

j

)2

⎛
⎝β

(
θ2,t

j − θ1
j

) + y
x j

∑
i

(
σ 2,t

i

)2 + tanh
(
βθ2,t

j

)∑
i xi tanh

(
βθ2,t

i

)
[∑

i

(
σ 2,t

j

)2] 3
2

×H ′
(

− y
∑

i xi tanh
(
βθ2,t

i

)
√∑

i

[
1 − tanh2

(
βθ2,t

i

)]
)

× H−1

(
− y

∑
i xi tanh

(
βθ2,t

i

)
√∑

i

[
1 − tanh2

(
βθ2,t

i

)]
)⎞
⎟⎠ , (8)

where L is the objective function to minimize in Eq. (7), and
the data index is neglected and must refer to the task 2, and
the gradient is still modulated by the weight uncertainty. Com-
pared to the gradient of the first-task learning, the additional
term comes from the KL divergence term. This term en-
courages the network to remember the first-task information.
Therefore, this synaptic plasticity rule expresses the compe-
tition between old and new tasks (the second term). This
tradeoff allows the network to maintain the old knowledge

but still adapt to the new task, thereby avoiding catastrophic
forgetting to some extent.

We first show the simulation performance of our toy
variational continual learning setting. In Fig. 2(a), with an
increasing amount of provided examples, the single-task
learning performance improves. In Fig. 2(b), when the task
transition occurs, the test error of the first task increases, yet
finally achieving a stable value across training. The test error
of the second task decreases, but it cannot achieve the error
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level that can be reached when the task is trained in isolation
[Fig. 2(c)]. This is because the network does not forget the
distinct characteristics of the first task completely, due to the
regularization term. The lower test error would be achieved
given more training examples for the second task. Figure 2(d)
illustrates the effect of the KL term, where we plot the overlap
between the student inference and the common part of both
teachers. Without the KL term, the overlap falls more sharply
and then increases more rapidly, while the presence of the
KL term makes the overlap change relatively slowly. This
suggests that the KL term makes the network tend to protect
the first task from a fast forgetting [see the poor performance
of the traditional SGD in continual learning in Figs. 2(b) and
2(c)]. The lower overlap (but still closer to 1) allows more
flexibility to balance the continual learning.

We next derive the mean-field theory to evaluate analyti-
cally the continual learning performance.

C. Mean-field theory: Franz-Parisi potential

Mean-field theory is a powerful tool for analyzing com-
plex systems in statistical physics. In the previous section,
we describe the variational method in training the binary
perceptron to realize continual learning. In this section, we
derive mean-field theory to analyze the variational continual
learning. Instead of the local fields θ1 and θ2 (useful for prac-
tical training due to their unbounded values), we parametrize
the variational distribution with weight-magnetization m1,i =
tanh βθ1

i and m2,i = tanh βθ2
i for the sake of analytical stud-

ies. The variational distributions are specified, respectively, by

Qm1 (ξ) =
N∏

i=1

1 + ξim1,i

2
,

Qm2 (ξ) =
N∏

i=1

1 + ξim2,i

2
, (9)

where m1,i, m2,i ∈ [−1, 1] are the magnetization of the ith
synaptic weight in the first and second task learning, respec-
tively. We perform the statistical mechanics analysis on the
two-task learning, with the goal of extracting the role of model
parameters (e.g., sample complexity, task similarity, and so
on) in the continual learning.

1. The first-task analysis

To perform the mean-field theory analysis of the first-task
learning, we define the loss function in the variational method
as the Hamiltonian,

L1(m) = −
M1∑

μ=1

ln H

⎛
⎜⎝− yμ

∑
i mix

1,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ , (10)

where yμ = sgn(
∑

i W 1
i x1,μ

i ) is the label generated by the
teacher network. The Boltzmann distribution reads

P(m) = 1

Z
e−βL1(m), (11)

where β is an inverse temperature, Z = ∫
�

∏
i dmie−βL1(m) is

the partition function, and the integral domain � = [−1, 1]N .

To obtain the equilibrium properties, we should first compute
the disorder-averaged free energy (or the log-partition-
function), which can be achieved by using the replica trick.
The replica trick proceeds as 〈ln Z〉 = limn→0

ln〈Zn〉
n , where

〈·〉 denotes the average over the quenched disorder. Then, we
have

〈Zn〉 =
∫

�n

n∏
a=1

N∏
i=1

dma
i

×

�
n∏

a=1

M1∏
μ=1

Hβ

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i ma

i x1,μ
i√∑

i 1 − (
ma

i

)2

⎞
⎟⎠
�

.

(12)

Under the replica symmetric (RS) Ansätze (detailed in
Appendix C), the free-energy density at a given data density
α = M

N is given by

−β fRS = lim
n→0,N→∞

ln〈Zn〉
nN

= lim
n→0

−1

2
[q̂d qd + (n − 1)q̂0q0]

− r̂1r1 + ln GS

n
+ α1

ln GE

n
, (13)

where

GE =
∫

Dz 2H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠

×
[∫

Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)]n

,

GS =
∫

Dz

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂m

)n

. (14)

Order parameters are introduced as q0 = 1
N

∑
i ma

i mb
i for

a �= b indicating the overlap of different equilibrium states,
qd = 1

N

∑
i ma

i ma
i , indicating the self-overlap of states (the

self-overlap relates to the size of valid weight space σ̂ =
1 − qd ), and finally r1 = 1

N

∑
i miW 1

i , indicating the overlap
between the student’s inference and the teacher’s ground truth.
In practice, qd can also be estimated from the gradient de-
scent dynamics during training, and we use q∗ to denote this
measure, i.e., q∗(t ) = 1

N

∑
i[mi(t )]2, and 
mi(t ) ∝ ∂miL1(m).

{q̂0, q̂d , r̂1} are the conjugated order parameters introduced by
the Fourier transform. These order parameters can be obtained
by solving saddle point equations (detailed in Appendix C).
To evaluate the learning performance, we define the gen-
eralization error ε1

g = 〈Ex∗�(−y∗ŷ∗)〉, where (x∗, y∗) is the
fresh data sample, ŷ∗ is the student’s prediction, and 〈·〉 de-
notes the disorder average. The test error can be calculated as
(see details in Appendix C)

ε1
g =

∫
Dz 2H

⎛
⎜⎝− p1√

1 − p2
1

z

⎞
⎟⎠�(−z) = 1

π
arccos(p1), (15)

where p1 = 1
N

∑
i sgn(mi )W 1

i denotes the overlap between the
decoded weights and the teacher’s weights, and it can be
obtained by solving the saddle point equations as well.
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(a) (b)

(c) (d)

FIG. 3. Mean-field results of the first-task learning compared with SGD simulations. (a) The order parameters vs data density α (β = 20).
(b) Generalization error vs data density (β = 20). The connected symbols represent the result of SGD. The inset shows a power-law scaling
for replica results when α � 1.7. The symbol (Data) in the inset is the replica theory. (c) Convergence time step Tc of the full batch gradient
descent simulation. Tc is recorded when the drop of εg during [Tc, Tc + 1000] starts to be less than 0.0005. The convergence time peaks at
α = 1.7. The results are averaged over 20 trials (network size N = 3000). (d) Generalization error vs quenched q∗ (α = 2). The slow SGD
means a rescale of the norm of m to q� after each update. The results of SGD are averaged over 20 trials (network size N = 1000).

We first show how order parameters change with respect to
the data density α. As defined, qd signals the size of the valid
weight space. As the sample complexity increases, the weight
space shrinks down to a singe point representing the ground
truth [Fig. 3(a)]. As shown in Fig. 3(b), the stochastic gra-
dient descent dynamics results are approximately consistent
with the theoretical predictions (at least qualitatively). The
deviations may be caused by the fact that the SGD could be
trapped by local minima (suboptimal solutions) of the varia-
tional energy landscape. But for a fixed α, we can dynamically
rescale the norm of m after every update (slow type SGD
[29]), and we compare the dynamical ε1

g with its equilibrium
counterpart (with the same value of q∗). We find that the SGD
results are comparable with the equilibrium predictions, at
least qualitatively [Fig. 3(d)]. The deviation may be caused
by the finite-size effects (see also the previous work [29]).

In particular, Fig. 3(b) reveals a continuous phase transi-
tion (from poor to perfect generalization) in the variational
parameter space (despite a binary perceptron learning con-
sidered in our setting). Due to the numerical accuracy of
the replica results at a large α, we find that after α = 1.7,
a power-law scaling of the generalization error with a large
exponent [∼13.1, see the inset of Fig. 3(b)] is observed. We

remark that the SGD could reach zero error (perfect gener-
alization) after αc � 1.7, while the replica result obtained at
a large β = 20 has a fast decay (lower than 10−2) after αc

[see the inset of Fig. 3(b)]. It is expected that the replica
prediction of the generalization error will reach lower values
with increasing β, which requires a huge number of Monte
Carlo samples to get an accurate estimate of the integral in
Eq. (15) and also in solving the saddle-point equations (see
details in Appendix C). The power-law fitting for the er-
ror below 10−3 may thus be unreliable. We conclude that
in the zero-temperature limit, the perfect generalization is
conjectured to be achievable, although a high β may lead
to replica symmetry breaking [29]. We could alternatively
estimate the transition threshold by analyzing the convergence
time of the learning algorithm [Fig. 3(c)]. The convergence
time is peaked at αc � 1.7, which is in stark contrast to the
case of training in the direct binary-weight space [26,27],
which leads to a discontinuous transition at αc = 1.245 (a
spinodal point locates at αsp = 1.492). This suggests that the
variational learning erases the metastable regime where the
poor generalization persists until the spinodal point. Thus the
variational framework bears optimization benefits for learning
in neural networks with discrete weights.
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2. The second-task analysis

Similarly, we specify the second-task Hamiltonian as follows:

L2(m) = −
M2∑

μ=1

ln H

⎛
⎜⎝− sgn

(∑
i W 2

i x2,μ
i

)∑
i mix

2,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ +

N∑
i=1

KL(Qmi‖Qm1,i ). (16)

As explained before, the first term is a reconstruction term that maximizes the log-likelihood of the second-task data, and the
second term prevents the network from forgetting the previously acquired knowledge. Due to the regularization term, we have
to treat the equilibrium analysis differently from the single task learning. It is natural to put the analysis within the Franz-Parisi
potential framework [22,23]. More precisely, we define the potential for the second-task learning as

� = 1

Z̃

∫
�̃

N∏
i=1

dm̃i e−β̃L1(m̃) ln
∫

�

N∏
i=1

dmi e−βL2(m,m̃). (17)

Note that we take both inverse temperatures β̃ = β in the following analysis, and in numerical solutions, we make β as large
as possible to focus on ground states of the optimization. Taking the replica symmetric (RS) Ansätze, the disorder-averaged
potential is related to the following action S (see details in Appendix C):

S = lim
n→0

lim
s→0

− 1
2 (n ˆ̃qd q̃d + s(s − 1) ˆ̃q0q0) − 1

2 [sq̂d qd + n(n − 1)q̂0q0] − n ˆ̃r1r̃1 − sr̂2r2 + ln GS + α1 ln G1
E + α2 ln G2

E, (18)

where

G1
E =

〈
n∏

a=1

H β̃

(
− sgn(ṽ1)ũa

√
1 − q̃aa

)〉
=

∫
Dz 2H

⎛
⎜⎝− r̃1√

q̃0 − r̃2
1

z

⎞
⎟⎠[∫

Dσ H β̃

(
−

√
q̃d − q̃0σ + √

q̃0z√
1 − q̃d

)]n

, (19)

G2
E =

〈
s∏

c=1

Hβ

(
− sgn(v2)uc

√
1 − qcc

)〉
=

∫
Dz 2H

(
− r2√

q0 − r2
2

z

)[∫
Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)]s

, (20)

and

GS = 1 + r0

2

∫
Dz1

(∫ +1

−1
dm̃ eĨ(m̃,z1 )

)n−1 ∫ +1

−1
dm̃ eĨ(m̃,z1 )

∫
Dz2

(∫ +1

−1
dm eJ

+(m,m̃,z2 )

)s

+ 1 − r0

2

∫
Dz1

(∫ +1

−1
dm̃ eĨ(m̃,z1 )

)n−1 ∫ +1

−1
dm̃ eĨ(m̃,z1 )

∫
Dz2

(∫ +1

−1
dm eJ

−(m,m̃,z2 )

)s

. (21)

Note that ṽ1 and v2 are related to quenched disorder (see Appendix C), {q0, r2, qd} are order parameters in parallel to the first-
task learning, while {q̃0, r̃1, q̃d} can be obtained by solving the single-task saddle point equations (inherited from the first-task
analysis). The functions Ĩ and J ± are defined in Appendix C. The test error of the second task can be derived in the form

ε2
g =

∫
Dz 2H

⎛
⎜⎝− p2√

1 − p2
2

z

⎞
⎟⎠�(−z) = 1

π
arccos(p2), (22)

where p2 = 1
N

∑
i sgn(m)W 2

i denotes the overlap between the decoded weights and the second-teacher weights. Similarly, the
test error of the first task after learning both tasks is given by

ε1
g =

∫
Dz 2H

⎛
⎜⎝− p1√

1 − p2
1

z

⎞
⎟⎠�(−z) = 1

π
arccos(p1), (23)

where p1 = 1
N

∑
i sgn(mi )W 1

i .
We finally study the theoretically predicted performances compared with numerical simulations. In Fig. 4(a), we find that

the task similarity strongly impacts the learning performance of the second task. When r0 takes a negative value, the learning
becomes much harder, as more data examples are required to decrease the generalization error, while a positive task similarity
makes the learning of the second task easier. The SGD results match well with the theoretical prediction, except for the region
around the transition, which may call for longer simulation time in searching for good solutions. As expected, the generalization
of the first task will increase during learning the second task [Fig. 4(b)], which is due to the fact that both tasks share a partial
similarity (i.e., not completely the same). We also multiply the KL term by a factor γ , and we study the effect of this term
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(a) (b)

(c) (d)

FIG. 4. Generalization vs α for the variational continual learning. The symbols connected by dashed lines are simulation results of
GD (20 trials on averaged), while those connected by full lines are replica predictions. α1 = 2, N = 1000, and different learning rates are
used for different values of α2. Different task similarities are considered. The KL term is multiplied by a tuning factor γ . (a), (b) γ = 1.0.
(c), (d) γ = 0.1.

by tuning down this factor [e.g., γ = 0.1 in Figs. 4(c) and 4(d)]. We find that the learning of the second task becomes fast as
fewer data examples are required, and the critical value of α is also impacted. Furthermore, the memorization of the first task is
strongly degraded. This result is consisted with that found in Fig. 2(d).

For a numerical verification of the mean-field replica theory, we train a perceptron with the number of synapses N = 5000.
The learning rate equals 0.001 for the whole training process. If we use SGD, the size of a minibatch is set to 32. In the replica
analysis, the hyperparameter β1 = β2 = 20 for the first and second tasks. Once the algorithm for the present task converges
(e.g., the accuracy is stable), we shift the learning to a new task. Figure 5 shows an excellent agreement between equilibrium
predictions obtained by replica analysis and real training of perceptrons.

(a) (b)

FIG. 5. The comparison between replica results and simulation in perceptron. The simulation results are averaged over five independent
trials. The solid line shows the accuracy obtained from training the perceptron, while the symbols indicate the replica results. The dashed line
indicates the task switch. (a) r0 = 0.6 and α1 = α2 = 3.0. (b) r0 = 0.5, α1 = 4.0, and α2 = 3.0.
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III. CONTINUAL LEARNING IN DEEP
NEURAL NETWORKS

Catastrophic forgetting is an unfavored property for deep
neural networks applied to continual learning or multitask
learning. In this section, we extend the variational methods
for the toy binary perceptron to deep neural networks in clas-
sifying a structured data set.

A. Variational learning principle

The variational learning principle is a popular variational
Bayesian framework applied in a wide range of scenarios
[12–15], which focus mainly on deep networks with real-
valued weights. To learn a computationally efficient (binary
weights) deep network, we adapt the variational principle
to the continual learning, in theory and practical train-
ing, comparing the performance with that of the heuristic
metaplasticity algorithm [8], a unique available method for
comparison in our current context. Within this framework,
the posterior of parameters w is learned from T continually
presented data sets {x(n)

t , y(n)
t }Nt

n=1, where t denotes the task
index ranging from 1 to T , and Nt denotes the size of data set
t . When the multitask data examples are sequentially shown
to the machine, the posterior distribution of w is denoted as
p(w|Dk ) after kth training steps based on the data set Dk

(minibatch at the kth step), and it can be calculated using the
Bayes rule as p(w|Dk ) = p(Dk |w)p(w)

p(Dk ) . The prior p(w) depends
on the (k − 1)th step, which can be taken to be the posterior in
the previous training step p[w(k − 1)|Dk−1]. Taken together,
the posterior p(w | D) can be written as

p(w|Dk ) = p(Dk|w)p(w(k − 1)|Dk−1)

p(Dk )
. (24)

Unfortunately, the difficulty here is that the posterior is typ-
ically intractable for most of the probabilistic models, which
thereby requires an application of the variational method. We
approximate the true posterior with a tractable distribution
parametrized by the variational parameter θ. By updating θ,
we approach the target distribution as closely as possible.

Given a simple trial probability distribution over the latent
variable w parametrized by θ, i.e., qθ (w), the minimization of
the KL divergence between qθ (w) and p(w|D) results in the
following solution:

θ∗ = arg min
θ

KL [qθ (w)‖p(w|D)] . (25)

Therefore, we can define the loss function L as

L = KL [qθ (w)‖p(w|D)] = Lreg + Lrec, (26)

where we replace the prior p(w) with the variational pos-
terior in the previous time step qθk−1 (w), and we define the
regularization term Lreg = KL[qθk (w)‖qθk−1 (w)] and the re-
construction term Lrec = −Eq

θk (w)[ln p(D|w)]. The term Lrec

computes the averaged log-likelihood of the network output,
which can be crudely approximated by considering a single
sample ws of qθk (w) from a rough Monte Carlo sampling
estimation. By computing gradients of θ on this loss function

L, we arrive at

∂L
∂θ k

i

=
∑
wi

∂qθ k
i
(wi)

∂θ k
i

(
1 − ln qθ k

i
(wi ) − ln qθ k−1

i
(wi )

)

− ∂ ln p(D | ws)

∂θ k
i

. (27)

Learning of the variational parameter θi can be achieved by a
gradient descent of the objective function, i.e.,

θ k+1
i = θ k

i − η
∂L
∂θ k

i

, (28)

where η denotes the learning rate, and θ k
i refers to the ith

connection in one layer of a deep network [e.g., θ l,k
i j for the

connection (i j) at layer l below].
We consider a deep neural network with L layers, and Nl

denotes the width of the lth layer. wl
i j indicates the weight

connecting neuron i at the upstream layer l to neuron j at
the downstream layer l + 1. The state of neuron j at the
(l + 1)th layer hl+1

j is a nonlinear transformation of the pre-

activation zl+1
j = 1√

Nl

∑
i w

l
i jh

l
i . The transfer function f (·) for

layers l = 1, 2, . . . , L − 1 is chosen to be the rectified linear
unit (ReLU), which is defined as f (z) = max(0, z). For the
output layer, the softmax function hk = ezk /

∑
i ezi is used,

specifying the probability over all classes of the input images,
where zi is the preactivation of neuron i at the output layer.
The supervised learning is considered, where ĥk indicates the
target of hL

k , and the cross entropy Lce = −∑
i ĥi ln hi is used

as a cost function corresponding to Lrec. In our setting, a
double-peak distribution is applied to model the binary weight

as qθ l
i j

(wl
i j ) = e

βwl
i j θ

l
i j

e
βθ l

i j +e
−βθ l

i j
, where β is a hyperparameter, and the

fieldlike parameter θi j controls the probability distribution of

wi j as qθ l
i j

(+1) = e
βθ l

i j

e
βθ l

i j +e
−βθ l

i j
and qθ l

i j
(−1) = e

−βθ l
i j

e
βθ l

i j +e
−βθ l

i j
. There-

fore, the gradients of θ on Lreg can be computed as

∂KL
[
qθ

l,k
i j

(
wl,k

i j

)∥∥qθ
l,k−1
i j

(
wl,k−1

i j

)]
∂θ l,k

i j

= β2
(
θ l,k

i j − θ l,k−1
i j

) (
σ l,k

i j

)2 = β2
(
σ l,k

i j

)2

l,k

i j , (29)

where the superscripts l and k denote the layer index and itera-
tion step, respectively, and we define 
l,k

i j as the increments of

the variational parameter 
l,k
i j =θ l,k

i j −θ l,k−1
i j between two suc-

cessive steps. (σ l,k
i j )2 indicates the variance of wl

i j as (σ l,k
i j )2 =

1 − tanh2(βθ l,k
i j ), and thus captures the synaptic uncertainty.

To derive the gradients of Lrec, we apply the mean-
field method [28]. The first and second moments of wl

i j are
given by μl

i j = 〈wl
i j〉 = tanh(βθ l

i j ) and (σ l
i j )

2 = 1 − (μl
i j )

2,
respectively. Given that the width of the layer is large, the
central-limit theorem indicates that the preactivation zl+1

j fol-

lows a Gaussian distribution N (z | ml+1
j ; vl+1

j ), where the
mean and variance are given below,

ml+1
j = 〈

zl
i

〉 = 1√
Nl

∑
j

μl
i jh

l
i ,

(
vl+1

j

)2 = 〈 (
zl+1

j

)2 〉 − 〈
zl+1

j

〉2 = 1

Nl

∑
j

(
σ l

i j

)2 (
hl

i

)2
. (30)
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Therefore, we write the preactivation as zl
i = ml

i + εl
i v

l
i , where

εl
i denotes a standard Gaussian variable relying on the layer

and weight-component index. Then, we can compute the gra-
dients as follows:

∂Lrec

∂θ l
i j

= ∂Lrec

∂zl+1
j

∂zl+1
j

∂θ l
i j

= Kl+1
j

(
∂ml+1

j

∂θ l
i j

+ εl+1
j

∂vl+1
j

∂θ l
i j

)
, (31)

where we have defined Kl+1
j = ∂Lrec

∂zl+1
j

, which could be solved

using the chain rule. The term
∂ml+1

j

∂θ l
i j

and
∂vl+1

j

∂θ l
i j

can be directly

derived from Eq. (30), as shown below,

∂ml+1
j

∂θ l
i j

= 1√
Nl

βhl
i

(
σ l

i j

)2
,

∂vl+1
j

∂θ l
i j

= −β

(
hl

i

)2

Nlv
l+1
j

μl
i j

(
σ l

i j

)2
, (32)

and Kl
i can be estimated by the chain rule from the value at

the top layer, i.e.,

Kl
i =

∑
j

Kl+1
j

⎛
⎜⎝ 1√

Nl
μl

i j + εl+1
j

Nl

√(
vl+1

j

)2

(
σ l

i j

)2
hl

i

⎞
⎟⎠ f ′ (zl

i

)
,

(33)
where f ′(·) is the derivative of the transfer function, and on the
top layer, KL

i can be directly estimated as KL
i = −ĥi(1 − hL

i ).
Taken together, the total gradients on the loss function L take
the form

∂L
∂θ l,k

i j

= β
(
σ l,k

i j

)2 (
β
l,k

i j + δl,k
i j

)
, (34)

where we add the step index k as δl,k
i j = Kl+1

j ( 1√
Nl

hl
i −

εl+1
j

Nl v
l+1
j

(hl
i )

2μl
i j ). It can be clearly seen that the variance of wl

i j

at the iteration step k together with the inverse temperature
β(σ l,k

i j )2 tunes the learning rate η, where a larger variance
leads to larger gradients in the iteration step k. In addition,
the regularization term β
l,k−1

i j measures the similarity be-
tween the variational posterior probabilities across successive
learning steps, which regulates the distance from the current

guess to the previous one, providing a principled way to use
the information from previous task knowledge. Therefore,
this variational continual learning can be used in scenarios
where task boundaries are not available [13], which is also
more cognitively plausible from our human learning experi-
ences. Hereafter, we refer to this variational continual learning
scheme as VCL.

We emphasize the relationship between the VCL used in
the toy model analysis in the previous section and that used for
practical continual deep learning in this section. In essence,
the VCL in these two sections bears the same principle [see
Eq. (26)]. In the toy model analysis, we specify the task
boundary, which allows us to derive the Franz-Parisi potential
of the continual learning. However, in a practical training,
a task agnostic training is favored (like humans), which is
exactly captured in Eq. (34). Therefore, the last training step
acts as a reference in the language of the Franz-Parisi frame-
work, i.e., the learning of the next step can be described by an
equilibrium system with an anchored external preference. Fur-
thermore, in the toy model analysis, we set the hyperparameter
β for both tasks to the same value. In the practical deep
learning, β is allowed to increase with epoch [one example
is shown later in Fig. 7(a)].

In particular, our learning protocol emphasizes how synap-
tic uncertainty tunes the continual learning, and thus provides
a principled way to understand engineering heuristics [15,16]
and neuroscience inspired heuristics [6,8,9]. For the deep net-
works with binary weights, the previous work uses discretiza-
tion operation of a continuous weight, surrogate gradient,
and a metaplasticity function (see details in Appendix A),
while our VCL does not require these tricks. In addition, other
heuristic strategies such as elastic weight consolidation and
its variants [9] can also be unified in our current framework.
For example, the part Lreg can be approximated by a term
involving the Fisher information matrix as

F (θ) = Eqθ (w)

((
∂ ln qθ (w)

∂θ

)(
∂ ln qθ (w)

∂θ

)�)
(35)

and then

Lreg ≈ 1
2 (θk − θk−1)�F (θk−1)(θk − θk−1), (36)

FIG. 6. Continual learning on MNIST and Fashion-MNIST (f-MNIST) data sets. The network has the architecture [784,400,200,10], where
each number indicates the layer width. The results are averaged over five independent trials. Left panel: The training order is f-MNIST first
and then MNIST. β1 = 1 for the first task and β2 = 12.5 for the second one in the VCL setting. m1 = 0.5 for the first task and m2 = 0.9 for the
second in the metaplasticity algorithm. Right panel: MNIST is applied first followed by the f-MNIST data set. The same network architecture
is used as in left panel, while β1 = 1, β2 = 17.5, m1 = 0.5, and m2 = 0.7.
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(a) (b)

FIG. 7. Continual learning of permuted MNIST learning tasks. Five sequential tasks are considered, and each is trained for 40 epochs. The
network has the architecture [784,512,512,10], where each number indicates the layer width. The results are averaged over five independent
trials. (a) Test accuracy based on VCL, β� = a tanh(δ + b�/M ), where � denotes the epoch index, and M is the total number of epochs. We use
a = 10.0, δ = 0.1, and b = 2.0. (b) Test accuracy of the metaplasticity algorithm, for which m = 0.43 for all the tasks.

where we take only the diagonal elements of the Fisher in-
formation matrix F (θk−1) ≈ β2(σk−1)2, recovering the elastic
weight consolidation algorithm. The technical proof is given
in Appendix B.

B. Learning performance and roles of synaptic uncertainty

In this section, we compare the performance of VCL and
the metaplasticity algorithm for neural networks with binary
weights. Algorithmic details are given in Appendix A. We
consider two tasks first— sequential learning of MNIST and
Fashion-MNIST (f-MNIST) data sets [8], and this setting
requires the network to sequentially learn from two data sets:
MNIST and f-MNIST. We next consider a popular continual
learning benchmark, namely the permuted MNIST learning
task [9]. The permuted MNIST learning task is composed
of continual learning of several data sets, and each task con-
tains labeled images of a fixed random spatial permutation of
pixels.

Figure 6 shows that for both training orders (f-MNIST
first or MNIST first), VCL achieves a much better perfor-
mance than that of the metaplasticity algorithm (abbreviated
as meta), showing the benefit of less forgetting of learned

FIG. 8. The averaged level of synaptic uncertainty (〈σ 〉) evolves
through training for all the layers, and the inset shows the details of
the training stage after 40 epochs. The network architecture is the
same as that of Fig. 7.

tasks and thus better performance for new tasks. The same
phenomenon can also be observed in Fig. 7, where five per-
muted MNIST data sets are sequentially presented to the
network. Networks trained with VCL [Fig. 7(a)] are learning
better and forgetting less previous task knowledge compared
with those trained with meta [Fig. 7(b)]. The plot shows the
classification accuracy for task t after learning tasks t ′ � t .
A perfect continual learning must provide high accuracy for
task t , and moreover preserve the performance even when
subsequent tasks are learned, which is independent of the
training time of each task (e.g., increasing the training time
to 100 epochs).

We also plot the evolution of synaptic uncertainty by calcu-
lating the average 〈σ 〉 = 1

#weights

∑
(i j) σ

2
i j for every epoch and

every layer (see Fig. 8). As expected, the mean uncertainty de-
creases during the continual learning. However, the level rises
with a minor magnitude after a task switch, but then drops
again. In addition, the reduction of the uncertainty is also
evident for upstream layers, indicating that these layers tend to
freeze most of the weights, or make them less plastic. In con-
trast, the last layer maintain a low level of synaptic uncertainty
for reading out the key category information. We also observe
that the synaptic plasticity with a larger uncertainty has a
larger contribution to how strong the KL divergence should
change, which thereby plays an important role in minimizing
the overall objective. To conclude, the synaptic variance is a
key quantity determining the behavior of continual learning.
The VCL can adjust the synaptic resources during sequential
learning of multiple tasks.

IV. CONCLUSION

In this study, we focus on the continual learning in deep
(or shallow) neural networks with binary weights. Recent
works already argued that the variational training is effective
in neural networks of real-valued weights [13–15], and a
brain-inspired metaplasticity method is also effective in train-
ing binary neural networks [8]. However, how to unify these
diverse strategies within a statistical physics model is chal-
lenging. Here, we propose a variational mean-field framework
to incorporate synaptic uncertainty, task-knowledge trans-
fer, and mean-field potential for multitask learning. First,
we argue that the synaptic uncertainty plays a key role in
modulating continual learning performance through the lens

014309-11



LI, HUANG, ZOU, AND HUANG PHYSICAL REVIEW E 108, 014309 (2023)

of variational weight distribution. Specifically, the synaptic
variance becomes a modulating factor in the synaptic plas-
ticity rules, based on our theory. Second, the task-knowledge
transfer can be interpreted in physics. The knowledge from
the previous task behaves as a reference configuration in the
Franz-Parisi potential formula [22,23], an anchor for learning
new knowledge. The learning of a new task can thus be de-
scribed by an equilibrium system with an anchored external
preference. The derived theory matches well the numerical
simulations using stochastic gradient descent algorithms.

Our theory of variational continual learning also predicts
that a single-task learning exhibits a continuous transition
with an increasing amount of data (sample complexity), which
is in stark contrast to the previous findings in mean-field
theory of generalization (in the direct discrete or continuous
weight space) [26,27]. This new theoretical prediction sug-
gests that the current variational continual learning proves
efficient in practical learning, since a trapping by metastable
states is absent. We remark that this absence of a first-order
transition holds only for shallow networks. It is thus interest-
ing to extend our theoretical analysis to multilayered networks
to see if this conclusion is present or not.

We finally demonstrate that our framework can be applied
to continual learning of real data sets, achieving similar or
even better performances than those obtained by heuristic

strategies, such as metaplasticity. Therefore, this work can be
a promising starting point to explore further the important yet
challenging question of how to build a theoretically grounded
neural representation that helps an intelligent agent avoid
catastrophic forgetting and adapt continuously to new tasks,
based on accumulated knowledge from previous tasks.
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APPENDIX A: ALGORITHMIC DETAILS

In this Appendix, we provide the details of the metaplas-
ticity algorithm and VCL, which are compared in the main
text. The pseudocode of the metaplasticity algorithm [8] is
summarized in Algorithm 1.

Algorithm 1. Metaplasticity continual learning

1: Input: hl−1
j , wl

i j = sgn(al
i j ); meta parameter m; learning rate η;

2: Feed-forward propagation: zl
i = 1√

Nl−1

∑
j w

l
jih

l−1
j , hl

i = f
(
zl

i

)
, f (x) = ReLu(x);

3: Backpropagation: ∂L
∂wl

i j
= ∂L

∂zl
j

∂zl
j

∂wl
i j

=
(

1√
Nl−1

)∑
k

∂L
∂zl+1

k
wl+1

jk f ′(zl
j

)
hl−1

i ;

4: Parameter update:
(
al

i j

)k+1 − (
al

i j

)k = −η
(
1 − ζ tanh2

(
m
(
al

i j

)k))
∂L
∂wl

i j
, where ζ = 1

2

[
sgn

(
wl

i j
∂L
∂wl

i j

) + 1
]
.

In the meta algorithm, L denotes the loss function and
al

i j denotes the latent real-valued weights underlying bi-
nary counterpart, and the core idea is the introduction of a
modulation function fmeta(m, x) = 1 − tanh2(mx) which is a
decreasing function of |x| (or the absolute value of the hidden
weights). This modulation called metaplasticity makes the
hidden weight change less likely if the corresponding mag-
nitude is growing (consolidation of some useful information,
expressed as the ζ factor). Therefore, this metaplasticity can
be heuristically thought of as a sort of weight consolidation.
In contrast, our VCL gives rise to an alternative modulation
related to the synaptic uncertainty, thereby having a more

solid theoretical foundation. In addition, the gradient with
respect to a discrete weight value in the meta algorithm is
ill-defined, which does not appear in our VCL. We remark
that this algorithm is sensitive to the network size; if the size
of the network is not big enough, this algorithm may fail to
give a satisfactory learning performance.

Our VCL algorithm is summarized in the pseudocode 2.
In the main text, we use learning rate 0.01 and minibatch
size 64 for both tasks. Note that the mean and variance of
the preactivation z are computed for each single data sample,
given the statistics of the weight. All codes to reproduce our
results in the main text are available at the Github link [32].

Algorithm 2. VCL algorithm

1: Input: single sample x ∈ RN0 , wl ∈ RNl ×Nl+1 from the distribution qθ l
i j

(
wl

i j

) = e
βwl

i j θ
l
i j

e
βθ l

i j +e
−βθ l

i j
;

2: Compute the mean and variance of elements wl : μl , (σ l )2;
3: Compute the mean ml and variance (vl )2 of preactivation zl = 1√

Nl
(wl−1)�hl−1, h0 = x;

4: Sample εl ∈ RNl independently from N ∼ (0, 1);
5: Output: zl = (ml + εl � vl ), hl = f (zl );

6: Parameter update: θ l,k+1
i j = θ l,k

i j − η ∂L
∂θ

l,k
i j

, where ∂L
∂θ

l,k
i j

= β
(
σ l,k

i j

)2[
β
l,k−1

i j + Kl+1
j

(
1√
Nl

hl
i − εl+1

j

Nl v
l+1
j

(
hl

i

)2
μl

i j

)]
, and 
l,k−1

i j = θ l,k−1
i j − θ l,k−2

i j .
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APPENDIX B: CONNECTION TO ELASTIC WEIGHT CONSOLIDATION

In this Appendix, we provide proof of the elastic weight consolidation as a special example of VCL. We first write
D(θk, θk−1) ≡ Lreg = KL[qθk (w)‖qθk−1 (w)], and then we have

D(θk, θk−1) =
∫

q(w; θk ) ln
q(w; θk )

q(w; θk−1)
dw, (B1)

where the integral can be interpreted as the summation for the considered discrete weight variable. Hereafter, we write qθk (w) =
q(w; θk ). We next assume the two consecutive solutions are sufficiently close, i.e., θk ≈ θk−1 or θk = θk−1 + 
θ (
θ → 0), and
then we consider alternatively D(θk−1, θk ) because of small 
θ, and further expand ln q(w; θk ) around θk−1 up to the second
order,

D(θk−1, θk ) = Eq(w;θk−1 )[ln q(w; θk−1) − ln q(w; θk )],

≈ −(θk − θk−1)�Eq(w;θk−1 )

(
∂ ln q(w; θk−1)

∂θk−1

)

− 1

2
(θk − θk−1)�Eq(w;θk−1 )

(
∂2

∂ (θk−1)2
ln q(w; θk−1)

)
(θk − θk−1). (B2)

We also find that

Eq(w;θk−1 )

∂ ln q(w; θk−1)

∂θk−1 =
∫

q(w; θk−1)
1

q(w; θk−1)

∂q(w; θk−1)

∂θk−1 dw,

= ∂

∂θk−1

∫
q(w; θk−1)dw,

= ∂1

∂θk−1 = 0. (B3)

Notice that Eq( ∂2 ln q
∂ (θk−1 )2 ) = Eq( 1

q
∂2q

∂ (θk−1 )2 − ( ∂ ln q
∂θk−1 )2), where q represents q(w; θk−1), and we have used ∂2

∫
dwq

∂ (θk−1 )2 = 0. We finally
arrive at

D(θk, θk−1) = 1
2 (θk − θk−1)�F (θ)(θk − θk−1), (B4)

where D(θk, θk−1) � D(θk−1, θk ) when 
θ → 0, and F (θ) is exactly the Fisher information matrix whose definition is given
by F (θ) = Eq(w;θk−1 )[(

∂

∂θk−1 ln q(w; θk−1))( ∂

∂θk−1 ln q(w; θk−1))�]. To conclude, when we take only the diagonal elements of the
Fisher information matrix, we recover the elastic weight consolidation algorithm [9].

APPENDIX C: DETAILS FOR REPLICA COMPUTATION

In this Appendix, we demonstrate how to predict the generalization errors of variational continual learning by replica compu-
tation. First, we summarize our problem settings: we consider a teacher-student continual learning problem on binary perceptron,
where the student learns task 1 first and then task 2. For the data in these two tasks, x1 and x2, the labels are given by two
teachers, y1 = sgn(

∑
i W 1

i x1
i ) and y2 = sgn(

∑
i W 2

i x2
i ). Note that each dimension of the input data follows a uniform Bernoulli

distribution, xt,μ
i ∈ [−1,+1], and the training data sets of the two tasks consider different realizations, Dt = {xt,μ, yt,μ}Mt

μ=1,

where t = 1, 2. There is also a correlation between these two teachers, described by an overlap r0 = 1
N

∑
i W 1

i W 2
i . Therefore,

the joint distribution of teachers’ weights can be parametrized as

P0
(
W 1

i ,W 2
i

) = 1 + r0

4
δ
(
W 1

i − W 2
i

) + 1 − r0

4
δ
(
W 1

i + W 2
i

)
, (C1)

where we use the notation “teacher-average” to denote the average over such distribution. For the sake of convenience, we
assume that during the learning of a certain task, the loss function is fixed. According to the variational theory in the main text,
the loss functions for the continual learning are listed as follows:

L1(m) = −
M1∑

μ=1

ln H

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i mix

1,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ ,

L2(m) = −
M2∑

μ=1

ln H

⎛
⎜⎝− sgn

(∑
i W 1

i x2,μ
i

)∑
i mix

2,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ +

N∑
i=1

KL(Qmi‖Qm1,i ). (C2)
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where H (x) = 1
2 erfc( x√

2
), and m1 is the trained weight after learning task 1. In the following, the learning procedures of task 1

and task 2 will be referred to as single-task learning and multitask learning, respectively, which actually reflects the learning’s
essence.

To predict the generalization errors in both learning scenarios, we apply the replica method under the replica symmetry
Ansätze. For a specific learning scenario, the derivations can be unfolded in two steps: First, we treat the loss function for
gradient-descent training as the Hamiltonian in a canonical ensemble, and we compute its averaged free energy, which entails
the replica trick; second, with the knowledge of the free energy, we show how to obtain the generalization errors of both tasks.
In the following, the value of M can be M1 or M2 depending on the learning stage.

1. Thermodynamic system for single-task learning

In this scenario, the thermodynamic system can be defined by a partition function,

Z =
∫

�N

N∏
i=1

dmie
−βL1(m) =

∫
�N

N∏
i=1

dmi

M1∏
μ=1

Hβ

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i mix

1,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ , (C3)

where � = [−1,+1]. Our goal is to compute the quenched average of the free energy 〈ln Z〉 over the data set D1 and teacher
average. We can first remove the average over P(W 1) by performing a gauge transformation: x1,μ

i → W 1
i x1,μ

i , mi → W 1
i mi. The

result can be seen as setting W 1
i = 1,∀i. Then, we apply the replica trick, 〈ln Z〉 = limn→∞ ln〈Zn〉

n , which requires us to compute
the replicated partition function,

〈Zn〉 =
∫

�nN

n∏
a=1

N∏
i=1

dma
i

�
n∏

a=1

M1∏
μ=1

Hβ

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i ma

i x1,μ
i√∑

i 1 − (
ma

i

)2

⎞
⎟⎠
�

. (C4)

Now, we introduce the local field,

ua =
∑

i ma
i x1

i√
N

, v1 =
∑

i W 1
i x1

i√
N

, (C5)

where the data index μ is omitted in advance. Note that the statistics of local fields stem from the data distribution. According
to the central limit theorem, local fields should obey joint Gaussian distribution in the thermodynamics limit N → ∞. Thus, we
have the following statistics:

〈ua〉 = 0, 〈v1〉 = 0. (C6)

In addition,

〈uaua〉 − 〈ua〉〈ua〉 =
∑

i ma
i ma

i

N
,

〈uaub〉 − 〈ua〉〈ub〉 =
∑

i ma
i mb

i

N
,

〈v1ua〉 − 〈v1〉〈ua〉 =
∑

i W 1
i ma

i

N
,

(C7)

where order parameters qab =
∑

i ma
i mb

i
N , qaa =

∑
i ma

i ma
i

N , r1
a =

∑
i W 1

i ma
i

N naturally appear. We enforce the definitions of these order
parameters to the replicated partition function by the Fourier Integral of Dirac delta functions,

δ

(∑
i

ma
i mb

i − qabN

)
=

∫
1

2π i
eq̂ab(

∑N
i ma

i mb
i −qabN )dq̂ab,

δ

(∑
i

ma
i ma

i − qaaN

)
=

∫
1

4π i
e

1
2 q̂aa(

∑N
i ma

i ma
i −qaaN )dq̂aa,

δ

(∑
i

W 1
i ma

i − r1
aN

)
=

∫
1

2π i
er̂1

a (
∑N

i W 1
i ma

i −r1
a N )dr̂1

a ,

(C8)
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and then we obtain

〈Zn〉 =
∫ ∏

a

dr̂1
adr1

a

2π i/N

∏
a

dq̂aadqaa

4π i/N

∏
a<b

dq̂abdqab

2π i/N
e−N

∑
a<b q̂abqab− 1

2 N
∑

a q̂aaqaa−N
∑

a r̂1
a r1

a

×
∫

�n

n∏
a=1

N∏
i=1

dma
i e

∑
a<b q̂ab

∑
i ma

i mb
i + 1

2

∑
a q̂aa

∑
i ma

i ma
i e

∑
a r̂1

a

∑
i ma

i

〈
M1∏

μ=1

n∏
a=1

Hβ

(
− sgn(v1)ua

√
1 − qaa

)〉
. (C9)

Note that we introduce a prefactor 1/
√

N in the summations in Eq. (C3), which does not affect the result. Here, we consider the
replica symmetry Ansätze: qab = q0, q̂ab = q̂0, qaa = qd , q̂aa = q̂d , r1

a = r1, r̂1
a = r̂1. Next, we will define and compute three

terms separately and put them together in the final expression of the free energy:
The first term is the interaction term GI,

GI = −1

2

∑
a,b

q̂abqab −
∑

a

r̂1
ar1

a = −1

2

⎛
⎝∑

a

q̂aaqaa +
∑
a �=b

q̂abqab

⎞
⎠ − nr̂1r1 = −1

2
[nq̂d qd + n(n − 1)q̂0q0] − nr̂1r1. (C10)

The second contribution is the entropy term GS,

GS =
∫

[−1,1]n

∏
a

dmae
1
2

∑
ab q̂abmamb+r̂1

∑
a ma ,

=
∫

[−1,1]n

∏
a

dmae
1
2 q̂d

∑
a mama− 1

2 q̂0
∑

a mama+ 1
2 q̂0(

∑
a ma )2+r̂1

∑
a ma ,

=
∫

[−1,1]n

∏
a

dmae
1
2 q̂d

∑
a mama− 1

2 q̂0
∑

a mama+r̂1
∑

a ma

∫
Dz e

√
q̂0

∑
a maz,

=
∫

Dz

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m

)n

. (C11)

Finally, we compute the energy term GE,

GE =
〈∏

a

Hβ

(
− sgn(v1)ua

√
1 − qd

)〉
, (C12)

where 〈·〉 denotes the average over the joint distribution of the local fields (ua, v1). Based on their statistics, 〈uaua〉 = qd ,
〈uaub〉 = q0, 〈v1ua〉 = r1, 〈v1v1〉 = 1, they can thus be parametrized as

ua = √
qd − q0σa + √

q0z, v1 = r1√
q0

z +
√

1 − r2
1

q0
y, (C13)

where σa, z, and y are all standard Gaussian variables. Substituting Eq. (C13) into the energy term, we arrive at

GE =
〈∏

a

Hβ

(
− sgn(v1)ua

√
1 − qd

)〉
=

∫
Dz

∫
Dy

∏
a

∫
Dσa Hβ

⎛
⎜⎝−

sgn
( r1√

q0
z +

√
1 − r2

1
q0

y
)
(
√

qd − q0σa + √
q0z)

√
1 − qd

⎞
⎟⎠

=
∫

Dz
∫

Dy

⎡
⎢⎣∫

Dσ Hβ

⎛
⎜⎝−

sgn
( r1√

q0
z +

√
1 − r2

1
q0

y
)
(
√

qd − q0σ + √
q0z)

√
1 − qd

⎞
⎟⎠

⎤
⎥⎦

n

=
∫

Dz

⎧⎪⎨
⎪⎩H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠[∫

Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)]n
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+

⎡
⎢⎣1 − H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠

⎤
⎥⎦[∫

Dσ Hβ

(√
qd − q0σ + √

q0z√
1 − qd

)]n

⎫⎪⎬
⎪⎭

=
∫

Dz 2H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠[∫

Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)]n

. (C14)

Note that Dz indicates the standard Gaussian measure.
Finally, under the replica symmetry Ansätze, the replicated partition function can be written as

〈Zn〉 =
∫ ∏

a

dr̂1
adr1

a

2π i/N

∏
a

dq̂aadqaa

4π i/N

∏
a<b

dq̂abdqab

2π i/N
e−Nn fRS . (C15)

Then, under the saddle-point approximation in the large-N limit, the free-energy density is given by

−β fRS = lim
n→0,N→∞

ln〈Zn〉
nN

= lim
n→0

−1

2
[q̂d qd + (n − 1)q̂0q0] − r̂1r1 + ln GS

n
+ α1

ln GE

n
. (C16)

The free energy should be optimized with respect to the order parameters, and thus we have to derive the corresponding saddle-
point equations through setting the gradients to zero. We first compute gS = limn→0

ln GS
n and gE = limn→0

ln GE
n ,

gS = lim
n→0

ln GS

n
= lim

n→0

1

n

∫
Dz

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m

)n

=
∫

Dz ln

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m

)
,

gE = lim
n→0

ln GE

n
= ln

∫
Dz 2H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠[∫

Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)]n

=
∫

Dz 2H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠ ln

∫
Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)
. (C17)

Thus, the saddle-point equations can be expressed as

qd = 2
∂gS

∂ q̂d
, q0 = −2

∂gS

∂ q̂0
, r1 = ∂gS

∂ r̂1
;

q̂d = 2α1
∂gE

∂qd
, q̂0 = −2α1

∂gE

∂q0
, r̂1 = α1

∂gE

∂r1
. (C18)

To make the expressions more compact, we define a probability measure,

〈〈O〉〉H(m) =
∫ +1
−1 O eH(m)dm∫ +1
−1 eH(m)dm

. (C19)

Then we have

qd = 2
∫

Dz

∫ +1
−1

1
2 m2 eI(m,z)dm∫ +1

−1 eI(m,z)dm
=

∫
Dz〈〈m2〉〉I(m,z),

q0 = −2
∫

Dz

∫ +1
−1

(− 1
2 m2 + z

2
√

q̂0
m
)

eI(m,z)dm∫ +1
−1 eI(m,z)dm

=
∫

Dz

〈〈
m2 − z√

q̂0
m

〉〉
I(m,z)

,

r1 =
∫

Dz

∫ +1
−1 m eI(m,z)dm∫ +1
−1 eI(m,z)dm

=
∫

Dz 〈〈m〉〉I(m,z) , (C20)

where

I (m, z) = 1
2 q̂d m2 − 1

2 q̂0m2 +
√

q̂0mz + r̂1m. (C21)
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The other derivatives related to gE can be computed as

q̂d = 4α1

∫
Dz H [λ(z)]

∫
Dσ βHβ−1 [γ (z, σ )] H ′ [γ (z, σ )] u(z, σ )∫

Dσ Hβ [γ (z, σ )]
,

q̂0 = −4α1

∫
Dz H ′ [λ(z)] v1(z) ln

∫
Dσ Hβ [γ (z, σ )]

− 4α1

∫
Dz H [λ(z)]

∫
Dσ βHβ−1 [γ (z, σ )] H ′ [γ (z, σ )] w(z, σ )∫

Dσ Hβ [γ (z, σ )]
,

r̂1 = 2α1

∫
Dz H ′ [λ(z)] h(z) ln

∫
Dσ Hβ [γ (z, σ )] , (C22)

where

λ(z) = − r1√
q0 − r2

1

z,

γ (z, σ ) = −
√

qd − q0σ + √
q0z√

1 − qd
,

u(z, σ ) = (q0 − 1)σ − √
q0

√
qd − q0z

2(1 − qd )
3
2
√

qd − q0

,

v1(z) = r1z

2
(
q0 − r2

1

) 3
2

,

w(z, σ ) =
√

q0σ − √
qd − q0z

2
√

1 − qd
√

qd − q0
√

q0
,

h(z) = −q0z(
q0 − r2

1

) 3
2

. (C23)

a. Generalization error for task 1

During the learning of task 1, the generalization error can be defined as

ε1
g =

〈
�

[
− sgn

(∑
i

W 1
i x∗

i

)∑
i

sgn(mi)x
∗
i

]〉
, (C24)

where x∗ is one fresh example (or a test data). Note that the average 〈·〉 refers to the ensemble average based on the
thermodynamic system for task 1. To handle this average, we define similar local fields for test data,

u∗ =
∑

i sgn(mi)x∗
i√

N
, v∗

1 =
∑

i W 1
i x∗

i√
N

, (C25)

whose statistical properties are as follows: 〈v∗
1v

∗
1〉 = 1, 〈u∗u∗〉 = 1, p1 = 〈v∗

1u∗〉 = 1
N

∑
i sgn(mi )W 1

i . Then, local fields are
parametrized as

u∗ = z, v∗
1 = p1z +

√
1 − p2

1y. (C26)

The generalization error becomes

ε1
g =

∫
Dz

∫
Dy �

(− sgn
(
p1z +

√
1 − p2

1y
)
z
) =

∫
Dz 2H

⎛
⎜⎝− p1√

1 − p2
1

z

⎞
⎟⎠�(−z) = 1

π
arccos(p1), (C27)

which introduces a new order parameter p1. To obtain the value of p1, we should first introduce the order parameter to the
original replicated partition function by a Fourier integral representation of the Dirac δ function. After some manipulations, the
free-energy density under the replica symmetry Ansätze and the limit of n → 0 is rewritten as

−β fRS = − 1
2 [q̂d qd + (n − 1)q̂0q0] − r̂1r1 − p̂1 p1 + g′

S + α1gE, (C28)
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where the energy term gE remains the same, but the entropy term g′
S changes as follows:

g′
S =

∫
Dz ln

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m+p̂1 sgn(m)

)
. (C29)

In the new saddle-point equations, it is easy to find that p̂1 = α1
∂gE

∂ p1
= 0, which means the original saddle-point equa-

tions [Eqs. (C20) and (C22)] are independent of the new order parameters p1 and p̂1. Thus, after the convergence of iterating the
original saddle-point equations, we compute p1 by p1 = ∂g′

S
∂ p̂1

and obtain the following result:

p1 =
∫

Dz 〈〈sgn(m)〉〉I(m,z) . (C30)

b. Generalization error for task 2

The calculation of the generalization error for task 2 follows a similar line, except for one important difference, which is the
involvement of the teacher-average over the joint distribution P(W 1,W 2). In the following, we will omit the similar process in
computing ε1

g , and instead focus on the treatment of teacher-average.
In analogy to ε1

g , the generalization error for task 2 can be expressed as

ε2
g = 1

π
arccos(p2), (C31)

where p2 = 1
N

∑
i sgn(mi )W 2

i . Introducing p2 to the replicated partition function results in a modified entropy term before taking
the replica symmetry Ansätze,

(G′
S)N =

∫
�nN

n∏
a=1

N∏
i=1

dma
i e

∑
a<b q̂ab

∑
i ma

i mb
i + 1

2

∑
a q̂aa

∑
i ma

i ma
i ET[e

∑
a r̂1

a

∑
i W 1

i ma
i +

∑
a p̂2

a

∑
i W 2

i sgn(ma
i )]

=
∫

�nN

n∏
a=1

N∏
i=1

dma
i e

∑
a<b q̂ab

∑
i ma

i mb
i + 1

2

∑
a q̂aa

∑
i ma

i ma
i ET[e

∑
a r̂1

a

∑
i ma

i +
∑

a p̂2
a

∑
i W 1

i W 2
i sgn(ma

i )], (C32)

where the ET[·] denotes the teacher average. A gauge transformation ma
i → ma

i W 1
i is used in the second equality. Thus, the

expectation can be computed as

ET

[
e
∑

a r̂1
a

∑
i ma

i +
∑

a p̂2
a

∑
i W 1

i W 2
i sgn(ma

i )
]

=
∑

W 1,W 2

N∏
i=1

P0
(
W 1

i ,W 2
i

)
e
∑

a r̂1
a

∑
i ma

i +
∑

a p̂2
a

∑
i W 1

i W 2
i sgn(ma

i )

=
N∏

i=1

∑
W 1

i ,W 2
i

P0
(
W 1

i ,W 2
i

)
e
∑

a r̂1
a ma

i +
∑

a p̂2
aW 1

i W 2
i sgn

(
ma

i

)

=
N∏

i=1

[
1 + r0

2
cosh

(∑
a

r̂1
ama

i +
∑

a

p̂2
a sgn

(
ma

i

))

+ 1 − r0

2
cosh

(∑
a

r̂1
ama

i −
∑

a

p̂2
a sgn

(
ma

i

))]
. (C33)

Under the replica symmetry Ansätze, we entropy term becomes

G′
S =

∫
Dz

[(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m+p̂2 sgn(m)

)n
1 + r0

2
+

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m−p̂2 sgn(m)

)n
1 − r0

2

]
.

(C34)

After taking the limitation of n → 0, we have

g′
S =

∫
Dz ln

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m+p̂2 sgn(m)

)
1 + r0

2
+

∫
Dz ln

(∫ +1

−1
dm e

1
2 q̂d m2− 1

2 q̂0m2+√
q̂0mz+r̂1m−p̂2 sgn(m)

)
1 − r0

2
.

(C35)
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Therefore, we can finally get p2 by p2 = ∂g′
S

∂ p̂2
, which results in

p2 = r0

∫
Dz 〈〈sgn(m)〉〉I(m,z) = r0 p1, (C36)

which is actually linear to p1, and r0 characterizes the task similarity.

c. Constrained partition function for learning process

The partition function Eq. (C3) defined previously focuses on the stationary state of the system, which helps to predict the
optimal performance of learning given the corresponding Hamiltonian (loss function). However, by introducing a constraint in
this system, we can study the stationary state during the learning process. The constrained partition function can be written as

Z =
∫

�

N∏
i=1

dmiδ

(∑
i

m2
i − q�N

)
e−βL1(m), (C37)

where N − q�N is the total extent of the weight fluctuation. As the learning goes on, q� will gradually increase until a saturation to
1. Therefore, to explore the stationary state during learning, we can set a value of q� manually, and then solve the corresponding
partition function Eq. (C37).

Note that the calculation of the constrained partition function follows a similar procedure for the nonconstrained one, except
for one subtle difference, which is that the order parameter qaa as well as qd under the replica symmetry Ansätze are replaced by
a prespecified constant q�. Hence, we can directly derive the free-energy density −β fRS,

−β fRS = lim
n→0

−1

2
[q̂d q� + (n − 1)q̂0q0] − r̂1r1 + ln GS

n
+ α1

ln G�
E

n
, (C38)

where the entropy term remains unchanged, and the energy term becomes

g�
E = lim

n→0

ln G�
E

n
=

∫
Dz 2H

⎛
⎜⎝− r1√

q0 − r2
1

z

⎞
⎟⎠ ln

∫
Dσ Hβ

(
−

√
q� − q0σ + √

q0z√
1 − q�

)
. (C39)

Notice that q� is a constant, and thus the saddle-point equations get simplified to

q� = 2
∂gS

∂ q̂d
, q0 = −2

∂gS

∂ q̂0
, r1 = ∂gS

∂ r̂1
, q̂0 = −2α1

∂g�
E

∂q0
, r̂1 = α1

∂g�
E

∂r1
, (C40)

where the first one is an explicit equation for q̂d whose value can be numerically found (e.g., by using the secant method).

2. Thermodynamic system for multitask learning

In the scenario of multitask learning, a distinct characteristic is that previous task information is incorporated into the learning
procedure of the current task by a regularization term. The task information from a previous task refers to the trained weight for
task 1, which can be captured by the associated partition function in the single-task learning section. In terms of the current task,
a similar partition function should be established once the trained weights of the first task are given. This observation indicates
that the variational continual learning can be mapped to the form of Franz-Parisi potential originally proposed in spin-glass
theory [23] and later in neural networks [22],

� = 1

Z̃

∫
�̃

N∏
i=1

dm̃i eβ̃L1(m̃) ln
∫

�

N∏
i=1

dmi eβL2(m,m̃), (C41)

where

L1(m̃) =
M1∑

μ=1

ln H

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i mix

1,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ ,

L2(m, m̃) =
M2∑

μ=1

ln H

⎛
⎜⎝− sgn

(∑
i W 1

i x2,μ
i

)∑
i mix

2,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ −

N∑
i=1

KL(Qmi‖Qm1
i
). (C42)
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Next, our goal is to compute the quenched disorder average of the thermodynamic potential �, where the averages are threefold,
consisting of two data averages over D1 and D2, as well as the teacher average, and it can be explicitly worked out as

〈�〉 = ET

〈
1

Z̃

∫
�̃

N∏
i=1

dm̃i eβ̃L1(m̃) ln
∫

�

N∏
i

dmi eβL2(m,m̃)

〉
D1,D2

= ET

�
1

Z̃

∫
�̃

N∏
i=1

dm̃i

M1∏
μ=1

H β̃

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i m̃ix

1,μ
i√∑

i

(
1 − m̃2

i

)
⎞
⎟⎠
�

D1

×

�

ln
∫

�

N∏
i=1

dmi

M2∏
μ=1

Hβ

⎛
⎜⎝− sgn

(∑
i W 2

i x2,μ
i

)∑
i mix

2,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ e−β

∑
i KL(mi,m̃i )

�

D2

. (C43)

Note that two data averages decouple directly due to the independence between two data sets (but the labels can be corre-
lated). We now omit the subscripts for the data averages. To start the calculation, we introduce two useful replica formulas:
1
Z̃

= limn→0 Z̃n−1, ln Z = lims→0 ∂sZs. Then the potential turns out to be

〈�〉 = lim
n→0

lim
s→0

∂s ET

∫
�̃nN

n∏
a=1

N∏
i=1

dm̃a
i

n∏
a=1

M1∏
μ=1

�

H β̃

⎛
⎜⎝− sgn

(∑
i W 1

i x1,μ
i

)∑
i m̃a

i x1,μ
i√∑

i

[
1 − (m̃a

i )2
]

⎞
⎟⎠
�

×
∫

�sN

s∏
c=1

N∏
i=1

dmc
i

s∏
c=1

M2∏
μ=1

�

Hβ

⎛
⎜⎝− sgn

(∑
i W 2

i x2,μ
i

)∑
i mc

i x2,μ
i√∑

i

[
1 − (

mc
i

)2]
⎞
⎟⎠
�

e−β
∑

c

∑
i KL(mc

i ,m̃
a=1
i ). (C44)

Local fields are introduced for both loss functions,

ũa =
∑

i m̃a
i x1

i√
N

, ṽ1 =
∑

i W 1
i x1

i√
N

, uc =
∑

i mc
i x2

i√
N

, v2 =
∑

i W 2
i x2

i√
N

, (C45)

where we omit superscript μ. Based on the central limit theorem, the local fields follow the joint Gaussian distribution with zero
mean and the nonzero second moments as

〈ũaũa〉 =
∑

i m̃a
i m̃a

i

N
, 〈ũaũb〉 =

∑
i m̃a

i m̃b
i

N
, 〈ṽ1ũa〉 =

∑
i W 1

i m̃a
i

N
, 〈ṽ1ṽ1〉 = 1,

〈ucuc〉 =
∑

i mc
i mc

i

N
, 〈ucud〉 =

∑
i mc

i md
i

N
, 〈v2uc〉 =

∑
i W 2

i mc
i

N
, 〈v2v2〉 = 1. (C46)

We can therefore define the order parameters, q̃aa =
∑

i m̃a
i m̃a

i
N , q̃ab =

∑
i m̃a

i m̃b
i

N , r̃1
a =

∑
i W 1

i m̃a
i

N , qcc =
∑

i mc
i mc

i
N , qcd =

∑
i mc

i md
i

N , r2
c =∑

i W 2
i mc

i
N , and enforce these definitions in potential � by the Dirac delta function δ(·). After a few algebra manipulations, we

arrive at

� = lim
n→0

lim
s→0

∂s

∫ ∏
a

d ˆ̃qaadq̃aa

4π i/N

∏
a<b

d ˆ̃qabdq̃ab

2π i/N

∏
a

d ˆ̃r1
adr̃1

a

2π i/N

∏
c

dq̂ccdqcc

4π i/N

∏
c<d

dq̂cd dqcd

2π i/N

∏
c

dr̂2
c dr2

c

2π i/N
eNS , (C47)

where a similar manipulation of the teacher average to Eq. (C33) is carried out, and the action S finally reads

S = −1

2

∑
a,b

ˆ̃qabq̃ab −
∑

a

ˆ̃r1
a r̃1

a − 1

2

∑
c,d

q̂cd qcd −
∑

c

r̂2
c r2

c

+ ln
∫

�̃nN

∫
�sN

∏
a

dm̃a

∏
c

dmc e
1
2

∑
a,b

ˆ̃qabm̃am̃b++ 1
2

∑
c,d q̂cd mcmd −β

∑
c KL(mc

i ,m̃
a=1
i )

×
[

1 + r0

2
cosh

(∑
a

ˆ̃r1
am̃a

i +
∑

c

r̂2
c mc

i

)
+ 1 − r0

2
cosh

(∑
a

ˆ̃r1
am̃a

i −
∑

c

r̂2
c mc

i

)]

+α1 ln

〈
n∏

a=1

H β̃

(
− sgn(ṽ1)ũa

√
1 − q̃aa

)〉
+ α2 ln

〈
s∏

c=1

Hβ

(
− sgn(v2)uc

√
1 − qcc

)〉
. (C48)
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The maximum of S dominates the integrand under the large-N limit. Thus, we derive the saddle-point equations by taking
derivatives of the action S with respect to the order parameters. We then apply the replica symmetry Ansätze,

q̃ab = q̃0, ˆ̃qab = ˆ̃q0, q̃aa = q̃d , ˆ̃qaa = ˆ̃qd , r̃1
a = r̃1, ˆ̃r1

a = ˆ̃r1,

qcd = q0, q̂cd = q̂0, qcc = qd , q̂cc = q̂d , r2
c = r2, r̂2

c = r̂2. (C49)

To make the calculation neat, we divide the action into three parts and compute their contributions, respectively. First, the
interaction term reads

GI = −1

2

∑
a,b

ˆ̃qabq̃ab −
∑

a

ˆ̃r1
a r̃1

a − 1

2

∑
c,d

q̂cd qcd −
∑

c

r̂2
c r2

c

= −1

2

⎛
⎝∑

a

ˆ̃qaaq̃aa +
∑
a �=b

ˆ̃qabq̃ab

⎞
⎠ − 1

2

⎛
⎝∑

c

q̂ccqcc +
∑
c �=d

q̂cd qcd

⎞
⎠ − n ˆ̃r1r̃1 − sr̂2r2

= −1

2
(n ˆ̃qd q̃d + s(s − 1) ˆ̃q0q0) − 1

2
[sq̂d qd + n(n − 1)q̂0q0] − n ˆ̃r1r̃1 − sr̂2r2. (C50)

Then, the entropy term can be given by

GS =
∫

�̃nN

∫
�sN

∏
a

dm̃a

∏
c

dmc e
1
2

∑
a,b

ˆ̃qabm̃am̃b++ 1
2

∑
c,d q̂cd mcmd −β

∑
c KL(mc

i ,m̃
a=1
i )

×
[

1 + r0

2
cosh

(∑
a

ˆ̃r1
am̃a

i +
∑

c

r̂2
c mc

i

)
+ 1 − r0

2
cosh

(∑
a

ˆ̃r1
am̃a

i −
∑

c

r̂2
c mc

i

)]

=
∫

�̃nN

∫
�sN

∏
a

dm̃a

∏
c

dmc

∫
Dz1

∫
Dz2e

1
2 ( ˆ̃qd − ˆ̃q0 )

∑
a(m̃a )2+

√
ˆ̃q0z1

∑
a m̃a+ 1

2 (q̂d −q̂0 )
∑

c (mc )2+√
q̂0z2

∑
c mc

× e−β
∑

c KL(mc
i ,m̃

a=1
i )

[
1 + r0

2
cosh

(∑
a

ˆ̃r1
am̃a

i +
∑

c

r̂2
c mc

i

)
+ 1 − r0

2
cosh

(∑
a

ˆ̃r1
am̃a

i −
∑

c

r̂2
c mc

i

)]

= 1 + r0

2

∫
Dz1

(∫ +1

−1
dm̃ eĨ(m̃,z1 )

)n−1∫ +1

−1
dm̃ eĨ(m̃,z1 )

∫
Dz2

(∫ +1

−1
dm eJ

+(m,m̃,z2 )

)s

+ 1 − r0

2

∫
Dz1

(∫ +1

−1
dm̃ eĨ(m̃,z1 )

)n−1∫ +1

−1
dm̃ eĨ(m̃,z1 )

∫
Dz2

(∫ +1

−1
dm eJ

−(m,m̃,z2 )

)s

, (C51)

where

Ĩ(m̃, z1) = 1

2
( ˆ̃qd − ˆ̃q0)m̃2 + ( ˆ̃r1 +

√
ˆ̃q0z1)m̃,

J +(m, m̃, z2) = 1

2
(q̂d − q̂0)m2 + (r̂2 +

√
q̂0z2)m − βKL(m, m̃),

J −(m, m̃, z2) = 1

2
(q̂d − q̂0)m2 + (r̂2 +

√
q̂0z2)m − βKL(m,−m̃),

KL(x, y) = −
∑
z=±1

[
K

(
1 + xz

2
,

1 + yz

2

)
− K

(
1 + xz

2
,

1 + xz

2

)]
, (C52)

where K(x, y) = x ln y. Finally, we derive the energy term, expressed as

G1
E =

〈
n∏

a=1

H β̃

(
− sgn(ṽ1)ũa

√
1 − q̃aa

)〉
=

∫
Dz 2H

⎛
⎜⎝− r̃1√

q̃0 − r̃2
1

z

⎞
⎟⎠[∫

Dσ H β̃

(
−

√
q̃d − q̃0σ + √

q̃0z√
1 − q̃d

)]n

(C53)

and

G2
E =

〈
s∏

c=1

Hβ

(
− sgn(v2)uc

√
1 − qcc

)〉
=

∫
Dz 2H

(
− r2√

q0 − r2
2

z

)[∫
Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)]s

, (C54)

where we follow the same computation for deriving Eq. (C14). Thus, we summarize the result as

S = − 1
2 (n ˆ̃qd q̃d + s(s − 1) ˆ̃q0q0) − 1

2 [sq̂d qd + n(n − 1)q̂0q0] − n ˆ̃r1r̃1 − sr̂2r2 + ln GS + α1 ln G1
E + α2 ln G2

E. (C55)
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Calculation of saddle-point equations requires us to consider the limits of limn→0 and lims→0, which leads to the computation

of limn→0 lims→0
lnGS

n , limn→0 lims→0
lnGS

s , limn→0 lims→0
lnG1

E
n , and limn→0 lims→0

lnG2
E

s . Thus, we define and compute these
quantities first,

g̃S = lim
n→0

lim
s→0

ln GS

n
=

∫
Dz ln

∫ +1

−1
dm̃ eĨ(m̃,z),

gS = lim
n→0

lim
s→0

ln GS

s
= 1 + r0

2

∫
Dz1

〈〈∫
Dz2 ln

∫ +1

−1
eJ

+(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

+ 1 − r0

2

∫
Dz1

〈〈∫
Dz2 ln

∫ +1

−1
eJ

−(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

,

g̃E = lim
n→0

lim
s→0

ln G1
E

n
=

∫
Dz 2H

⎛
⎜⎝− r̃1√

q̃0 − r̃2
1

z

⎞
⎟⎠ ln

∫
Dσ H β̃

(
−

√
q̃d − q̃0σ + √

q̃0z√
1 − q̃d

)
,

gE = lim
n→0

lim
s→0

ln G2
E

s
=

∫
Dz 2H

⎛
⎜⎝− r2√

q0 − r2
2

z

⎞
⎟⎠ ln

∫
Dσ Hβ

(
−

√
qd − q0σ + √

q0z√
1 − qd

)
. (C56)

Then we can arrive at the saddle-point equations given below,

q̃d = 2
∂ g̃S

∂ ˆ̃qd
, q̃0 = −2

∂ g̃S

∂ ˆ̃q0
, r̃1 = ∂ g̃S

∂ ˆ̃r1
,

ˆ̃qd = 2α1
∂ g̃E

∂ q̃d
, ˆ̃q0 = −2α1

∂ g̃E

∂ q̃0
, ˆ̃r1 = α1

∂ g̃E

∂ r̃1
;

qd = 2
∂gS

∂ q̂d
, q0 = −2

∂gS

∂ q̂0
, r2 = ∂gS

∂ r̂2
,

q̂d = 2α2
∂gE

∂qd
, q̂0 = −2α2

∂gE

∂q0
, r̂2 = α2

∂gE

∂r2
. (C57)

It is easy to verify that the tilde order parameters are exactly the same as those in Eq. (C18), which are independent of the
nontilded order parameters. This is reasonable because in the multitask loss function L2(m, m̃), the magnetization m̃ in the
KL-divergence is the solution after learning the first task, which is described by the single-task partition function Eq. (C3). As
for the nontilded order parameters, the hatted ones are in the same form with Eqs. (C22) and (C23), except for the replacement
of r1 by r2 in Eq. (C23). After a few manipulations, the second-task related order parameters are expressed as follows:

qd = 1 + r0

2

∫
Dz1

〈〈∫
Dz2〈〈m2〉〉J +(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

+ 1 − r0

2

∫
Dz1

〈〈∫
Dz2〈〈m2〉〉J −(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

,

q0 = 1 + r0

2

∫
Dz1

〈〈∫
Dz2

〈〈
m2 − z√

q0
m

〉〉
J +(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

+1 − r0

2

∫
Dz1

〈〈∫
Dz2

〈〈
m2 − z√

q0
m

〉〉
J −(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

,

r2 = 1 + r0

2

∫
Dz1

〈〈∫
Dz2 〈〈m〉〉J +(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

+ 1 − r0

2

∫
Dz1

〈〈∫
Dz2 〈〈m〉〉J −(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

. (C58)

a. Generalization error for two tasks

The derivation of generalization error in the multitask scenario follows the same procedure with the single-task scenario.
Thus, we present the final results directly. After the convergence of all order parameters, the generalization error for task 2 reads

ε2
g = 1

π
arccos(p2), (C59)

where

p2 = 1 + r0

2

∫
Dz1

〈〈∫
Dz2 〈〈sgn(m)〉〉J +(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

+ 1 − r0

2

∫
Dz1

〈〈∫
Dz2 〈〈sgn(m)〉〉J −(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

. (C60)
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The generalization error for task 1 reads

ε1
g = 1

π
arccos(p1), (C61)

where

p1 = 1 + r0

2

∫
Dz1

〈〈∫
Dz2 〈〈sgn(m)〉〉J +(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

− 1 − r0

2

∫
Dz1

〈〈∫
Dz2 〈〈sgn(m)〉〉J −(m,m̃,z2 )

〉〉
Ĩ(m̃,z1 )

. (C62)

b. The case of tuned KL terms

To investigate the regularization term, we can multiply this term with a factor γ , and then derive the saddle-point equations for
the multitask learning as above. Finally, we can change the value of the modulation factor to probe effects of the regularization
term. The objective function then reads

L2(m, m̃, γ ) =
M2∑

μ=1

ln H

⎛
⎜⎝− sgn

(∑
i W 1

i x2,μ
i

)∑
i mix

2,μ
i√∑

i

(
1 − m2

i

)
⎞
⎟⎠ − γ

N∑
i=1

KL
(
Qmi

∣∣Qm1
i

)
. (C63)

This minor change will not affect the whole calculation process, but will only induce a corresponding factor in the auxiliary
terms,

J +(m, m̃, z2, γ ) = 1
2 (q̂d − q̂0)m2 + (r̂2 +

√
q̂0z2)m − γ βKL(m, m̃),

J −(m, m̃, z2, γ ) = 1
2 (q̂d − q̂0)m2 + (r̂2 +

√
q̂0z2)m − γ βKL(m,−m̃). (C64)

Thus, the saddle-point equations remain the same except for the following differences:

qd = 1 + r0
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Ĩ(m̃,z1 )

. (C65)
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