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We discuss the majority vote model coupled with scale-free networks and investigate its critical behavior.
Previous studies point to a nonuniversal behavior of the majority vote model, where the critical exponents depend
on the connectivity. At the same time, the effective dimension Deff is unity for a degree distribution exponent
5/2 < γ < 7/2. We introduce a finite-size theory of the majority vote model for uncorrelated networks and
present generalized scaling relations with good agreement with Monte Carlo simulation results. Our finite-size
approach has two sources of size dependence: an external field representing the influence of the mass media
on consensus formation and the scale-free network cutoff. The critical exponents are nonuniversal, dependent
on the degree distribution exponent, precisely when 5/2 < γ < 7/2. For γ � 7/2, the model is in the same
universality class as the majority vote model on Erdős-Rényi random graphs. However, for γ = 7/2, the critical
behavior includes additional logarithmic corrections.
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I. INTRODUCTION

We consider a consensus formation model [1], called the
majority vote (MV) model [2–15] on uncorrelated scale-free
networks. We are interested in the finite-size scaling behavior
of the MV model on scale-free networks, which presents a rich
feature where the power-law degree fluctuations can change
the expected mean-field behavior. The scale-free property
induces a nonuniversal behavior, depending on the degree
distribution exponent [13].

Reference [13] presents a heterogeneous mean-field
(HMF) theory for the MV model on quenched scale-free
network with an unbounded number of hub connections.
However, it is essential to note that the presence of hubs in
scale-free networks induces correlations [16,17] and influ-
ences the system’s behavior. Hubs are highly connected nodes
contributing to such network ultrasmall-world properties and
degree correlations [16,17].

Results of Ref. [13] are consistent with a nonuniversal crit-
ical behavior for 5/2 < γ < 7/2. In the case of γ > 7/2, we
have the same universality class of the MV model on random
Erdős-Rényi graphs, where γ is the degree distribution expo-
nent. Reference [18] reports the same nonuniversal behavior
on the MV model on Barabási-Albert (BA) networks with two
opinion states while maintaining the effective dimension Deff ,
defined as

Deff ≡ 2β/ν + γ ′/ν, (1)

equal to unity, where β, γ ′, and ν are the order param-
eter, susceptibility, and shifting exponents, respectively. In
addition, Ref. [19] considered a modified version of the
MV model on BA networks where the individuals can
have three discrete opinions. Its results pointed to varying
1/ν, β/ν, and γ /ν exponent ratios when changing z, also
reporting Deff = 1.

Unbounded degree fluctuations introduce nontrivial effects
on phase transitions [20–22]. One well-studied example is the
contact process (CP) model on the uncorrelated configuration
model (UCM) [21–23]. The UCM is an algorithm to generate
uncorrelated scale-free networks with an externally controlled
power-law exponent γ [23], which we can impose a structural
cutoff (maximum number of hub connections) to generate
uncorrelated scale-free networks.

The critical behavior of the CP model on UCM net-
works has been the subject of intense debate in the literature.
While some studies suggest that the CP model follows
the heterogeneous mean field (HMF) theory for unbounded
scale-free networks [20,21,24], it is now widely accepted
that the finite-size scaling corrections that depend on the
degree distribution cutoff determine the critical behavior
of the CP model on scale-free networks. Specifically, for
UCM networks with γ = 3, HMF theory predicts logarithmic
corrections to scaling [24]. Similarly, a mean-field theory
applied to BA networks predicts an extra logarithmic de-
pendence in the critical behavior of the CP model order
parameter [25].

In this way, we present a theory for the finite-size correc-
tions on the MV model scaling on the uncorrelated scale-free
networks. The sources of the scale-free corrections are the
network cutoff, which is required to build an uncorrelated
scale-free network, and an external droplet field that induces
a small variation of the magnetization, scaling as N−1. We
compared our approach with simulation results on UCM and
BA networks [16,17,26–31].

In this paper, we have organized our discussion into
the following sections: in Sec. II, we extend the results of
Ref. [13]; in Sec. III, we describe the droplet finite-size
scaling relations for the MV model; in Sec. IV, we discuss
our simulation results; and in Sec. V, we present our final
considerations.
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II. REVISITING THE HETEROGENEOUS
MEAN-FIELD THEORY

A. Dynamics of MV model

In this work, we consider the two-state MV model [2–4],
which can describe a ferromagnetic material in contact with
two heat baths, one at zero temperature and the other at infinite
temperature. Also, the MV model can describe consensus
formation whose dynamics have the following rules:

(1) We consider a network with N nodes. We assign a
system state

σ = (σ1, σ2, . . . , σN ), (2)

where each network node is associated to a stochastic variable
σi = ±1, corresponding to two opinion states for each net-
work node. We can start the dynamics by randomly selecting
the opinion state for each node.

(2) At each time step, we randomly choose one node i to
be updated.

(3) Then, we try a spin flip with rate wi, written as

wi(σ) = α

2

⎡
⎣1 − (1 − 2q)σiS

⎛
⎝ ki∑

ς=1

σς

⎞
⎠
⎤
⎦, (3)

where the index summation ς runs over the ki nearest neigh-
bors of the node i, α = 1 is a parameter with an inverse time
dimension related to the selection probability, and S(x) is the
sign function, which summarizes the neighborhood majority
opinion

S(x) =
⎧⎨
⎩

−1, if x < 0,

0, if x = 0,

1, if x > 0.

(4)

The noise parameter q in Eq. (3) induces a continuous
phase transition from a consensus phase to a no-consensus
phase, analogous to the ferroparamagnetic phase transition. In
the context of consensus formation models of sociophysics,
the noise parameter is a social temperature that gives the
probability of local contrarians. Equation (3) summarizes
a Markovian process where an individual will oppose its
neighborhood opinion with probability q and follows its
neighborhood with probability 1-q. In case of no local major-
ity, the node j can assume any opinion state with wi = 1/2.

The MV model dynamics obeys the following master equa-
tion [32], valid for local spinflips,

d

dt
Pσ =

N∑
i

wi(σ
i )Pσ i − wi(σ)Pσ, (5)

where Pσ is the occupation probability of one system state,
and

σ i = (σ1, σ2, . . . ,−σi, . . . , σN ) (6)

is the system state after a successful spinflip from the system
state σ. An average ensemble of the local magnetization for
local spin-flip dynamics should give

∂

∂t
〈σi〉 = −2〈σiwi(σ)〉. (7)

B. Time evolution of the order parameter
for unbounded networks

From Eqs. (3) and (7), we can obtain the mass-action
equation of the local magnetization 〈σi〉,

∂

∂t
〈σi〉 = −〈σi〉 + λ

〈
S

⎛
⎝ k j∑

ς=1

σς

⎞
⎠〉, (8)

where we defined

λ ≡ 1 − 2q. (9)

Following Ref. [13], we can write

〈
S

⎛
⎝ k j∑

ς=1

σς

⎞
⎠〉 =

∑
σi=±1

σiP
majority
i (σi ), (10)

where Pmajority
i is the majority opinion distribution of the ki

neighbors of node i. The majority opinion distribution Pmajority
i

of the ki neighbors of node i in Eq. (10) is given by

Pmajority
i (σ ) =

ki∑

=�ki/2�

(
ki




) 
∏
j

Pnode
j (σ )

ki−
∏
j′

Pnode
j′ (−σ ),

(11)

where �x� is the ceiling function, and the indices j, j′ run
on the neighborhood of node i. We note that any event with
�ki/2� < 
 < ki neighbors aligned with σi and ki-
 neighbors,
where −σi contributes to Pmajority

i (σi ). In addition, Pnode
i (σ ) is

the distribution of local values of σ = ±1, which depends on
the local magnetization. In annealed networks, local proper-
ties should depend only on the node degree, therefore,

Pnode
j (σ ) = Pnode

k (σ ) = 1 + σ 〈σk〉
2

, (12)

where 〈σk〉 is the local magnetization of a node j with degree
k. Note that if the local magnetization vanishes, we should
have Pnode

j (σ ) = 1/2.
We now consider uncorrelated networks, where each factor

in Eq. (11) would have the same frequency, given by

P(k | k′) = k′P(k′)
〈k〉 , (13)

which is the conditional probability that a neighbor of a node
with degree k should have degree k′. The conditional probabil-
ity of uncorrelated networks P(k | k′) should be proportional
to the network degree distribution P(k) and the neighbor de-
gree k′. Therefore, we can rewrite Eq. (11) for uncorrelated
networks as

Pmajority
k (σ ) =

k∑

=�k/2�

(
k




) k∏
k′

(
1 + σ 〈σk〉

2

) k′P(k′ )
〈k〉 


×
(

1 − σ 〈σk〉
2

) k′P(k′ )
〈k〉 (k−
)

. (14)
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In addition, by using the binomial expansion until linear
terms, we can further simplify Eq. (14) as

Pmajority
k (σ ) ≈

k∑

=�k/2�

(
k




) k∏
k′

(
1 + σM ′

2

)
(1 − σM ′

2

)k−


,

(15)

valid in the 〈σk〉 	 1 regime, where we defined the rescaled
order parameter

M ′ ≡ 1

〈k〉
∑

k

kP(k)〈σk〉, (16)

where every node is weighted by its degree. We can use the
central limit theorem to give a continuous degree approxima-
tion for Pmajority

k (σ ),

Pmajority
k (σ ) ≈

√
2

kπ

∫ k

k/2
exp

{
−
[

t − k

2
(1 + σM ′)

]2
}

dt,

(17)

which we can approximate to the simpler expression

Pmajority
k (σ ) ≈ 1

2
+ σ

2
erf

(√
k

2
M ′
)

, (18)

valid for well-connected networks where hubs satisfy k 
 1,
where erf(x) is the error function

erf(x) ≡ 2√
π

∫ x

0
exp

(−t2
)
dt . (19)

Returning to Eq. (10), and substituting Pmajority
k (σ ) given in

Eq. (18), we obtain〈
S

⎛
⎝ k j∑

ς=1

σς

⎞
⎠
〉

≈ erf

(√
k

2
M ′
)

, (20)

which depends on the rescaled magnetization, written in
Eq. (16). From Eq. (20), we can recast Eq. (8) as

∂

∂t
〈σk〉 = −〈σk〉 + λ erf

(√
k

2
M ′
)

, (21)

and multiplying Eq. (21) with P(k | k′) written in Eq. (13)
and summing in k, we obtain an evolution equation for M ′,
depending on the neighboring consensus average written in
Eq. (20):

∂

∂t
M ′ = −M ′ + λ

∑
k

kP(k)

〈k〉 erf

(√
k

2
M ′
)

. (22)

In the case of unbounded power-law networks with the
normalized degree distribution, where we do not limit the
number of connections of the hubs, we have the following
distribution:

P(k) = (γ − 1)mγ−1k−γ , (23)

with moments

〈k
〉 = (γ − 1)

(γ − 
 − 1)
m
, (24)

where m is the minimum number of connections, we can write
the stationary rescaled magnetization M ′ in the continuous
degree limit

M ′ = λ(γ − 2)mγ−2
∫ ∞

m
k−γ+1erf

(√
k

2
M ′
)

dk (25)

from Eq. (22). We can integrate the right side of Eq. (25) in
parts to write

M ′ = λ erf

(√
m

2
M ′
)

+ λ

√
m

2π
M ′
(

mM ′2

2

)γ−5/2

× �

(
−γ + 5/2,

mM ′2

2

)
, (26)

where �(s, x) is an incomplete Gamma function. Equa-
tion (26) is a recursive transcendental equation for M ′, which
can only be solved in the linear asymptotic limit M ′ → 0.

Note that we considered uncorrelated networks, while we
do not impose any cutoff on the number of hub connections.
Hubs can induce degree correlations, and the unbounded num-
ber of connections can turn the network into a disassortative
one. We have to impose a cutoff in the distribution to preserve
the neutral feature of the network. The cutoff is also a source
of finite-size corrections, as we analyze in Sec. III.

C. Asymptotic expression of the order parameter
for unbounded networks

We can use the error function expansion

erf(x) = 2√
π

(
x − x3

3
+ x5

10
− · · ·

)
(27)

and the asymptotic expansion of the incomplete Gamma func-
tion for x → 0,

xs�(−s, x) = π

sin [π (s + 1)]

xs

�(s + 1)

+ 1

s
+ x

1 − s
+ x2

2(s − 2)
+ · · · , (28)

for a noninteger s to write the asymptotic behavior of M ′ for
M ′ → 0,

M ′
[

2λ

√
m

2π

γ − 2

γ − 5/2
− 1 − 2λ

3

√
m

2π

γ − 2

γ − 7/2

mM ′2

2
+

− λ

√
m

2π

π

�(γ − 3/2)|sin[π (γ − 3/2)]|

×
(

mM ′2

2

)γ−5/2
⎤
⎦ ≈ 0 (29)

valid for γ �= 5/2 and γ �= 7/2. We shall return to the case
γ = 7/2. We can solve for M ′ in Eq. (29), where we can
identify two cases:
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(i) For 5/2 < γ < 7/2, we can neglect the third term in
Eq. (29). Solving for M ′ yields two roots given by

(M ′2)γ−5/2 =
⎧⎨
⎩

2λ
√

m
2π

γ−2
γ−5/2 −1

λ
√

m
2π

π
�(γ−3/2)|sin[π (γ−3/2)]| ( m

2 )γ−5/2 , if λ > λc,

0, if λ � λc,

(30)

where we obtain β = 1/[2(γ − 5/2)].
(ii) For γ > 7/2, we can neglect the last term between

brackets in Eq. (29). Again, solving for M ′ yields two roots,
now given by

M ′2 =
⎧⎨
⎩

2λ
√

m
2π

γ−2
γ−5/2 −1

2λ
3

√
m
2π

γ−2
γ−7/2

m
2

, if λ > λc,

0, if λ � λc,
(31)

where we readily obtain the critical order parameter exponent
β = 1/2.

In both cases, we identify a critical threshold that separates
the paramagnetic phase with M ′ = 0 and the ferromagnetic
phase with M ′ �= 0, given by

λc = 1

2

√
2π

m

γ − 5/2

γ − 2
, (32)

which reproduces the same result of Refs. [9,11,13]. From
the expression of the critical threshold in Eq. (32), we can
conclude that the model presents a vanishing threshold for
γ = 5/2.

Now, we return to the case γ = 7/2. We can combine
Eq. (26) with γ = 7/2, Eq. (27), and the following expansion

x�(−1, x) = 1 + x(ln x + γem + 1) − x2

2
+ · · ·, (33)

where γem is the Euler-Mascheroni constant, to obtain

M ′
[

3λ

√
m

2π
− 1 + 1

2

1√
2π

m3/2M ′2| ln M ′|
]

≈ 0. (34)

Solving for M ′ yields

M ′2| ln M ′| =
⎧⎨
⎩

3λ
√

m
2π

−1
λ√
π ( m

2 )3/2 , if λ > λc,

0, if λ � λc;
(35)

in a way we obtain β = 1/2 with additional logaritmic correc-
tions. The critical threshold λc is also given by Eq. (32) with
γ = 7/2.

In summary, we extended the results of Ref. [13] to in-
clude the asymptotic relations of the rescaled magnetization
expressed in Eqs. (31), (30), and (35) for the cases 5/2 <

γ < 7/2, γ > 7/2, and γ = 7/2, respectively. In addition, we
found the explicit form of logarithmic corrections at γ = 7/2,
proportional to | ln M ′|. We also reproduced the result for the
critical exponent β of Ref. [13], given by

β =
{ 1

2(γ−5/2) , if 5/2 < γ < 7/2,
1
2 , if γ � 7/2,

(36)

where the case γ = 7/2 presents additional logarithmic cor-
rections, and for γ = 5/2 we have a vanishing threshold.

We can apply the results of this session to unbounded
networks without the scale-free property. A scale-free network
should have a cutoff in the degree distribution to maintain

its neutral, uncorrelated nature. In general, in uncorrelated
networks, there are other sources of scaling corrections, as
seen for the SIR model [33–35], and the contact process
[20,24,25,36–38], coming from the network cutoff. In the next
session, we present a theory for finite-size scaling corrections
on scale-free networks.

III. DROPLET FINITE-SIZE SCALING
FOR THE MV MODEL

A. Cutoff power-law networks

We now consider power-law networks with the following
distribution:

P(k) =
{

γ−1
f (γ−1) m

γ−1k−γ , if m � k � kc,

0, if k < m and if k > kc; ,
(37)

where f (x) is written as

f (x) = 1 −
(

m

kc

)x

, (38)

which expresses the effect of a cutoff kc, and in general, we
have the cutoff in the form

kc = N1/ω, (39)

where ω = 2 in the case of the structural cutoff imposed on
UCM networks [23], and ω = γ − 1 in the case of a natural
cutoff seen in growing network models as the BA model
[17]. The degree moments of the distribution in Eq. (37) are
given by

〈k
〉 = (γ − 1)

(γ − 
 − 1)

f (γ − 
 − 1)

f (γ − 1)
m
, (40)

where f (x) and kc are given by Eqs. (38) and (39), respec-
tively.

B. Dynamic evolution with an external field

We use the external field to link the system dynamic be-
havior with the finite size of the underlying network. The
external field generally interacts with the individual spins
by a Zeeman interaction. However, in consensus formation
models, the external field describes the mass media influence
over the individuals by favoring one of the possible opinion
states. We modify the spin-flip rate in Eq. (3) to

w j (σ) = α

2
(1 − ph)

⎡
⎣1 − (1 − 2q)σ jS

⎛
⎝ k j∑

ς=1

σς

⎞
⎠
⎤
⎦+ αph,

(41)

which we can interpret as the spin trying an independent
spinflip with probability ph, given by

ph = h

2
(1 − σi ) (42)

before the usual MV spinflip, where we note that ph = h is the
rate that the spins with σi = −1 will flip, while spins with σi =
1 would have ph = 0. The external field breaks Z2 symmetry
by favoring the σi = 1 state.
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In the case of a small external field that produces a small
droplet variation of the total magnetization that scales as

h�M ∼ 2

N
, (43)

corresponding to only one spin flip in a network with N nodes,
we can write an approximate spin-flip rate from Eq. (41),
given by

w j (σ) ≈ α

2

⎡
⎣1 − (1 − 2q)σ jS

⎛
⎝ k j∑

ς=1

σς

⎞
⎠
⎤
⎦+ αph, (44)

and from the master equation, we obtain the analogous of
Eq. (8) in the presence of a small external field

∂

∂t
〈σi〉 = −〈σi〉 + λ

〈
S

⎛
⎝ k j∑

ς=1

σς

⎞
⎠〉+ h, (45)

where we neglected an additive term h〈σi〉 which scales as
2/N , λ is given as a function of the noise in Eq. (9), and S(x) is
defined in Eq. (4). From Eq. (20) we can obtain the evolution
of the local magnetization

∂

∂t
〈σk〉 = −〈σk〉 + λ erf

(√
k

2
M ′
)

+ h, (46)

and the evolution of the rescaled magnetization in the pres-
ence of an external field

∂

∂t
M ′ = −M ′ + λ

∑
k

kP(k)

〈k〉 erf

(√
k

2
M ′
)

+ h. (47)

C. Asymptotic expressions in an external field

We can readily obtain the stationary solution for the
rescaled order parameter in the continuous limit with the
external field in an analogous way to the previous section as

M ′ = λ
γ − 2

f (γ − 2)

∫ kc

m
k−γ+1erf

(√
k

2
M ′
)

dk + h, (48)

where we used the cutoff power-law distribution written in
Eq. (37). Integrating into the right side and applying expan-
sions in Eqs. (27) and (28) to Eq. (48), we obtain for the
asymptotic behavior of the rescaled magnetization M ′ in the
M ′ → 0 limit

h ≈
(

1 − λ

λc

)
M ′ + λ

6

√
2

π
gM ′3 + O(M ′5), (49)

where the critical threshold λc [9,11,13] is

λc =
√

π

2

〈k〉
〈k3/2〉 = 1

2

√
2π

m

γ − 5/2

γ − 2

f (γ − 2)

f (γ − 5/2)
, (50)

and the correction factor g is given by

g = 〈k5/2〉
〈k〉 = γ − 2

γ − 7/2

f (γ − 7/2)

f (γ − 2)
m3/2. (51)

From Eq. (38), we see that f (x) → 1 for x > 0, in a way that
the critical threshold in Eq. (50) reproduces the expression in
Eq. (32) for kc → ∞.

We can also obtain an asymptotic expression of the mag-
netization M as a function of the rescaled magnetization M ′.
We write the magnetization M as

M ≡
∑

k

P(k)〈σk〉. (52)

From Eq. (46), we can obtain the stationary state of 〈σk〉,

〈σk〉 = λ erf

(√
k

2
M ′
)

+ h, (53)

and substitution of 〈σk〉 in Eq. (52) yields, in the continuous
limit,

M − h = λ
γ − 1

f (γ − 1)
mγ−1

∫ kc

m
k−γ erf

(√
k

2
M ′
)

dk, (54)

where we substituted the cutoff power-law distribution written
in Eq. (37). In an analogous way we obtained Eq. (49); we can
write

M − h ≈ λ

√
2

π
aM ′ − O(M ′3), (55)

where we defined

a = 〈k1/2〉 = γ − 1

γ − 3/2

f (γ − 3/2)

f (γ − 1)
m1/2. (56)

We note that M and M ′ will have the same scale in the
thermodynamic limit for h → 0.

D. Finite-size scaling on an uncorrelated scale-free network

We can obtain the finite-size scaling for small magnetiza-
tions M close to the critical threshold from the asymptotic
expressions. We start from Eq. (49) for λ = λc, combined with
Eq. (55) with h → 0, which yields

h ∝ g

a3
M3, (57)

where we note that the external field h scales as Mδ; in a way
we obtain the critical exponent δ = 3. Also, by integrating into
M, we obtain

h�M ∝ g

a3
M4, (58)

and by using the droplet scaling of h�M at Eq. (43), we obtain

M ∝
(

gN

a3

)−1/4

. (59)

We can also obtain the shifting scaling from Eq. (49) for
h = 0, which yields

λ

λc
− 1 ∝ gM ′2, (60)

and substituting Eqs. (55) and (59) into (60), we obtain

λ

λc
− 1 ∝

(
aN

g

)−1/2

. (61)

014308-5



D. S. M. ALENCAR et al. PHYSICAL REVIEW E 108, 014308 (2023)

We can summarize results in Eqs. (59) and (61) in the
following scaling form:

M =
(

gN

a3

)−1/4

F

[(
aN

g

)1/2(
λ

λc
− 1

)]
, (62)

where g and a are given in Eqs. (51) and (56), respectively.
The correction factor a does not change the system scaling in
the thermodynamic limit, while g can change the critical ex-
ponents in the 5/2 < γ < 7/2 interval. The correction factor
g obeys the following mesoscopic scaling

g ∼

⎧⎪⎪⎨
⎪⎪⎩

γ−2
7/2−γ

f (7/2−γ )
f (γ−2) mγ−2N (7/2−γ )/ω, if 5/2 < γ < 7/2,

3/2
f (3/2) m

3/2
∣∣ln ( m

N1/ω

)∣∣, if γ = 7/2,

γ−2
γ−7/2

f (γ−7/2)
f (γ−2) m3/2, if γ > 7/2,

(63)

where we substituted the explicit cutoff dependence at
Eq. (39) in Eq. (51).

The following section compares the theoretical results for
the finite-size critical behavior with simulation results for
the kinetic dynamics on quenched uncorrelated networks.
The droplet theory is supposed exact on annealed networks.
However, as we will show, the droplet theory presented in
this section also works on quenched uncorrelated networks
obeying the degree distribution in Eq. (37).

IV. SIMULATION RESULTS

A. UCM networks

To construct UCM networks obeying a bounded degree
distribution P(k) with a correspondent cumulative distribution
function C(k) that has the additional property of being invert-
ible, we can draw a random degree by k = C−1(r) where r is
a uniformly distributed random number in the [0,1] interval.
The degree distribution of Eq. (37) has the required property
where we can draw a random ki degree from the following
expression:

ki =
⎢⎢⎢⎣m

(
1 − kγ−1

c − mγ−1

kγ−1
c

r

)−1/(γ−1)
⎥⎥⎥⎦. (64)

Now, we assign to each node i, in a set of N nodes, ki stubs.
These stubs are ki incomplete edges from the node i to an
unselected neighbor. We also impose the constraint that the
sum of all ki degrees must be even to make an undirected
graph. We complete the edges by randomly connecting pairs
of stubs from different nodes, forbidding multiple connec-
tions. This construction results in a random network with a
degree distribution P(k) according to Eq. (37). The resulting
network will not have degree correlations due to the random
nature of edge assignment [23].

B. Observables and critical behavior

We present the needed observables to investigate the
critical behavior of the MV model in the following. The
main observable is the opinion balance o, analogous to

the magnetization of magnetic equilibrium systems

o =
∣∣∣∣∣ 1

N

∑
i

σi

∣∣∣∣∣. (65)

One can calculate the order parameter by averaging m from
the opinion balance. In quenched networks, we should do
a quenched average, done on random realizations of the
network. For each random realization, one should evolve dy-
namics to a stationary state and then collect an ensemble
composed of a time series. The order parameter M, the sus-
ceptibility χ , and Binder fourth-order cumulant U are given
by the following relations, respectively [2],

M = [〈o〉],
χ = [N (〈o2〉 − 〈o〉2)], (66)

U =
[

1 − 〈o4〉
3〈o2〉2

]
,

where the symbol 〈...〉 represents the average of a time se-
ries and the symbol [...] represents the quench average. All
observables are functions of λ.

From the results of the previous section, notably Eq. (62),
we conjecture that the observables written in Eq. (66) should
obey the following finite-size scaling (FSS) relations:

M =
(

gN

a3

)−1/4

FM

[(
aN

g

)1/2(
λ

λc
− 1

)]
,

χ =
(

N

ga3

)1/2

Fχ

[(
aN

g

)1/2(
λ

λc
− 1

)]
, (67)

U = FU

[(
aN

g

)1/2(
λ

λc
− 1

)]
,

where M now indicates an average on the stationary state
and network realizations, differently of Sec. III, where M
indicated a stationary state of the magnetization of an an-
nealed network. In addition, motivated by previous studies
[13,18,19,39] reporting effective exponents yielding Deff = 1,
we conjectured the scaling forms of the susceptibility and the
Binder cumulant.

To obtain the relevant observables, we performed Monte
Carlo Markov chains (MCMC) on UCM networks with dif-
ferent sizes N . We simulated 160 random network realizations
for each size to make quench averages. For each network
replica, we considered 105 MCMC steps to let the system
evolve to a stationary state and another 105 MCMC steps
to collect 105 values of the opinion balance to measure the
observables. One MCMC step for the MV model is the update
of N spins. Error bars were calculated by resampling data [40].

C. Results and discussion

We show our simulation results for the MV model on UCM
networks with γ = 3.0 and m = 8 in Fig. 1. We show data
collapses by using the scaling relations written in Eq. (67).
All simulation results are consistent with a continuous phase
transition with critical thresholds λc depending on the degree
distribution exponent γ . In addition, we obtained a good
agreement between simulation results and the scaling relation
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FIG. 1. We show the stationary simulation results of averages
in Eq. (66) in (a), (c), and (e), respectively, for the majority vote
coupled to UCM networks with γ = 3.0 and m = 8, as functions of
the control parameter λ. We show data collapses of Binder cumulant
U , magnetization M, and susceptibility χ , in (b), (d), and (f), respec-
tively, according to Eq. (67) where g and a are given in Eqs. (63) and
(56), respectively. We estimate the critical threshold as λc = 0.2482.
The critical behavior is nonuniversal for 5/2 < γ < 7/2, where the
critical exponent ratios depend on the degree exponent γ .

predicted by droplet theory in the case of magnetization and
Binder cumulant. In the case of the susceptibility, we ad hoc
propose a scaling form with a good agreement with simulation
data.

We also simulated results on UCM networks with γ =
3.25 (not shown), γ = 3.5 (Fig. 2), γ = 3.75 (not shown), and
γ = 4 (Fig. 3). We obtained a dependence on degree distri-
bution exponent γ for quenched UCM networks, contrary to
our prediction in Eq. (50). However, the data collapse presents
an excellent agreement with scaling relations in Eq. (67). In
addition, we tested the scaling relations on Eq. (67) to the
BA networks (not shown) and obtained good collapses; as a
consequence that BA networks are almost uncorrelated [22].

The critical behavior of the MV model on uncorrelated
networks depends on the correction factor g. From the meso-
scopic scale of g in Eq. (63), we can obtain the asymptotic

FIG. 2. The same of Fig. 1 for γ = 3.5. In this case, we estimate
the critical threshold as λc = 0.3058. For γ = 7/2, we have the same
universality class of the MV model on random Erdős-Rényi graphs
[3], where the scaling presents additional logarithmic corrections.

scale of g in the thermodynamic limit (N → ∞),

g ∼
⎧⎨
⎩

N
γ−7/2

ω , if 5/2 < γ < 7/2,

ln N, if γ = 7/2,

constant, if γ > 7/2,

(68)

and from the scaling relations in Eq. (67) we can obtain the
critical exponent ratios by substituting the g scaling. Recalling
the fact that the magnetization should vanish at the critical
threshold as N−β/ν , we can write for the critical exponent
ratio β/ν,

β

ν
=
{

1
4 + γ−7/2

4ω
, if 5/2 < γ < 7/2,

1
4 , if γ � 7/2,

(69)

and the shifting of the susceptibility maxima from the critical
threshold should also scale as N−1/ν . We obtain the critical
exponent ratio 1/ν,

1

ν
=
{

1
2 − γ−7/2

2ω
, if 5/2 < γ < 7/2,

1
2 , if γ � 7/2,

(70)
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FIG. 3. The same of Fig. 1 for γ = 4.0. In this case, we estimate
the critical threshold as λc = 0.3482. For γ � 7/2, the universality
class of the model is the same as the MV model on random Erdős-
Rényi graphs [3].

and the fact that the susceptibility should diverge as Nγ ′/ν

yields the critical exponent ratio γ ′/ν :

γ ′

ν
=
{

1
2 − γ−7/2

2ω
, if 5/2 < γ < 7/2,

1
2 , if γ � 7/2.

(71)

Moreover, from the critical exponent δ = 3 and the critical
exponent results in Eqs. (69) and (71), we also see that the
Widom scaling identity

γ = β(δ − 1) (72)

is violated in the interval 5/2 < γ < 7/2. For γ > 7/2, we re-
cover the mean-field critical exponents that satisfy the Widom
scaling identity. One well-documented example of the Widom
scaling violation in other systems that present nonuniver-
sal critical behavior is the lattice models with Levy flights:

annealed long-range interactions in lattice models that obey a
power-law distribution of the lattice distance [41].

In the case of a low-dimensional lattice system with Levy
flights, the critical behavior of the lattice system undergoes
a crossover between two asymptotic behaviors: the low-
dimensionality one with its particular set of critical exponents
to a mean-field behavior with mean-field exponents. In the
crossover region, the critical exponents are nonuniversal, de-
pending on the Levy flight exponent distribution, and the
Widom scaling is violated in the crossover region [41].

The critical dimension, defined in Eq. (1), from Eqs. (69)
and (71), is unity which is consistent with the results of
Refs. [13,18]. We also note that the finite result by the inclu-
sion of the network cutoff should result in a different expected
critical behavior from the heterogeneous mean-field theory
presented in Sec. II, as a consequence of the network cutoff,
needed to maintain the uncorrelated nature of the scale-free
networks.

Finally, we summarize the critical behavior of the MV
model on uncorrelated networks; For 5/2 < γ < 7/2, the
critical behavior is nonuniversal, where the critical exponent
ratios depend on the degree exponent γ as seen in Eqs. (69),
(70), and (71). For γ � 7/2, we have the same universality
class of the MV model on random Erdős-Rényi graphs [3],
where the scaling presents additional logarithmic corrections
in the case γ = 7/2.

V. CONCLUSIONS

We considered a consensus formation model, namely the
MV model on quenched networks. Our simulation results sug-
gest a continuous phase transition, where the critical noises
depend on network connectivity and the degree exponent γ .
We also presented a finite-size scaling theory where the cor-
rection factors on finite networks should change the critical
behavior of the model. We obtained a nonuniversal critical be-
havior for 5/2 < γ < 7/2, where the critical exponent ratios
depend on the degree exponent γ . In the case of γ > 7/2,
we have the same universality class of the MV model on
random Erdős-Rényi graphs. For γ = 7/2, the critical be-
havior of the system is also the same as the MV model on
random Erdős-Rényi graphs, however, with additional loga-
rithmic corrections.
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