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The q-neighbor Ising model for the opinion formation on multiplex networks with two layers in the form
of random graphs (duplex networks), the partial overlap of nodes, and LOCAL&AND spin update rule was
investigated by means of the pair approximation and approximate master equations as well as Monte Carlo
simulations. Both analytic and numerical results show that for different fixed sizes of the q-neighborhood
and finite mean degrees of nodes within the layers the model exhibits qualitatively similar critical behavior
as the analogous model on multiplex networks with layers in the form of complete graphs. However, as the
mean degree of nodes is decreased the discontinuous ferromagnetic transition, the tricritical point separating
it from the continuous transition, and the possible coexistence of the paramagnetic and ferromagnetic phases
at zero temperature occur for smaller relative sizes of the overlap. Predictions of the simple homogeneous
pair approximation concerning the critical behavior of the model under study show good qualitative agreement
with numerical results; predictions based on the approximate master equations are usually quantitatively more
accurate but yet not exact. Two versions of the heterogeneous pair approximation are also derived for the model
under study, which, surprisingly, yield predictions only marginally different or even identical to those of the
simple homogeneous pair approximation. In general, predictions of all approximations show better agreement
with the results of Monte Carlo simulations in the case of continuous than discontinuous ferromagnetic transition.
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I. INTRODUCTION

Investigation of the opinion formation process by means
of nonequilibrium models has become a firmly established
research field in statistical physics in the last decades [1].
Many results in this area were obtained using models with
agents’ opinions represented by spins with discrete (in most
cases two) states obeying stochastic dynamics described by
various rates at which agents change (e.g., flip) their opinions,
e.g., the majority-vote model [2–7], the noisy voter model
[8–10], different versions of the noisy nonlinear and q-voter
model [11–20], and the q-neighbor Ising model [21–24]. In
particular, much effort was devoted to determining conditions
under which the above-mentioned models exhibit phase tran-
sition from a disordered paramagnetic (PM) state in which
each opinion appears with the same probability to an or-
dered ferromagnetic (FM) state with one dominant opinion as
the parameter controlling the level of stochastic noise in the
model is varied, measuring the agents’ uncertainty in decision
making. In this context the presence of the first-order FM
transition, or even transition to a frozen FM phase, is of prime
importance, with abrupt occurrence of a dominant opinion
as well as possible hysteresis and bistability of the PM and
FM phases [4,5,12–21,24]. Following the growing interest in
the dynamical processes on complex networks [25] agents
in the models for the opinion formation are often located in
the nodes and interact via edges of complex networks reflect-
ing a complicated structure of social interactions [3–7,9,13–
16,18–20,23,24]. In this case analytic predictions concerning
the critical behavior of the models based on the mean-field
approximation (MFA) need not exhibit quantitative agreement
with results of Monte Carlo (MC) simulations, hence, more
accurate approaches based on the pair approximation (PA)

[26–30] and approximate master equations (AMEs) [28–30]
were applied to describe theoretically the observed phase tran-
sitions [10,14–16,18,19,24].

Recently much attention has been devoted to combining
complex networks in order to create even more complicated
and heterogeneous structures known in general as “networks
of networks” [31–35]. An important class of such structures
is formed by multiplex networks (MNs) which consist of a
fixed set of nodes connected by various sets of edges called
layers [34–37]. In the simplest case, the layers are inde-
pendently generated random networks with a full overlap of
nodes, i.e., with each node belonging to all layers, which
means it has at least one attached edge from each layer. In
turn, in MNs with partial overlap of nodes, there are nodes
belonging only to some rather than all layers. In particular,
in the case of MNs with two layers (duplex networks) and
partial overlap of nodes, the nodes are divided into a class of
nodes belonging to both layers and forming the overlap, and
two other classes, each consisting of nodes belonging only
to one of the two layers [38–40] (the node overlap should
not be confused with the link overlap [41–43] which is neg-
ligible in the case of independently generated layers). FM
phase transition in equilibrium models on MNs was studied,
e.g., in the Ising model [44,45] and a related Ashkin-Teller
model [46,47]. Analogously, FM transition in nonequilibrium
models for the opinion formation on MNs was studied, e.g., in
the majority vote model [48,49], the q-voter model [50–52],
and the q-neighbor Ising model [53]. As expected, the critical
properties of the nonequilibrium models, in particular the
extension or confinement of the range of parameters for which
the first-order transition occurs, strongly depend on the way
in which the multiplexity affects the spin-flip rate. In this
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respect, the q-neighbor Ising model with LOCAL&AND spin
update rule [54] seems very interesting, which so far has been
studied by MC simulations and in the MF approximation on
duplex networks with full and partial overlap of nodes and
with layers in the form of fully connected graphs [53]. In
this model the flip probability per unit time for the spins in
nodes belonging to only one layer (i.e., outside the overlap) is
given by a Metropolis-like rate, but with a local field produced
only by a subset of q randomly chosen neighboring spins
(q-neighborhood), and for the spins in nodes belonging to
both layers (i.e., within the overlap), it is given by a product
of two above-mentioned rates evaluated separately for each
layer. With the increase of the relative size of the overlap,
and depending on the size of the q-neighborhood, suppression
of the first-order transition, appearance of a tricritical point
separating first- and second-order FM transition, and possible
coexistence of the PM and FM phases even in zero tempera-
ture were observed in the model [53].

In this paper the q-neighbor Ising model on MNs with
partial overlap of nodes, with layers in the form of complex
networks, and with the LOCAL&AND spin update rule is
studied by means of MC simulations and theoretically in the
framework of the PA and AMEs. It should be noted that the
q-neighbor Ising model is used here as a convenient example
since the results can be readily compared with the above-
mentioned ones for the limiting case of the model on MNs
with layers in the form of complete graphs [53], and the
PA and AMEs used here can be easily generalized to other
models for the opinion formation with similar structure of
interactions. In order to make large systems of AMEs numer-
ically tractable in this paper only the case of duplex networks
with layers in the form of homogeneous random networks is
considered; nevertheless, such MNs exhibit certain overlap-
induced inhomogeneity since the nodes within and outside
the overlap form distinct classes characterized by different
degrees within the individual layers (both nonzero or one zero
and one nonzero). Thus the flip rates for the spins located in
nodes belonging to distinct classes also are different; a related
q-voter model with quenched disorder, with agents divided
into subpopulations according to different rates of the opinion
change, has been recently considered in Ref. [15].

The aim of this paper is first to provide a general formu-
lation of the PA and AMEs, which take into account to a
different extent the above-mentioned inhomogeneity of nodes,
for models on MNs with partial overlap of nodes. For this
purpose, first, the homogeneous PA for models on MNs with
a full overlap of nodes [51] is extended to the case with
partial overlap. For nodes belonging to different classes this
simplest form of the PA takes into account the inhomogene-
ity of the average directions of spins (opinions) but neglects
possible inhomogeneity of the distributions of directions of
neighboring spins within each layer. For the q-neighbor Ising
model predictions of this approximation concerning the FM
phase transition show surprisingly good agreement with re-
sults of MC simulations for a wide range of the size of the
q-neighborhood, the mean degrees of nodes within layers, and
the size of the overlap. Then the most advanced approximation
based on the AMEs for models on MNs with the full overlap
of nodes [49] and weighted networks [55] is extended to the
case of models on MNs with partial overlap of nodes. Finally,

two kinds of heterogeneous PA, the fully heterogeneous PA
[15] and the AMEs-based heterogeneous PA [28–30], are
applied to models on MNs with partial overlap of nodes. Both
versions of the PA take into account, to a different extent, the
above-mentioned inhomogeneity of distributions of directions
of neighboring spins within each layer and are in general
intermediate with respect to the accuracy of predictions be-
tween the homogeneous PA and the AMEs. For the q-neighbor
Ising model under study, it turns out that their predictions are
only marginally different or even identical with these of the
homogeneous PA. On the other hand, predictions based on
the AMEs show slightly better quantitative agreement with
the results of MC simulations, in particular for smaller mean
degrees of nodes within layers. In general, predictions of all
approximations concerning the first-order FM transition (e.g.,
location and width of the hysteresis loop) are quantitatively
worse than those concerning the second-order transition (e.g.,
location of the critical point). As well, the aim of this paper
is also to study in detail the phase diagram for the q-neighbor
Ising model on MNs with partial overlap of nodes and with
layers with a finite mean degree of nodes. It is shown that
the critical behavior of this model resembles qualitatively that
of the analogous model on MNs with layers in the form of
fully connected graphs [53]. However, as the mean degree of
nodes is decreased, the first-order FM transition, the tricritical
point separating it from the second-order transition, and the
possible coexistence of the PM and FM phases occur for
smaller relative sizes of the overlap, while the range of the
occurrence of the second-order FM transition is broadened
correspondingly.

II. THE MODEL

A. Multiplex networks with partial overlap of nodes

MNs consist of a fixed set of nodes connected by several
sets of edges; the set of nodes with each set of edges forms
a network which is called a layer of a MN [34–37]. Hence-
forth, the nodes are indexed by j, j = 1, 2, . . . , N , and the
subsequent layers are denoted as G(L), L = A, B, . . . , Lmax.
In the case of MNs with a full overlap of nodes each node
belongs to all layers, i.e., each node has at least one edge
from each layer attached to it. In general, MNs with partial
overlap of nodes are defined as MNs in which nodes may
belong to (i.e., may have attached edges from) some rather
than all layers, given that each node belongs to at least one
layer. Henceforth, the number of nodes belonging to the layer
G(L) is denoted as N (L). In this paper it is assumed that the
sets of edges for the subsequent layers G(L) are generated
independently and form complex random networks with N (L)

nodes. As a result, multiple connections between nodes are not
allowed within the same layer, but the same nodes belonging
to several layers can be accidentally connected by multiple
edges belonging to different layers. A simple example of
the MN with partial overlap of nodes is that with only two
layers G(A), G(B), called a duplex network, and with n nodes
belonging to both layers which form the overlap (0 � n �
N); then N = N (A) + N (B) − n. Furthermore, if both layers
contain the same number of nodes N (A) = N (B) = Ñ it is
possible to introduce a single parameter r = n/Ñ , also called
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the overlap. Then the nodes are divided into three subsets:
Ñ − n = N (1 − r)/(2 − r) nodes belonging only to the layer
G(A), N (1 − r)/(2 − r) nodes belonging only to the layer G(B)

and n = Nr/(2 − r) nodes belonging to both G(A) and G(B).
The numbers of edges attached to the node j (degrees)

within the individual layers G(L) are denoted as k(L)
j ; if the

node j does not belong to the layer G(L) then k(L)
j = 0. In

the case of MNs with independently generated layers the
degrees of nodes belonging to the individual layers G(L), i.e.,
these with k(L)

j > 0, are drawn from probability distributions
P(L)(k(L) ) which characterize the layers as complex networks.
For a given node j a vector of its degrees within the individual
layers k j = (k(A)

j , k(B)
j , . . . , k(Lmax )

j ), with possible zero com-
ponents in the case of MNs with partial overlap of nodes, is
called a multidegree of the node. The multidegree distribution
P(k) = P(k(A), k(B), . . . , k(Lmax ) ) characterizes the MN as a
complex “network of networks”; in the case of MNs with the
full overlap of nodes and independently generated layers, it
is obviously P(k) = ∏Lmax

L=A P(L)(k(L) ). In the formulas below,
averages are evaluated over the multidegree distribution, e.g.,
〈k(L)〉 = N−1 ∑N

j=1 k(L)
j = ∑

k P(k)k(L) is the mean degree
of nodes within the layer G(L) (note that the average is over all
N nodes rather than N (L) nodes belonging to the layer G(L)).

In this paper the q-neighbor Ising model is considered
on a duplex network with partial overlap of nodes and with
two independently generated layers characterized by identical
degree distributions P(A)(k) = P(B)(k) = P̃(k), with the same
numbers of nodes N (A) = N (B) = Ñ and the overlap r, for
which the multidegree distribution is

P(k) = P(k(A), k(B) ) = 1 − r

2 − r
P̃(k(A) )δk(B),0

+ r

2 − r
P̃(k(A) )P̃(k(B) ) + 1 − r

2 − r
δk(A),0P̃(k(B) ). (1)

In particular, for the two layers in the form of random regular
graphs (RRGs) with K edges attached to each node belonging
to the layer, for which P(A)(k) = P(B)(k) = P̃(k) = δk,K , the
multidegree distribution is

P(k) = P(k(A), k(B) ) = 1 − r

2 − r
δk(A),Kδk(B),0

+ r

2 − r
δk(A),Kδk(B),K + 1 − r

2 − r
δk(A),0δk(B),K , (2)

and 〈k(A)〉 = 〈k(B)〉 = ÑK/N = K/(2 − r).

B. The q-neighbor Ising model on multiplex networks
with partial overlap of nodes

The q-neighbor Ising model [21–24,53] is a nonequilib-
rium variant of the Ising model used to investigate the process
of opinion formation. In this paper the above-mentioned
model is considered on MNs with partial overlap of nodes and
layers in the form of complex networks; the MF version of
this model, on MNs with layers in the form of fully connected
graphs, was studied in Ref. [53]. The main interest is in the
FM transition which can occur in the q-neighbor Ising model
with decreasing effective temperature T , which measures
the level of internal noise (uncertainty in agents’ decision
making).

In order to introduce the model under study, it is conve-
nient to start with the q-neighbor Ising model on (monoplex)
networks which can be regular, complex, or fully connected
graphs [21–24,53]. In this model agents with two possible
opinions on a given subject are represented by two-state spins
σ j = ±1, j = 1, 2, . . . , N placed in the nodes and interacting
via edges of the network. It is assumed that these interac-
tions prefer identical orientations of spins in the connected
nodes, which is reflected in the spin-flip rate. Thus, inter-
actions between spins with opposite directions in general
increase the probability that one of the spins flips, i.e., the
corresponding agent changes opinion, and edges representing
these interactions are called active links. The dynamics of
the q-neighbor Ising model on networks is a modification of
that of the kinetic Ising model with the Metropolis spin-flip
rate in which, at each time step, each spin interacts only
with its q randomly chosen neighbors. MC simulations of the
model are performed using random asynchronous updating of
spins, with each MC simulation step (MCSS) corresponding
to updating all N spins. Nodes are picked randomly, and for
each picked node q its neighbors are chosen randomly and
without repetitions, which form the q-neighborhood of the
picked node. Then the spin in the picked node is flipped with
probability given by a Metropolis-like formula,

E (l; T, q) = min {1, exp[−2(q − 2l )/T ]}, (3)

where l is the number of nodes belonging to the q-
neighborhood occupied by spins with a direction opposite to
that of the spin in the picked node, i.e., the number of active
links attached to the picked node leading to nodes within the
chosen q-neighborhood [notation in Eq. (3) emphasizes that
T , q, are parameters of the model]. As a result, the flip rate
for a picked spin given that it is placed in a node with degree
k which has in total i active links attached (0 � i � k) is

f (i; T |k) = 1(k
q

) q∑
l=0

(
i

l

)(
k − i

q − l

)
E (l; T, q)

= 1(k
i

) q∑
l=0

(
k − q

i − l

)(
q

l

)
E (l; T, q). (4)

The q-neighbor Ising model on complete graphs for q = 3
exhibits second-order FM transition, while for q � 4 first-
order FM transition occurs with a clearly visible hysteresis
loop. Width of the hysteresis loop in general increases with
q, though for q > 4 there are oscillations superimposed on
this trend such that loops for the consecutive odd values of
q are narrower than for the neighboring even values of q [21].
The same is true for the model on networks with finite mean
degree 〈k〉 provided that q � 〈k〉. However, as q is increased
and becomes comparable with 〈k〉 the hysteresis loop becomes
narrower and eventually disappears, and the FM transition
becomes second-order [24].

In the q-neighbor Ising model on MNs with full or partial
overlap of nodes, interactions take place within individual lay-
ers with respective, independently chosen q-neighborhoods.
Then spins flip according to a probabilistic rule which com-
bines the effect of the above-mentioned interactions. In this
paper, the LOCAL&AND spin update rule is used [54] ac-
cording to which the spin in the picked node flips if interaction
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with every q-neighborhood from every layer it belongs to
suggests flip; consequently, the probability of the spin flip is
given by a product of the Metropolis-like factors (3) corre-
sponding to all layers to which the picked node belongs. The
LOCAL&AND rule is assumed in this paper since it usually
leads to richer phase diagrams than other methods of including
the multiplex character of the network of interactions in the
spin-flip rate [50–53]. Eventually, in numerical simulations of
the q-neighbor Ising model on MNs with partial overlap of
nodes and the LOCAL&AND spin update rule, each MCSS is
performed as follows:

(i) A node j, 1 � j � N , with multidegree ki is picked
randomly.

(ii) From each layer G(L) to which the picked node belongs
a set of its q neighbors (q-neighborhood) is chosen randomly
and without repetitions. It is assumed that 0 < q � k(L)

j for
all layers to which the picked node belongs; otherwise, the
node is excluded from simulation. Sets from different layers
are chosen independently, thus the same node can by chance
belong to two or more q-neighborhoods if it is a neighbor of
the picked node within two or more layers.

(iii) The Metropolis-like factor for the picked node is eval-
uated separately for each layer G(L),

E (l (L); T, q) = min{1, exp[−2(q − 2l (L) )/T ]}, (5)

where l (L) is the number of nodes in the q-neighborhood in the
layer G(L) occupied by spins with direction opposite to that of
the spin in the picked node; note that if a node does not belong
to G(L) then q = l (L) = 0 and E (T, 0, 0) = 1.

(iv) Due to the LOCAL&AND spin update rule, the spin
σ j in the picked node flips with probability

E (l; T, q) =
Lmax∏
L=A

E (l (L); T, q), (6)

where l = (l (A), l (B), . . . , l (Lmax ) ); and obviously l (L) = 0 if the
picked node does not belong to the layer G(L) (i.e., l is a vector
of numbers of active links from the individual layers attached
to the picked node which lead to nodes within the respective
q-neighborhoods).

(v) Steps (i)–(iv) are repeated until all N spins are updated
without repetition.

Hence, the flip rate for a spin placed in a node with mul-
tidegree k = (k(A), k(B), . . . , k(Lmax ) ) and with the numbers of
attached active links within the individual layers i(L), 0 �
i(L) � k(L), given by the corresponding components of the vec-
tor i = (i(A), i(B), . . . , i(Lmax ) ) assumes a multiplicative form,

f (i; T |k ) =
Lmax∏
L=A

f (i(L); T |k(L) ) (7)

[note that if a node does not belong to the layer G(L) there is
k(L) = i(L) = 0 and f (0; T |0) ≡ 1].

The q-neighbor Ising model on a duplex network with
layers in the form of complete graphs and partial overlap
of nodes and with the LOCAL&AND spin update rule was
investigated in Ref [53]. The obtained results may be sum-
marized as follows. The model exhibits FM phase transition
already for q � 1. This transition is in general second-order,
with the following exceptions. For q = 2 the transition is first-

order for 1/2 < r < 1, with a clearly visible hysteresis loop,
and for rc < r � 1/2, where rc = 2(3

√
2 − 4) = 0.4853 . . .,

the coexistence of the FM and PM phases is observed as
the temperature is decreased below a critical value down to
T = 0; for r < rc there is no phase transition and the PM
phase remains the only stable phase down to T = 0. For
q � 4 the transition for small r is first-order and for larger
r is second-order. The first- and second-order transitions are
separated by a tricritical point at r = rTCP(q) which for q = 4
occurs at a particularly high value of r, and for q > 4 is an
increasing function of q, but again with oscillations between
the consecutive odd and even values of q superimposed on
this trend. Remarkably, for r = 1 the FM transition is always
second-order for any q, i.e., a full overlap of nodes suppresses
discontinuous transition. In this paper it is investigated how
the phase diagram of the model changes if the layers of the
MN are complex networks with a finite mean degree of nodes
rather than complete graphs.

III. THEORY

A. Pair approximation

In the case of spin models on networks, the effect of the
network topology (e.g., of the degree distribution or the mean
degree of nodes) on the observed phase transitions often can
be more accurately described in the framework of the PA than
by the usual MFA [26–30]. In particular, this was demon-
strated for the q-neighbor Ising model on complex networks
[24] and a sort of stochastic q-voter model on MNs with a full
overlap of nodes [51]. In both above-mentioned studies the
networks, or the layers of the MNs, were homogeneous com-
plex networks (e.g., RRGs), thus the simplest homogeneous
PA was enough to reproduce quantitatively results of MC sim-
ulations in a wide range of the parameters of the models. As
mentioned in Secs. I and II MNs with partial overlap of nodes
retain some multiplexity-induced inhomogeneity even if the
layers are homogeneous complex networks. Nevertheless, in
this section the homogeneous PA derived in Ref. [51] for a
wide class of models with various spin update rules on MNs
with the full overlap of nodes is presented in a more general
form which makes it applicable to models on MNs with partial
overlap of nodes, in order to find, inter alia, to what extent
it can be used to explain critical behavior of systems with
multiplexity-induced inhomogeneity.

The advantage of the PA consists in that it takes into
account dynamical correlations between pairs of interacting
agents (spins). In the framework of the homogeneous PA,
macroscopic quantities characterizing a model with two-state
spins on MNs are concentrations ck of spins directed up
located in nodes with multidegree k (with possible zero com-
ponents in the case of MNs with partial overlap of nodes)
as well as concentrations b(L) of active links within separate
layers G(L). The homogeneous character of the PA allows for
the simplification that the latter concentrations are averaged
over all nodes belonging to a given layer and do not depend on
the multidegrees of the connected nodes. Consequently, it is
assumed that conditional probabilities θ (L)

ν , ν ∈ {↑,↓}, that an
active link within the layer G(L) is attached to a node given that
it is occupied by spin with direction ν are also independent
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of the multidegree of the node. These probabilities can be
evaluated as ratios of the number of attachments of active links
to nodes with spins with direction ν, independently of their
multidegrees, within the layer G(L), which is N〈k(L)〉b(L)/2,
and the number of attachments of all links within G(L) to such
nodes, which is

∑
k NP(k)k(L)ck,ν , where ck,↑ = ck, ck,↓ =

1 − ck, thus

θ
(L)
↑ = b(L)

2
∑

k P(k)k(L)ck,↑/〈k(L)〉

= b(L)

2
∑

k P(k)k(L)ck/〈k(L)〉 , (8)

θ
(L)
↓ = b(L)

2
∑

k P(k)k(L)ck,↓/〈k(L)〉

= b(L)

2
[
1 − ∑

k P(k)k(L)ck/〈k(L)〉] . (9)

The core approximation made in the PA for models on
MNs is that the numbers of active links i(L) attached to a node
with degrees k(L) within individual layers G(L) (0 � i(L) �
k(L)) occupied by spin with direction ν obey independent
binomial distributions with parameters θ (L)

ν given by Eqs. (8)
and (9). Then the rates at which the concentration ck increases
or decreases are given by averages of the spin-flip rate, Eq. (7),
over the appropriate joint distributions of the number of active
links within all layers which have a multiplicative form

P(ν, i|k) =
Lmax∏
L=A

Bk(L),i(L)

(
θ (L)
ν

)
, (10)

where Bk,i(θ ) = (k
i

)
θ i(1 − θ )k−i denotes the binomial factor

and, formally, B0,0(θ ) ≡ 1. Hence, the equation for the time
dependence of ck can be written as a rate equation,

∂ck

∂t
=

∑
ν∈{↑,↓}

(−1)δν,↑ck,ν

∑
i

Lmax∏
L=A

Bk(L),i(L)

(
θ (L)
ν

)
f (i; T |k ),

(11)

where
∑

i ≡ ∑k(A)

i(A)=0 · · · ∑k(Lmax )

i(Lmax )=0.
In order to obtain an equation for the time dependence of

the concentrations of active links b(L) one should observe that
each flip of a spin (irrespective of its direction) in a picked
node with multidegree k with the numbers of active links
attached given by the components of the vector i results in the
change of the numbers of active links within the individual
layers G(L) by k(L) − 2i(L), since then i(L) previously active
links become inactive and k(L) − i(L) previously inactive links
become active. The corresponding changes in the concentra-
tions of active links b(L) are thus (k(L) − 2i(L) )/(N〈k(L)〉/2).
As in Eq. (11), such changes connected with the flip of a spin
with direction ν occur at a rate given by the average of the
spin-flip rate, Eq. (7), over the appropriate joint distributions
of the number of active links attached to the picked node,
Eq. (10). Due to the homogeneous character of the PA, in
order to obtain time dependence of b(L) further averaging
over all nodes occupied by spins with direction ν should be
performed, which is equivalent to averaging over the proba-
bility distribution P(k)ck,ν that a node with multidegree k is

occupied by a spin with direction ν. Eventually, taking into
account that nodes are picked and spins are updated within
time intervals 1/N , for a given layer G(L′ ) it is obtained that

∂b(L′ )

∂t
= 2

〈k(L′ )〉
∑

ν∈{↑,↓}

∑
k

P(k)ck,ν

∑
i

Lmax∏
L=A

Bk(L),i(L)

(
θ (L)
ν

)

× f (i; T |k )(k(L′ ) − 2i(L′ ) ), (12)

where L′ = A, B, . . . , Lmax.
In particular, let us consider the q-neighbor Ising model on

a MN with two layers in the form of RRGs and partial overlap
of nodes, with the multidegree distribution given by Eq. (2).
Then the nodes are divided into three classes, these belonging
only to the layer G(A) with multidegree k = (K, 0), only to
the layer G(B) with k = (0, K ), and to the overlapping part of
G(A) and G(B) with k = (K, K ). The macroscopic quantities
to be used in the homogeneous PA are thus concentrations of
spins directed up in the nodes belonging to the subsequent
classes c(K,0), c(0,K ), c(K,K ) and concentrations of active links
in the two layers b(A), b(B). Since both layers are identical, with
N (A) = N (B) = Ñ , stable solutions of the system of Eqs. (11)
and (12) are limited to the subspace with c(0,K ) = c(K,0), b(A) =
b(B) ≡ b; moreover, according to Eqs. (8) and (9) there is
θ (A)
ν = θ (B)

ν ≡ θν . Using Eqs. (2), (4), (7), performing summa-
tions in Eqs. (11) and (12) as in Ref. [24] and introducing
functions R(θ ; T, q) and S(θ ; T, K, q) to shorten notation,

R(θ ; T, q) =
q∑

l=0

Bq,l (θ )E (l; T, q), (13)

S(θ ; T, K, q) =
q∑

l=0

Bq,l (θ )[(K − q)θ + l]E (l; T, q),

(14)

the following system of three equations for the time depen-
dence of the macroscopic quantities in the homogeneous PA
is obtained:

dc(K,0)

dt
= (1 − c(K,0))R(θ↓; T, q) − c(K,0)R(θ↑; T, q), (15)

dc(K,K )

dt
= (1 − c(K,K ) )[R(θ↓; T, q)]2 − c(K,K )[R(θ↑; T, q)]2,

(16)

db

dt
= 2

K
(1 − r){(1 − c(K,0))[KR(θ↓; T, q) − 2S(θ↓; T, K, q)]

+ c(K,0)[KR(θ↑; T, q) − 2S(θ↑; T, K, q)]}

+ 2

K
r{(1 − c(K,K ) )[KR(θ↓; T, q) − 2S(θ↓; T, K, q)]

× R(θ↓; T, q) + c(K,K )[KR(θ↑; T, q) − 2S(θ↑; T, K, q)]

× R(θ↑; T, q)}, (17)

where

θ↑ = b

2[(1 − r)c(K,0) + rc(K,K )]
, (18)

θ↓ = b

2[1 − (1 − r)c(K,0) − rc(K,K )]
. (19)
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Other macroscopic quantities of interest are the concentration
of spins directed up in each layer, i.e., the fraction of Ñ nodes
occupied by such spins, which is c̃ = (1 − r)c(K,0) + rc(K,K ),
the concentration of spins directed up in the whole MN, i.e.,
the fraction of N nodes occupied by such spins, which is
c = 2(1−r)

2−r c(K,0) + r
2−r c(K,K ), and the resulting magnetization

of the MN m = 2c − 1. Note that in the limiting case of layers
in the form of fully connected graphs there is b = Ñ2c̃(1 −
c̃)/[Ñ (Ñ − 1)/2] ≈ 2c̃(1 − c̃) and θ↓ = c̃, θ↑ = 1 − c̃; after
inserting this into Eqs. (15) and (16), equations for the concen-
trations c(K,0), c(K,K ) in the MF approximation are reproduced
[53], as expected.

The above result can be easily extended to a more general
case of the q-neighbor Ising model on a MN with two indepen-
dently generated layers with identical degree distributions and
numbers of nodes, and with the overlap r, where the multide-
gree distribution given by Eq. (1). Since due to the particular
form of the spin-flip rate (4) the function R(θ ; T, q), Eq. (13),
does not depend on the multidegree distribution, Eq. (11) for
the concentrations c(k,0) for any k > 0 will have the form of
Eq. (15), and for the concentrations c(k,k′ ) for any k, k′ > 0
will have the form of Eq. (16). Hence, the stationary solution
is characterized only by two, possibly different, concentra-
tions of spins directed up ck,k′ , ck,0 in nodes belonging or not
to the overlap, respectively. Then, as a result of averaging over
P(k), Eq. (12) for the concentration b of active links within
each layer will have the form of Eq. (17) with K replaced by
the average degree of nodes with respect to the probability
distribution within individual layers, ˜〈k〉 = ∑

k P̃(k)k. Even-
tually, the homogeneous PA for the q-neighbor Ising model on
MNs with partial overlap of nodes is not sensitive to the details
of the multidegree distribution P(k) apart from the mean
degree within layers ˜〈k〉, as for the q-neighbor Ising model
on networks [24]. Thus, predictions of the homogeneous PA
do not change even if the layers of the MN are heterogeneous
(e.g., scale-free) networks rather than homogeneous RRGs. In
fact, it is known that MC simulations of the q-neighbor Ising
model [24] and of the related noisy q-voter model [14,15]
on networks with various heterogeneity, including scale-free
networks, yield quantitatively similar results. This suggests
that also the critical properties of the q-neighbor Ising model
on MNs with partial overlap of nodes should not depend on
the heterogeneity of the degree distributions of nodes within
individual layers, and the accuracy of predictions of the homo-
geneous PA should be comparable with that for the q-neighbor
Ising model on MNs with partial overlap of nodes and layers
in the form of RRGs. The study of this issue is left for future
research.

A natural extension of the homogeneous PA consists of
taking into account heterogeneity of the concentrations of the
(possibly active) links connecting classes of nodes with differ-
ent multidegrees. Then, instead of the average concentration
b(L) of active links within each layer G(L), concentrations
of classes of active links connecting spins in nodes with
multidegrees k, k′ within each layer G(L) become separate
macroscopic quantities characterizing the model. This leads to
the most advanced and accurate version of the PA called fully
heterogeneous PA [15,27]; corresponding equations for the
macroscopic quantities for spin models on MNs with partial
overlap of nodes, in particular for the q-neighbor Ising model

under study, are given in the Appendix Sec. 1. In the latter case
solutions of these equations show that in the stationary state
concentrations of active links (strictly speaking, of their ends
called bonds) belonging to different classes indeed show no-
ticeable heterogeneity; nevertheless, this does not lead to the
values of magnetization noticeably different from these pre-
dicted by the homogeneous PA. Thus, magnetization curves
and phase diagrams for the model under study obtained from
the fully heterogeneous PA are practically indistinguishable
from those obtained from the homogeneous PA and do not
show better agreement with the results of MC simulations.

B. Approximate master equations

A more accurate approximation for the study of spin
models on MNs with partial overlap of nodes is based on
approximate master equations (AMEs) for the densities of
spins directed up ck,m and down sk,m which are located in
nodes with multidegree k and have m(L) neighboring spins di-
rected up within the consecutive layers G(L), which is denoted
as m = (m(A), m(B), . . . , m(Lmax ) ). In the thermodynamic limit
and for mutually uncorrelated layers in the form of random
networks with finite mean degrees 〈k(L)〉 the possibility that
a pair of nodes is connected simultaneously by edges within
different layers can be neglected. Thus, in the AMEs it is
assumed that in a single simulation step for a given node
the allowed changes of the number of neighboring spins di-
rected up are m → m ± e(L), where e(L) is a unit vector with
Lmax components and only the Lth component equal to one,
while simultaneous changes of many components of m, e.g.,
m → m ± e(L) ± e(L′ ), L = L′, etc., cannot occur. Under the
above-mentioned assumptions, the AMEs in a general form
are [49,55]

dsk,m

dt
= −Fk,msk,m + Rk,mck,m

+
Lmax∑
L=A

[−β (L)
s (k(L) − m(L) )sk,m

+β (L)
s (k(L) − m(L) + 1)sk,m−e(L)

]
+

Lmax∑
L=A

[−γ (L)
s m(L)sk,m + γ (L)

s (m(L) + 1)sk,m+e(L)

]
,

(20)

dck,m

dt
= −Rk,mck,m + Fk,msk,m

+
Lmax∑
L=A

[−β (L)
c (k(L) − m(L) )ck,m

+β (L)
c (k(L) − m(L) + 1)ck,m−e(L)

]
+

Lmax∑
L=A

[−γ (L)
c m(L)ck,m + γ (L)

c (m(L) + 1)ck,m+e(L)

]
.

(21)

In Eqs. (20) and (21) the first two terms account for the
effect of a flip of a spin in a node with multidegree k,
and the remaining terms account for the average effect of
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the flips of spins in the neighboring nodes, irrespective of
their multidegrees. In terms of Sec. II B the flip rate for a
spin directed down occupying a node with multidegree k
with m neighboring spins directed up is Fk,m = f (m; T |k)
and that for a spin directed up Rk,m = f (k − m; T |k). The
remaining average rates can be estimated by evaluating
the ratios (at a given time step) of the average numbers
of edges connecting spins with a given direction such
that one of these spins flips to the average total numbers
of these edges [28,29]; in the case of models on MNs
this should be done separately for each layer [49,55].
Thus β (L)

s = 〈∑m(k(L) − m(L) )Fk,msk,m〉/〈 ∑
m(k(L) −

m(L) )sk,m〉, γ (L)
s = 〈∑m(k(L) − m(L) )Rk,mck,m〉/〈∑m(k(L) −

m(L) )ck,m〉, β (L)
c =〈∑m m(L)Fk,msk,m〉/〈 ∑

m m(L)sk,m〉, γ (L)
c =

〈∑m m(L)Rk,mck,m〉/〈 ∑
m m(L)ck,m〉, where L =

A, B, . . . , Lmax,
∑

m ≡ ∑k(A)

m(A)=0

∑k(B)

m(B)=0 . . .
∑k(Lmax )

m(Lmax )=0
and 〈. . .〉 denotes average over the multidegree
distribution P(k), as usually. Natural initial con-
ditions for the system of Eqs. (20) and (21) are
sk,m(0) = (1 − c(0))

∏Lmax
L=A Bk(L),m(L) (c(0)), ck,m(0) =

c(0)
∏Lmax

L=A Bk(L),m(L) (c(0)), where 0 < c(0) < 1 is arbitrary.
In particular, in the case of the q-neighbor Ising model

on a MN with two layers in the form of RRGs and partial
overlap of nodes, with the multidegree distribution P(k)
given by Eq. (2), there are three classes of nodes with
k = (0, K ), k = (K, 0), and k = (K, K ). The corresponding
spin flip rates are F(K,0),(m(A);0) = f (m(A); T |K ), F(0,K ),(0;m(B) ) =
f (m(B); T |K ), F(K,K ),(m(A),m(B) ) = f (m(A); T |K ) f (m(B); T |K )
and R(K,0),(m(A),0) = f (K − m(A); T |K ), R(0,K ),(0,m(B) ) = f (K −
m(B); T |K ), R(K,K ),(m(A),m(B) ) = f (K − m(A); T |K ) f (K −
m(B); T |K ), with f (m; T |K ) given by Eq. (4). Hence, the
system (20) and (21) consists of 2(K + 1)2 + 4(K + 1)
equations and can be solved numerically for moderate
K . The quantities of interest, e.g., the concentration c
of spins directed up in the MN and the magnetization
m = 2c − 1, can be evaluated as in Sec. III A using
c(K,0) = ∑K

m(A)=0 c(K,0),(m(A),0), c(0,K ) = ∑K
m(B)=0 c(0,K ),(0,m(B) ),

c(K,K ) = ∑K
m(A)=0

∑K
m(B)=0 c(K,K ),(m(A),m(B) ).

The AMEs are a starting point for a more elaborate
approximation representing another formulation of the het-
erogeneous PA [28–30,49,55] which takes into account the
possible heterogeneity due to different multidegrees k of
nodes of both the concentrations ck of spins directed up and
of the conditional probabilities that a link attached to a node
is active or, equivalently, leads to a spin with a given (say,
up) direction. A general formulation of such AMEs-based
heterogeneous PA for spin (two-state) models on (mono-
plex) networks by Gleeson [28,29] was extended to the case
of weighted networks [55] and, partly, MNs [49]. It is be-
lieved that due to the approximations made the AMEs-based
heterogeneous PA is in general more accurate than the ho-
mogeneous PA and less accurate than the fully heterogeneous
PA mentioned in Sec. III A. In this paper the AMEs-based
heterogeneous PA is applied to spin models on MNs with
partial overlap of nodes, in particular to the q-neighbor Ising
model under study; equations for the macroscopic quantities
are given in the Appendix Sec. 2. Surprisingly, in numeri-
cal simulations it turns out that in the stationary state the
above-mentioned conditional probabilities that a node has a

link leading to a spin directed up do not depend on whether
the node belongs or not to the overlap. Hence, predictions
of the AMEs-based heterogeneous PA concerning the FM
transition in the model under study are identical to those of
the homogeneous PA from Sec. III A, so they are not further
discussed.

IV. RESULTS

The main results concerning the FM transition in the q-
neighbor Ising model on MNs with partial overlap of nodes
and with layers in the form of complete graphs have been
summarized in Sec. II B. These results were obtained in the
MF approximation and confirmed by MC simulations [53].
In this section first predictions of the homogeneous PA of
Sec. III A concerning the FM transition in the q-neighbor Ising
model on MNs with partial overlap of nodes and with layers
in the form of RRGs are presented and compared with results
of MC simulations. In this case, noticeable discrepancies oc-
cur between theoretical and numerical results, in particular
concerning the first-order FM transition. As pointed out in
Sec. III, the more advanced fully and AMEs-based heteroge-
neous PA yield results practically indistinguishable or even
identical to the homogeneous PA, thus their predictions are
only briefly mentioned in the Appendix. Finally, it is verified
in which cases and to what extent theoretical predictions are
improved by using the AMEs of Sec. III B.

In the framework of the homogeneous PA of Sec. III A
stationary values of the magnetization m vs T , corresponding
to different thermodynamic phases, are given by stable fixed
points of the system of Eqs. (15)–(17) with ċ(K,0) = ċ(K,K ) =
ḃ = 0. For certain ranges of parameters r, q, K many stable
fixed points can coexist for given T , and their basins of attrac-
tion are then separated by stable manifolds of unstable fixed
points; the location of the stable and unstable fixed points
for the three-dimensional system of Eqs. (15)–(17) can be
determined using standard numerical tools. The homogeneous
PA predicts various critical behavior of the model under study
as the temperature T is varied, depending on r, q, K which
are fixed: first- and second-order FM phase transition, the
coexistence of the PM and FM phases for T → 0, and the
absence of the FM transition. At high temperatures, the only
stable fixed point is that with m = 0 corresponding to the PM
phase. In the case of the second-order FM transition, this fixed
point loses stability as the temperature is decreased below
the critical value Tc, and simultaneously a pair of symmet-
ric stable fixed points with m > 0 and m < 0 occurs via a
supercritical pitchfork bifurcation, corresponding to the two
symmetric FM phases. In the case of the first-order transition
two symmetric pairs of stable and unstable fixed points with
m > 0 and m < 0 occur simultaneously via two saddle-node
bifurcations as the temperature is decreased below the upper
critical value T (2)

c , and the two above-mentioned stable fixed
points correspond to the two symmetric FM phases. As the
temperature is further decreased both the FM and PM fixed
points remain stable (coexist) until the PM point loses stability
via a subcritical pitchfork bifurcation at the lower critical tem-
perature T (1)

c (T (1)
c < T (2)

c ) by colliding simultaneously with
the two above-mentioned unstable fixed points; coexistence
of the PM and FM phases for T (1)

c < T < T (2)
c leads to the
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FIG. 1. Magnetization m vs temperature T predicted by the homogeneous PA for different K [green solid lines, both stable and unstable
fixed points of the system of Eqs. (15)–(17) are shown] and from the MFA of Ref. [53] (black solid lines) for q = 2, K = 200, 100, 50, 20, 10, 4
(from left) and (a) r = 0.49, (b) r = 0.5; as well as for q = 4, K = 500, 200, 100, 50, 20, 10 (from left) and (c) r = 0.05, (d) r = 0.15.

occurrence of the hysteresis loop in the magnetization curves
m(T ). Eventually, for T < T (1)

c the only stable fixed points
remain these corresponding to the two symmetric FM phases.
In the case of the coexistence of the FM and PM phases for
T → 0 a pair of symmetric stable FM fixed points occurs at
T = T (2)

c as in the case of the first-order transition, but these
FM points, as well as the PM fixed point, remain stable (co-
exist) as T → 0. Finally, it can also happen that fixed points
corresponding to the FM phase do not exist for any T > 0,
thus the FM transition is absent and the only stable phase for
T → 0 is the PM one.

Exemplary curves m(T ) predicted by the homogeneous PA
for the model under study with different K and selected values
of r are shown in Fig. 1 for the most interesting cases q = 2
and q = 4; in the former case, the MFA (valid for the model
on MNs with layers in the form of fully connected graphs with
K → ∞) predicts occurrence of all above-mentioned kinds
of the critical behavior for different ranges of r, while in the
latter one it predicts occurrence of the first-order transition
for a particularly wide range of small r. The curves m(T ) for
q = 2 are drawn in Fig. 1(a) for r = 0.49, and in Fig. 1(b) for
r = 0.5, i.e., for the values of r within or at the border of the
interval rc < r < 0.5 where the MFA predicts coexistence of
the FM and PM phases for T → 0. In contrast, for the model
on MNs with layers in the form of RRGs the homogeneous

PA for r = 0.49 [Fig. 1(a)] predicts second- or first-order FM
transition for small and moderate K , respectively; the critical
temperature(s) decrease, and the width of the hysteresis loop
increases with K . Only for large K is coexistence of the FM
and PM phases for T → 0 predicted by the PA, and the curves
m(T ) approach those resulting from the MFA, as expected.
For r = 0.5 [Fig. 1(b)] only second- or first-order FM tran-
sitions for finite K are predicted by the PA, with the lower
critical temperature for the first-order transition T (1)

c > 0. The
curves m(T ) for q = 4 are drawn in Fig. 1(c) for r = 0.05,
and in Fig. 1(d) for r = 0.15, i.e., for the values of r where
the MFA predicts first-order FM transition with a wide and
narrow hysteresis loop, respectively. For the model on MNs
with layers in the form of RRGs the homogeneous PA for
small r = 0.05 [Fig. 1(c)] similarly predicts the first-order FM
transition for moderate and large K , while for larger r = 0.15
[Fig. 1(d)] it predicts the second-order FM transition already
for moderate K and the first-order FM transition only for large
K . Again, the critical temperature(s) decrease, the width of
the hysteresis loop increases with K , and the curves m(T )
eventually approach these resulting from the MFA.

It may be inferred from Fig. 1 that the homogeneous PA
predicts for the q-neighbor Ising model on MNs with partial
overlap of nodes and layers in the form of RRGs with finite
K the same critical behavior as the MFA for the model on
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FIG. 2. Critical behavior predicted by the homogeneous PA for the model with (a) q = 2 (left and middle panels) and (b) q = 4 (right
panel) and different r, K ; filled circles—continuous FM transition, open circles—discontinuous FM transition, filled squares—coexistence of
the FM and PM phases for T → 0, crosses—absence of the transition.

analogous MNs with layers in the form of complete graphs,
only for different ranges of the overlap r. This conclusion
is supported by Fig. 2, where the critical behavior predicted
by the PA is summarized for the former model with fixed
q = 2 and q = 4 and different K , r. For all K and r = 1
(full overlap of nodes), both PA and MFA predict continuous
FM transition with decreasing T , i.e., the first-order transition
observed in the model on monoplex networks is suppressed.
However, for both q = 2, 4 and finite K the PA predicts the
second-order FM transition also for a range of r below r = 1
which is broadened with decreasing K . As a consequence,
for q = 2 [Fig. 2(a)] the PA predicts that the range of the
occurrence of the first-order FM transition is shifted toward
smaller values of r. Similarly, for a narrow range of still
smaller values of the overlap the PA predicts the coexistence
of the FM and PM phases for T → 0, but for small K this
kind of critical behavior is predicted at r significantly below
the interval rc < r < 0.5 obtained from the MFA. Finally,
it is predicted that the range of small r for which the FM
transition is absent for decreasing K is narrowed. Eventually,
for very small K = 4 comparable with q only continuous FM
transition is predicted for any r, and all other kinds of critical
behavior are suppressed. For q = 4 [Fig. 2(b)] the range of
small r for which the PA predicts the first-order FM transition
is substantially diminished with decreasing K .

In order to verify predictions of the homogeneous PA, MC
simulations of the q-neighbor Ising model with q = 2, 4 on
large MNs with various parameters r, K were performed and
the magnetization curves m(T ) were obtained for random
PM initial conditions σ j = ±1, j = 1, 2, . . . , N and decreas-
ing temperature as well as for FM initial conditions σ j =
+1, j = 1, 2, . . . , N and increasing temperature. Simulations
were performed on MNs with N (A) = N (B) = 105. After set-
ting the initial conditions, the system evolved for 104 to 105

MC steps to reach the stationary state. The magnetization was
calculated as an average value over the next 103 MC steps.
Comparison with MC simulations shows that the homoge-
neous PA qualitatively captures modification of the critical
behavior of the model under study due to finite values of the

mean degree of the layers K . Quantitative predictions of the
PA are much improved in comparison with those from the
MFA valid for large K and show reasonably good agreement
with results of MC simulations, but are not exact (Figs. 3 and
4; note narrow ranges of T covered by the horizontal axes).
For fixed q, K the PA approximately predicts the ranges of
the overlap r where different kinds of critical behavior should
occur. However, as a rule, these predictions are overestimated,
and in MC simulations the particular kinds of critical behavior
appear for smaller values of r than estimated from the PA.
For example, for q = 2 the ranges of appearance of the co-
existence of the FM and PM phases for T → 0 [Figs. 3(a)
and 3(b)] and of the second-order FM transition [Figs. 3(e)
and 3(f)] in MC simulations are, respectively, shifted and
extended toward smaller values of r than expected from the
PA. Consequently, in the case of the first-order FM transition
for q = 2 [Figs. 3(c) and 3(d)] and q = 4 [Figs. 4(a), 4(b),
4(e), and 4(f)] the lower and upper critical temperatures T (1)

c ,
T (2)

c are underestimated and the width of the hysteresis loop
is overestimated by the PA in comparison with these obtained
from MC simulations; it is interesting to note that discrep-
ancies between the theoretical and numerical values of T (2)

c
are usually smaller than those for T (1)

c . Similarly, in the case
of the second-order FM transition for q = 2 [Fig. 3(f)] and
q = 4 [Figs. 4(c) and 4(d)] the critical temperature Tc is un-
derestimated by the PA in comparison with that obtained from
MC simulations. In general, the curves m(T ) evaluated from
the PA show better agreement with those obtained from MC
simulations in the case of the second-order than the first-order
FM transition. It should be mentioned that the discrepancies
between the predictions of the homogeneous PA and results of
the MC simulations are not a particular feature of the model
under study; similar and even more significant discrepancies
were observed in some cases for the q-neighbor Ising model
on monoplex networks [24] as well as for the related noisy
q-voter model on monoplex networks and MNs [15,51].

In order to investigate the critical behavior of the model
under study by means of appropriate AMEs as defined in
Sec. III B, Eqs. (20) and (21) were solved numerically with
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FIG. 3. Results of MC simulations as well as predictions of the PA and AMEs for the model with q = 2, K = 20 and (a) r = 0.45, (b)
r = 0.46, (c) r = 0.47, (d) r = 0.50, (e) r = 0.60, (f) r = 0.70; blue dots—results of MC simulations with FM initial conditions and increasing
temperature, red dots—results of MC simulations with PM initial conditions and decreasing temperature, black crosses—predictions of the
AMEs for both FM (c(0) = 1) and PM (c(0) = 0.5) initial conditions and increasing or decreasing temperature, respectively, green solid
lines—predictions of the PA as in Fig. 1.

FIG. 4. As in Fig. 3 but for q = 4. (a) K = 20, r = 0.05, (b) K = 20, r = 0.10, (c) K = 20, r = 0.15, (d) K = 10, r = 0.10, (e) K = 50,
r = 0.10, (f) K = 10, r = 0.05.
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various initial conditions and the curves m(T ) were obtained
using long-time asymptotic values of the concentrations of
spins directed up c(K,0),(m(A),0), etc., to evaluate stationary val-
ues of the magnetization. As expected, predictions of the
AMEs usually show comparable or better agreement with the
results of MC simulations than those of the homogeneous PA.
This is particularly visible in the case of the second-order FM
transition in the model under study with small K and q = 2
[Fig. 3(f)] and q = 4 [Fig. 4(d)], where the theoretical and
numerical curves m(T ) coincide very well and the critical
temperature Tc is predicted correctly. However, the ranges
of the overlap predicted by the AMEs for which different
kinds of critical behavior occur are still shifted toward slightly
higher values of r than obtained from MC simulations [see
Fig. 3(a), where the AMEs predict the absence of the FM
transition rather than coexistence of the FM and PM phases
observed in MC simulations, and Fig. 3(e), where the AMEs
predict the first-order FM transition with a narrow hysteresis
loop rather than the second-order transition]. In the case of
the coexistence of the FM and PM phases for T → 0 for
q = 2 [Fig. 3(b)] and the first-order FM transition for q = 2
[Figs. 3(c) and 3(d)] and q = 4 [Figs. 4(a), 4(b), 4(e), and
4(f)] predictions of the AMEs concerning the upper critical
temperature T (2)

c are usually better than those of the homo-
geneous PA, but the lower critical temperature T (1)

c is again
usually underestimated and the width of the hysteresis loop is
overestimated. In general, some improvement of theoretical
predictions by the AMEs in comparison with the homoge-
neous PA can be seen for small and moderate K ; for large
K the curves m(T ) obtained from the AMEs and PA coincide
[Fig. 4(e)].

V. DISCUSSION AND CONCLUSIONS

In this paper the q-neighbor Ising model on MNs with
partial overlap of nodes and layers in the form of random
networks was investigated; as an example, the model on MNs
with two layers in the form of RRGs was studied in detail.
Both theoretical considerations based on the homogeneous PA
and AMEs as well as MC simulations show that for given
q � 1 and finite mean degree of nodes K , and for varying
overlap r and temperature T the model exhibits qualitatively
similar critical behavior as the q-neighbor Ising model on
MNs with partial overlap of nodes and layers in the form of
complete graphs. In particular, for any q and full overlap of
nodes r = 1 the first-order FM transition is suppressed and
only the second-order transition appears with decreasing T .
Besides, for decreasing K continuous rather than discontinu-
ous FM transition is observed for an increasing range of large
(for q = 2) and large and moderate (for q > 2) values of r
below r = 1. As a consequence, for decreasing K the ranges
of r for which the model exhibits the first-order FM transition
(for q � 2) and the coexistence of the FM and PM phases
for T → 0 (for q = 2) are shifted toward smaller values. It
should be mentioned that in the q-neighbor Ising model on
(monoplex) networks the first-order FM transition is also sup-
pressed for small K comparable with q [24]; in contrast, in
the model on MNs this suppression is due to the overlap of
nodes and occurs for any K . The q-neighbor Ising model was
used here as an example, and related models for the opinion

formation on MNs with partial overlap of nodes can be studied
using similar numerical and analytic methods; however, the
expected qualitative changes of the observed critical behavior
with r will be probably less spectacular, since, e.g., in the
case of the q-voter model even for r = 1 the first-order FM
transition is not suppressed [51].

For the model under study with large K predictions of the
simple homogeneous PA and more advanced system of AMEs
converge to these of the MFA and agree quantitatively with the
results of MC simulations. For finite K the predicted curves
m(T ) and critical temperature(s) differ quantitatively from
the numerically obtained ones; usually, the particular kinds
of critical behavior are predicted to occur for smaller values
of the overlap than observed in MC simulations. In general,
predictions of both PA and AMEs show better agreement with
the results of MC simulations in the case of the continuous
than discontinuous FM transition. Predictions based on the
AMEs are comparable to or better than those of the PA; in
particular, the critical temperature for the second-order FM
transition and the upper critical temperature for the first-order
transition are more accurately predicted. Nevertheless, both
PA and AMEs qualitatively correctly capture changes of the
critical behavior of the model with varying parameters K , r
characterizing the underlying MN.

Two versions of the heterogeneous PA were derived for the
model under study, the more accurate fully heterogeneous PA
and the less accurate AMEs-based heterogeneous PA, which
take to a different extent into account heterogeneity of the
distribution of the active links due to inhomogeneity of the
nodes. In both cases, systems of equations for the macroscopic
quantities characterizing the model are significantly larger and
more complicated than that in the homogeneous PA but do not
lead to a noticeable improvement of theoretical predictions
concerning the magnetization curves and phase diagrams for
the model. This suggests that the simple homogeneous PA can
be as reliable as more advanced versions of the PA in the study
of the critical behavior of systems with multiplexity-induced
inhomogeneity, and conditions under which this is possible
deserve further investigation. Only using much larger systems
of AMEs in certain cases quantitatively improves agreement
between theoretical predictions and results of MC simulations
of the above-mentioned models.

APPENDIX

1. Fully heterogeneous pair approximation

The following outline of the fully heterogeneous PA for
models on MNs is an extension of that for the q-voter model
with quenched disorder on networks, with two populations of
agents differing by the spin-flip rates [15]. The fully heteroge-
neous PA uses the assumption that the probability that a spin
directed up or down in a node with multidegree k has a given
number of attached edges leading to spins directed up or down
in nodes with multidegree k̃ obeys a binomial distribution;
this assumption is valid for each layer and for any pair k, k̃
separately, and the related binomial distributions are assumed
to be independent. The macroscopic quantities characterizing
a model with two-state spins on a MN are concentrations ck
of spins directed up in nodes with multidegree k and concen-
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trations ek,k̃,(L)
ν,ν̃ (=ek̃,k,(L)

ν̃,ν ) of bonds (ends of edges) attached
within the layer G(L) to nodes with multidegree k containing
spins with direction ν ∈ {↓,↑} such that at the other end of the
edge there is a node with multidegree k̃ containing spin with
direction ν̃ (normalized to the total number of bonds N〈k(L)〉
within G(L)). According to the above-mentioned assumptions
the joint probability that a node with multidegree k contain-
ing spin with direction ν has i = (i(A), i(B), . . . , i(Lmax ) ) active
bonds (ends of active links) attached within the consecutive
layers, pointing at nodes with arbitrary multidegree containing
spins with opposite direction −ν, has a multiplicative form

P(ν, i|k) =
Lmax∏
L=A

Bk(L),i(L)

(
αk,(L)

ν

)
, (A1)

where αk,(L)
ν = ∑

k′ ek,k′,(L)
ν,−ν /

∑
k′

∑
ν ′∈{↓,↑} ek,k′,(L)

ν,ν ′ are condi-
tional probabilities that an active bond is attached to a node
with multidegree k and spin with direction ν [similar to θ

(L)
↑ ,

θ
(L)
↓ given by Eqs. (8) and (9)]. In order to evaluate the change

in the concentration ek,k̃,(L)
ν,ν̃ due to, e.g., flipping the spin

with direction ν in a node with multidegree k, it is necessary
to know the numbers of bonds y, z attached to this node
within the layer G(L) pointing at nodes with multidegree k̃
given that these bonds are active (ν̃ = −ν) or inactive (ν̃ =
ν), respectively. These numbers obey binomial distributions
Bi(L),y(βk,k̃,(L)

ν,−ν ), Bk(L)−i(L),z(γ k,k̃,(L)
ν,ν ), respectively, where the

conditional probabilities are β
k,k̃,(L)
ν,−ν = ek,k̃,(L)

ν,−ν /
∑

k′ ek,k′,(L)
ν,−ν ,

γ k,k̃,(L)
ν,ν = ek,k̃,(L)

ν,ν /
∑

k′ ek,k′,(L)
ν,ν . Then the rate equations for

the macroscopic concentrations of spins directed up are

∂ck

∂t
=

∑
ν∈{↑,↓}

(−1)δν,↑ck,ν

∑
i

Lmax∏
L=A

Bk(L),i(L)

(
αk,(L)

ν

)
f (i; T |k ),

(A2)

while the rate equations for the concentrations of active and
inactive bonds within the layers contain terms such as

d

dt
ek,k̃,(L′ )
ν,−ν = 1

〈k(L′ )〉P(k)ck,ν

∑
i

Lmax∏
L=A

Bk(L),i(L)

(
αk,(L)

ν

)

×
i(L′ )∑
y=0

Bi(L′ ),y

(
β

k,k̃,(L′ )
ν,−ν

)
(−y) f (i; T |k ) + · · · ,

(A3)

d

dt
ek,k̃,(L′ )
ν,ν = 1

〈k(L′ )〉P(k)ck,ν

∑
i

Lmax∏
L=A

Bk(L),i(L)

(
αk,(L)

ν

)

×
k(L′ )−i(L′ )∑

z=0

Bk(L′ )−i(L′ ),z

(
γ k,k̃,(L′ )

ν,ν

)
(−z) f (i; T |k )

+ · · · . (A4)

It can be seen that Eq. (A2) resembles Eq. (11) in the homoge-
neous PA. Concerning the equations for the concentrations of
bonds, e.g., Eq. (A3) states that a flip of the spin with direction
ν in node with multidegree k, which has i(L′ ) active bonds
attached within the layer G(L′ ), out of which y bonds point
at nodes with multidegrees k̃, decreases the concentration
ek,k̃,(L′ )
ν,−ν by y/[N〈k(L′ )〉]; such a flip occurs with probability

P(k)ck,ν f (i; T |k) within a time interval 1/N ; and the final
input to the rate equation (A3) is obtained by averaging the
above-mentioned change over the probability distributions
Bk(L′ ),i(L′ ) (αk,(L′ )

ν ) for i(L′ ) and Bi(L′ ),y(βk,k̃,(L′ )
ν,−ν ) for y; etc. Let us

note that in Eqs. (A3) and (A4) averaging over the multidegree
distribution P(k) is not performed; this is in contrast with the
homogeneous PA, Eq. (12), as well as with the PA for models
with two kinds of agents [15].

In the case of the q-neighbor Ising model on MNs
with partial overlap of nodes and with two layers in the
form of RRGs, with the multidegree distribution P(k)
given by Eq. (2), there are three classes of nodes with
k = (K, 0), k = (0, K ) and k = (K, K ), and two layers
G(L), L = A, B. Taking into account the symmetry of the
model under study and general symmetry conditions for
the concentrations ek,k̃,(L)

ν,ν̃ the solutions of the system of
Eqs. (A2)–(A4) can be constrained to a 12-dimensional
subspace c(K,0) = c(0,K ), e(K,0),(K,0),(A)

ν , ν ′ = e(K,0),(K,0),(A)
ν ′ , ν =

e(0,K ),(0,K ),(B)
ν , ν ′ = e(0,K ),(0,K ),(B)

ν ′ , ν ≡ e(K,0),(K,0)
ν , ν ′ , e(K,0),(K,K ),(A)

ν , ν ′ =
e(K,K ),(K,0),(A)

ν ′ , ν = e(0,K ),(K,K ),(B)
ν , ν ′ = e(K,K ),(0,K ),(B)

ν ′ , ν ≡ e(K,0),(K,K )
ν , ν ′ ,

e(K,K ),(K,K ),(A)
ν , ν ′ = e(K,K ),(K,K ),(A)

ν ′ , ν = e(K,K ),(K,K ),(B)
ν , ν ′ =

e(K,K ),(K,K ),(B)
ν ′ , ν ≡ e(K,K ),(K,K )

ν , ν ′ , ν, ν ′ ∈ {↓,↑}. Thus, as in
Ref. [15], there are effectively only two classes of agents
located in nodes with k = (K, 0) and k = (K, K ), differing by
the spin-flip rates (7). Besides, the distributions of the number
of links pointing at nodes belonging to each class given that
these links are active or inactive are fully determined by the
conditional probabilities βk,k

ν,−ν , γ k,k
ν,ν for the links within each

class. Taking this into account and performing summations
in Eqs. (A2)–(A4) as in Ref. [24] the following system of
equations for the macroscopic quantities is obtained in the
fully heterogeneous PA for the model under study:

dc(K,0)

dt
= (1 − c(K,0))R(α(K,0)

↓ ; T, q) − c(K,0)R(α(K,0)
↑ ; T, q), (A5)

dc(K,K )

dt
= (1 − c(K,K ) )[R(α(K,K )

↓ ; T, q)]2 − c(K,K )[R(α(K,K )
↑ ; T, q)]2, (A6)

d

dt
e(K,0),(K,0)

↑ , ↑ = −2(1 − r)

K
c(K,0)γ

(K,0),(K,0)
↑ , ↑ [KR(α(K,0)

↑ ; T, q) − S(α(K,0)
↑ ; T, K, q)]

+ 2(1 − r)

K
(1 − c(K,0))β

(K,0),(K,0)
↓ , ↑ S(α(K,0)

↓ ; T, K, q), (A7)
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d

dt
e(K,0),(K,0)

↓ , ↓ = 2(1 − r)

K
c(K,0)β

(K,0),(K,0)
↑ , ↓ S(α(K,0)

↑ ; T, K, q) − 2(1 − r)

K
(1 − c(K,0))γ

(K,0),(K,0)
↓ , ↓

× [KR(α(K,0)
↓ ; T, q) − S(α(K,0)

↓ ; T, K, q)], (A8)

d

dt
e(K,K ),(K,K )

↑ , ↑ = −2r

K
c(K,K )γ

(K,K ),(K,K )
↑ , ↑ [KR(α(K,K )

↑ ; T, q) − S(α(K,K )
↑ ; T, K, q)]R(α(K,K )

↑ ; T, q)

+ 2r

K
(1 − c(K,K ) )β

(K,K ),(K,K )
↓ , ↑ S(α(K,K )

↓ ; T, K, q)R(α(K,K )
↓ ; T, q), (A9)

d

dt
e(K,K ),(K,K )

↓ , ↓ = 2r

K
c(K,K )β

(K,K ),(K,K )
↑ , ↓ S(α(K,K )

↑ ; T, K, q)R(α(K,K )
↑ ; T, q) − 2r

K
(1 − c(K,K ) )γ

(K,K ),(K,K )
↓ , ↓

× [KR(α(K,K )
↓ ; T, q) − S(α(K,K )

↓ ; T, K, q)]R(α(K,K )
↓ ; T, q), (A10)

d

dt
e(K,0),(K,0)

↑ , ↓ = 1 − r

K
c(0,0){−β

(K,0),(K,0)
↑ , ↓ S(α(K,0)

↑ ; T, K, q) + γ
(K,0),(K,0)

↑ , ↑ [KR(α(K,0)
↑ ; T, q) − S(α(K,0)

↑ ; T, K, q)]}

+ 1 − r

K
(1 − c(K,0)){γ (K,0),(K,0)

↓ , ↓ [KR(α(K,0)
↓ ; T, q) − S(α(K,0)

↓ ; T, K, q)] − β
(K,0),(K,0)

↓ , ↑ S(α(K,0)
↓ ; T, K, q)},

(A11)

d

dt
e(K,K ),(K,K )

↑ , ↓ = r

K
c(K,K ){−β

(K,K ),(K,K )
↑ , ↓ S(α(K,K )

↑ ; T, K, q) + γ
(K,K ),(K,K )

↑ , ↑ [KR(α(K,K )
↑ ; T, q) − S(α(K,K )

↑ ; T, K, q)]}R(α(K,K )
↑ ; T, q)

+ r

K
(1 − c(K,K ) ){γ (K,K ),(K,K )

↓ , ↓ [KR(α(K,K )
↓ ; T, q) − S(α(K,K )

↓ ; T, K, q)].

− .β
(K,K ),(K,K )

↓ , ↑ S(α(K,K )
↓ ; T, K, q)}R(α(K,K )

↓ ; T, q), (A12)

d

dt
e(K,0),(K,K )

↑ , ↑ = −1 − r

K
c(K,0)(1 − γ

(K,0),(K,0)
↑ , ↑ )[KR(α(K,0)

↑ ; T, q) − S(α(K,0)
↑ ; T, K, q)]

+ 1 − r

K
(1 − c(K,0))(1 − β

(K,0),(K,0)
↓ , ↑ )S(α(K,0)

↓ ; T, K, q)

− r

K
c(K,K )(1 − γ

(K,K ),(K,K )
↑ , ↑ )[KR(α(K,K )

↑ ; T, q) − S(α(K,K )
↑ ; T, K, q)]R(α(K,K )

↑ ; T, q)

+ r

K
(1 − c(K,K ) )(1 − β

(K,K ),(K,K )
↓ , ↑ )S(α(K,K )

↓ ; T, K, q)R(α(K,K )
↓ ; T, q), (A13)

d

dt
e(K,0),(K,K )

↓ , ↓ = 1 − r

K
c(K,0)(1 − β

(K,0),(K,0)
↑ , ↓ )S(α(K,0)

↑ ; T, K, q)

− 1 − r

K
(1 − c(K,0))(1 − γ

(K,0),(K,0)
↓ , ↓ )[KR(α(K,0)

↓ ; T, q) − S(α(K,0)
↓ ; T, K, q)]

+ r

K
c(K,K )(1 − β

(K,K ),(K,K )
↑ , ↓ )S(α(K,K )

↑ ; T, K, q)R(α(K,K )
↑ ; T, q)

− r

K
(1 − c(K,K ) )(1 − γ

(K,K ),(K,K )
↓ , ↓ )[KR(α(K,K )

↓ ; T, q) − S(α(K,K )
↓ ; T, K, q)]R(α(K,K )

↓ ; T, q), (A14)

d

dt
e(K,0),(K,K )

↑ , ↓ = −1 − r

K
c(K,0)(1 − β

(K,0),(K,0)
↑ , ↓ )S(α(K,0)

↑ ; T, K, q),

+ 1 − r

K
(1 − c(K,0))(1 − γ

(K,0),(K,0)
↓ , ↓ )[KR(α(K,0)

↓ ; T, q) − S(α(K,0)
↓ ; T, K, q)],

+ r

K
c(K,K )(1 − γ

(K,K ),(K,K )
↑ , ↑ )[KR(α(K,K )

↑ ; T, q) − S(α(K,K )
↑ ; T, K, q)]R(α(K,K )

↑ ; T, q),

− r

K
(1 − c(K,K ) )(1 − β

(K,K ),(K,K )
↓ , ↑ )S(α(K,K )

↓ ; T, K, q)R(α(K,K )
↓ ; T, q), (A15)

d

dt
e(K,0),(K,K )

↓ , ↑ = 1 − r

K
c(K,0)(1 − γ

(K,0),(K,0)
↑ , ↑ )[KR(α(K,0)

↑ ; T, q) − S(α(K,0)
↑ ; T, K, q)],

− 1 − r

K
(1 − c(K,0))(1 − β

(K,0),(K,0)
↓ , ↑ )S(α(K,0)

↓ ; T, K, q),

− r

K
c(K,K )(1 − β

(K,K ),(K,K )
↑ , ↓ )S(α(K,K )

↑ ; T, K, q)R(α(K,K )
↑ ; T, q),

+ r

K
(1 − c(K,K ) )(1 − γ

(K,K ),(K,K )
↓ , ↓ )[KR(α(K,K )

↓ ; T, q) − S(α(K,K )
↓ ; T, K, q)]R(α(K,K )

↓ ; T, q), (A16)
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where the significant conditional probabilities are

α
(K,0)

↓ = e(K,0),(K,0)
↓ , ↑ + e(K,0),(K,K )

↓ , ↑
e(K,0),(K,0)

↓ , ↑ + e(K,0),(K,K )
↓ , ↑ + e(K,0),(K,0)

↓ , ↓ + e(K,0),(K,K )
↓ , ↓

,

α
(K,0)

↑ = e(K,0),(K,0)
↑ , ↓ + e(K,0),(K,K )

↑ , ↓
e(K,0),(K,0)

↑ , ↓ + e(K,0),(K,K )
↑ , ↓ + e(K,0),(K,0)

↑ , ↑ + e(K,0),(K,K )
↑ , ↑

,

α
(K,K )

↓ = e(K,K ),(K,K )
↓ , ↑ + e(K,K ),(K,0)

↓ , ↑
e(K,K ),(K,K )

↓ , ↑ + e(K,K ),(K,0)
↓ , ↑ + e(K,K ),(K,K )

↓ , ↓ + e(K,K ),(K,0)
↓ , ↓

,

α
(K,K )

↑ = e(K,K ),(K,K )
↑ , ↓ + e(K,K ),(K,0)

↑ , ↓
e(K,K ),(K,K )

↑ , ↓ + e(K,K ),(K,0)
↑ , ↓ + e(K,K ),(K,K )

↑ , ↑ + e(K,K ),(K,0)
↑ , ↑

, (A17)

β
(K,0),(K,0)

↓ , ↑ = e(K,0),(K,0)
↓ , ↑

e(K,0),(K,0)
↓ , ↑ + e(K,0),(K,K )

↓ , ↑
, β

(K,0),(K,0)
↑ , ↓ = e(K,0),(K,0)

↑ , ↓
e(K,0),(K,0)

↑ , ↓ + e(K,0),(K,K )
↑ , ↓

,

β
(K,K ),(K,K )

↓ , ↑ = e(K,K ),(K,K )
↓ , ↑

e(K,K ),(K,K )
↓ , ↑ + e(K,K ),(K,0)

↓ , ↑
, β

(K,K ),(K,K )
↑ , ↓ = e(K,K ),(K,K )

↑ , ↓
e(K,K ),(K,K )

↑ , ↓ + e(K,K ),(K,0)
↑ , ↓

, (A18)

γ
(K,0),(K,0)

↓ , ↓ = e(K,0),(K,0)
↓ , ↓

e(K,0),(K,0)
↓ , ↓ + e(K,0),(K,K )

↓ , ↓
, γ

(K,0),(K,0)
↑ , ↑ = e(K,0),(K,0)

↑ , ↑
e(K,0),(K,0)

↑ , ↑ + e(K,0),(K,K )
↑ , ↑

,

γ
(K,K ),(K,K )

↓ , ↓ = e(K,K ),(K,K )
↓ , ↓

e(K,K ),(K,K )
↓ , ↓ + e(K,K ),(K,0)

↓ , ↓
, γ

(K,K ),(K,K )
↑ , ↑ = e(K,K ),(K,K )

↑ , ↑
e(K,K ),(K,K )

↑ , ↑ + e(K,K ),(K,0)
↑ , ↑

. (A19)

Concentration c̃ of spins directed up within each layer
and concentration c of spins directed up in the MN are
defined in the same way as in Sec. III A. Natural initial
conditions for the system of Eqs. (A5)–(A16) are c(K,0)(0) =
c(K,K )(0) = ρ0, e(K,0),(K,0)

↑ , ↑ (0) = (1 − r)2ρ2
0 , e(K,0),(K,0)

↑ , ↓ (0) =
(1 − r)2ρ0(1 − ρ0), e(K,0),(K,0)

↓ , ↓ (0) = (1 − r)2(1 − ρ0)2,

e(K,K ),(K,K )
↑ , ↑ (0) = r2ρ2

0 , e(K,K ),(K,K )
↑ , ↓ (0) = r2ρ0(1 − ρ0),

e(K,K ),(K,K )
↓ , ↓ (0) = r2(1 − ρ0)2, e(K,0),(K,K )

↑ , ↑ (0) = (1 − r)rρ2
0 ,

e(K,0),(K,K )
↓ , ↓ (0) = (1 − r)r(1 − ρ0)2, e(K,0),(K,K )

↑ , ↓ (0) =
e(K,0),(K,K )

↓ , ↑ (0) = (1 − r)rρ0(1 − ρ0), where ρ0 can be chosen
arbitrarily.

As mentioned in Sec. III A the magnetization curves
obtained from the fully heterogeneous PA are practically in-
distinguishable from those obtained from the homogeneous
PA. This is illustrated by examples in Fig. 5. A question
arises whether the two above-mentioned kinds of the PA
will yield almost indistinguishable results also in the case of
the q-neighbor Ising model on MNs with the more general
multidegree distribution (1), in particular when the layers
are heterogeneous (e.g., scale-free) networks. In this context
let us mention that in the related case of the voter model
on scale-free networks heterogeneous PA yields predictions
noticeably different from those of the homogeneous PA [27].
Unfortunately, in the case of models on MNs verifying this
difference requires integration of prohibitively large systems
of Eqs. (A2), (A3), and (A4) which is beyond the scope of
this work. Alternatively, as in Ref. [15], one can consider only
two classes of nodes, those belonging or not to the overlap,
and perform averaging over the multidegree distribution in the

equations for the corresponding densities of bonds. Then, as
discussed in Sec. III A for the case of the homogeneous PA,
the equations of motion for the macroscopic quantities will
have the form of Eqs. (A5)–(A16) with K replaced by the
mean degree of nodes within layers ˜〈k〉. Hence, predictions of
such heterogeneous PA again will not depend on the specific
form of the multidegree distribution and remain similar to
those of the homogeneous PA.

2. AMEs-based heterogeneous pair approximation

The AMEs-based heterogeneous PA again uses the as-
sumption that the probability that a spin directed up or down in

FIG. 5. Magnetization m vs temperature T obtained from the
homogeneous PA (solid lines) and from the heterogeneous PA (sym-
bols) for q = 4, K = 20 and r = 0.1, 0.15, 0.2 (from left to right).
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a node with multidegree k has a given number of neighboring
spins directed up obeys a binomial distribution; for models
on MNs this assumption is made for each layer separately,
and the related binomial distributions are assumed to be in-
dependent. Hence, in contrast with the homogeneous PA, in
the AMEs-based heterogeneous PA it is taken into account
that for a node with multidegree k occupied by a spin with
downward or upward direction the respective probabilities
ϑ

(L)
k , η

(L)
k that a randomly chosen neighboring node within the

layer G(L) is occupied by a spin directed upward can depend
on k. However, in contrast with the fully heterogeneous PA
developed in in Sec. 1 of this Appendix, all active or inactive
edges attached to a given node within a given layer are treated
in the same way and obey common binomial distributions
[28,29]. As mentioned in Sec. III B, these two assumptions
should make the AMEs-based heterogeneous PA more ac-
curate than the homogeneous PA and less accurate than
the fully heterogeneous PA. Eventually, in the AMEs-based
heterogeneous PA the time-dependent macroscopic quanti-
ties are the density ck of spins directed up in nodes with

multidegree k as well as the above-mentioned probabilities
ϑ

(L)
k , η

(L)
k .

In terms of the densities ck,m and sk,m used in
the AMEs, Eqs. (20) and (21), the above-mentioned
macroscopic quantities can be expressed as ck = ∑

m ck,m =
1 − ∑

m sk,m, ϑ
(L)
k = ∑

m m(L)sk,m/[k(L)(1 − ck )], η
(L)
k =∑

m m(L)ck,m/[k(L)ck]. Then the core approximation
for the AMEs-based heterogeneous PA can be made,
according to which sk,m ≈ (1 − ck )

∏Lmax
L=A Bk(L),m(L) (ϑ (L)

k ),
ck,m ≈ ck

∏Lmax
L=A Bk(L),m(L) (η(L)

k ). The latter approximation
should be made in Eqs. (20) and (21) as well as in
the definitions of the average rates β (L)

s , . . . , γ (L)
c , so

that, e.g., β (L′ )
s ≈ β̄ (L′ )

s = 〈(1 − ck )
∑

m(k(L′ ) − m(L′ ) )
Fk,m

∏Lmax
L=A Bk(L),m(L) (ϑ (L)

k )〉/〈(1 − ck )k(L′ )(1 − ϑ
(L′ )
k )〉, etc.

Differentiating the definitions of ck, ϑ
(L)
k , η

(L)
k with respect to

time and using Eqs. (20) and (21) with the above-mentioned
approximations yields the following system of equations for
the time dependence of the macroscopic quantities in the
heterogeneous PA:

dck

dt
= −ck

∑
m

Rk,m

Lmax∏
L=A

Bk(L),m(L)

(
η

(L)
k

) + (1 − ck )
∑

m

Fk,m

Lmax∏
L=A

Bk(L),m(L)

(
ϑ

(L)
k

)
, (A20)

dϑ
(L′ )
k

dt
=

∑
m

(
ϑ

(L′ )
k − m(L′ )

k(L′ )

)[
Fk,m

Lmax∏
L=A

Bk(L),m(L)

(
ϑ

(L)
k

) − ck

1 − ck
Rk,m

Lmax∏
L=A

Bk(L),m(L)

(
η

(L)
k

)] + β̄ (L′ )
s

(
1 − ϑ

(L′ )
k

) − γ̄ (L′ )
s ϑ

(L′ )
k ,

(A21)

dη
(L′ )
k

dt
=

∑
m

(
η

(L′ )
k − m(L′ )

k(L′ )

)[
Rk,m

Lmax∏
L=A

Bk(L),m(L)

(
η

(L)
k

) − 1 − ck

ck
Fk,m

Lmax∏
L=A

Bk(L),m(L)

(
ϑ

(L)
k

)] + β̄ (L′ )
c

(
1 − η

(L′ )
k

) − γ̄ (L′ )
c η

(L′ )
k ,

(A22)

where L′ = A, B, . . . , Lmax. The above equations are very similar to those obtained in the AMEs-based heterogeneous PA for
the spin models on (monoplex) networks [28,29]; in particular, terms containing β (L)

s , . . . , , γ (L)
c with L = L′ do not occur in

Eqs. (A21) and (A22) for ϑ
(L′ )
k , η

(L′ )
k since the respective terms from Eq. (20), (21) sum up to zero in the derivation. It should

be mentioned that the AMEs can also be a starting point to obtain the homogeneous PA from Sec. III A by assuming that the
probability that a spin directed down has within the layer G(L) a neighboring spin directed up does not depend on k and can be
expressed as the average θ

(L)
↓ = 〈∑m m(L)sk,m〉/〈k(L)(1 − ck )〉 [28,29].

In the case of the q-neighbor Ising model on MNs with partial overlap of nodes and with layers in the form of RRGs, with the
multidegree distribution P(k) given by Eq. (2), there are three classes of nodes with k = (K, 0), k = (0, K ), and k = (K, K ),
and two layers G(L), L = A, B, thus the system of Eqs. (A20)–(A22) is 11-dimensional. Due to the symmetry of the model
solutions of these equations should be constrained to a subspace c(0,K ) = c(K,0), ϑ

(A)
(K,0) = ϑ

(B)
(0,K ) ≡ ϑ(0,K ), η

(A)
(K,0) = η

(B)
(0,K ) ≡ η(0,K ),

ϑ
(A)
(K,K ) = ϑ

(B)
(K,K ) ≡ ϑ(K,K ), η

(A)
(K,K ) = η

(B)
(K,K ) ≡ η(K,K ) which reduces the number of equations to six. Performing summations in

Eqs. (A20)–(A22) as in Ref. [24] the following system of equations for the macroscopic quantities is obtained in the AMEs-based
heterogeneous PA for the model under study:

dc(K,0)

dt
= −c(K,0)R(1 − η(K,0); T, q) + (1 − c(K,0))R(ϑ(K,0); T, q), (A23)

dϑ(K,0)

dt
= ϑ(K,0)

[
R(ϑ(K,0); T, q) − c(K,0)

1 − c(K,0)
R(1 − η(K,0); T, q)

]

− 1

K

{
S(ϑ(K,0); T, K, q) − c(K,0)

1 − c(K,0)
[KR(1 − η(K,0); T, q) − S(1 − η(K,0); T, K, q)]

}
+ β̄s(1 − ϑ(K,0)) − γ̄sϑ(K,0),

(A24)
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dη(K,0)

dt
= η(K,0)

[
R(1 − η(K,0); T, q) − 1 − c(K,0)

c(K,0)
R(ϑ(K,0); T, q)

]

− 1

K

{
[KR(1 − η(K,0); T, q) − S(1 − η(K,0); T, K, q)] − 1 − c(K,0)

c(K,0)
S(ϑ(K,0); T, K, q)

}
+ β̄c(1 − η(K,0)) − γ̄cη(K,0),

(A25)

dc(K,K )

dt
= −c(K,K )[R(1 − η(K,K ); T, q)]2 + (1 − c(K,K ) )[R(ϑ(K,K ); T, q)]2, (A26)

dϑ(K,K )

dt
= ϑ(K,K )

{
[R(ϑ(K,K ); T, q)]2 − c(K,K )

1 − c(K,K )
[R(1 − η(K,K ); T, q)]2

}

− 1

K

{
S(ϑ(K,K ); T, K, q)R(ϑ(K,K ); T, q)− c(K,K )

1−c(K,K )
[KR(1−η(K,K ); T, q) − S(1 − η(K,K ); T, K, q)]R(1 − η(K,K ); T, q)

}

+ β̄s(1 − ϑ(K,K ) ) − γ̄sϑ(K,K ),

(A27)

dη(K,K )

dt
= η(K,K )

{
[R(1 − η(K,K ); T, q)]2 − 1 − c(K,K )

c(K,K )
[R(ϑ(K,K ); T, q)]2

}

− 1

K
{[KR(1 − η(K,K ); T, q) − S(1 − η(K,K ); T, K, q)]R(1 − η(K,K ); T, q)

− 1 − c(K,K )

c(K,K )
S(ϑ(K,K ); T, K, q)R(ϑ(K,K ); T, q)

}
+ β̄c(1 − η(K,K ) ) − γ̄cη(K,K ), (A28)

where the average rates are

β̄s =
[

1 − r

2 − r
(1 − c(K,0))K (1 − ϑ(K,0)) + r

2 − r
(1 − c(K,K ) )K (1 − ϑ(K,K ) )

]−1

×
{

1 − r

2 − r
(1 − c(K,0))[KR(ϑ(K,0); T, q) − S(ϑ(K,0); T, K, q)]

+ r

2 − r
(1 − c(K,K ) )[KR(ϑ(K,K ); T, q) − S(ϑ(K,K ); T, K, , q)]R(ϑ(K,K ); T, q)

}
, (A29)

γ̄s =
[

1 − r

2 − r
c(K,0)K (1 − η(K,0)) + r

2 − r
c(K,K )K (1 − η(K,K ) )

]−1

×
{

1 − r

2 − r
c(K,0)S(1 − η(K,0); T, K, q) + r

2 − r
c(K,K )S(1 − η(K,K ); T, K, q)R(1 − η(K,K ); T, q)

}
, (A30)

β̄c =
[

1 − r

2 − r
(1 − c(K,0))Kϑ(K,0) + r

2 − r
(1 − c(K,K ) )Kϑ(K,K )

]−1

×
{

1 − r

2 − r
(1 − c(K,0))S(ϑ(K,0); T, K, q) + r

2 − r
(1 − c(K,K ) )S(ϑ(K,K ); T, K, q)R(ϑ(K,K ); T, q)

}
, (A31)

γ̄c =
[

1 − r

2 − r
c(K,0)Kη(K,0) + r

2 − r
c(K,K )Kη(K,K )

]−1{1 − r

2 − r
c(K,0)[KR(1 − η(K,0); T, q) − S(1 − η(K,0); T, K, q)]

+ r

2 − r
c(K,K )

[
KR(1 − η(K,K ); T, q) − S(1 − η(K,K ); T, K, q)

]
R(1 − η(K,K ); T, q)

}
. (A32)

Concentration c̃ of spins directed up within each layer and concentration c of spins directed up in the MN are defined in the
same way as in Sec. III A. Natural initial conditions for the system of Eqs. (A23)–(A28) are ϑ(K,0)(0) = η(K,0)(0) = ϑ(K,K )(0) =
η(K,K )(0) = c̃(0), while c(K,0)(0), c(K,K )(0) can be chosen arbitrarily.
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[15] A. Jȩdrzejewski and K. Sznajd-Weron, Pair approximation for
the q-voter models with quenched disorder on networks, Phys.
Rev. E 105, 064306 (2022).

[16] A. F. Peralta, A. Carro, M. San Miguel, and R. Toral, Analytical
and numerical study of the non-linear noisy voter model on
complex networks, Chaos 28, 075516 (2018).

[17] A. R. Vieira and C. Anteneodo, Threshold q-voter model, Phys.
Rev. E 97, 052106 (2018).

[18] A. R. Vieira, A. F. Peralta, R. Toral, M. San Miguel, and C.
Anteneodo, Pair approximation for the noisy threshold q-voter
model, Phys. Rev. E 101, 052131 (2020).

[19] A. Abramiuk-Szurlej, A. Lipiecki, J. Pawłowski, and K. Sznajd-
Weron, Discontinuous phase transitions in the q-voter model
with generalized anticonformity on random graphs, Sci. Rep.
11, 17719 (2021).
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