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Role of masks in mitigating viral spread on networks
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Masks have remained an important mitigation strategy in the fight against COVID-19 due to their ability to
prevent the transmission of respiratory droplets between individuals. In this work, we provide a comprehensive
quantitative analysis of the impact of mask-wearing. To this end, we propose a novel agent-based model of viral
spread on networks where agents may either wear no mask or wear one of several types of masks with different
properties (e.g., cloth or surgical). We derive analytical expressions for three key epidemiological quantities: The
probability of emergence, the epidemic threshold, and the expected epidemic size. In particular, we show how
the aforementioned quantities depend on the structure of the contact network, viral transmission dynamics, and
the distribution of the different types of masks within the population. Through extensive simulations, we then
investigate the impact of different allocations of masks within the population and tradeoffs between the outward
efficiency and inward efficiency of the masks. Interestingly, we find that masks with high outward efficiency and
low inward efficiency are most useful for controlling the spread in the early stages of an epidemic, while masks
with high inward efficiency but low outward efficiency are most useful in reducing the size of an already large
spread. Last, we study whether degree-based mask allocation is more effective in reducing the probability of
epidemic as well as epidemic size compared to random allocation. The result echoes the previous findings that
mitigation strategies should differ based on the stage of the spreading process, focusing on source control before
the epidemic emerges and on self-protection after the emergence.

DOI: 10.1103/PhysRevE.108.014306

I. INTRODUCTION

The COVID-19 pandemic has spread across the globe for
over two years, impacting economies and, as of January 2023,
had claimed over 6.7 million lives [1]. SARS-CoV-2 is the
virus that causes COVID-19. Human-to-human transmission
of SARS-CoV-2 is mainly through coughing, sneezing, and
even talking or singing, which spread respiratory droplets or
aerosols, with sizes varying from visible to microscopic [2–6].
When the virus-containing droplets or aerosol particles are
exhaled from the infected source, they move forward to a
certain distance based on their sizes [7,8]. A healthy person
can be exposed if he inhales droplets or aerosol particles
exhaled by an infected person nearby [7]. Scientific research
suggests that controlling the COVID-19 pandemic entails both
top-down systemic interventions and bottom-up collective
changes in public behavior [9–11]. WHO continues to recom-
mend droplet and contact precautions as nonpharmacological
intervention advice for the public, such as mask wearing and
reducing social gatherings, etc. [12,13].

Compelling data and experimental studies on humans and
manikins demonstrate that masking is an effective tool in
mitigating SARS-CoV-2 airborne and droplets transmission
[14–30]. The clinical efficacy of a face mask is determined
by the filtration efficacy of the material, fit of the mask,
and compliance to wearing the mask [8,14,27]. Two factors

are usually considered and tested when assessing the overall
clinical efficacy of masks: Inward and outward protection
efficiency [2,8,23,24,26]. The capability of masks that reduces
the outward emissions of micron-scale droplets and aerosol
particles exhaled by infected persons is known as outward
protection, also termed source control [14,24,26,27,31]. Ref-
erence [21] finds that double-masking increases the source
control capability of a surgical mask. Reference [27] shows
that surgical and cloth masks provide less outward protection
potentially due to the weaker seal around these masks com-
pared to N95 respirators. The pressurized droplets or aerosol
particles are likely to escape directly from the gap between the
mask and the human face due to poor fit. Inward protection,
also known as wearer protection, is the capability of masks
to act as a barrier to protect the uninfected wearers from
respiratory droplets and aerosol particles, to penetrate through
and land on exposed mucous membranes of the eye, nose, and
mouth [14,17,18,24,32]. References [33,34] find that cloth
masks have limited inward protection in healthcare settings
where viral exposure is high compared to surgical masks and
N95 respirators.

While it is well-studied that masks qualitatively miti-
gate viral spread by limiting the transmission of respiratory
droplets [35–39], many important questions about the quanti-
tative impact of masks remain open [28,40,41]. For instance,
how many individuals need to wear a mask to prevent future
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outbreaks [28]? When there are not enough high-quality
masks (e.g., N95 masks) for all individuals [42], how should
other types of mass-produced masks (e.g., surgical or cloth
masks) be allocated within the population [43]? What types
of mask attributes are most desirable in preventing future out-
breaks or controlling ongoing pandemics (e.g., source control
or self-protection) [44–46]?

This work aims to answer the above questions from a prin-
cipled, mathematical lens. We propose a novel agent-based
model of viral spread on networks wherein individuals wear
different types of masks. In particular, we study models in-
corporating multiple types of masks; prior work considers
scenarios where individuals either wear a mask or do not wear
a mask [28,43,47–57]. Our contributions are twofold. First,
we derive analytical predictions for three important epidemio-
logical quantities: The probability of emergence, the epidemic
threshold (also known as the basic reproduction number R0),
and the expected epidemic size. Specifically, we show how
these quantities depend on the structure of the contact net-
work, the properties of the viral spread, and the distribution
of masks within the population. Our results are established
by leveraging the theory of multitype branching processes
[58,59]. Moreover, we show through extensive simulations
that the analytical predictions we derive are in good agreement
with empirical results.

We then explore a variety of mask-wearing scenarios rele-
vant to the ongoing pandemic, focusing in particular on how
the probability of emergence (PE) and expected epidemic size
(ES) are affected. First, we quantify the tradeoffs between
using superior versus inferior masks (e.g., surgical versus
cloth) when all individuals wear one of either type of mask;
naturally, we find that both the PE and ES are reduced when
the fraction of superior masks increases in the population.
We then consider scenarios in which individuals either wear
superior masks, inferior masks, or no masks. We find that in-
creasing the fraction of superior masks significantly decreases
the fraction of infected non-mask-wearers when the fraction
of non-mask-wearers is small (<10%). Interestingly, when
the fraction of non-mask-wearers is larger (>20%), increasing
the fraction of superior masks does not significantly mitigate
the infections in the non-mask-wearing population. This sug-
gests that mask-wearing strategies are more effective when
a larger fraction of the population wears inferior masks,
as opposed to a smaller fraction of the population wearing
superior masks. Next, we study tradeoffs between masks
that are “inward-good” (i.e., good at blocking respiratory
droplets from the outside but poor at limiting transmission
from the mask-wearer to the outside), and those that are
“outward-good” (i.e., good at limiting transmission from the
mask-wearer to the outside but poor at blocking respiratory
droplets from the outside) [14,24,46,60]. We find that both
mask types are useful but at different stages of viral propa-
gation. In particular, outward-good masks are most helpful in
preventing the emergence of an epidemic, while inward-good
masks are best for reducing the infections of an already ongo-
ing epidemic. Last, we look into mask assignment depending
on node degree, by assigning outward-good masks to top
x% high (low) degree nodes and inward-good masks to the
rest of the nodes. We find a scenario in which high-degree
nodes wear inward-good masks and low-degree nodes wear

outward-good masks is efficient in reducing the probability of
emergence and the opposite allocation scheme is more helpful
in controlling the epidemic size extension after the epidemic
forms. This result reconfirms that we need to treat the two
stages of virus spread (i.e., before and after the epidemic ex-
ists) with different mitigation strategies. It also indicates that
high-degree nodes and low-degree nodes play different roles
in the epidemic process. The most powerful factor leading
to a pandemic as well as extending the pandemic is high
degree nodes. However, before the epidemic starts, remov-
ing the additional infecting paths from low-degree initiator
to susceptible high-degree nodes is critical in preventing the
epidemic from happening. After the epidemic forms, protect-
ing susceptible low-degree nodes from infected high-degree
nodes is more important in suppressing the propagation of the
epidemic.

While our results are motivated by mask-wearing in a
pandemic, our model can be applied more broadly to other
mitigation strategies. For example, our results on inward and
outward efficiencies suggest that when we think of a mitiga-
tion strategy for a pandemic, we should consider the current
stage of the spread: Early on, it is most important to limit
people spreading it to others (this can be achieved through
social distancing, for instance), while later it becomes more
important to protect individuals from getting the virus. This
insight can help with strategies for prioritizing vaccines, lim-
iting gatherings, etc. On a more technical note, our model
generally captures heterogeneities in the capability of a node
to be affected by or to spread a virus. While one interpretation
of node-level heterogeneity is the type of mask used, it can
also capture the effects of vaccinations or community-based
interactions (i.e., if individuals tend to interact within their
own community rather than within others, then this may result
in higher transmissibility between two individuals of the same
community).

The structure of this paper is as follows. In Sec. II, we
provide an overview of related epidemic models and introduce
a formal description of a model for viral spread in the presence
of masks of various types. Section III contains our theoretical
analysis, where we derive expressions for the probability of
emergence, the epidemic threshold, and the expected size of
the epidemic. Our theoretical results are verified in Sec. IV,
where we explore the implications of the multitype mask
model through simulations. Finally, we conclude and discuss
future avenues of research in Sec. V. Appendix Secs. A 1
and A 2 present preliminaries and more technical details for
analytical results. Appendix Sec. A 3 provides additional ex-
periments validating analytical results. Appendix Sec. A 4
presents a sensitivity analysis to explore the impact of the
network structure with four different experiment settings, in-
cluding replacing the current network model with random
networks with clustering [61], as well as a real-world dataset.

II. EPIDEMIC MODELS

The literature on epidemic modeling generally falls into
one of two categories: Ordinary differential equation (ODE)
models, and agent-based stochastic models. In typical ODE
models, the evolution of the fraction of various types (e.g.,
susceptible individuals, infected individuals) is studied. The
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governing equations for the epidemic dynamics are derived
from laws of mass action that are based on the way individuals
interact and spread the virus (see, e.g., Ref. [62]). A number
of recent works have used the ODE approach to model viral
spread with masks. Tracht et al. [50] first proposed an ODE
model incorporating mask-wearing. Motivated by challenges
caused by the COVID-19 pandemic, many authors have sub-
sequently elaborated on the model of Ref. [50], addressing
for instance the effect of asymptomatic infections and mask
allocation [28,43,47–49]. However, a common criticism of the
ODE approach is that in modeling population-level phenom-
ena, it fails to consider the possibly complex ways in which
individuals interact with each other.

Agent-based stochastic models address this gap by study-
ing how individual-level interactions facilitate viral spread.
Such models reveal the rich interplay between interaction
patterns and viral spread. Various agent-based models incor-
porating mask-wearing have been recently proposed [51–57].
The drawback of stochastic models is that they are often
challenging to simulate for realistic parameters. To overcome
this issue, a significant line of work on agent-based models
focuses on deriving analytical predictions for key epidemio-
logical quantities that accurately describe viral spread in large
contact networks; the works [53–56] adopt this approach to
quantify the effect of mask-wearing. This is also the focus of
the present paper. We emphasize that the literature discussed
above studies the effect of a single type of mask in the popu-
lation. A key novelty of our work is that we study the effect
of multiple types of masks which helps reveal the tradeoffs
between the inward and outward efficiencies of the masks
involved and, more broadly, sheds light on the effectiveness
of various mitigation strategies.

In the remainder of this section, we describe stochastic
models of viral spread in more detail. In Sec. II A, we review
the basic stochastic model. We then discuss a new stochastic
model with multitype masks in Sec. II B. In Sec. II C, we
provide an overview of the network model we adopt for our
underlying contact network.

A. An agent-based stochastic model on networks

In his seminal work [63], Newman considered an SIR
model of viral spread over a contact network. Initially, there
is a single infected individual in the population. When a
susceptible individual and an infected individual interact,
the infected individual transmits the virus to the susceptible
individual with probability T , where T is called the transmis-
sibility of the virus. After a fixed or random amount of time,
infected individuals recover and can no longer transmit the
virus. Through branching process techniques, Newman de-
rived expressions for two key epidemiological quantities: The
probability that an epidemic emerges (PE) and the expected
size of the epidemic (ES). Importantly, his results revealed the
crucial role that the structure of the contact network plays in
the behavior of the PE and ES. Although the viral dynamics
may appear simple, Newman’s model can capture complex
viral transmission and recovery mechanisms through the ap-
propriate choice of T [[63], Eqs. (2)–(6)]. Several authors
have generalized Newman’s model to account for various
agent-level heterogeneities [53–56,64–67].

B. Viral spread with multitype masks

In this work, we consider a generalization of Newman’s
basic framework called the multitype mask model. Motivated
by mask-wearing behaviors in response to the COVID-19 pan-
demic, we assume that there are M types of individuals, each
wearing a different type of mask. For notational convenience,
we shall say that an individual is of type i if they wear a
type-i mask (here, 1 � i � M). We assume that the proba-
bility of transmission between individuals varies depending
on the type of mask each individual wears. Specifically, the
probability that a virus is eventually transmitted from a type-i
infective to a type- j susceptible is Ti j , where T is an M × M
transmissibility matrix.

Typically, masks are characterized in terms of their inward
and outward efficiencies (see, e.g., Refs. [2,8,23,24,26,60]).
The inward efficiency is the probability that respiratory
droplets will be blocked from the outside layer of the mask
to the inside; thus, inward efficiency quantifies the protec-
tion of the mask against receiving the virus. The outward
efficiency is the probability that respiratory droplets will kept
from the inside layer of the mask to the outside, quantifying
the protection against transmitting the virus. The transmission
probability from a type-i individual to a type- j individual is
then given by

Ti j := (1 − εout,i )(1 − εin, j )T, (1)

where εout,i is the outward efficiency of a type-i mask, εin, j is
the inward efficiency of a type- j mask, and T is the baseline
transmissibility of the virus, i.e., the probability of trans-
mission in the presence of no masks. We have εout,i, εin, j ∈
[0, 1],∀i, j ∈ [1, M]. The higher the inward or outward effi-
ciency is, the smaller Ti, j is, and the better quality the mask is.
In Eq. (1), (1 − εout) [(1 − εin), correspondingly] represents
the probability that the droplets will pass the mask from the
inside (outside) layer of the mask to the outside (inside). Also
Note that T is not symmetric if the vectors (1 − εout) and
(1 − εin) are not collinear. We would like to remark that the
multitype mask model can generally capture the effects of mit-
igation strategies that introduce node heterogeneity of taking
in and spreading out the spreading item. For example, in a case
where a fraction of the population is vaccinated against the
virus, we can consider a new type of mask (or, equivalently,
a new type of nodes) with appropriate inward and outward
efficiency parameters associated with that type. If in a given
context vaccinated individuals gain full immunity against the
virus, then we can capture that by setting εout,v = εin,v = 1 for
nodes of type-v that represents vaccinated individuals. This
setting will ensure that a vaccinated individual can never be
infected.

In line with prior literature on stochastic epidemic models,
we generate the contact network G by the configuration model
[68]. Namely, we specify a distribution {pk}k�0 with support
on the nonnegative integers, where pk is the probability that
an arbitrary vertex has degree k, i.e., it is connected to k other
nodes via an undirected edge. According to the configuration
model, the degrees of vertices in G are drawn independently
from {pk}k�0. Equivalently, G is selected uniformly at random
from among all graphs satisfying the degree distribution pk .
Next, we assume that the M types of masks are randomly
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TABLE I. Description of parameters in the multitype mask model.

Quantity Description

M Number of mask types
mi, 1 � i � M The probability that a given individual is type i
T Baseline virus transmissibility
Ti j , 1 � i, j � M The probability that an infected type-i individual infects a type- j neighbor (T is the transmissibility matrix)
εout,i, εin,i Outward and inward efficiencies of type-i mask
G Graph representing the contact network
{pk}k�0 Degree distribution for G generated via the configuration model

distributed amongst vertices in the G. Let {m1, . . . , mM} be
a distribution over the set {1, . . . , M} where mi represents
the fraction of individuals who wear a mask of type i. We
further assume that the type of mask is chosen independently
[69] from {mi}M

i=1 over all vertices in G. See Table I for a
succinct description of our model parameters, and Fig. 1 for an
illustration of the spreading process. For each i = 1, . . . , M,
our goal is to compute the following quantities of interest: The
PE assuming that the initially infected node is of type i, and
the ES of the infected type-i individuals.

The above modification of Newman’s model for the mask-
wearing setting has garnered recent interest in the literature.
In previous work, we studied the special case where M = 2:
individuals either wear a mask or do not [53]. We also derived
expressions for PE and ES in this setting. Lee and Zhu [56]
simultaneously studied the same model, and obtained re-

sults for the ES in the setting M = 2. The results of both
Refs. [53,56] follow as a special case of our more general
model. We also mention the work of Allard et al. [67], which
is especially relevant. They study a bond percolation problem
over multitype networks, which can be viewed as a more
generic version of the mask model we study here. A key dif-
ference between our work and theirs is that the distribution of
mask types and the network formation are independent in our
model, whereas Allard et al. consider a framework where the
probability of connectivity among nodes also depends on the
node types, resulting a joint generation of node types and net-
work structure. This renders their results harder to interpret,
albeit more general. Our formulation yields simpler formulas
that clearly illustrate how the structural aspects of the network,
mask properties, and viral transmission dynamics interact to
derive the PE and ES. In addition, our work also validates

(a) (b)

(c) (d)

FIG. 1. A simple demonstration of the spreading process with a population of 6. Nodes wearing pink masks is type-1, and yellow masks is
type-2. Red color means infected, while green means healthy. (a) Before the transmission starts, the status of mask-wearing for the population
is decided. The transmissibilities of the seed to two of his contacts are set according to their mask-wearing status. There is one initially infected
seed (layer 0). (b) The seed successfully infected his neighbors (layer 1) with different transmissibilities. (c) Layer 1 nodes only infected the
node that doesn’t wear masks (upper right node). (d) The upper right node continues the infection to the last layer but didn’t succeed.
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the theoretical analysis through extensive simulations and
provides insights into the tradeoffs between inward-good and
outward-good masks. Finally, our framework still has the flex-
ibility to correlate the mask types with the network structure
by modifying the mask allocation strategy based on node
degrees. In the Results section, we demonstrate this and show
that allocating different types of masks based on node degree
can help further reduce the probability and size of epidemics.

C. Network model

To model the underlying contact network, we utilize ran-
dom graphs with random degree distribution generated by
the configuration model [68,70]. The configuration model
generates random graphs with specified degree sequences
sampled from a degree distribution. Let G denote the under-
lying contact network defined on the node set N = {1, ..., n}.
The structure of G is defined through its degree distribution
{pk, k = 0, 1, ...}, where pk is the probability that an arbi-
trary node in network G has degree k. We generate a degree
sequence from a well-behaved degree distribution, i.e., distri-
bution with moments of arbitrary order being finite [63,64,71].
Our analytical solutions are valid for such well-behaved distri-
butions, e.g., Poisson degree distributions, power-law degree
distributions with exponential cutoff, etc. However, it is worth
noting that if the second moment of the degree distribution is
finite when n approaches infinite, the expected clustering coef-
ficient of a typical vertex approaches zero. This indicates that
the graph is locally treelike. In the context of the configuration
model, the degree distribution of a randomly chosen neighbor
of a randomly chosen vertex is denoted by { p̂kk = 1, 2, ...},
and is given by p̂k = kpk/〈k〉 for k = 1, 2, ..., where 〈k〉 de-
notes the mean degree (i.e., 〈k〉 = ∑

k kpk).

III. ANALYTICAL RESULTS

In this section, we present the derivation of the probabil-
ity of emergence (PE), the epidemic threshold (R0), and the
expected epidemic size (ES) in the multitype mask model
for an arbitrary integer M > 1. Formally, emergence is de-
fined to be the event where the virus infects an infinite or
unbounded number of vertices in the network. It is the com-
plement of the extinction event, in which the virus dies out
after infecting a finite number of individuals. In Sec. III A,
we compute the through an approach based on probability
generating functions (PGFs). References [53,63,65,66] use
this method to derive the PE for related epidemic models,
among which Ref. [53] provides a similar analysis for the
M = 2 case partially relying on the conclusion from Ref. [65].
In our work, we present a direct derivation for any M > 1
case. Preliminaries for PGFs and configuration models can be
found in Appendix Sec. A 1.

In Sec. III B, we study the epidemic threshold R0, also
known as the basic reproduction number. When R0 � 1, the
epidemic dies out almost surely and when R0 > 1, there is
a positive probability that the epidemic emerges. Generally,
R0 is interpreted as the mean number of secondary infections
caused by a given infective (see, e.g., Ref. [63]), but our results
show that the true picture is more subtle than that. Indeed, us-
ing classical results from multitype branching process theory

[58,59], we show that R0 is the spectral radius of a matrix that
depends on {m}M

i=1, {Ti j}1�i, j�M as well as the first and second
moments of the degree distribution.

Finally, in Sec. III C, we study the ES. Specifically, we
show how to compute the expected fraction of type-i individ-
uals, conditioned on the emergence of the epidemic. To do
so, we leverage the method of Gleeson and coauthors [72,73],
which were recently used to compute the ES in models of viral
spread [53,65].

A. Probability of emergence

Suppose that a type-i infective—named v for
convenience—has k j susceptible neighbors of type j, for
1 � j � M. Let Xj be the number of neighbors of type j who
are eventually infected by v, so that Xj ∼ Binomial(k j, Ti j ).
Moreover, X1, . . . , XM are independent. Conditioned on the
neighborhood profile k1, . . . , kM , the PGF of the number of
infections of each type caused directly by v is

E
[
sX1

1 . . . sXM
M

∣∣k1, . . . , kM
] =

M∏
j=1

(1 − Ti j + Ti j s j )
k j .

Our next step is to condition on the total number of neighbors
of v rather than the number of neighbors of each type. Note
that if we are given k := k1 + . . . + kM , the tuple (k1, . . . , kM )
is drawn from the Multinomial distribution. Namely, the
probability of observing a given instantiation (k1, . . . , kM ) is
equal to (

k

k1, . . . , kM

)
mk1

1 . . . mkM
M .

The PGF of the number of neighbors of all types directly
caused by v conditioned on k can therefore be written as

E
[
sX1

1 . . . sXM
M

∣∣k]
=

∑
k1+...+kM=k

(
k

k1, . . . , kM

) M∏
j=1

[mj (1 − Ti j + Ti j s j )]
k j

=
⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦k

. (2)

Finally, to remove the conditioning on the number of neigh-
bors, k, we take an expectation over the degree distribution
of v. If v is type i, then the PGF of the number of secondary
infections of each type is given by

γi(s1, . . . , sM ) : =
∞∑

k=0

pk

⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦k

= g

⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦,

where g(x) is the PGF of the degree distribution of an arbitrary
vertex in the configuration model given by

g(x) :=
∞∑

k=0

pkxk .
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For notational convenience, we combine the PGFs of all types
into a single vectorized PGF γ := {γi}M

i=1.
However, if v is a later-generation infective, then the

number of its children follows the excess degree distribution.
Hence, the PGF of the number of secondary infections of each
type is given by

�i(s1, . . . , sM ) := G

⎡
⎣ M∑

j=1

mj (1 − Ti j + Ti j s j )

⎤
⎦,

where G(x) is the PGF of the excess degree distribution with
the form of

G(x) :=
∞∑

k=0

kpk

〈k〉 xk−1.

We also define the vectorized PGF � := {�i}M
i=1.

With these PGFs in hand, we can compute the probability
of extinction. Formally, for 1 � i � M and a positive integer
n, let P(n)

i denote the probability that the epidemic dies out
by generation n (that is, distance n from the infection source),
where the initial infective is of type i. Classical results from
branching process theory [[58], Chap. V.1] imply that(

P(n)
1 , . . . , P(n)

M

) = (γ ◦ � ◦ . . . ◦ �︸ ︷︷ ︸
n − 1 times

)(0, . . . , 0).

The probabilities of extinction can be found by taking the
limit n → ∞. Formally, define �(n) to be the n-fold compo-
sition of �. Assuming there is a well-defined limit as n → ∞,
�(n)(0, . . . , 0) → (Q1, . . . , QM ) which is the unique vector
satisfying

�(Q1, . . . , QM ) = (Q1, . . . , QM ).

The probabilities of eventual extinction are therefore given by

(P1, . . . , PM ) = γ (Q1, . . . , QM ). (3)

Since the above describes the extinction event when the initial
infective is type i, the PE is 1 − Pi.

To formally justify taking the limit n → ∞, we need to
check that the multitype branching process with PGF � is pos-
itive regular and nonsingular [58,59]. The process is singular
if and only if each type has exactly one secondary infection.
Our model is clearly nonsingular since each neighbor of an
infective is independently infected. A sufficient condition for
our process to be positive regular is if there is a positive proba-
bility that a type-i individual can infect a type- j individual, for
any 1 � i, j � M. This is indeed the case if we assume that
mi > 0 and Ti j > 0 for all 1 � i, j � M. Both assumptions
are expected to hold in practice as the former condition states
that there is a positive fraction of the population wearing each
type of mask, and the latter states that there is a positive
probability of transmission between any two neighboring in-
dividuals.

B. Epidemic threshold

In the special case where M = 1 (e.g., when no one wears
a mask), it is well known that there exists a phase transition
in the PE based on the basic reproduction number, R0, de-
fined as the mean number of secondary infections in a naive

population. Put differently, R0 is the expected number of new
infections generated by a newly infected node in a population
where all individuals are susceptible. It is known that if R0

is greater than one then the PE is positive, i.e., epidemics
can take place. When R0 � 1, however, the PE is zero [63]
meaning that there is zero chance for a spreading process to
reach a positive fraction of the population. Beyond marking
a phase transition, the metric R0 measures, in a sense, the
speed at which the epidemic grows and is often used by pol-
icymakers when deciding on mitigation strategies. Thus, it is
of significant importance to characterize R0 for the multitype
mask model.

First, notice from the computations in Sec. III A [in par-
ticular, from Eq. (3)] that the PE is zero (P1 = . . . = PM = 1)
if and only if Q1 = . . . = QM = 1. Hence, we focus on the
phase transition for extinction/emergence of the multitype
branching process with PGF �. Let A ∈ RM×M be a nonneg-
ative matrix such that Ai j is the expected number of type- j
children [74] of a type-i later-generation infective. Define
R0 := ρ(A) to be the spectral radius of A, and recall that the
multitype branching process with PGF � is positive regular
and nonsingular [see the discussion at the end of Sec. (III A)].
It is a well-known property of multitype branching processes
that if R0 > 1 we have Pi < 1 for all 1 � i � M, while if R0 �
1 we have Pi = 0 for all 1 � i � M; e.g., see Refs. [58,59].

We proceed by computing the entries of A to illustrate the
dependence of R0 on the graph topology, the mask param-
eters and the viral transmissibilities. To this end, note that
Ai j is equal to the expected number of type- j children of a
later-generation infective times Ti j . The expected number of
children (computed over all types) is given by

G′(1) =
∞∑

k=1

k(k − 1)pk

〈k〉 = 〈k2〉 − 〈k〉
〈k〉 ,

where 〈k〉 and 〈k2〉 are the first and second moments of the
degree distribution, respectively. Since the probability that a
given child is type- j is mj , we have

Ai j =
( 〈k2〉 − 〈k〉

〈k〉
)

Ti jm j .

This leads to the matrix representation

A = 〈k2〉 − 〈k〉
〈k〉 Tm,

where the (i, j)th entry of the matrix T is Ti j and m is a
diagonal matrix with (i, i)th entry being mi. Putting everything
together, we have

R0 = 〈k2〉 − 〈k〉
〈k〉 ρ(Tm). (4)

We next study a simpler version of Eq. (4) in a special case
of interest. Typically, masks are characterized in terms of their
inward and outward efficiencies (see, e.g., Ref. [60]). The
inward efficiency is the probability that respiratory droplets
will pass from the outside layer of the mask to the inside; thus,
inward efficiency quantifies the protection of the mask against
receiving the virus. The outward efficiency is the probability
that respiratory droplets will pass from the inside layer of
the mask to the outside, quantifying the protection against
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transmitting the virus. The transmission probability from a
type-i individual to a type- j individual is then given by

Ti j := (1 − εout,i )(1 − εin, j )T,

where εout,i is the outward efficiency of a type-i mask, εin, j is
the inward efficiency of a type- j mask, and T is the baseline
transmissibility of the virus, i.e., the probability of transmis-
sion in the presence of no masks. For notational convenience,
let εout be the M-dimensional vector where the ith entry is
εout,i; similarly define the vector εin. Then, using Eq. (4), we
have

R0 =
( 〈k2〉 − 〈k〉

〈k〉
)

T ρ[(1 − εout)(1 − εin )�m].

Since (1 − εout)(1 − εin)�m is a rank one matrix, it has only
one nonzero eigenvalue which is given by

(1 − εin)�m(1 − εout) =
M∑

i=1

mi(1 − εin,i )(1 − εout,i ).

This allows us to conclude that

R0 =
( 〈k2〉 − 〈k〉

〈k〉
)

T
M∑

i=1

mi(1 − εin,i )(1 − εout,i ). (5)

It is worth noticing that the simplifications that yield to
Eq. (5) do not apply to all heterogeneous bond percola-
tion models with arbitrary transmissibility matrix T. In other
words, the basic reproduction number R0 might depend on
cross terms Ti j for an arbitrary transmissibility matrix T. In
the specific case studied in this work, the transmissibility
matrix T is given by the inward and outward efficiency pa-
rameters of the M mask types, and the basic transmissibility
parameter T . This leads all rows of T being linearly dependent
on each other, e.g., the ith row can be found by multiplying
the jth row by (1 − εout,i )/(1 − εout, j ). Put differently, the
transmissibility matrix T resulting from different mask types
is rank-1. It is this special property that allows the simplifica-
tions to Eq. (5). However, Eq. (5) disentangles three different
factors that contribute to the spreading processes: Network
structure ( 〈k2〉−〈k〉

〈k〉 ), viral transmissibility T and average mask

filtration power
∑M

i=1 mi(1 − εin,i )(1 − εout,i ). We point out
that (1 − εin,i )(1 − εout,i ) is a property for each type of masks,
which also echoes how we evaluate the average mask filtration
power in Sec. IV C.

In Fig. 2, we present the boundary of T -mno-mask plane
[Fig. 2(a)] and mmask-ε plane [Fig. 2(b)] that identify the
epidemic threshold R0 = 1 using Eq. (5). Here we assume
two types of nodes: Mask and no mask. mmask is the fraction
of mask-wearers and mno-mask = 1 − mmask is the fraction of
no-mask nodes. For simplicity of the presentation, we further
set ε = εout = εin ∈ [0, 1] for the mask. In Fig. 2(a), for each
ε, the curves separate the areas where epidemics can take
place (north-east of the curves) from the areas where they
can not (south-west of the curves). It is observed that with the
same T , increasing ε increases the maximum mno-mask that is
allowed in the population. Figure 2(a) presents the boundary
of mmask − ε plane separating R0 = 1. Similarly, in Fig. 2(b)
for each T , the curves separate the areas where epidemics
can take place (north-east of the curves) from the areas where

(a) T - mno-mask epidemic boundary

(b) mmask - epidemic boundary

FIG. 2. (a) Epidemic boundary that separates the region of the
parameter plane that results in R0 � 1 (i.e., epidemics are not possi-
ble) from the region that gives R0 > 1 (i.e., epidemics are possible).
(a) Epidemic boundary shown on the parameter plane defined by
the viral transmissibility T and the maximum fraction of no-mask
wearers mno-mask for different values of ε; and (b) epidemic boundary
shown on the parameter plane defined by the fraction of mask-
wearers mmask and mask efficiency parameter ε for different values
of T . In panels (a) and (b), we assume two types of nodes: Nodes
wearing masks with the same inward and outward efficiencies ε

and nodes wearing no masks. Mean degree = 10 for panel (a), and
mean degree = 4.5 for panel (b). The north and east of each curve
specify the region for which epidemics are possible, while the south
and west parts of each curve stand for the region where epidemics
can not occur.

they can not (south-west of the curves). We can see that with
the same mmask, increasing T increases the minimum ε that is
needed to prevent epidemics.

C. Expected epidemic size

In this section, we compute the expected size of the
epidemic—that is, the final fraction of infected individuals
of each type, conditioned on the event that the epidemic
does not die out in finite time. Our method follows
Refs. [53,65,72,73,75].

The analysis proceeds as follows. Let v be a vertex selected
uniformly at random, and recall that the local structure of the
graph around v is a tree with probability tending to 1 as the
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network size tends to infinity. The number of children of the
root, v, follows the distribution {pk}k�0 and the number of
children of a later-generation vertex follows the excess degree
distribution. We say that the root node is at level 0, and more
generally, we say that the vertices with distance � from the
root are at level �. The epidemic is initialized by specifying
the infection status of vertices far away from v. Formally, we
specify a large positive integer n as well as θ := {θi}M

i=1, which
is a collection of values between 0 and 1. For each type-i ver-
tex in level n, we assume it is infected with probability 1 − θi,
and that it is not infected with probability θi. Given this initial
configuration, we denote for 1 � i � M and 0 � � � n − 1
the quantity q(n)

�,i to be the probability that a type-i vertex in
level � is not infected, given the initial configuration θ at level
n. The probability q(n)

�,i can be computed in a recursive manner,
which we describe next.

Let u be a given vertex of type i in level �, so that q(n)
�,i is the

probability that u is not infected by a vertex in level � + 1. As
in Sec. III A, let k1, . . . , kM denote the number of neighbors
of each type in level � + 1 and let X1, . . . , XM denote the
number of infected neighbors of each type. Conditioned on
X1, . . . , XM , the probability that u is not infected is

M∏
j=1

(1 − T ji )
Xj .

We next take an expectation over the Xj’s to compute the
unconditional probability of noninfection. To this end, ob-
serve that the infection status of nodes in the same level are
independent from each other since vertices in a given level
do not have common infected descendants due to the treelike
structure of the network. Hence, since there are k j neighbors
of type j, we have

Xj ∼ Binomial
(
k j, 1 − q(n)

�+1, j

)
.

Moreover, the Xj’s are independent. The probability of u not
being infected conditioned on k1, . . . , kM is therefore given by

E

⎡
⎣ M∏

j=1

(1 − T ji )
Xj | k1, . . . , kM

⎤
⎦

=
M∏

j=1

[
q(n)

�+1, j + (
1 − q(n)

�+1, j

)
(1 − T ji )

]k j

=
M∏

j=1

(
1 − T ji + q(n)

�+1, jT ji
)k j

. (6)

Note that Eq. (6) is quite similar to the PGF derived in Eq. (2),
with Ti j replaced with Tji and s j replaced with q(n)

�+1, j . Follow-
ing the same steps as in Sec. III A, we therefore arrive at the
following recursion for � � 1:

q(n)
�,i = G

⎡
⎣ M∑

j=1

mj
(
1 − T ji + T jiq

(n)
�+1, j

)⎤⎦ =: Fi
(
q(n)

�+1

)
. (7)

For the case � = 1, we have

q(n)
0,i = g

⎡
⎣ M∑

j=1

mj
(
1 − T ji + T jiq

(n)
1, j

)⎤⎦ =: fi
(
q(n)

1

)
. (8)

Above, q(n)
� := {q(n)

�,i } is the vectorized collection of the level �

probabilities. For notational convenience, we also write F :=
{Fi}M

i=1 and f := { fi}M
i=1. The recursions (7) and (8) imply that

q(n)
1 = F(n−1)(θ).

Conditioned on the event that the epidemic emerges, we may
assume that θi < 1 for all 1 � i � M; that is, there is a positive
probability that any given vertex in level n is infected. Taking
the limit as n → ∞ shows that q1 := limn→∞ q(n)

1 satisfies the
fixed-point equation

q1 = F(q1). (9)

The limiting probability that the root is not infected is then
given by

q0 = f (q1).

Since q0 specifies the asymptotic probabilities of noninfec-
tion, 1 − q0,i is the probability that a uniform random type-i
vertex is eventually infected. This is the same as the expected
fraction of infected type-i vertices once the epidemic has
run its course. Note the convergence to the fixed point q1

is guaranteed. Moreover, ES and PE share the same phase
transition point defined by R0 = 1. More discussion on the
convergence guarantee and phase transition can be found in
Appendix Sec. A 2.

IV. NUMERICAL RESULTS

We next present extensive numerical simulations that val-
idate our theoretical analysis. In all experiments presented in
this section, the contact network was generated via the config-
uration model with Poisson degree distribution and 1 000 000
vertices. Additional experiments on networks with degree dis-
tribution following power law with exponential cutoff appear
in Appendix Sec. A 3 b. To generate the plots, we took an
average over 5000 independent trials where, in each trial, a
new contact network was generated. We adopt 0.05 as the
threshold of epidemic emergence.

This section is organized as follows: Sec. IV A presents
how the key epidemiological quantities are impacted by mean
degrees. More results with varying baseline viral transmissi-
bilities can be found in Appendix Sec. A 3 a. Section IV B
explores the effect of masks with different qualities and the
implications for mask-wearing strategies given limited good
quality masks. Section IV C provides one of the most critical
findings of this paper: PE and ES are not always behaving
the same way. Source control is more important before the
epidemic happens, while self-protection is essential if the
epidemic already exists. Sensitivity analysis on different types
of network structures is shown in Appendix Sec. A 4. Sec-
tion IV D provides a deeper look into the case where the mask
type allocation depends on the degrees of the nodes, revealing
the different roles nodes with different degrees play in the
spreading processes.
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A. Spreading process as a function of mean degree

In this experiment, we assume there are three types of
nodes in the population: Surgical mask wearers (type 1), cloth
mask wearers (type 2), and people who do not wear any
masks (type 3). The vector m = [m1, m2, m3] represents the
proportions of the population for the three types of nodes.
The inward efficiencies of the masks are represented by the
vector εin = [εin,1, εin,2, εin,3], while the outward efficiencies
are given by εout = [εout,1, εout,2, εout,3]. For our first exper-
iment, we set m = [0.3, 0.6, 0.1], εout = [0.8, 0.5, 0], and
εin = [0.7, 0.5, 0] based on the work [28]. In this parame-
ter setting, surgical masks have better inward and outward
efficiencies than homemade cloth masks. According to re-
cent work on the estimation of transmission probability of
SARS-CoV-2 [76], the maximum probability is 63.2% at the
source reduces exponentially to less than 1% over a distance
of 1.5 m. We adopt T = 0.6 in our work as the baseline
transmissibility.

Figure 3 studies the probability of emergence and the final
epidemic size conditioned on emergence with varying mean
degrees from 1 to 10. All figures show a perfect match be-
tween the theoretical results and simulation results. The R0

values for mean degree = 6 and 7 are 0.921 and 1.105, respec-
tively. Figure 3(a) compares the PE when the initial spreader is
wearing a surgical mask, a cloth mask, no mask, and random
(any of the three types). We observe that different types of
initiators influence PE differently. In particular, the PE is
lowest when the initiator wears surgical masks which have
better inward and outward efficiencies than cloth masks. On
the contrary, the probability is highest when the initiator does
not wear a mask. This is expected since mask-wearing reduces
the initial transmissibility of the virus from the initiator to the
later propagation.

Figure 3(b) depicts the final fraction of the infected popula-
tion conditioned on epidemic emergence. The total epidemic
size is the summation of the three types of infection sizes (no
mask, cloth mask, and surgical mask). As the mean degree
increases, i.e., when the average number of contacts of peo-
ple in the network increases, the ES tends to increase. This
demonstrates the effectiveness of mitigation strategies such
as social distancing in reducing the total size of the infected
population during a pandemic.

Figure 3(c) presents the individual infection probability,
i.e., the epidemic size of a type divided by the percentage
of the same type in the population. The difference between
epidemic size and individual infected probability is that the
former indicates the fraction of people who are infected and
of a certain type, and the latter shows the fraction of infected
people within a certain type. The epidemic size provides us
insights from a global perspective that how the infected pop-
ulation distributes over all types of masks, while individual
infection probability gives us a view into each individual
type of node. It is shown that no-mask wearers suffer from
the largest probability of infection, followed by cloth masks
and surgical mask wearers. No-mask wearers also have the
highest increasing rate as the mean degree of the contact
network increases. This trend also conforms with the trend
of the probability of emergence shown in Fig. 3(a). These
results demonstrate the increased risks of infection for people
wearing an inferior mask, or no mask at all.

(a) Probability of Emergence

(b) Epidemic Size (Given Emergence)

(c) Individual Infection Probability

FIG. 3. Probability of the emergence (a), epidemic size (given
emergence) (b), and individual infection probability (c) for three
mask types: Surgical (green), cloth (blue), and no mask (yellow) on
synthetic networks generated by the configuration model with Pois-
son degree distribution on a varying mean. m = [0.3, 0.6, 0.1], T =
0.6, εout = [0.8, 0.5, 0], and εin = [0.7, 0.5, 0]. Simulation results
show perfect agreement with our theoretical results with 1 000 000
nodes and 5000 experiments.

B. Comparing the effectiveness of mask types

We now leverage our results to examine the effect of masks
with different qualities. For example, an interesting question
to ask is: What should be the mask-wearing strategies to
mitigate the epidemic most efficiently?

We follow the inward and outward probabilities of sur-
gical masks and homemade cloth masks suggested by [28]:
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εout = [0.8, 0.5] and εin = [0.7, 0.5]. We set T = 0.6 as it is
in Sec. IV A. Under this setting, surgical masks have bet-
ter inward and outward efficiencies than cloth masks, which
clearly separate the good and bad masks. In the later section,
we will discuss the individual impact of inward and outward
efficiencies in more detail. Assume that there are only two
types of nodes in the population: Cloth mask wearers and
surgical mask wearers. The proportion of surgical and cloth
masks are given by msurgical and mcloth, respectively, where
we have msurgical + mcloth = 1. Figure 4 illustrates the effect
of changing the proportion of surgical masks from 0.1 to 0.9
under contact networks with four different mean degrees: 8,
10, 15, and 20.

When the fraction of surgical mask wearers increases, the
probability of an epidemic with a random seed and the total
epidemic size are decreasing monotonically in all four cases.
In Fig. 4(a) (where the mean degree of the contact network is
8), we see that it suffices to have 30% of the population wear-
ing the surgical mask to make the probability of emergence
drop nearly to zero; i.e., to ensure that the spreading event is
unlikely to turn into an epidemic. In Figs. 4(b)–4(d), we see
that the percentage of the population wearing surgical masks
needs to be at least 50%, 80%, and 90%, respectively, to
make the probability of epidemics nearly zero, when the mean
degree increases to 10, 15, and 20, respectively. This shows
the tradeoff between people having more contacts on average
and the percentage of surgical mask wearers in preventing
the epidemic. In particular, we conclude that when people
are interacting with more contacts on average, significantly
more people need to wear high-quality masks to prevent the
spreading process from turning into an epidemic.

These plots also show nonmonotonic trends in the epidemic
size among surgical mask wearers when the mean degree is
10, 15, and 20. This is due to the tradeoff between the growth
of msurgical and the drop in the epidemic size. The right-most
column of Fig. 4 decouples this competition. As msurgical in-
creases, the individual infection probability of each mask type
decreases monotonically. The probability of emergence (the
leftmost column) shares a similar tendency with individual
infection probability. Regardless of the virus spreading phase,
i.e., either before or after the epidemic emerges, given various
qualities of masks, our result demonstrates that it is recom-
mended for the entire population to wear the best quality
masks as much as possible to reach the most efficient virus
mitigation.

Next, we explore the impact of a fraction of the population
not wearing any mask in our results. In Fig. 5, we assume
that x% of the population does not wear any masks, while the
rest wear either surgical or cloth masks. In this case, εout =
[0.8, 0.5, 0], and εin = [0.7, 0.5, 0] for surgical, cloth and no
mask. In other words, we set m = [msurgical, mcloth, mno mask],
where mno mask = x/100, mcloth + mno mask = 1 − x/100. We
fix the network’s mean degree to 10 and generate the theo-
retical prediction and simulation results for the probability of
emergence and epidemic size with x = 10, 20, and 40. We
also plot “individual infection probability” in the rightmost
column in Fig. 5, which is defined as the epidemic size of a
given type of nodes (conditionally on the emergence of the
epidemic) divided by the proportion of that node type. Put
differently, individual infection probability quantifies the odds

that an individual will eventually be infected based on their
mask-wearing behavior.

When x = 10, i.e., if 10% of the population does not wear
any masks, then, as we see from Fig. 5(a), even when 80%
of the people wear surgical masks, the epidemics still occur
with positive probability; contrast this with Fig. 4(b) where it
was sufficient for 50% of the people to wear surgical masks
to have PE equals zero. This means that if there are 10% of
no-mask-wearers in the population, epidemics can still occur
despite the rest of the population wearing surgical masks.

Additionally, when x increases from 10 to 40, the slope of
the decreasing trend for the probability of emergence and in-
dividual infection probability becomes less steep on average.
This phenomenon implies that the larger the percentage of
no-mask-wearers in the population, the harder for good masks
to alleviate the virus spreading.

Both observations suggest that regardless of mask quality,
mask-wearing should be treated as a universal requirement for
the entire population for efficient epidemic prevention.

C. Tradeoff between inward and outward mask efficiency

This section explores the tradeoff between inward and out-
ward efficiencies of the masks in use, and presents one of the
most critical findings on the phases of the spreading processes.
In particular, inward efficiency refers to the probability of a
mask blocking the pathogen from coming inside the mask,
while the outward efficiency refers to the probability of a
mask stopping the pathogen from being emitted to the outside
world through the mask [65]. As discussed before, filtration
material and seal of masks could cause divergence of the
two efficiencies [28]. Reference [60] thoroughly evaluated the
inward and outward efficiency of 10 types of masks and a
face shield under different particle size conditions. When the
particle size is around 1 to 2 µm, the inward efficiency for a
surgical mask is 25% to 30% while the outward efficiency is
50% to 75%. For masks made of microfiber, when the particle
size is of range 2 to 5 µm, the inward efficiency (50% to
75%) is constantly higher than the outward efficiency (20%
to 50%). Besides, a total sealed face shield will have very
low and similar inward and outward efficiency (both around
10%) when the particle size is 0.5 µm. However, the outward
efficiency exceeds the inward efficiency as the particle size
increases: The outward efficiency reaches 75%, and inward
efficiency sticks around 25% when the particle size grows to
5 µm.

In this work, we use vectors εin and εout to represent the
inward and outward efficiencies for all types of masks. When
the inward efficiency of a mask is better than its outward
efficiency, we call them inward-good masks. Similarly, we call
masks with higher outward efficiency as outward-good masks.
Inward-good masks are more effective for self-protection
when the subject is immersed in the environment of virus
particles than blocking the virus emitted from the infected
person’s respiratory system. Similarly, outward-good masks
are better at source control than the protection of the wearer.
One practical question to ask is: If the government is provided
with both inward-good and outward-good masks, what should
be the purchasing strategy? Should the government buy all
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(a) Mean Degree = 8

(b) Mean Degree = 10

(c) Mean Degree = 15

(d) Mean Degree = 20

FIG. 4. Probability of emergence, epidemic size (given emergence), and individual infection Probability with an increasing proportion of
surgical mask wearers (msurgical) in the population under four mean degrees (a) 8, (b) 10, (c) 15, (d) 20 of the contact networks. εout = [0.8, 0.5],
and εin = [0.7, 0.5] for surgical and cloth mask. T = 0.6. Individual infection probability is calculated as the epidemic size of each type of
mask divided by the corresponding proportion. Results show that increasing the proportion of surgical mask wearers can effectively compress
the virus spreading. In the meanwhile, the increase in the mean degree brings down the virus-compression effect of the same proportion of
surgical masks. The simulation is done with 1 000 000 nodes and 5000 experiments.
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 5. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion
of surgical mask wearers (msurgical) in the population under a fixed mean degree = 10, for different percentages of no-mask population x:
(a) x = 10, (b) x = 20, (c) x = 40. εout = [0.8, 0.5, 0], and εin = [0.7, 0.5, 0] for surgical, cloth and no mask. T = 0.6. Compared (a) with
Fig. 4(b), when x = 10, the proportion of surgical mask-wearers needs to increase from 50% to 80% to prevent the emergence. When x > 10
(b, c, d), it is not possible to prevent the emergence. In addition, the slope of the individual infection probability becomes zero as x increases.
The simulation is done with 1 000 000 nodes and 5000 experiments.

inward-good masks or outward-good masks? Or, should a
more complicated strategy be adopted?

Assume that there are three types of masks among the
population: Inward-good mask wearers, outward-good mask
wearers, and people who do not wear masks, represented as

type-1, type-2, and type-3 nodes, respectively. We have the
proportion vector of three types as m = [m1, m2, m3] where
m1 + m2 + m3 = 1. To study the impact of mask assignment
strategy for inward-good and outward-good masks, each time
we fix the proportion of no-mask-wearers at x%, and vary

014306-12



ROLE OF MASKS IN MITIGATING VIRAL SPREAD ON … PHYSICAL REVIEW E 108, 014306 (2023)

the proportion of outward-good-mask-wearers m2 from 0.1 to
1-x/100. Based on the work by [60], the specific efficiency
parameters of the masks are selected as εout = [0.7, 0.3, 0]
and εin = [0.3, 0.7, 0]. T = 0.6 as it is in Sec. IV A. Here we
would like to comment on the value selection for the efficiency
parameters εout and εin further. To form a fair comparison
between inward-good and outward-good masks, ideally, both
types are supposed to have the same average viral droplet
transmission filtration power, considering both inward protec-
tion and outward protection. In other words, one type should
not be strictly better than the other type. Equation (5) provides
a direct measure of each mask’s average filtration power in
terms of the expected number of new infections in a popu-
lation where all individuals are susceptible, given the mask’s
inward and outward efficiencies. Thus the parameter choice
for the inward-good mask and outward-good mask should fol-
low that (1 − εout,o)(1 − εin,o) = (1 − εout,i )(1 − εin,i ), where
εout,o and εin,o (εout,i and εin,i, respectively) represent the
outward and inward efficiencies for the outward-good mask
(inward-good mask, respectively).

Figure 6 shows the results of the probability of emergence,
the epidemic size given emergence, and individual infection
probability when the mean degree is 10, x =10, 20, and 40.
An interesting result is that different strategies work best at
different stages of the virus propagation process. Unlike all the
previous figures, where both probabilities with random seed
and total epidemic size given emergence show a decreasing
trend when msurgical increases, Fig. 6 displays an opposite trend
between the probability of emergence and epidemic size: The
probability of emergence from a random seed is reducing
monotonically while the total epidemic size is increasing, as
the proportion of the outward-good mask wearers m2 grows.
Put differently, outward-good masks are more helpful in ter-
minating the spreading process before the emergence of the
pandemic, whereas inward-good masks are essential to con-
trol the infection size when the pandemic already exists.

To check the generalizability of our conclusion on the
tradeoff between outward-good and inward-good masks, we
conduct sensitivity analysis on the network structures in Ap-
pendix Sec. A 4. We modified the network structure provided
by the configuration model in four different experiment set-
tings: (i) increase the network’s mean degree to provide a
less skewed degree distribution and higher connectivity; (ii)
directly remove the network structure by replacing the config-
uration model with a fully connected network; (iii) replace the
original configuration model with configuration model with
clustering [61] to approximate social networks with higher
clustering coefficient; (iv) replace the random graph model
with a real-world dataset for studying disease spreading. The
results show that even with various modifications on the
network structures, our conclusion on the tradeoff between
the inward and outward efficiencies remains the same. This
demonstrates that the configuration model provides a mathe-
matical tractable, intuitive, and generalizable starting point to
model contact networks for studying disease-spreading pro-
cesses.

We believe that this result has implications that go beyond
the impact of masks and can be applied to other pandemic
mitigation strategies, including prioritization of vaccines,
social distancing measures, and other nonpharmaceutical

interventions. Generally, it is seen that at the early stages
of the virus spreading, i.e., when the infection fraction has
not reached a significant percentage, a source-control-oriented
strategy is crucial to prevent the epidemic from emerging.
However, if an epidemic has already emerged and a significant
fraction of the population has already been infected, then it be-
comes most effective to implement a self-protection-oriented
strategy to reduce the final fraction of the infected population.
It is thus of utmost importance to develop pandemic mitiga-
tion strategies with the two distinct stages in mind, with each
stage potentially having a different optimum strategy.

D. Degree-based selection of inward-good
and outward-good masks

In the previous discussion, we have allocated different
types of masks to the population randomly, i.e., without any
dependence on their degrees, etc. In this section, we seek to
understand whether giving high-degree nodes (e.g., people in
cities) and low-degree nodes (e.g., people in villages) differ-
ent types of masks would be more effective in reducing the
probability and size of the epidemics compared to randomly
allocating the masks.

In particular, we assume that x% of the nodes in the pop-
ulation are wearing outward-good masks while the rest are
wearing inward-good masks. With nodes ranked according to
their degrees from highest to lowest, we consider two different
mask allocation strategies as follows. Strategy 1: Top x% of
the nodes (with the highest degree) wearing outward-good
masks; and strategy 2: Bottom x% of the nodes (with the
lowest degree) wearing outward-good masks. For comparison
with the previous discussion, we also consider the case where
the x% of the nodes wearing outward-good masks are selected
uniformly at random from the entire set of nodes. Then, we
obtain results for the probability of emergence and expected
epidemic size as x varies from 0 to 100.

The results are presented in Fig. 7 where we see once
again an intricate difference between the pre-epidemic and
post-epidemic stages of the spreading process. As seen in
Fig. 7(a), compared to randomly allocating, it is better to
assign outward-good masks to low-degree nodes to reduce the
probability of epidemics. Probability reduces by around 0.06
when x = 60 for low-degree selection (yellow curve, strategy
2). However, when the goal is the reduce the total fraction
of infected nodes given that an epidemic took place, we see
from Fig. 7(b) that it is instead better to allocate outward-
good masks to high-degree nodes. Epidemic size reduces by
0.06 when x = 30 for high-degree selection (green curve,
strategy 1). A possible explanation for this difference is as
follows. If our mask allocation strategy (say, Strategy 1) gives
outward-good masks to high-degree nodes (and inward-good
masks to low-degree nodes), then the probability of transmis-
sion from an infected node to a susceptible node will be the
smallest from a high-degree node to a low-degree degree but
will be the largest from a low-degree node to a high-degree
degree node. The situation will be exactly the opposite if we
use Strategy 2 which gives outward-good masks to low-degree
nodes; i.e., the chances of transmission will be the smallest
from a low-degree node to a high-degree degree node and
largest from a high-degree node to a low-degree degree node.
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 6. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion of
outward-good mask wearers in the population under a fixed mean degree = 10, for different percentages of no-mask population x: (a) x = 10,
(b) x = 20, (c) x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and no mask. T = 0.6. As moutward-good

increases, the probability of emergence with random seed (red) is decreasing whereas the total epidemic size given emergence (red) is
increasing. This shows the two different stages these two metrics represent, where outward-good masks are less helpful before the emergence
than after it. The simulation is done with 1 000 000 nodes and 5,000 experiments.

For reducing the probability of epidemics, we need to consider
the early stages of the spreading process, particularly the very
beginning of it. Since the seed node is selected uniformly at
random, its degree will follow the network’s degree distribu-
tion. We can expect that when the seed node has a high degree,
the chances of it infecting one or more of its neighbors and

eventually leading to an epidemic is significant irrespective of
the type of mask they are wearing. If, however, the seed node
has a low degree, then there is hope that the spreading process
will end early without leading to an epidemic. With this intu-
ition, it can be seen that reducing the transmission probability
from low-degree nodes to high-degree nodes would be most
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(a) Probability of Emergence with degree selection

(b) Epidemic Size with degree selection

FIG. 7. Probability of emergence (a) and epidemic size (given
emergence) (b) with degree selection of outward-good masks. Sup-
pose only two mask types exist in the population: Outward-good
and inward-good. Three outward-good masks allocation schemes are
considered: Randomly allocate x percent of nodes in the popula-
tion to wear outward-good masks (red); allocate top x percent of
high-degree nodes with outward-good masks (green); Allocate top
x percent of low-degree nodes with outward-good masks (yellow).
x is the ratio of outward-good masks. εout = [0.7, 0.3], and εin =
[0.3, 0.7] for inward-good and outward-good masks. T = 0.6 and
mean degree = 10. Simulation results were obtained with 1 000 000
nodes and 5000 experiments.

effective in reducing the probability of epidemics, which is
achieved by Strategy 2 (i.e., by giving outward-good masks
to low-degree nodes). Put differently, giving outward-good
masks to high-degree nodes (which is the case for Strategy
1) leads to a situation where an infected low-degree node
has a high chance of transmitting the virus to a high-degree
susceptible node, increasing the probability of a single node
initiating a spreading process that leads to an epidemic. This
intuition is confirmed in Fig. 7(a), where we see that Strategy
1 leads to a higher probability of epidemics than the case
where masks are allocated randomly without any dependence
on node degrees.

For reducing the expected size of an epidemic that has al-
ready taken place, we can explain the results seen in Fig. 7(b)
similarly. In this post-epidemic stage of the spreading process,
there is already a critical mass of infected individuals, and we
can expect to have little chance of preventing a high-degree
node from being infected irrespective of the mask type they
are wearing; e.g., out of the many of their neighbors, several
would be expected to be infected in the post-epidemic stage,
and at least one would be likely to infect this node irrespective

of the corresponding mask types. Thus, the only hope for
reducing the epidemic size would be to protect low-degree
nodes from being infected by high-degree virus-spreaders. As
previously mentioned, the probability of transmission from
a high-degree node to a low-degree node is the smallest in
Strategy 1, where outward-good masks are allocated to high-
degree nodes.

Summarizing, we see that at the early stages of the spread-
ing process, it is critical to protect high-degree nodes from
infection, while after the epidemic already forms, protecting
other nodes from infected high-degree nodes helps more in
suppressing the extension of the virus. This result echoes
our previous findings that mitigation strategies for spreading
processes should be treated with two different stages in mind
by focusing on source-control before the epidemic starts and
self-protection after the epidemic forms.

V. CONCLUSION

In this paper, we have studied an agent-based model for
the viral spread on networks called the multitype mask model
in which agents wear masks of various types, leading to
heterogenous probabilities of receiving and transmitting the
virus. In particular, we performed a theoretical analysis of
three critical quantities: The probability of emergence (PE),
the epidemic threshold (R0), and the expected epidemic size
(ES), and we validated our theoretical results by comparing
them against simulations and found a near-perfect match be-
tween them.

We then applied the model to investigate the impact of
mask-wearing in realistic settings related to the control of
viral spread. First, we studied the effect of allocating superior
and inferior masks (e.g., surgical and cloth masks) within the
population and found, naturally, that a greater prevalence of
surgical masks significantly reduces PE and ES. Interestingly,
we also found that when there is a significant fraction of
non-mask-wearers, increasing the fraction of superior masks
among mask-wearers does not significantly reduce the proba-
bility of emergence or expected epidemic size. This highlights
the importance of wearing some mask—even a potentially
low-quality one—in mitigating the spread of a virus.

Next, we examined the tradeoffs between masks that
are good at preventing viral transmission from an infected
neighbor (inward-good masks) and masks that are good
at preventing viral transmission to susceptible neighbors
(outward-good masks). Strikingly, we find that the two types
of masks are good for controlling different epidemiological
quantities. Specifically, outward-good masks reduce PE, mak-
ing them ideal for controlling the early stage spread of the
virus. However, inward-good masks reduce the ES, and hence
they are most effective in mitigating the impact of an already-
large pandemic. This distinction justifies the importance of
source control during the early propagation stage and self-
protection when a relatively large percentage of the population
is infected.

We further investigated mask assignment based on node
degree. In the analysis described above, mask assignment
was assumed to be independent of node degree. We further
analyzed the situation in which masks are selected for nodes
based on their degrees. We found that assigning high-degree
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nodes with inward-good masks and low-degree nodes with
outward-good masks can more effectively reduce the proba-
bility of emergence than the opposite or random allocation
schemes. In contrast, for epidemic size, high-degree nodes
wearing outward-good masks and low-degree nodes wearing
inward-good masks are more helpful in suppressing the exten-
sion of the epidemic. The finding provides insights into how
to allocate inward-good and outward-good masks to crowded
areas and less populated regions in different stages of viral
spread. Interestingly, the results also highlight the distinct and
changing roles that high-degree and low-degree nodes play.
Before the epidemic forms, low-degree node source control is
critical in preventing the epidemic from happening, by which
we can remove the additional paths for a single seed to initiate
the epidemic. After the epidemic already exists, high-degree
nodes are more impactful on the extension of the epidemic
size. In this case, giving high-degree nodes outward-good
masks and self-protection of low-degree nodes become essen-
tial.

Finally, we remark that there are several avenues for fu-
ture research. There are several ways to augment the model,
for instance, by considering networks with community struc-
ture, multitype networks, and the effect of multiple strains
of the virus propagating. It is also of great interest to ex-
plore network structure with undefined moments, such as pure
power-law distributions with heavy tails.
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APPENDIX

1. Preliminaries for Analytical Solutions

a. Generating functions

The PGF of the degree distribution of an arbitrary vertex in
the configuration model is given by

g(x) :=
∞∑

k=0

pkxk,

where pk is the probability that a given vertex has degree
k. It is also interesting to study the degree distribution of a
node identified by following a randomly chosen edge, e.g., to
characterize the distribution of the number of additional infec-
tions that a newly infected node might lead to. Specifically, let
excess degree be defined as the “degree minus one” of a node
reached by following one end of an edge selected uniformly

at random. The PGF of the excess degree is given by

G(x) :=
∞∑

k=0

kpk

〈k〉 xk−1,

where 〈k〉 := ∑∞
k=0 kpk is the mean degree of a node. For

details on the derivation, see [[75], Chapter 13].

b. Local structure of the configuration model

Graphs generated according to the configuration model
are known to be locally treelike in the following sense: The
local neighborhood of a uniform random vertex converges in
distribution to a random tree as the number of vertices tends
to infinity [[75], Chapter 12.4]. The number of children of the
root is sampled from the degree distribution, and the number
of children of a later-generation vertex is sampled from the
excess degree distribution.

2. Convergence and phase transition for ES

We make a few technical remarks about the computation
of q1 in Eq. (9). Taking the limit n → ∞ is a well-defined
operation since the multitype branching process correspond-
ing to the PGF F is positive regular and nonsingular under
the assumption that mi > 0 and Ti j > 0 for all 1 � i, j � M
(for more details, see the discussion at the end of Sec. III A).
The convergence to the fixed point q1 is guaranteed as long
as the initial condition θ has positive entries [[58], Theorem
V.2]. Conditioned on the event where the epidemic emerges,
this can be safely assumed.

Just as in the PE, there is a phase transition between an ES
of zero (q0 = 1) and a positive ES (q0,i < 1 for all 1 � i �
M). Noting that the formulas for F and � are identical, except
that Ti j is replaced with Tji, the threshold for the ES is

( 〈k2〉 − 〈k〉
〈k〉

)
ρ(T�m). (A1)

When Eq. (A1) is less than or equal to 1, q1 = q0 = 1.
However, when Eq. (A1) is greater than 1, q0,i < 1 for all
1 � i � M.

It can be seen that Eq. (A1) is exactly equal to the expres-
sion for R0 defined in Eq. (4).

We show this by proving T�m and Tm have the same
spectrum, which in turn implies that ρ(T�m) = ρ(Tm). This
can be seen through the stronger property that the character-
istic polynomials of the two matrices are identical. Note that
for any square matrix A, A and A� have the same spectrum,
thus the spectrum of T�m is equal to the spectrum of m�T.
Besides, m is diagonal, so we have m�T = mT. Thus we
have ρ(T�m) = ρ(Tm). The result follows from the fact that
for two square matrices A and B, AB and BA have the same
spectrum.

Putting together the results of this section and Sec. III B, we
have shown that when R0 � 1, the epidemic dies out in finite
time, whereas when R0 > 1, the epidemic eventually infects a
positive fraction of the population.

014306-16



ROLE OF MASKS IN MITIGATING VIRAL SPREAD ON … PHYSICAL REVIEW E 108, 014306 (2023)

(a) Probability

(b) Epidemic Size (Given Emergence)

(c) Individual Infection Probability

FIG. 8. Probability of emergence (a), epidemic size (given emer-
gence) (b), and individual infection probability (c) as a function
of the transmissibility of the virus (T ). Degree distribution fol-
lows Poisson (5). m = [0.3, 0.6, 0.1]. εout = [0.8, 0.5, 0] and εin =
[0.7, 0.5, 0] for surgical, cloth, and no mask. The simulation is done
with 1 000 000 nodes and 5000 experiments.

3. Additional validation on analytical results

a. Spreading process as a function of viral transmissibility

In Fig. 8, we investigate the effect of the baseline
transmissibility (i.e., the transmissibility between two non-
mask-wearers) on the probability of emergence and expected

epidemic size. This is useful in understanding the increased
risk of infection based on mask-wearing behavior in cases
where high-transmissibility variants of the virus may emerge
over time, e.g., the Delta variant for COVID-19. In Fig. 8,
we use the same parameter setting as in Fig. 3 except that
the mean degree is set to 5 and T varies from 0.1 to 0.9.
As T rises, the probability of emergence, epidemic size, and
individual probability are all seen to increase monotonically.
Moreover, similar to Fig. 3, as the original transmissibility T
increases, no-mask wearers experience the highest individual
infection probability as well as the highest rate of increased
risk with respect to increasing baseline transmissibility.

b. Validation of results when the degree distribution
is power law with exponential cutoff

Our analytical results for all three epidemic quantities are
valid when the degree distribution is well-behaved, i.e., when
all of its moments are finite. Put differently, our results are
not restricted to networks with Poisson degree distribution.
To gain more insight into the consequences of the analytical
results for real-world networks, we now consider a specific
example of spreading processes when the contact network
has power-law degree distributions with exponential cutoff.
Specifically, we let

pk =
{

0 if k = 0,

[Liγ (e−1/� )]−1k−γ e−k/� if k = 1, 2, . . . ,

where γ and � are positive constants and the normalizing
constant Lim(z) is the mth polylogarithm of z; i.e., Lim(z) =∑∞

k=1
zk

km .
We choose power-law distributions with exponential cutoff

here because they are applied to a wide range of real-world
networks [63,77], and they are well-behaved, i.e., have finite
moments. Figure 9 demonstrates that our theoretical results
match simulations well for networks for γ = 2.5 and � =
10, where these two parameter values are selected in line
with [64].

4. Sensitivity analysis on network structure

In Sec. IV C, we discussed the tradeoff between inward-
good and outward-good masks: Different strategies should be
considered at different stages of the virus spreading process.
Figure 6 presents the opposite trends between the probability
of emergence with random seed and total epidemic size: As
the percentage of outward-good masks increases, the proba-
bility of emergence decreases but the epidemic size increases.
Outward-good masks are useful for preventing the epidemic
from happening, while inward-good masks are helpful in con-
trolling the infection size if the epidemic already exists. In
this section, we conduct sensitivity analysis to explore further
the impact of the network structure on the trends exhibited
by Fig. 6. The analysis aims at demonstrating the robustness
of our conclusion on the tradeoff between outward-good and
inward-good masks. Four experiment settings are considered:
(i) repeating experiments of Fig. 6 with simple modifica-
tions as follows: Increase the mean degree of the Poisson
degree distribution from 10 to 30 and decrease the original
virus transmissibility T from 0.6 to 0.2; (ii) replacing the
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(a) Probability

(b) Epidemic Size (Given Emergence)

(c) Individual Infection Probability

FIG. 9. (a) Probability of emergence, (b) epidemic size (given
emergence), and (c) individual infection probability as a function of
the transmissibility T of the virus. The underlying degree distribution
is generated through power law with exponential cutoff where the
power exponent equals 2.5 and the cutoff equals 10. The param-
eter choices are as follows: Mean degree = 1.028, m = [0.1, 0.9],
εout = [0.4, 0], and εin = [0.2, 0] for cloth and no mask, respectively.
The network consists of 1 000 000 nodes and we show the average
results over 5000 experiments. We see that our analytical results still
show a near-perfect match with simulation results when the degree
distribution is power law with exponential cutoff.

network generated by the configuration model with a small
fully connected network with the number of nodes 1001 and
mean degree 1000 and adjusting T from 0.6 to 0.006; (iii)
replacing the original configuration model with configuration
model with clustering proposed by Newman in Ref. [61];
(iv) replacing the generated random graph with Haslemere

dataset, a real-world public dataset on human social contacts
collected specially for modeling infectious disease dynamics
[78]. We name the above four settings from experiment setting
1 to experiment setting 4, respectively. Experiment setting 1
increases the connectivity of the network generated by the
configuration model, providing a less skewed and more even
degree distribution. Experiment setting 2 removes the topo-
logical structure explicitly by using a small fully connected
network instead of the network generated by the configura-
tion model. We set the network size to 1000 in experiment
setting 2 due to the computation complexity of fully con-
nected networks. Experiment setting 3 increases the clustering
coefficient of the generated random graph to approximate real-
world social networks. This model generalizes the standard
configuration model, which specifies the number of edges
connected to each vertex. Instead, in configuration model with
clustering, both the number of single edges and the number
of triangles are specified. It incorporates clustering in a sim-
ple, sensible fashion. Experiment setting 4 uses a real-world
contact network for epidemic simulation, a part of the BBC
documentary “Contagion! The BBC Four Pandemic” [78,79].
The data is high-resolution, collected from residents of the
town of Haslemere, where the first evidence of UK-acquired
infection with COVID-19 was reported in late February 2020
[80]. We call this dataset the Haslemere dataset in this paper.
In experiment 1 and 2 settings, we adjust T to avoid the
situation where the probability of emergence reaches 1 regard-
less of the percentage of outward-good masks by keeping the
product of T and mean degree as a constant.

Figure 10 shows the result for experiment setting 1: The
probability of emergence, the epidemic size given emergence,
and the expected fraction of infection, for the inward-good
mask, outward-good mask, and no mask. The percentage of
the population who wears no mask, x, is set to 10, 20, 40 from
Figs. 10(a) to 10(c). The efficiency parameters are set the same
as it is in Fig. 6: εin = [0.7, 0.3, 1], and εout = [0.3, 0.7, 1].
The mean degree is 30, and transmissibility T = 0.2. We can
see that Figs. 6 and 10 result in the same trends: The probabil-
ity of emergence with random seed decreases, and the total
epidemic size increases as the percentage of outward-good
masks increases. Moreover, all three quantities: The proba-
bility of epidemics, epidemic size, and individual infection
probability in Fig. 10 are close to their counterparts in Fig. 6.
There is no significant difference between the results shown in
both figures. This is understandable because even though we
alter the underlying network structure by tripling the number
of paths on average for the virus to spread, we reduce the
transmissibility at the same time. This supports the fact that
the spreading process is a function of multiple factors. Our
result incorporates the tradeoff among those factors and thus
displays robustness under various conditions.

Figure 11 presents the simulation results of experiment set-
ting 2. The contact network is a fully connected network with
a node size of 1001 and a mean degree of 1000. Original virus
transmissibility T is 0.006. Other parameter settings are the
same as experiment setting 1. Figure 11 shows that the trend
that the probability of emergence with random seed decreases
and the total epidemic size increases as the percentage of
outward-good mask wearers increases still holds. This again
shows that, even though the result is derived under certain
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 10. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion of
outward-good mask wearers in the population under a fixed mean degree = 30, for different percentages of no-mask population x: (a) x = 10,
(b) x = 20, (c) x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and no mask. T = 0.2. Results resemble
Fig. 6 after tripling the mean degree and reducing T . The conclusion on the tradeoff between inward and outward efficiency still holds. The
simulation is done with 1 000 000 nodes and 5000 experiments.

assumptions of network structures, however, our conclusion
is generalizable. In Fig. 11, one observation is noticeable: The
probability of emergence for outward-good, inward-good, and
no mask wearers overlap. This is potentially due to the fact
that all the nodes have the same degree. Based on the ob-
servations from Sec. IV D, high-degree and low-degree nodes
play different roles in the two phases of virus spreading. Be-

fore the epidemic happens, it is critical to protect low-degree
nodes by assigning them inward-good masks to reduce extra
pathways for high-degree nodes to get infected. However, if
everyone in the network has the same degree and connects
to everyone else, then the increase of outward-good masks
becomes important to all the nodes in the network. As for
epidemic size, the results for all three types of users are not
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(a) x = 10

(b) x = 20

(c) x = 40

FIG. 11. Probability of emergence, epidemic size (given emergence), and individual infection probability with an increasing proportion
of outward-good mask wearers (moutward-good) in the population under a fixed mean degree = 1000, for different percentages of no-mask
population x: (a) x = 10, (b) x = 20, (c) x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and no mask. T
= 0.006. The trend that as moutward-good increases, the probability of emergence with random seed decreases and total epidemic size increases
remains robust. This supports the conclusion that we should focus on source control before epidemics and self-protection if an epidemic
happens. The simulation is done with 1 000 000 nodes and 5000 experiments.

overlapping in Fig. 11. They resemble the trends in Figs. 6
and 10. This is because, at this stage of the spreading process,
most nodes are infected, whether all the nodes are of the
same degree or the network exhibits a wide range of degree
distribution.

At this stage, the more inward-good masks (less outward-
good masks) are assigned, the better self-protection capacity
the population gains. This is also observed from the consis-
tently decreasing trends of individual infection probability
from Figs. 6, 10, and 11. Due to the complicated interplay
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(a) Probability of Emergence (b) Epidemic Size

FIG. 12. Probability of emergence (a) and epidemic size (given emergence) (b) with an increasing proportion of outward-good mask
wearers (moutward-good) in the population under a mean degree = 5 (s = 1 and t = 2) using networks generated by configuration model with
clustering. The percentage of the no-mask population x = 40. εout = [0.7, 0.3, 0] and εin = [0.3, 0.7, 0] for inward-good, outward-good, and
no mask. T = 0.6. The simulation is done with 1 000 000 nodes and 5000 experiments. The average clustering coefficient of the networks is
0.247 (compared to 0.004 for Fig. 6). The trend that as moutward-good increases, the probability of emergence with random seed decreases and
total epidemic size increases still holds even with a higher clustering coefficient.

of various factors such as network structure, mask allocation,
and virus spreading dynamics, it comes as no surprise that
the removal of the network structure features does influence
the results in some sense. For example, we no longer see the
discrepancy in the probability of emergence for three types of
agents; the exact values and slope of the curves are not the
same, etc. Nevertheless, we observe that under most condi-
tions, source control is critical before the epidemic happens,
and self-protection is more helpful if the epidemic already
exists remains.

Figure 12 shows the results for experiment setting 3. In
this experiment, instead of using the original configuration
model to generate the random graphs, we use the generalized

configuration model with clustering [61,81]. In this general-
ized model, for a node i, it is required to specify separately
si, the number of single edges (“stubs”) and ti, the number
of complete triangles (“corners of triangles”) attached to it.
The joint degree sequence {si, ti} describes the numbers of
such stubs and corners for every vertex. Given the degree
sequence, we can generate the network by selecting pairs of
stubs uniformly at random and choosing trios of corners at
random to form complete triangles. Similar to the constraint
on the degree sequence for the original configuration model
(the degree sequence has to have an even sum), the sum of
the edge degree sequence {si} has to be even, and the sum
of the triangle degree sequence {ti} has to be divisible by

(a) Probability of Emergence (b) Epidemic Size

FIG. 13. Probability of emergence (a) and epidemic size (given emergence) (b) with an increasing proportion of outward-good mask
wearers (moutward-good) using Haslemere dataset. The percentage of the no-mask population x = 40. εout = [0.7, 0.3, 0], and εin = [0.3, 0.7, 0]
for inward-good, outward-good and no mask. T = 0.6. There are 469 nodes and 8277 edges in the network, with a mean degree of 35.29. The
simulation is done with 5000 experiments. The clustering coefficient of the Haslemere contact network is 0.248 (compared to 0.004 for Fig. 6).
The trend that as moutward-good increases, the probability of emergence with random seed decreases and total epidemic size increases still holds
with a higher clustering coefficient on a real-world contact network.

014306-21



YURUN TIAN et al. PHYSICAL REVIEW E 108, 014306 (2023)

3 for the generalized configuration model. Given the joint
degree sequence {si, ti}, let’s say on average, each vertex is
connected to s single edges and t triangles, the mean degree
of a vertex is k = s + 2t . In this experiment, we generate {si}
based on Poisson distribution with a mean of 1, and {ti} based
on Poisson distribution with a mean of 2. The resulting net-
work thus has a mean degree of 5. We generated the network
with 1 000 000 nodes 5000 times, with an average clustering
coefficient of 0.247. Note that in Fig. 6, the average clustering
coefficient is 0.004 for 1 000 000 nodes over 5000 trials. In
Figs. 12(a) and 12(b), we still observe the opposite trend for
probability of emergence and epidemic size as the percentage
of outward-good masks increases.

Figure 13 presents the simulation results on the real-world
dataset described by experiment setting 4 [78]. The original
dataset is composed of pairwise distances between users in
the BBC Pandemic Haslemere app over time in the town of

Haslemere in UK. The network is undirected, where the edge
represents an encounter within 50 min between two users. For
simulating disease spread using Mask model, we binarize the
edges to 1 and 0. The processed network consists of 469 nodes
and 8277 edges, with a mean degree of 35.29, and a clustering
coefficient of 0.248. The clustering coefficient here is close
to that in experiment setting 3. We adopt the same parameter
choice as experiment setting 3 except for the network struc-
ture. In Figs. 13(a) and 13(b), the probability of emergence
decreases as the percentage of outward-good masks increases,
and in the meanwhile, epidemic size increases. This shows
the similar trends we observe in experiment setting 1 to 3.
Compared to Fig. 12(a), the values for probability of emer-
gence in Fig. 13(a) are much higher than that in Fig. 12(a).
But epidemic size for these two experiment settings are not
too different. This could be due to a much larger mean degree
and a small number of nodes Haslemere dataset has.

[1] Coronavirus Covid-19 (2023), ourworldindata.org.
[2] J. Howard et al., An evidence review of face masks against

Covid-19, Proc. Natl. Acad. Sci. USA 118, e2014564118
(2021).

[3] M. Lotfi, M. R. Hamblin, and N. Rezaei, Covid-19: Trans-
mission, prevention, and potential therapeutic opportunities,
Clinica Chimica Acta 508, 254 (2020).

[4] R. M. Burke, Active monitoring of persons exposed to patients
with confirmed Covid-19—United States, January–February
2020, Morbid. Mortal. Weekly Report 69, 245 (2020).

[5] J. F.-W. Chan et al., A familial cluster of pneumonia associated
with the 2019 novel coronavirus indicating person-to-person
transmission: A study of a family cluster, Lancet 395, 514
(2020).

[6] C. Huang et al., Clinical features of patients infected with 2019
novel coronavirus in Wuhan, China, Lancet 395, 497 (2020).

[7] WHO, Modes of transmission of virus causing Covid-19:
Implications for IPC precaution recommendations,
https://www.who.int/news-room/commentaries/detail/modes-
of-transmission-of-virus-causing-covid-19-implications-for-
ipc-precaution-recommendations (2020).

[8] A. Hosseinpour Shafaghi, F. R. Talabazar, A. Koşar, and M.
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